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ABSTRACT

Variational Autoencoder (VAE)-based generative models offer flexible representa-
tion learning by incorporating meta-priors, general premises considered beneficial
for downstream tasks. However, the incorporated meta-priors often involve ad-hoc
model deviations from the original likelihood architecture, causing undesirable
changes in their training. In this paper, we propose a novel representation learning
method, Gromov-Wasserstein Autoencoders (GWAE), which directly matches the
latent and data distributions using the variational autoencoding scheme. Instead
of likelihood-based objectives, GWAE models minimize the Gromov-Wasserstein
(GW) metric between the trainable prior and given data distributions. The GW met-
ric measures the distance structure-oriented discrepancy between distributions even
with different dimensionalities, which provides a direct measure between the latent
and data spaces. By restricting the prior family, we can introduce meta-priors into
the latent space without changing their objective. The empirical comparisons with
VAE-based models show that GWAE models work in two prominent meta-priors,
disentanglement and clustering, with their GW objective unchanged.

1 INTRODUCTION

One fundamental challenge in unsupervised learning is capturing the underlying low-dimensional
structure of high-dimensional data because natural data (e.g., images) lie in low-dimensional man-
ifolds (Carlsson et al., 2008; Bengio et al., 2013). Since deep neural networks have shown their
potential for non-linear mapping, representation learning has recently made substantial progress in
its applications to high-dimensional and complex data (Kingma & Welling, 2014; Rezende et al.,
2014; Hsu et al., 2017; Hu et al., 2017). Learning low-dimensional representations is in mounting
demand because the inference of concise representations extracts the essence of data to facilitate
various downstream tasks (Thomas et al., 2017; Higgins et al., 2017b; Creager et al., 2019; Locatello
et al., 2019a). For obtaining such general-purpose representations, several meta-priors have been
proposed (Bengio et al., 2013; Tschannen et al., 2018). Meta-priors are general premises about the
world, such as disentanglement (Higgins et al., 2017a; Chen et al., 2018; Kim & Mnih, 2018; Ding
et al., 2020), hierarchical factors (Vahdat & Kautz, 2020; Zhao et al., 2017; Sønderby et al., 2016),
and clustering (Zhao et al., 2018; Zong et al., 2018; Asano et al., 2020).

A prominent approach to representation learning is a deep generative model based on the variational
autoencoder (VAE) (Kingma & Welling, 2014). VAE-based models adopt the variational autoencoding
scheme, which introduces an inference model in addition to a generative model and thereby offers
bidirectionally tractable processes between observed variables (data) and latent variables. In this
scheme, the reparameterization trick (Kingma & Welling, 2014) yields representation learning
capability since reparameterized latent codes are tractable for gradient computation. The introduction
of additional losses and constraints provides further regularization for the training process based on
meta-priors. However, controlling representation learning remains a challenging task in VAE-based
models owing to the deviation from the original optimization. Whereas the existing VAE-based
approaches modify the latent space based on the meta-prior (Kim & Mnih, 2018; Zhao et al., 2017;
Zong et al., 2018), their training objectives still partly rely on the evidence lower bound (ELBO). Since
the ELBO objective is grounded on variational inference, ad-hoc model modifications cause implicit
and undesirable changes, e.g., posterior collapse (Dai et al., 2020) and implicit prior change (Hoffman
et al., 2017) in β-VAE (Higgins et al., 2017a). Under such modifications, it is also unclear whether a
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latent representation retains the underlying data structure because VAE models implicitly interpolate
data points to form a latent space using noises injected into latent codes by the reparameterization
trick (Rezende & Viola, 2018a;b; Aneja et al., 2021).

As another paradigm of variational modeling, the ELBO objective has been reinterpreted from the
optimal transport (OT) viewpoint (Tolstikhin et al., 2018). Tolstikhin et al. (2018) have derived a
family of generative models called the Wasserstein autoencoder (WAE) by applying the variational
autoencoding model to high-dimensional OT problems as the couplings (Appendix A.4 for more
details). Despite the OT-based model derivation, the WAE objective is equivalent to that of Info-
VAE (Zhao et al., 2019), whose objective consists of the ELBO and the mutual information term.
The WAE formulation is derived from the estimation and minimization of the OT cost (Tolstikhin
et al., 2018; Arjovsky et al., 2017) between the data distribution and the generative model, i.e., the
generative modeling by applying the Wasserstein metric. It furnishes a wide class of models, even
when the prior support does not cover the entire variational posterior support. The OT paradigm
also applies to existing representation learning approaches originally derived from re-weighting the
Kullback-Leibler (KL) divergence term (Gaujac et al., 2021).

Another technique for optimizing the VAE-based ELBO objective called implicit variational infer-
ence (IVI) (Huszár, 2017) has been actively researched. While the VAE model has an analytically
tractable prior for variational inference, IVI aims at variational inference using implicit distributions,
in which one can use its sampler instead of its probability density function. A notable approach to
IVI is the density ratio estimation (Sugiyama et al., 2012), which replaces the f -divergence term in
the variational objective with an adversarial discriminator that distinguishes the origin of the samples.
For distribution matching, this algorithm shares theoretical grounds with generative models based on
the generative adversarial networks (GANs) (Goodfellow et al., 2014; Sønderby et al., 2017), which
induces the application of IVI toward the distribution matching in complex and high-dimensional
variables, such as images. See Appendix A.6 for more discussions.

In this paper, we propose a novel representation learning methodology, Gromov-Wasserstein Au-
toencoder (GWAE) based on the Gromov-Wasserstein (GW) metric (Mémoli, 2011), an OT-based
metric between distributions applicable even with different dimensionality (Mémoli, 2011; Xu et al.,
2020; Nguyen et al., 2021). Instead of the ELBO objective, we apply the GW metric objective
in the variational autoencoding scheme to directly match the latent marginal (prior) and the data
distribution. The GWAE models obtain a latent representation retaining the distance structure of the
data space to hold the underlying data information. The GW objective also induces the variational
autoencoding to perform the distribution matching of the generative and inference models, despite
the OT-based derivation. Under the OT-based variational autoencoding, one can adopt a prior of a
GWAE model from a rich class of trainable priors depending on the assumed meta-prior even though
the KL divergence from the prior to the encoder is infinite. Our contributions are listed below.

• We propose a novel probabilistic model family GWAE, which matches the latent space to the
given unlabeled data via the variational autoencoding scheme. The GWAE models estimate
and minimize the GW metric between the latent and data spaces to directly match the latent
representation closer to the data in terms of distance structure.

• We propose several families of priors in the form of implicit distributions, adaptively learned
from the given dataset using stochastic gradient descent (SGD). The choice of the prior
family corresponds to the meta-prior, thereby providing a more flexible modeling scheme
for representation learning.

• We conduct empirical evaluations on the capability of GWAE in prominent meta-priors:
disentanglement and clustering. Several experiments on image datasets CelebA (Liu et al.,
2015), MNIST (LeCun et al., 1998), and 3D Shapes (Burgess & Kim, 2018), show that
GWAE models outperform the VAE-based representation learning methods whereas their
GW objective is not changed over different meta-priors.

2 RELATED WORK

VAE-based Representation Learning. VAE (Kingma & Welling, 2014) is a prominent deep
generative model for representation learning. Following its theoretical consistency and explicit
handling of latent variables, many state-of-the-art representation learning methods are proposed
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based on VAE with modification (Higgins et al., 2017a; Chen et al., 2018; Kim & Mnih, 2018;
Achille & Soatto, 2018; Kumar et al., 2018; Zong et al., 2018; Zhao et al., 2017; Sønderby et al.,
2016; Zhao et al., 2019; Hou et al., 2019; Detlefsen & Hauberg, 2019; Ding et al., 2020). The
standard VAE learns an encoder and a decoder with parameters ϕ and θ, respectively, to learn a
low-dimensional representation in its latent variables z using a bottleneck layer of the autoencoder.
Using data x ∈ pdata(x) supported on the data space X , the VAE objective is the ELBO formulated
by the following optimization problem:

maximize
θ,ϕ

Epdata(x)

[
Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)∥π(z))

]
, (1)

where the encoder qϕ(z|x) and decoder pθ(x|z) are parameterized by neural networks, and the
prior π(z) is postulated before training. The first and second terms (called the reconstruction term
and the KL term, respectively) in Eq. (1) are in a trade-off relationship (Tschannen et al., 2018).
This implies that learning is guided to autoencoding by the reconstruction term while matching the
distribution of latent variables to the pre-defined prior using the KL term.

Implicit Variational Inference. IVI solves the variational inference problem using implicit distribu-
tions (Huszár, 2017). A major approach to IVI is density ratio estimation (Sugiyama et al., 2012), in
which the ratio between probability distribution functions is estimated using a discriminator instead of
their closed-form expression. Since IVI-based and GAN-based models share density ratio estimation
mechanisms in distribution matching (Sønderby et al., 2017), the combination of VAEs and GANs
has been actively studied, especially from the aspect of the matching of implicit distributions. The
successful results achieved by GAN-based models in high-dimensional data, such as natural images,
have propelled an active application and research of IVI in unsupervised learning (Larsen et al., 2016;
Makhzani, 2018).

Optimal Transport. The OT cost is used as a measure of the difference between distributions
supported on high-dimensional space using SGD (Arjovsky et al., 2017; Tolstikhin et al., 2018;
Gaujac et al., 2021). This provides the Wasserstein metric for the discrepancy between distributions.
For a constant ξ ≥ 1, the ξ-Wasserstein metric between distributions r and s is defined as

Wξ(r, s) =

(
inf

γ∈P(r(x),s(x′))
Eγ(x,x′)

[
dξ(x,x′)

])1/ξ

, (2)

where x denotes the random variable in which the distributions r and s are defined, and P(r(x), s(x′))
denotes the set consisting of all couplings whose x-marginal is r(x) and whose x′-marginal is s(x′).
Owing to the difficulty of computing the exact infimum in Eq. (2) for high-dimensional, large-scale
data, several approaches try to minimize the estimated ξ-Wasserstein metric using neural networks
and SGD (Tolstikhin et al., 2018; Arjovsky et al., 2017). The form in Eq. (2) is the primal form of the
Wasserstein metric, particularly compared with its dual form for the case of ξ = 1 (Arjovsky et al.,
2017). The two prominent approaches for the OT in high-dimensional, complex large-scale data are:
(i) minimizing the primal form using a probabilistic autoencoder (Tolstikhin et al., 2018), and (ii)
adversarially optimizing the dual form using a generator-critic pair (Arjovsky et al., 2017).

Wasserstein Autoencoder (WAE). WAE (Tolstikhin et al., 2018) is a family of generative models
whose autoencoder estimates and minimizes the primal form of the Wasserstein metric between the
generative model pθ(x) and the data distribution pdata(x) using SGD in the variational autoencoding
settings, i.e., the VAE model architecture (Kingma & Welling, 2014). This primal-based formulation
induces a representation learning methodology from the OT viewpoint because the WAE objective is
equivalent to that of InfoVAE (Zhao et al., 2019), which learns the variational autoencoding model by
retaining the mutual information of the probabilistic encoder.

Kantorovich-Rubinstein Duality. The Wasserstein GAN models (Arjovsky et al., 2017) adopt an
objective based on the 1-Wasserstein metric between the generative model pθ(x) and data distribu-
tion pdata(x). This objective is estimated using the Kantorovich-Rubinstein duality (Villiani, 2009;
Arjovsky et al., 2017), which holds for the 1-Wasserstein as

W1(r, s) = sup
f :1-Lipschitz

Er(x) [f(x)]− Es(x) [f(x)] . (3)

To estimate this function f using SGD, a 1-Lipschitz neural network called a critic is introduced,
as with a discriminator in the GAN-based models. The training process using mini-batches is

3



Published as a conference paper at ICLR 2023

adversarially conducted, i.e., by repeating updates of the critic parameters and the generative param-
eters alternatively. During this process, the critic maximizes the objective in Eq. (3) to approach
the supremum, whereas the generative model minimizes the objective for the distribution match-
ing pθ(x) ≈ pdata(x).

3 PROPOSED METHOD

Our GWAE models minimize the OT cost between the data and latent spaces, based on generative
modeling in the variational autoencoding. GWAE models learn representations by matching the
distance structure between the latent and data spaces, instead of likelihood maximization.

3.1 OPTIMAL TRANSPORT BETWEEN SPACES

Although the OT problem induces a metric between probability distributions, its application is
limited to distributions sharing one sample space. The GW metric (Mémoli, 2011) measures the
discrepancy between metric measure spaces using the OT of distance distributions. A metric measure
space consists of a sample space, metric, and probability measure. Given a pair of different metric
spaces, i.e., sample spaces and metrics, the GW metric measures the discrepancy between probability
distributions supported on the spaces. In terms of the GW metric, two distributions are considered to
be equal if there is an isometric mapping between their supports (Sturm, 2012; Sejourne et al., 2021).
For a constant ρ ≥ 1, the formulation of the ρ-GW metric between probability distributions r(x)
supported on a metric space (X , dX ) and s(z) supported on (Z, dZ) is given by

GWρ(r, s) :=

(
inf

γ∈P(r(x),s(z))
Eγ(x,z)Eγ(x′,z′)

[
|dX (x,x′)− dZ(z, z

′)|ρ
])1/ρ

, (4)

where P(r(x), s(z)) denotes the set of all couplings with r(x) as x-marginal and s(z) as z-marginal.
The metrics dX and dZ are the metrics in the spaces X and Z , respectively.

3.2 APPLICATION TO REPRESENTATION LEARNING: GROMOV-WASSERSTEIN AUTOENCODER

In this work, we propose a novel GWAE modeling methodology based on the GW metric for distance
structure modeling in the variational autoencoding formulation. The objectives of generative models
typically aim for distribution matching in the data space, e.g., the likelihood (Kingma & Welling,
2014) and the Jensen-Shannon divergence (Goodfellow et al., 2014). The GWAE objective differs
from these approaches and aims to directly match the latent and data distributions based on their
distance structure.

3.2.1 MODEL SETTINGS: VARIATIONAL AUTOENCODING

Given an N -sized set of data points {xi}Ni=1 supported on a data space X , representation learning
aims to build a latent space Z and obtain mappings between both the spaces. For numerical
computation, we postulate that the spaces X and Z respectively have tractable metrics dX and dZ
such as the Euclidean distance (see Appendix B.1 for details), and let M,L ∈ N\{0}, X ⊆ RM , and
Z ⊆ RL. We mention the bottleneck case M ≫ L similarly to the existing representation learning
methods (Kingma & Welling, 2014; Higgins et al., 2017a; Kim & Mnih, 2018) because the data
space X is typically an L-dimensional manifold (Carlsson et al., 2008; Bengio et al., 2013).

We construct a model with a trainable latent prior πθ(z) to approach the data distribution pdata(x) in
terms of distance structure. Following the standard VAE (Kingma & Welling, 2014), we consider a
generative model pθ(x, z) with parameters θ and an inference model qϕ(x, z) with parameters ϕ.
The generation process consists of the prior πθ(z) and a decoder pθ(x|z) parameterized with neural
networks. Since the inverted generation process pθ(z|x) = πθ(z)pθ(x|z)/pθ(x) is intractable
in this scheme, an encoder qϕ(z|x) ≈ pθ(z|x) is instead established using neural networks for
parameterization. Thus, the generative pθ(x, z) and inference qϕ(x, z) models are defined as

pθ(x, z) = πθ(z)pθ(x|z), qϕ(x, z) = pdata(x)qϕ(z|x). (5)

The empirical p̂data(x) = 1/N
∑N

i=1 δ(x − xi) is used for the estimation of pdata(x). A Dirac
decoder and a diagonal Gaussian encoder are used to alleviate deviations from the data manifold as
in Tolstikhin et al. (2018) (see Appendix B.1 for these details and formulations).

4



Published as a conference paper at ICLR 2023

3.2.2 OPTIMAL TRANSPORT OBJECTIVE

Here, we focus on the latent space Z to transfer the underlying data structure to the latent space.
This highlights the main difference between the GWAE and the existing generative approaches. The
training objective of GWAE is the GW metric between the metric measure spaces (X , dX , pdata(x))
and (Z, dZ , πθ(z)) as

minimize
θ

GWρ(pdata(x), πθ(z))
ρ, (6)

where ρ ≥ 1 is a constant, and we adopt ρ = 1 to alleviate the effect of outlier samples distant from
the isometry for training stability. Computing the exact GW value is difficult owing to the high
dimensionality of both x and z. Hence, we estimate and minimize the GW metric using the variational
autoencoding scheme, which captures the latent factors of complex data in a stable manner. We
recast the GW objective into a main GW estimator LGW with three regularizations: a reconstruction
loss LW , a joint dual loss LD, and an entropy regularization RH.

Estimated GW metric LGW . We use the generative model pθ(x, z) as the coupling of Eq. (6)
similarly to the WAE (Tolstikhin et al., 2018) methodology. The main loss LGW estimates the GW
metric as:

minimize
θ

LGW := Epθ(x,z)Epθ(x′,z′)

[
|dX (x,x′)− CdZ(z, z

′)|ρ
]
, (7)

subject to pdata(x) = pθ(x), (8)

where C is a trainable scale constant to cancel out the scale degree of freedom, and pθ(x) denotes
the marginal pθ(x) =

∫
Z pθ(x, z)dz.

WAE-based X -marginal condition LW . To obtain a numerical solution with stable training,
Tolstikhin et al. (2018) relax the X -matching condition of Eq. (8) into ξ-Wasserstein minimiza-
tion (ξ ≥ 1) using the variational autoencoding coupling. The WAE methodology (Tolstikhin
et al., 2018) uses the inference model qϕ(x, z) to formulate the ξ-Wasserstein minimization as the
reconstruction loss LW with a Z-matching condition as:

minimize
θ,ϕ

LW := Eqϕ(x,z)Epθ(x′|z) [dX (x,x′)] , (9)

subject to qϕ(z) = πθ(z). (10)

where dX is a distance function based on the Lξ metric. We adopt the settings ξ = 2 to retain the
conventional Gaussian reconstruction loss.

Merged sufficient condition LD. We merge the marginal coupling conditions of Eq. (8) and Eq. (10)
into the joint X × Z-matching sufficient condition pθ(x, z) = qϕ(x, z) to attain bidirectional
inferences while preserving the stability of autoencoding. Since such joint distribution matching
can also be relaxed into the minimization of W1(qϕ(x, z), pθ(x, z)), this condition is satisfied by
minimizing the Kantorovich-Rubinstein duality introduced by Arjovsky et al. (2017) as in Eq. (3).
Practically, a 1-Lipschitz neural network (critic) fψ estimates the supremum of Eq. (3), and the main
model minimizes this estimated supremum as:

minimize
θ,ϕ

maximize
ψ

LD := Eqϕ(x,z) [fψ(x, z)]− Epθ(x,z) [fψ(x, z)] , (11)

where ψ is the critic parameters. To satisfy the 1-Lipschitz constraint, the critic fψ is implemented
with techniques such as spectral normalization (Miyato et al., 2018) and gradient penalty (Gulrajani
et al., 2017) (see Appendix B.3 for the details of the gradient penalty loss).

Entropy regularization RH. We further introduce the entropy regularization RH using the inference
entropy to avoid degenerate solutions in which the encoder qϕ(z|x) becomes Dirac and deterministic
for all data points. In such degenerate solutions, the latent representation simply becomes a look-up
table because such a point-to-point encoder maps the set of data points into a set of latent code points
with measure zero (Hoffman et al., 2017; Dai et al., 2018), causing overfitting into the empirical data
distribution. An effective way to avoid it is a regularization with the inference entropy Hq of the
latent variables z conditioned on data x as

RH := Hq(z|x) = Eqϕ(x,z) [− log qϕ(z|x)] . (12)

Since the conditioned entropy Hq(z|x) diverges to negative infinity in the degenerate solutions, the
regularization term −RH facilitates the probabilistic learning of GWAE models.
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Stochastic Training with Single Estimated Objective. Applying the Lagrange multiplier method to
the aforementioned constraints, we recast the GW metric of Eq. (6) into a single objective L with
multipliers λW , λD, and λH as

minimize
θ,ϕ

maximize
ψ

L := LGW + λWLW + λDLD − λHRH. (13)

One efficient solution to optimize this objective is using the mini-batch gradient descent in alter-
native steps (Goodfellow et al., 2014; Arjovsky et al., 2017), which we can conduct in automatic
differentiation packages, such as PyTorch (Paszke et al., 2019). One step of mini-batch descent is the
minimization of the total objective L in Eq. (13), and the other step is the maximization of the critic
objective LD in Eq. (11). By alternatively repeating these steps, the critic estimates the Wasserstein
metric using the expected potential difference LD (Arjovsky et al., 2017). Although the objective in
Eq. (13) involves three auxiliary regularizations including an adversarial term, the GWAE model can
be efficiently optimized because the adversarial mechanism and the variational autoencoding scheme
share the goal of distribution matching pθ(x, z) ≈ qϕ(x, z) (see Appendix C.5 for more details).

3.2.3 PRIOR BY SAMPLING

GWAE models apply to the cases in which the prior πθ(z) takes the form of an implicit distribution
with a sampler. An implicit distribution πθ(z) provides its sampler z ∼ πθ(z) while a closed-form
expression of the probability density function is not available. The adversarial algorithm of GWAE
handles such cases and enables a wide class of priors to provide meta-prior-based inductive biases for
unsupervised representation learning, e.g., for disentanglement (Locatello et al., 2019b; 2020). Note
that the GW objective in Eq. (6) becomes a constant function in non-trainable prior cases.

Neural Prior (NP). A straightforward way to build a differentiable sampler of a trainable prior is
using a neural network to convert noises. The prior of the latent variables z is defined via sampling
using a neural network gθ : RL → RL with parameters θ (see Appendix B.2 for its formulation).
Notably, the neural network gθ need not be invertible unlike Normalizing Flow (Rezende & Mohamed,
2015) since the prior is defined as an implicit distribution not requiring a push-forward measure.

Factorized Neural Prior (FNP). For disentanglement, we can constitute a factorized prior using
an element-wise independent neural network g̃θ = {g̃(i)θ }Li=1 (see Appendix B.2 for its formu-
lation). Such factorized priors can be easily implemented utilizing the 1-dimensional grouped
convolution (Krizhevsky et al., 2012).

Gaussian Mixture Prior (GMP). For clustering structure, we construct a class of Gaussian mixture
priors. Given that the prior contains K components, the k-th component is parameterized using the
weights wk, means mk ∈ RL, and square-root covariances Mk ∈ RL×L as

πθ(z) =

K∑
k=1

wkN (z|mk,MkM
T
k ), (14)

where the weights {wk}Kk=1 are normalized as
∑K

k=1 wk = 1. To sample from a prior of this
class, one randomly chooses a component k from the K-way categorical distribution with probabili-
ties (w1, w2, . . . , wk) and draws a sample z as follows:

z = mk +Mkϵ, ϵ ∼ N (0, IL), (15)

where 0 and In denote the zero vector and the n-sized identity matrix, respectively. In this class of
priors, the set of trainable parameters consists of {(wk,mk,Mk)}Kk=1. Note that this parameterization
can be easily implemented in differentiable programming frameworks because MkM

T
k is positive

semidefinite for any Mk ∈ RL×L.

4 EXPERIMENTS

We investigated the wide capability of the GWAE models for learning representations based on
meta-priors.1 We evaluated GWAEs in two principal meta-priors: disentanglement and clustering.

1In the tables of the quantitative evaluations, ↑ and ↓ indicate scores in which higher and lower values are
better, respectively.
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Figure 1: The estimation and minimization of the GW metric. This trial of training is conduced in
GWAE (NP, λD=1, λW =1, λH=1) using the MNIST (LeCun et al., 1998) dataset. (a) The curves show
the GW values estimated by the loss term LGW (solid, blue) and the empirical GW computed by the
POT package (Flamary et al., 2021) (dashed, orange). The values are computed using the validation
set. (b) The axes ∆x = dX (x,x′) (vertical) and ∆z = dZ(z, z

′) (horizontal) respectively denote the
difference in the data and latent spaces between generated samples (x, z), (x′, z′) ∼ pθ(x, z). The
histogram contains 10,000 generated sample pairs.

To validate the effectiveness of GWAE on different tasks for each meta-prior, we conducted each
experiment in corresponding experimental settings. We further studied their autoencoding and
generation for the inspection of general capability.

4.1 EXPERIMENTAL SETTINGS

We compared the GWAE models with existing representation learning methods (see Appendix A for
the details of the compared methods). For the experimental results in this section, we used four visual
datasets: CelebA (Liu et al., 2015), MNIST (LeCun et al., 1998), 3D Shapes (Burgess & Kim, 2018),
and Omniglot (Lake et al., 2015) (see Appendix C.1 for dataset details). For quantitative evaluations,
we selected hyperparameters from λW ∈ [100, 101], λD ∈ [100, 101], and λH ∈ [10−4, 100] using
their performance on the validation set. For fair comparisons, we trained the networks with a
consistent architecture from scratch in all the methods (see Appendix C.2 for architecture details).

4.2 GROMOV-WASSERSTEIN ESTIMATION AND MINIMIZATION

We validated the estimation and minimization of the GW metric in Fig. 1. First, to validate the
estimation of the GW metric, we compared the GW metric estimated in GWAE and the empirical
GW value computed in the conventional method in Fig. 1a. Against the GWAE models estimating
the GW metric as in Eq. (7), the empirical GW values are computed by the standard OT framework
POT (Flamary et al., 2021). Although the estimated LGW is slightly higher than the empirical values,
the curves behave in a very similar manner during the entire training process. This result supports that
the GWAE model successfully estimated the GW values and yielded their gradients to proceed with
the distribution matching between the data and latent spaces. Second, to validate the minimization of
the GW metric, we show the histogram of the differences of generated samples in the data and latent
space in Fig. 1b. The isometry of generated samples is attained if the generative coupling pθ(x, z)
attains the infimum in Eq. (4). This histogram result shows that the generative model pθ(x, z) acquired
nearly-isometric latent embedding, and suggests that the GW metric was successfully minimized
although the objective of Eq. (13) contains three regularization loss terms (refer to Appendix C.8 for
ablation studies, and Appendix C.4 for comparisons). These two experimental results support that the
GWAE models successfully estimated and optimized the GW objective.

4.3 LEARNING REPRESENTATIONS BASED ON META-PRIORS

Disentanglement. We investigated the disentanglement of representations obtained using GWAE
models and compared them with conventional VAE-based disentanglement methods. Since the
element-wise independence in the latent space is postulated as a meta-prior for disentangled represen-
tation learning, we used the FNP class for the prior πθ(z). Considering practical applications with
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Figure 2: Comparison of the learned latent spaces in 3D Shapes (Burgess & Kim, 2018) and L = 16.
The vertical and horizontal axes in the scatter plots respectively represent two of the 16 (= L) latent
variables with the highest and the second-highest informativeness (Do & Tran, 2020) w.r.t. the object
hue factor. Note that a single factor value varies along only one axis in a disentangled representation.

Table 1: Quantitative comparison of disentanglement. The reported scores were calculated in 3D
Shapes (Burgess & Kim, 2018), and the latent size L = 16. Since the latent size L is larger than
the number of the ground truth factors, the hyperparameter tuning was based on the validation set
DCI-C (Eastwood & Williams, 2018) values. To deal with the probabilistic scores (Zaidi et al., 2021),
we reported the ranges for five measurements. The details of the scores are provided in Appendix C.3.

Model DCI-C ↑ DCI-D ↑ DCI-I ↑
VAE (Kingma & Welling, 2014) 0.7734 ± 0.0004 0.6831 ± 0.0002 0.9914 ± 0.0003
β-VAE (Higgins et al., 2017a) 0.8245 ± 0.0002 0.7328 ± 0.0002 0.9796 ± 0.0002
WAE (Tolstikhin et al., 2018) 0.8288 ± 0.0004 0.7544 ± 0.0004 0.9959 ± 0.0001
β-TCVAE (Chen et al., 2018) 0.8347 ± 0.0003 0.7085 ± 0.0002 0.9880 ± 0.0002

FactorVAE (Kim & Mnih, 2018) 0.7963 ± 0.0004 0.7390 ± 0.0004 0.9961 ± 0.0002
DIP-VAE-I (Kumar et al., 2018) 0.8609 ± 0.0003 0.6984 ± 0.0003 0.9961 ± 0.0001

DIP-VAE-II (Kumar et al., 2018) 0.8236 ± 0.0001 0.7498 ± 0.0003 0.9957 ± 0.0002

GWAE (FNP) 0.9080 ± 0.0002 0.7024 ± 0.0002 0.9966 ± 0.0002
* The ranges are denoted by (mean)± (standard error of the mean).

unknown ground-truth factor, we set relatively large latent size L to avoid the shortage of dimension-
ality. The qualitative and quantitative results are shown in Fig. 2 and Table 1, respectively. These
results support the ability to learn a disentangled representation in complex data. The scatter plots in
Fig. 2 suggest that the GWAE model successfully extracted one underlying factor of variation (object
hue) precisely along one axis, whereas the standard VAE (Kingma & Welling, 2014) formed several
clusters for each value, and FactorVAE (Kim & Mnih, 2018) obtained the factor in quadrants.

Clustering Structure. We empirically evaluated the capabilities of capturing clusters using
MNIST (LeCun et al., 1998). We compared the GWAE model using GMP with other VAE-based
methods considering the out-of-distribution (OoD) detection performance in Fig. 3. We used MNIST
images as in-distribution (ID) samples for training and Omniglot (Lake et al., 2015) images as unseen
OoD samples. Quantitative results show that the GWAE model successfully extracted the clustering
structure, empirically implying the applicability of multimodal priors.

4.4 AUTOENCODING MODEL

We additionally studied the autoencoding and generation performance of GWAE models in Table 2
(see Appendix C.7 for qualitative evaluations). Although the distribution matching pθ(x) ≈ pdata(x)
is a collateral condition of Eq. (7), quantitative results show that the GWAE model also favorably
compares with existing autoencoding models in terms of generative capacity. This result suggests the
substantial capture of the underlying low-dimensional distribution in GWAE models, which can lead
to the applications to other types of meta-priors.
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Figure 3: The ROC curves of the OoD detection in MNIST (LeCun et al., 1998) against Om-
niglot (Lake et al., 2015). We trained these models using MNIST as ID samples and used Omniglot
as OoD samples. We upsampled Omniglot to 10,000 samples for data balancing. For the anomaly
detection using the latent codes z, we applied the negative log-likelihood energy − log π(z) for VAE
and DAGMM, and used the estimated Kantorovich potential Epθ(x̃|z) [fψ(x̃, z)] for GWAE (see
Appendix C.10 for more latent space details).

Table 2: Quantitative comparisons of generation and reconstruction. The FID scores (Heusel et al.,
2017) evaluate a random sample set from the generative model pθ(x) (without using dataset images)
against the entire test set, and both consist of an equal number of 19,962 samples. The PSNR scores
measure the reconstruction qϕ(z)pθ(x|z) using test images (see Appendix C.3 for details). All
reported values were computed in CelebA (Liu et al., 2015) with a latent size of L = 64. For all the
methods, we applied early stopping (patience=10) and hyperparameter tuning using the validation
set. The bold and underlined values respectively denote the best and the second-best performance in
each score.

Model FID ↓ PSNR [dB] ↑
Baseline VAE (Kingma & Welling, 2014) 130.9 19.96

β-VAE (Higgins et al., 2017a) 92.6 22.71
GECO (Rezende & Viola, 2018a) 162.1 21.19KL re-weighting
σ-VAE (Rybkin et al., 2021) 53.13∗ 20.03

Hierarchical factors LadderVAE (Sønderby et al., 2016) 255.6 12.35
VLadderAE (Zhao et al., 2017) 147.1 19.76
WAE (Tolstikhin et al., 2018) 55∗ 22.70
WVI (Ambrogioni et al., 2018) 295.0 14.45
SWAE (Kolouri et al., 2019) 102.2 21.85OT-based models

RAE (Xu et al., 2020) 52.20∗ 21.34

Trainable priors VampPrior (Tomczak & Welling, 2018) 243.8 16.23
2-Stage VAE (Dai & Wipf, 2019) 34∗ 16.15
VAE-GAN (Larsen et al., 2016) 111.8 19.51
AVB (Mescheder et al., 2017) 93.0 22.60IVI-based models
ALI (Dumoulin et al., 2017) 171.8 12.26

Ours GWAE (NP) 45.3 22.82
* The values are cited from the original papers annotated after the model names.

5 CONCLUSION

In this work, we have introduced a novel representation learning method that performs the distance
distribution matching between the given unlabeled data and the latent space. Our GWAE model family
transfers distance structure from the data space into the latent space in the OT viewpoint, replacing
the ELBO objective of variational inference with the GW metric. The GW objective provides a direct
measure between the latent and data distribution. Qualitative and quantitative evaluations empirically
show the performance of GWAE models in terms of representation learning. In future work, further
applications also remain open to various types of meta-priors, such as spherical representations and
non-Euclidean embedding spaces.

9



Published as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

We describe the implementation details in Section 4, Appendix B, and Appendix C. The dataset
details are provided in Appendix C.1. To ensure reproducibility, our code is available online
at https://github.com/ganmodokix/gwae and is provided as the supplementary material.
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A DETAILS OF RELATED WORK

For self-containment, we describe VAE-based representation learning methods. As with Section 3,
x and z denote data and latent variables, respectively, and the data x are M -dimensional and the
latent variables z are L-dimensional. Unless otherwise noted, each VAE-based model consists of a
generative model pθ(x, z) with parameters θ, an inference model qϕ(x, z) with parameters ϕ, and a
pre-defined (non-trainable) prior π(z) as in the standard VAE model architecture.

A.1 VAE-BASED MODELS WITH ELBO EXTENSION

Utilizing the latent variables of VAE-based models is a prominent approach to representation learning.
Several models with extended ELBO-based objectives aim to overcome the shortcomings of the
original VAE model, such as posterior collapse. VAE-based models are mainly grounded on the
ELBO objective, where we denote the ELBO for the data point x as

ELBO(x;θ,ϕ) = Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)∥π(z)) , (16)

which is mentioned as the expected objective of the original VAE (Kingma & Welling, 2014) in
Eq. (1).

A.1.1 β-VAE

β-VAE (Higgins et al., 2017a) is a VAE-based model for learning disentangled representations by
re-weighting the KL term of the ELBO. Given a KKT multiplier β > 0, the β-VAE objective is
expressed as

maximize
θ,ϕ

Epdata(x)

[
Eqϕ(z|x) [pθ(x|z)]− βDKL(qϕ(z|x)∥π(z))

]
. (17)

The KKT multiplier β works as the weight of the regularization to impose a factorized prior (e.g.,
the standard Gaussian N (0, IL)) on the latent variables. This re-weighting induces the capability of
disentanglement in the case of β > 1; however, a large value of β causes posterior collapse, in which
the latent variables “forget” the information of the input data.

From the Information Bottleneck (IB) (Tishby et al., 1999) point of view, the β-VAE objective is
re-interpreted as the following optimization problem (Alemi et al., 2018; Achille & Soatto, 2018):

maximize
θ,ϕ

Iϕ(z;y) (18)

subject to Iϕ(z;x) ≤ Ic, (19)

where Ic is a bottleneck capacity, y is a task to be estimated, and Iϕ(·; ·) denotes the mutual
information on the inference model. Introducing the Lagrange multiplier β, the IB problem is given
as

maximize
θ,ϕ

Iϕ(z;y)− βIϕ(z;x). (20)

Alemi et al. (2018) have given the lower bound of this IB objective as

Iϕ(z;y)− βIϕ(z;x) ≥ Epdata(y)qϕ(z|y) [log pθ(y|z)]−H(y)︸ ︷︷ ︸
The lower bound of Iϕ(z;y)

−β Epdata(x) [DKL(qϕ(z|x)∥π(z))]︸ ︷︷ ︸
The upper bound of Iϕ(z;x)

,

(21)

where the task entropy H(y) is independent of the parameters θ and ϕ. The autoencoding task y = x
gives the objective equivalent to that of the original VAE. This IB-based formulation of the β-VAE
objective implies that the larger value of the multiplier β guides the training process to minimize
the mutual information Iϕ(z;x) to make the encoder forget the input data, i.e., to cause posterior
collapse.
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A.1.2 FACTORVAE

FactorVAE (Kim & Mnih, 2018) is a state-of-the-art disentanglement method that minimizes the Total
Correlation (TC) of the aggregated posterior qϕ(z) = Epdata(x)[qϕ(z|x)] in addition to the original
ELBO objective. The TC is expressed as the KL divergence between a distribution and its factorized
counterpart. In the FactorVAE case, the TC of the aggregated posterior is the KL divergence from the
factorized aggregated posterior q̄ϕ(z) =

∏L
i=1 qϕ(zi) to the aggregated posterior qϕ(z). The training

objective of FactorVAE is the weighted sum of the ELBO and the TC term as

maximize
θ,ϕ

ELBO(x;θ,ϕ)− γTC(qϕ(z)), (22)

where TC(z) denotes the TC of the latent variables z defined as

TC(z) = DKL(qϕ(z)∥q̄ϕ(z)) (23)

= Eqϕ(z)

[
log

Disc(z)

1−Disc(z)

]
. (24)

In Eq. (24), Disc(z) denotes a discriminator to estimate the TC term by density ratio estima-
tion (Sugiyama et al., 2012) as

Disc(z) = arg max
f :Z→[0,1]

Eqϕ(z) [log f(z)] + Eq̄ϕ(z) [log(1− f(z))] . (25)

Practically, the discriminator is estimated using SGD in parallel using samples from q̄ϕ(z) by
permuting the latent codes along the batch dimension independently in each latent variable.

A.1.3 INFOVAE

InfoVAE (Zhao et al., 2019) is an extension of VAE to prevent posterior collapse by the retention
of data information in the latent variables. The InfoVAE objective is the sum of the ELBO and the
inference model mutual information Iϕ in Eq. (19). To this end, the following maximization problem
is solved via SGD:

maximize
θ,ϕ

Epdata(x) [ELBO(x;θ,ϕ)] + Iϕ(x; z) (26)

= Epdata(x)Eqϕ(z|x) [pθ(x|z)]−DKL(qϕ(z)∥π(z)) (27)

The main difference between the VAE and InfoVAE objectives is using the regularization
term DKL(qϕ(z)∥π(z)) instead of the original VAE regularization DKL(qϕ(z|x)∥π(z)). The orig-
inal KL term becomes zero if all the data points are encoded into the standard Gaussian N (0, IL)
to cause posterior collapse. The InfoVAE KL term DKL(qϕ(z)∥π(z)) alleviates this problem by
adopting the aggregated posterior qϕ(z) for optimization instead of the encoder qϕ(z|x). The authors
of InfoVAE (Zhao et al., 2019) further provide the model family in which the KL term is replaced
with other divergences. They introduce an alternative divergence D(qϕ(z), π(z)) and its weight λ to
conduct representation learning by the following training objective:

maximize
θ,ϕ

Epdata(x) [ELBO(x;θ,ϕ)] + Iϕ(x; z) (28)

= Epdata(x)Eqϕ(z|x) [pθ(x|z)]− λD(qϕ(z), π(z)). (29)

In the original InfoVAE paper (Zhao et al., 2019), the authors reported that the Maximum-Mean Dis-
crepancy (MMD) is the best choice for the divergence D. The MMD divergence MMD(qϕ(z), π(z))
is defined as

MMD(qϕ(z), π(z)) = Eqϕ(z)Eqϕ(z′) [k(z, z
′)] + Eπ(z)Eπ(z′) [k(z, z

′)]

− 2Eqϕ(z)Eπ(z′) [k(z, z
′)] , (30)

where k(·, ·) is any universal kernel, such as the radial basis function kernel

k(z, z′) = exp(−∥z− z′∥22/σ2) (31)

for a constant σ > 0.
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A.2 VAE-BASED METHODS BASED ON HIERARCHICAL FACTORS

Several VAE-based methods postulate the existence of hierarchical factors as its meta-prior to learn
representations with the abstractness of different levels (Sønderby et al., 2016; Zhao et al., 2017).
These methods involve the change in their network architecture to utilize the feature hierarchy often
captured in the hidden layers of deep neural networks.

A.2.1 LADDER VARIATIONAL AUTOENCODER (LADDERVAE)

Ladder Variational Autoencoder (LadderVAE) (Sønderby et al., 2016) introduces hierarchical latent
variables to the VAE model. Whereas the objective is still the ELBO, the LadderVAE model structure
has hierarchical latent variables. The generative process is modeled as the Markov chain of several
latent variable groups, and the inference model consists of deterministic feature encoders and the
decoders shared with generative models. In the original paper (Sønderby et al., 2016), the authors
claim that the LadderVAE models provide tighter log-likelihood lower bounds than the standard VAE.

A.2.2 VARIATIONAL LADDER AUTOENCODER (VLADDERAE)

Variational Ladder Autoencoder (VLadderAE) (Zhao et al., 2017) is a VAE-based model for hierar-
chical factors. Instead of the hierarchical models based on Markov chains, the VLadderAE models
introduce the hierarchical structure in the network architecture parameterizing the generative and the
inference model. Since it constrains feature hierarchy by the process of feature extraction, VLad-
derAE also performs disentanglement, e.g., the latent variables from different hidden convolutional
layers capture textural or global features of visual data.

A.3 VAE-BASED METHODS INVOLVING PRIOR LEARNING

The standard VAE model has a pre-defined prior, which may cause the discrepancy between the
underlying data structure and the postulated prior (Dai & Wipf, 2019). Several methods overcome
this problem by involving the prior itself in the training process.

A.3.1 VAMPPRIOR

VampPrior (Tomczak & Welling, 2018) is a type of prior consisting of the mixture of the encoder
distributions from several pseudo-input. The pseudo-inputs are introduced as trainable parameters,
which are input into the encoder to build a mixture prior. Thus, the VAE models with VampPriors
have trainable priors while retaining the main training procedure using the reparameterization trick to
apply SGD.

A.3.2 2-STAGE VAE

2-Stage VAE (Dai & Wipf, 2019) is a generative model with two probabilistic autoencoders. The
process of 2-Stage VAE consists of two steps: (i) training a standard VAE using the given dataset as
the input, and (ii) training another VAE using the latent variables of the previous VAE as the input.
The 2-Stage VAE model attempts to overcome the discrepancy between the pre-defined prior and
the learned latent representation by introducing the second VAE in stage (ii), which yields the prior
training using the VAE in stage (i).

A.4 WASSERSTEIN AUTOENCODER (WAE)

WAE (Tolstikhin et al., 2018) is a family of generative models whose autoencoder tries to estimate
and minimize the primal form of the Wasserstein metric between the generative model pθ(x) and the
data distribution pdata(x) using SGD with the following objective:

minimize
θ,ϕ

Epdata(x)Eqϕ(z|x)Epθ(x′|z) [d(x,x
′)] + λD(qϕ(z), π(z)), (32)

where λ is a Lagrange multiplier, the generative model is defined as a latent variable model pθ(x, z) =
π(z)pθ(x|z) postulating the prior of the latent variables π(z), and a conditional distribution qϕ(z|x)
is a probabilistic encoder to optimize instead of all couplings supported on X × X . The WAE
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objective is indeed equivalent to that of InfoVAE (Zhao et al., 2019) in Eq. (27), which provides
the OT-based perspective on VAE-based models. Following the InfoVAE (Zhao et al., 2019), we
adopt the MMD for the divergence D, which is denoted by “WAE-MMD” in the original WAE
paper (Tolstikhin et al., 2018). Although the WAE-based approaches rewrite VAE-based objectives
with the Wasserstein metric, these metrics are between x-marginal distributions and do not directly
include the latent space Z . To learn representations z, the Wasserstein-based objective is further
modified (Gaujac et al., 2021).

A.5 RELATIONAL REGULARIZED AUTOENCODER (RAE)

Relational Regularized Autoencoder (RAE) (Xu et al., 2020) is a variational autoencoding generative
model with a regularization loss based on the fused Gromov-Wasserstein (FGW) metric. RAE
introduces the FGW metric between the aggregated posterior and the latent prior as the regularization
divergence to fortify the WAE constraint πθ(z) = qϕ(z) introduced by Tolstikhin et al. (2018) for
generative modeling. The FGW regularization is introduced with a weight hyperparameter β ∈ [0, 1]
and given as

minimize
θ,ϕ

Epdata(x)Eqϕ(z|x)Epθ(x′|z) [d(x,x
′)] + λDFGW (qϕ(z), πθ(z);β), (33)

where DFGW denotes the FGW metric being the upper bound of the weighted sum of the Wasserstein
and Gromov-Wasserstein metrics. The FGW metric DFGW is given as

DFGW (qϕ(z), πθ(z);β)

= inf
γ∈P(qϕ(z),πθ(z))

(
(1− β)Eγ(z,z′)[dZ(z, z

′)] + βEγ(z1,z′
1)γ(z2,z′

2)
[|dZ(z1, z2)− dZ(z

′
1, z

′
2)|]

)
(34)

≥ (1− β) inf
γ∈P(qϕ(z),πθ(z))

Eγ(z,z′)[dZ(z, z
′)]︸ ︷︷ ︸

Wasserstein term for direct comparison

+ β inf
γ∈P(qϕ(z),πθ(z))

Eγ(z1,z′
1)γ(z2,z′

2)
[|dZ(z1, z2)− dZ(z

′
1, z

′
2)|2]︸ ︷︷ ︸

Gromov-Wasserstein term for relational comparison

, (35)

where P(qϕ(z), πθ(z)) is a set of all couplings whose marginals are qϕ(z), πθ(z). The discrepancy
between the prior πθ(z) and the aggregated posterior qϕ(z) causes the degradation of generative
performance since the processes of decoding pdata(x)qϕ(z|x)pθ(x|z) and generation πθ(z)pθ(x|z)
are modeled in different regions of the latent space. This formulation enables learning a prior
distribution qϕ(z) with flexibly assuming the structures of data, where the prior πθ(z) is modeled
as a Gaussian mixture model the original settings by Xu et al. (2020). They aim at matching the
distributions on the latent space Z , which can have an identical dimensionality but may differ in
terms of distance structure.

A.6 IVI METHODS

Beyond the analytically tractable distributions, implicit distributions are applied to variational in-
ference. An implicit distribution only requires its sampling method, which extends the variety of
modeling and applications in variational inference and VAE-based models.

A.6.1 DENSITY RATIO ESTIMATION BY ADVERSARIAL DISCRIMINATORS

The density ratio estimation technique (Sugiyama et al., 2012) is essential to the mechanism of
GANs (Goodfellow et al., 2014) and IVI methods (Huszár, 2017), which is conducted via an optimal
discriminator f∗ between distributions r(x) and s(x) as

DKL(r(x)∥s(x)) = Er(x)

[
log

r(x)

s(x)

]
= Er(x)

[
log

f∗(x)

1− f∗(x)

]
= Er(x) [log f

∗(x)− log(1− f∗(x))] , (36)

where f∗(x) = arg max
f :X→(0,1)

Er(x) [log f(x)] + Es(x) [log(1− f(x))] . (37)
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The discriminator is estimated via maximizing Eq. (37) with a neural network f ≈ f∗. The training
of discriminators often suffers from instability and mode collapse owing to its alternative parameter
updates based on Eq. (36) and Eq. (37) (Arjovsky & Bottou, 2017; Arjovsky et al., 2017). One
approach to tackle this problem is imposing the Lipschitz continuity on the discriminator based on
the Kantorovich-Rubinstein duality (Arjovsky et al., 2017).

A.6.2 ADVERSARIAL VARIATIONAL BAYES (AVB)

Adversarial Variational Bayes (AVB) (Mescheder et al., 2017) is an ELBO optimization method using
the adversarial training process instead of the analytical KL term. Let us recall that the KL term in
Eq. (1) is defined by the expected density ratio as

DKL(qϕ(z|x)∥π(z)) = Eqϕ(z|x)

[
qϕ(z|x)
π(z)

]
. (38)

Adopting the density ratio trick (Sugiyama et al., 2012), the analytical KL term can be replaced with
the optimal discriminator, which takes a data point x and its encoder sample z ∼ qϕ(z|x) to output
the density ratio qϕ(z|x)/π(z). It enables implicit distributions in the prior while retaining the ELBO
objective of variational inference.

A.6.3 ADVERSARIALLY LEARNED INFERENCE (ALI) / BIDIRECTIONAL GENERATIVE
ADVERSARIAL NETWORKS (BIGAN)

Adversarially Learned Inference (ALI) (Dumoulin et al., 2017) / Bidirectional Generative Adversarial
Networks (BiGAN) (Donahue et al., 2017) are models introducing the distribution matching of the
generative model and the inference model as implicit distributions. These models have been proposed
in different papers (Dumoulin et al., 2017; Donahue et al., 2017); however, they share an equivalent
methodology. One can draw samples from the generative model π(z)pθ(x|z) by decoding prior
samples and also from the inference model pdata(x)qϕ(z|x) by encoding data points. Here the
ALI/BiGAN models introduce a discriminator to estimate the Jensen-Shannon divergence between
the generative model pθ(x, z) and the inference model qϕ(x, z). The model matching between the
encoder and the decoder also learns latent representations by the bidirectional mappings.

A.6.4 VAE-GAN

VAE-GAN (Larsen et al., 2016) is a hybrid model based on VAE and GANs. The VAE-GAN models
introduce a discriminator for the generative modeling w.r.t. the data x and utilize the hidden layers of
the discriminator to model the decoder likelihood pθ(x|z) along the manifolds supporting the data. It
provides the outstanding performance of data generation to the VAE framework by measuring the
similarity of data utilizing the GANs-like network architecture.

B DETAILS OF PROPOSED METHOD

B.1 MODELING DETAILS

The decoder pθ(x|z) is modeled with a neural network Dθ : Z → RM and its parameters θ as

pθ(x|z) = δ(x−Dθ(z)). (39)

Following the standard VAE settings (Kingma & Welling, 2014), the encoder qϕ(z|x) is defined as
a diagonal Gaussian parameterized by neural networks µϕ : Z → RM and σ2

ϕ : Z → RM
+ with

parameters ϕ as

qϕ(z|x) = N (z|µϕ(x),diag(σ2
ϕ(x))). (40)

For the distance functions dX and dZ in Eq. (7) and Eq. (9), we used the L2 distance defined as

dX (x,x′) =
1√
2
∥x− x′∥, (41)

dZ(z, z
′) =

1√
2
∥z− z′∥. (42)
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As another choice, we also utilized the adversarially learned metric (Larsen et al., 2016) in Eq. (9). In
the adversarially learned metric, the distance is measured in the feature space formed by the hidden
outputs of the critic fψ . Let hψ(x) denote the critic hidden outputs in which the critic takes x as its
input. We can then define a distance d′ based on the adversarially learned metric as

d′(x,x′) =

√
dX (x,x′)2 +

1

2
∥hψ(x)− hψ(x′)∥22. (43)

Since the critic network fψ(x, z) has the Y-shaped architecture (see Appendix C.2) and concatenates
x-based features and z-based features in one of the hidden layers to take a pair (x, z) as the inputs,
we use the x-side branch as hψ(x).

B.2 PRIOR DETAILS

Neural Prior (NP). Formally, the NP πθ(z) with a neural network gθ is defined as:

πθ(z) =

∫
π(ϵ)

∣∣∣∣det∂gθ(ϵ)∂ϵ

∣∣∣∣ dϵ, (44)

where π(ϵ) = N (ϵ|0, IL). (45)

We can implement this class of prior with sampling noises ϵ as z = gθ(ϵ), avoiding the calculation
of the integral.

Factorized Neural Prior. For disentanglement in the variational autoencoding settings, element-wise
independence is often imposed on latent variables z. Following the standard VAE settings (Kingma
& Welling, 2014), we postulate Z = RL, where the latent variables z ∈ Z are expressed as an
L-dimensional vector z = [z1, z2, . . . , zL]

T. As with the NP, the FNP class of prior is defined as

πθ(z) =

L∏
i=1

π̃
(i)
θ (zi), (46)

where π̃
(i)
θ (zi) =

∫
π(ϵ(i))

∣∣∣∣∣∂g̃(i)θ (ϵ(i))

∂ϵ(i)

∣∣∣∣∣ dϵ(i), (i = 1, 2, . . . , L) (47)

π(ϵ(i)) = N (ϵ(i)|0, 1). (i = 1, 2, . . . , L) (48)

This prior can be implemented with N disjoint neural networks, or 1-dimensional grouped con-
volutions. The difference between the NP and the FNP is element-wise independence, in which
the prior πθ(z) is factorized into distributions for each latent variable. Factorized priors enable
disentanglement by obtaining a representation comprising independent factors of variation (Higgins
et al., 2017a; Chen et al., 2018; Kim & Mnih, 2018).

B.3 GRADIENT PENALTY

In the case of gradient penalty (Gulrajani et al., 2017), the maximization in Eq. (11) is further modified
as

maximize
ψ

LD + λGPEqϕ(x,z)Epθ(x′,z′)Eϵ∼U(0,1)

[(
∥∇(x̃,z̃)fψ(x̃, z̃)∥2 − 1

)2]
, (49)

where λGP > 0 is a constant, and x̃ = ϵx+(1−ϵ)x′ and z̃ = ϵz+(1−ϵ)z′ are interpolated samples
by the random uniform noise ϵ. We adopt λGP = 10 in all the experiments reported in this paper.
Introducing the gradient penalty together with other techniques such as spectral normalization (Miyato
et al., 2018) is effective and essential for adversarial learning in general (Chu et al., 2020; Miyato
et al., 2018).

C EXPERIMENTAL DETAILS

For the reported experimental results, we used a single GPU of NVIDIA GeForce® RTX 2080 Ti,
and a single run of the entire GWAE training process until convergence takes about eight hours.
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C.1 DATASET DETAILS

For the reported experiments in Section 4, we used the following datasets:

MNIST (LeCun et al., 1998). The MNIST dataset contains 70,000 handwritten digit images of 10
classes, comprising 60,000 training images and 10,000 test images. We used the original
test set and randomly split the original training set into 54,000 training images and 6,000
validation images. We used the class information as its approximate factors of variation
in the form of 10-dimensional dummy variables. This dataset is available online2 in its
original format or via the torchvision package3 in the PyTorch (Paszke et al., 2019)
tensor format. The MNIST dataset is licensed under the terms of the Creative Commons
Attribution-Share Alike 3.0 license4.

CelebA (Liu et al., 2015). The CelebA dataset contains 202,599 aligned face images with 40 binary
attributes. We cropped 144× 144 pixels in the center of the 178× 218-sized aligned images
in the original dataset to omit excessive backgrounds. We used the train/validation/test
partitions that the original authors provided. We used the binary attributes as its approximate
factors of variation in the form of 40-dimensional vectors. As in the website of this dataset5,
the CelebA dataset is available for non-commercial research purposes only.

3D Shapes (Burgess & Kim, 2018). The 3D Shapes dataset contains 480,000 synthetic images with
six ground truth factors of variation. The images in this dataset contain a single-colored 3D
object, a single-colored wall of a rectangular room, a single-colored floor. These images
are procedurally generated from the independent factors of variation, floor colour, wall
colour, object colour, scale, shape, and orientation (Burgess & Kim, 2018). We randomly
split the entire dataset into 384,000/48,000/48,000 images for the train/validation/test set,
respectively. Since the factor shape is a categorical variable in four classes, we converted
it into four dummy variables to obtain quantitative factors of variation in the form of 9-
dimensional vectors. The repository of this dataset6 is licensed under Apache License
2.07.

Omniglot (Lake et al., 2015). The Omniglot dataset contains 1,623 images of hand-written charac-
ters from 50 different alphabets written by 20 different people. The images are 105× 105-
sized, binary-valued. We used this dataset as OoD samples over MNIST in the evaluations
on the OoD detection utilizing cluster structure. The repository of this dataset8 is licensed
under the MIT License9.

CIFAR-10 (Krizhevsky & Hinton, 2009). The CIFAR10 dataset contains 60,000 images with 10
classes, comprising 50,000 training images and 10,000 test images. The images are 32x32
color images in 10 natural image classes, such as airplane and cat. This dataset is provided
online10 without any specific license.

In all the datasets above, we used all the images as the raster (bitmap) representation and resized
them to 64× 64 pixels with three channels, where each image is a 3× 64× 64-sized tensor value
and M = 12, 288. For gray-scale (one-channeled) images such as in MNIST, we repeated these
images along the channel dimension three times to uniform these sizes to 3× 64× 64 elements.

C.2 ARCHITECTURE DETAILS

The architecture of neural networks in GWAE and the compared methods are built with convolutions
and deconvolution (transposed convolution) in the same settings as shown in Tables 3 and 4. In
all the experiments on GWAE, we applied the gradient penalty and the spectral normalization in

2http://yann.lecun.com/exdb/mnist/
3https://github.com/pytorch/vision
4https://creativecommons.org/licenses/by-sa/3.0/
5https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
6https://github.com/deepmind/3d-shapes
7http://www.apache.org/licenses/
8https://github.com/brendenlake/omniglot
9https://opensource.org/licenses/MIT

10https://www.cs.toronto.edu/~kriz/cifar.html
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Table 3: Model architecture for the encoders in the GWAE models and the compared models. For the
64× 64 RGB images used in the experiments, the input size is set to (Channels,Height,Width) =
(3, 64, 64). FC and Conv denote fully-connected (linear) layers and convolutional layers, respectively.

Layer Input Shape Output Shape Options

Inverse Sigmoid σ−1(x) = log x
1−x

Conv 3× 64× 64 32× 32× 32 kernel size=4, stride=2, padding=1
SiLU activation (Hendrycks & Gimpel, 2016)

Conv 32× 32× 32 64× 16× 16 kernel size=4, stride=2, padding=1
SiLU activation (Hendrycks & Gimpel, 2016)

Conv 64× 16× 16 128× 8× 8 kernel size=4, stride=2, padding=1
SiLU activation (Hendrycks & Gimpel, 2016)

Conv 128× 8× 8 256× 4× 4 kernel size=4, stride=2, padding=1
SiLU activation (Hendrycks & Gimpel, 2016)

FC 256× 4× 4 256 bias=True
SiLU activation (Hendrycks & Gimpel, 2016)

FC 256 L for µ, L for σ2 bias=True

the critic networks to impose the 1-Lipschitz continuity on the critic fψ, as shown in Table 7. In
the neural samplers of GWAE models, we used the fully-connected architecture in Table 5 for NP
and the grouped-convolutional architecture in Table 6 for FNP. We used fully connected layers for
unconstrained priors in NP, and 1-dimensional grouped convolution layers (converting sequences
with length 1 and L channels) for factorized priors in FNP. For the optimizers of GWAE, we used
RMSProp11 with a learning rate of 10−4 for the main autoencoder network and used RMSProp with a
learning rate of 5× 10−5 for the critic network. For all the compared methods except for GWAE, we
used the Adam (Kingma & Ba, 2015) optimizer with a learning rate of 10−4. In the experiments, we
used an equal batch size of 64 for all evaluated models. The batch size is relatively small, since the
computational cost of GWAE for each batch is quadratic to the batch size B and the GW estimation
runs in time O(NB) for each epoch using ⌈N/B⌉ batches.

In the case that a batch normalization layer is introduced in the encoder outputs qϕ(zi|x) =
N (µ̃(x),diag(σ̃2(x))), the mean and variance are computed w.r.t. the aggregated posterior qϕ(z)
rather than the element-wise sample mean and variance of L-dimensional output values. The normal-
ized parameters (µ̃(x), σ̃(x)) against the original parameters (µ(x),σ(x)) are given as

µ̃(x) =
µ(x)− Eqϕ(z)[z]√

Vqϕ(z)[z]
, (50)

σ̃2(x) =
σ2(x)

Vqϕ(z)[z]
, (51)

where the division is element-wise conducted, and V denotes the variance. The mean Eqϕ(z)[z] and
variance Vqϕ(z)[z] are approximated using unbiased estimators consisting of mini-batch samples.
Given a mini-batch index set B ⊆ {1, 2, . . . , N}, the unbiased estimations are expressed using the
law of total variance as

Eqϕ(z)[z] ≈
1

#B
∑
i∈B

µ(xi) =: µ̂, (52)

Vqϕ(z)[z] ≈
1

#B
∑
i∈B

σ2(xi) +
1

#B − 1

∑
i∈B

(µ(x)− µ̂)2. (53)

11https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.
pdf
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Table 4: Model architecture for the decoders in the GWAE models and the compared models. The
image shape is set to the same as Table 3. FC and DeConv denote fully-connected layers and
deconvolutional layers, respectively.

Layer Input Shape Output Shape Options

FC L 256 bias=True
SiLU activation (Hendrycks & Gimpel, 2016)

FC 256 256× 4× 4 bias=True
SiLU activation (Hendrycks & Gimpel, 2016)

DeConv 256× 4× 4 128× 8× 8 kernel size=4, stride=2, padding=1
SiLU activation (Hendrycks & Gimpel, 2016)

DeConv 128× 8× 8 64× 16× 16 kernel size=4, stride=2, padding=1
SiLU activation (Hendrycks & Gimpel, 2016)

DeConv 64× 16× 16 32× 32× 32 kernel size=4, stride=2, padding=1
SiLU activation (Hendrycks & Gimpel, 2016)

DeConv 32× 32× 32 3× 64× 64 kernel size=4, stride=2, padding=1
Sigmoid σ(x) = 1

1+e−x

Table 5: Model architecture for the samplers in the GWAE models with NP. FC denotes a fully-
connected layer.

Layer Input Shape Output Shape Options

FC L 256 bias=True
SiLU activation (Hendrycks & Gimpel, 2016)

FC 256 256 bias=True
SiLU activation (Hendrycks & Gimpel, 2016)

FC 256 256 bias=True
SiLU activation (Hendrycks & Gimpel, 2016)

FC 256 L bias=True
Batch Normalization with affine=False

Table 6: Model architecture for the samplers in the GWAE models with FNP. GroupConv denotes
1-dimensional grouped convolutional layers.

Layer Input Shape Output Shape Options

GroupConv L 256 bias=True, groups=L
SiLU activation (Hendrycks & Gimpel, 2016)

GroupConv 256 256 bias=True, groups=L
SiLU activation (Hendrycks & Gimpel, 2016)

GroupConv 256 256 bias=True, groups=L
SiLU activation (Hendrycks & Gimpel, 2016)

GroupConv 256 L bias=True, groups=L
Batch Normalization with affine=False

C.3 QUANTITATIVE EVALUATION DETAILS

For quantitative evaluations, we used the DCI scores (Eastwood & Williams, 2018) for disentan-
glement, the FID score (Heusel et al., 2017) for image generation, and the PSNR score for image
reconstruction.

C.3.1 DCI SCORES

The DCI scores (Eastwood & Williams, 2018) measure a representation in terms of disentangled
representation learning. In the DCI scores, disentanglement is measured from three aspects: (i) each
representation variable represents a single factor of variation, (ii) each factor of variation is expressed
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Table 7: Model architecture for the critics in the GWAE models. We concatenated the outputs
of the x-side and z-side branches and multiplied the concatenated outputs by 0.5 to input into
the stem network for the sake of the gradient norm, resulting in a Y-shaped network. We applied
spectral normalization (Miyato et al., 2018) to all the layers in the critic networks and used the
LeakyReLU (Maas et al., 2013) activation for the critic to retain the 1-Lipschitz continuity. FC and
Conv denote fully-connected layers and convolutional layers, respectively.

Layer Input Shape Output Shape Options

x-side branch
Conv 3× 64× 64 8× 32× 32 kernel size=4, stride=2, padding=1

LeakyReLU activation (Maas et al., 2013) with negative slope 0.2
Conv 8× 32× 32 16× 16× 16 kernel size=4, stride=2, padding=1

LeakyReLU activation (Maas et al., 2013) with negative slope 0.2
Conv 16× 16× 16 32× 8× 8 kernel size=4, stride=2, padding=1

LeakyReLU activation (Maas et al., 2013) with negative slope 0.2
Conv 32× 8× 8 64× 4× 4 kernel size=4, stride=2, padding=1

LeakyReLU activation (Maas et al., 2013) with negative slope 0.2
Conv 64× 4× 4 128× 2× 2 kernel size=4, stride=2, padding=1

LeakyReLU activation (Maas et al., 2013) with negative slope 0.2
Conv 128× 2× 2 256× 1× 1 kernel size=4, stride=2, padding=1

LeakyReLU activation (Maas et al., 2013) with negative slope 0.2
FC 256 64 bias=True

z-side branch
FC L 256 bias=True

LeakyReLU activation (Maas et al., 2013) with negative slope 0.2
FC 256 256 bias=True

LeakyReLU activation (Maas et al., 2013) with negative slope 0.2
FC 256 64 bias=True

LeakyReLU activation (Maas et al., 2013) with negative slope 0.2

Stem network
z-side branch

FC 64+64 256 bias=True
LeakyReLU activation (Maas et al., 2013) with negative slope 0.2

FC 256 256 bias=True
LeakyReLU activation (Maas et al., 2013) with negative slope 0.2

FC 256 1 bias=True
LeakyReLU activation (Maas et al., 2013) with negative slope 0.2

by a single representation variable, and (iii) a representation is informative w.r.t. the original data. The
correspondence of variables and factors is computed via estimating the ground truth factors from the
representation using random forest (Breiman, 2001). DCI Disentanglement (DCI-D) measures (i) the
factor singleness for each variable. DCI Completeness (DCI-C) measures (ii) the variable singleness
for each factor. DCI Informativeness (DCI-I) measures (iii) whether the representation is informative
for estimating the ground truth factors. These metrics are computed via the variable importances (e.g.,
the Gini impurity (Breiman, 2001)) of the random forest (Breiman, 2001), in which the random forest
regressor estimates the ground truth factors using the representation variables. Using L-dimensional
representation variables z, V -dimensional factors y and their importance Rij of the i-th variable zi
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for the k-th factor yk, the DCI-D and DCI-C scores for each variable and each factor are defined as

DCI-Di = 1 +

V∑
k=1

pik logV pik, (i = 1, 2, . . . , L) (54)

where pik = Rik

/
V∑

j=1

Rij , (55)

DCI-Ck = 1 +

L∑
i=1

qik logV qik, (k = 1, 2, . . . , V ) (56)

where qik = Rik

/
V∑

j=1

Rjk . (57)

The DCI-D score for the entire variable set is given by the weighted sum
∑L

i=1 ρiDCI-Di, where the
weight ρi is weighted importance ρi = (

∑V
k=1 Rik)/(

∑L
i=1

∑V
k=1 Rik). The DCI-C score for the

entire factor set is given by the average score 1/V
∑V

k=1 DCI-Ck. The DCI-D and DCI-C metrics
take values within the range [0, 1], where higher values indicate better performance. For DCI-I, we
used the normalized definition by Zaidi et al. (2021) because the normalized DCI-I values are within
the range [0, 1] and the higher values mean better informativeness, while DCI-I score DCI-DOriginal

is the estimation mean square error in the original definition. The DCI-I definition that we used is
expressed as

DCI-I = 1− 6× DCI-IOriginal. (58)
Following the original paper (Eastwood & Williams, 2018), we set the number of random trees to 10
and decided the tree depth with cross-validation.

C.3.2 FRÉCHET INCEPTION DISTANCE (FID)

Fréchet Inception Distance (FID) (Heusel et al., 2017) is a score for evaluating the quality of the
generated images by generative models. The FID score is defined as the squared 2-Wasserstein metric
between the features of the real images with mean (µr,Σr) and that of the generated images with
mean (µg,Σg). Assuming that the features are normally distributed in the feature space, the FID
score is expressed as

FID = W 2
2 (N (µr,Σr),N (µg,Σg)) (59)

= ∥µr − µg∥22 + tr(Σr +Σg − 2(ΣrΣg)
1
2 ). (60)

Since the Wasserstein metric measures the discrepancy between distributions, lower values indicate
better generation performance in the FID score. Following the original FID paper (Heusel et al., 2017),
we used the features obtained from the final pooling layer outputs of the Inception-v3 pre-trained in
the ImageNet dataset (Deng et al., 2009).

C.3.3 PEAK SIGNAL-TO-NOISE RATIO (PSNR)

For measuring the image reconstruction, we used the Peak Signal-to-Noise Ratio (PSNR) value. The
PSNR value is defined as

PSNR = 20 log10(MAX)− 10 log10(MSE), (61)
where MAX denotes the maximum value of the pixel values, and MSE indicates the mean square
error (MSE). In all the experiments conducted in Section 4, the value of MAX is set to MAX = 1
because the images input as a dataset data are scaled within the range [0, 1].

C.4 ISOMETRY COMPARISON

Regarding the evaluations in Section 4.2, we further conducted comparisons on isometry in Fig. 4.
The results show that the GWAE models provide more isometric autoencoders compared with other
VAE-based representation learning methods. The existing VAE-based methods did not yield as
far as GWAE, which supports that the GW metric works as a different objective class from the
ELBO. This implies that the GW metric loss substantially affects the training procedure of learning
representations.
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(a) VAE (Kingma & Welling, 2014).
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(b) FactorVAE (Kim & Mnih, 2018).
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(c) 2-Stage VAE (Dai & Wipf, 2019).
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(d) WAE (Tolstikhin et al., 2018).
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Figure 4: Histograms of the differences in MNIST (LeCun et al., 1998). Each histogram consists
of 10,000 samples of (∆x,∆z), where ∆x (vertical) and ∆z (horizontal) respectively denote the
differences ∆x = dX (x,x′) and ∆z = dZ(z, z

′) of two generative samples (x, z), (x′, z′) ∼
pθ(x, z). In all reported results including FactorVAE (Kim & Mnih, 2018) (γ=3), WAE (Tolstikhin
et al., 2018), and GWAE (NP, λD=1, λW =1, λH=1), the latent dimension L was set to L = 16, and
their priors were set to the standard Gaussian.
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Table 8: The effect of prior family selection in the GWAE model. The same settings in Table 1 are
applied to all the reported models.

Model DCI-C ↑ DCI-D ↑ DCI-I ↑
GWAE (NP) 0.3966 0.3113 0.9403
GWAE (FNP) 0.9080 0.7024 0.9966
GWAE (GMP) 0.4247 0.4373 0.9655

C.5 TRAINING PROCESS

We present the training process of GWAE in Fig. 5. Although the objective seems complex for its
composition of four different losses, the training process successfully converged and the values of the
terms LGW , LW , and LD jointly descended in the most part of training. Although the term −RH
increased, its values did not diverge to prevent the degenerate solutions. These results imply that the
three different losses LGW , LW , and LD did not conflict during the training process even for the
complicated data, balancing these three terms against −RH as in the trade-off of the reconstruction
against the regularization in β-VAE (Higgins et al., 2017a; Tschannen et al., 2018).

C.6 PRIOR FAMILY SELECTION

We show the effect of prior family selection regarding a meta-prior, disentanglement, in Table 8.
While GWAE models with the NP and GMP retain the informativeness of the FNP, the other two
priors than FNP did not comparably disentangle the latent factors. Although the NP covers a more
general family of prior, these results suggest that choosing a prior family suitable to the postulated
meta-prior greatly facilitates learning representations.

C.7 QUALITATIVE EVALUATIONS OF GENERATION AND RECONSTRUCTION

We show the reconstructed images by GWAE and state-of-the-art variational autoencoding methods
in Fig. 6. The shown images are the first ten samples of the test split in the CelebA (Liu et al.,
2015) dataset under the latent size L = 64. Compared with the other methods, the reconstruction of
the GWAE model tends to retain edges (see the bottom rows of Fig. 6), while VAE-based models
generate smooth, blurry images due to the noise injected in the latent space to perform probabilistic
modeling and manifold learning. We also show the reconstruction results of MNIST (LeCun et al.,
1998) in Fig. 7 and CIFAR-10 (Krizhevsky & Hinton, 2009) in Fig. 8. These results support that
the GWAE models consistently perform autoencoding also in a more simple dataset (MNIST). In
a more complex dataset (CIFAR-10), the GWAE model attained the best evaluation in generation
albeit its reconstruction, suggesting that the GWAE model successfully captured the abstract structure
of data rather than reconstructed the given images. This difference highlights the difference in
their objectives, i.e., the GW objective aims at distribution matching in the latent space, while the
β-VAE (Higgins et al., 2017a) objective with β < 1 puts weight on reconstruction.

We further study the generated images by GWAE and state-of-the-art VAE-based generative models
in Fig. 9. These qualitative results show that the GWAE generation successfully obtains a diverse
set of images compared with those of state-of-the-art autoencoding generative models. The ALI
model (Dumoulin et al., 2017) (Fig. 9 (a)) also generates various images by the distribution matching
of bidirectional models, but the generated images have wavy contours, failing at composing images
with a consistent appearance owing to the lack of an autoencoding process. Although the VAE-
GAN model (Larsen et al., 2016) (Fig. 9 (b)) adequately yields organized images with smooth
textures, the azimuth of these images is less diverse, i.e., the great majority of the images are facing
forward or looking slightly sideways. The images generated by 2-Stage VAE (Dai & Wipf, 2019)
(Fig. 9 (c)) have diverse azimuth, color, and background; however, these images tend to incline toward
the majority attributes, e.g., not wearing eyeglasses or sunglasses. The GWAE model (Fig. 9 (d))
successfully generates facial images with various skin colors, diversified backgrounds, and assorted
facial expressions (e.g., wearing a mustache). These results imply that the GWAE models also
function as generative models while it has been built as a representation learning method owing to the
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Table 9: The ablation study on generation and reconstruction in CelebA (Liu et al., 2015). The same
settings as Table 2 are applied in these experiments.

Model FID (Heusel et al., 2017) ↓ PSNR [dB] ↑
GWAE (NP) 45.3 22.82
GWAE (NP) w/o LW 233.7 9.80
GWAE (NP) w/o LD 403.8 18.63
GWAE (NP) w/ MMD LD 158.4 22.61
GWAE (NP) w/ Z-only critic 102.4 22.41
GWAE (NP) w/o RH 179.6 21.57
GWAE (NP, ρ = ξ) 123.5 16.03

collateral condition pθ(x, z) ≈ qϕ(x, z) in Eq. (11) and the generative modeling pθ(x) ≈ pdata(x)
as its necessary condition.

C.8 ABLATION STUDY

We conducted the ablation study of the losses and regularizations introduced in Eq. (13). Table 9
shows the results of the ablation study of the three sub-constraints LW , LD, and RH. The ablations
yielded the performance degradation of GWAE, especially in LW . These results suggest the necessity
of each regularization term and reveal their roles in representation learning.

Ablation of LW . The ablation of the term LW brought low-quality reconstruction, which suggests
that LW works as the autoencoding constraint as can be seen from taking the reconstruction loss
in LW . It also reduced generation capability as well as reconstruction, suggesting that the gen-
erative modeling via autoencoding is inherited from the variational autoencoding architecture of
VAEs (Kingma & Welling, 2014).

Ablation of LD. Without the term LD, the GWAE models suffer from the lack of distribution
matching in data generation, while it successfully conducted data reconstruction. These phenomena
could be caused by the discrepancy between the encoded latent distribution qϕ(z) and the prior πθ(z).
Similar results are also obtained in the ablation of the merged sufficient condition (see Eq. (11))
for the regularization LD, where LD is defined as the MMD loss between the prior πθ(z) and the
encoded latent qϕ(z), as in the WAE-MMD model (Tolstikhin et al., 2018). This choice of LD on the
low-dimensional space Z appears to be a replacement for the Kantorovich potential adversarially
learned in the high-dimensional joint space X × Z; however, lacking the merged sufficient condition
seems to have caused the crucial reduction of generation performance as in the gross ablation of
LD. These results imply that the term LD with adversarial learning regularizes the generative
model pθ(x, z) to match the inference qϕ(x, z).

Ablation of RH. Removing RH slightly increased the reconstruction error but deteriorated the
generation quality. To confirm this behavior, we also show the samples generated by the GWAE
model without the regularization RH in Fig. 10 and its reconstruction in Fig. 11. These qualitative
results that the decoder without RH successfully reconstructs the images from the inference qϕ(z)
but generates corrupted images from the prior πθ(z). It suggests the “hole” problem (Rezende &
Viola, 2018b) in the degenerate solution, where each data point is mapped at a single latent point to
cover the zero-measure area of the latent space and the latent space is almost everywhere not covered
by the inference qϕ(z). Thus, the entropy regularization RH seems to have worked for retaining the
probabilistic mappings in the encoder qϕ(z|x) to avoid this phenomenon.

In addition, for ablating ρ = 1, we also experimented with the ρ = ξ settings that appear to be
intuitively natural although causing an unstable training process due to the outlier samples in LGW .
The GWAE model with ρ = ξ suffered from performance degradation both in the generation and
reconstruction, suggesting that our settings ρ = 1 ≤ ξ affect the learning process of the entire model.

C.9 THE META-PRIOR EFFECT ON GW MINIMIZATION AND ESTIMATION

For a further inspection of Section 4.2, we also studied the GW minimization and estimation using
FNP in Fig. 12. Compared with the NP case in Fig. 1, GWAE with FNP presents less stable and
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more biased estimation and minimization. The learning curve of LGW in Fig. 12a is largely biased in
the first 40 epochs and then seems to be converged at approximately 3.2, a higher value than that of
Fig. 1a (lower than 2). The isometry histogram also suggests the degradation of GW minimization in
FNP. In Fig. 12b, more samples fell in off-diagonal areas, showing that the isometry is less tight than
that of Fig. 1b. These results are presumably due to the mismatch of disentanglement meta-prior in
MNIST (LeCun et al., 1998) because one of the major generative factors of MNIST images is the kind
of digits, a categorical variable typically learned as one-hot variables in contrast to the factorization
imposed by FNP.

C.10 PRIORS IN CLUSTERING STRUCTURE

For more detailed investigation of the capture of clustering structure studied in Fig. 3, we further
study the latent spaces of VAE (Kingma & Welling, 2014), DAGMM (Zong et al., 2018), and
GWAE with GMP. The t-SNE visualization (van der Maaten & Hinton, 2008) of the latent spaces are
shown in Fig. 13, which suggests that the GWAE model with GMP clearly captured the clustering
structure in its latent space. The prior of VAE (Kingma & Welling, 2014) is defined as the standard
Gaussian N (0, IL) which does not consist of multiple clusters. The learned prior of DAGMM
contains multiple clusters; however, adjacent clusters were overlapping to some extent. From the
learned prior in GWAE, we can observe clear clusters densely concentrating themselves and separating
each other. These results support the quantitative OoD results in Fig. 3, in which the GWAE model
outperforms the other two models with and without explicit clustering modeling, respectively.
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Figure 5: The training process of a GWAE model. The model is trained using NP and λH = λW =
λH = 1. The plot (a)–(d) are training curves during one trial of training using CelebA (Liu et al.,
2015), and (e)–(h) are using CIFAR-10 (Krizhevsky & Hinton, 2009). In each plot, the horizontal
axis represents the number of epochs elapsed, and the vertical axis expresses the loss value. The blue
and orange curves represent the training and validation losses, respectively.
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(a) VAE.

(b) β-VAE (Higgins et al., 2017a) (β=0.1).

(c) AVB (Mescheder et al., 2017) (β=1).

(d) WAE (λ=100).

(e) GWAE (NP, λD=1, λW =10, λH=0.0001).

Figure 6: Reconstructed images in CelebA (Liu et al., 2015). The images denote original data
samples (top rows), reconstructed images (middle rows), and zoomed reconstructions (bottom rows).
Each column corresponds to one data instance in the test set.
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(a) VAE. FID: 16.8, PSNR: 23.66 dB.

(b) β-VAE (Higgins et al., 2017a) (β=0.1). FID: 15.5, PSNR: 25.45 dB.

(c) AVB (Mescheder et al., 2017) (β=1). FID: 39.2, PSNR: 24.31 dB.

(d) WAE (λ=100). FID: 16.9, PSNR: 25.28 dB.

(e) GWAE (NP, λD=1, λW =10, λH=0.0001). FID: 14.4, PSNR: 26.11 dB.

Figure 7: Reconstructed images in MNIST (LeCun et al., 1998). The images denote original data
samples (top rows), reconstructed images (bottom rows). Each column corresponds to one data
instance in the test set.
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(a) VAE. FID: 111.3, PSNR: 19.84 dB.

(b) β-VAE (Higgins et al., 2017a) (β=0.1). FID: 84.5, PSNR: 22.48 dB.

(c) AVB (Mescheder et al., 2017) (β=1). FID: 109.9, PSNR: 21.14 dB.

(d) WAE (λ=100). FID: 87.3, PSNR: 22.45 dB.

(e) GWAE (NP, λD=1, λW =10, λH=0.0001). FID: 59.9, PSNR: 17.64 dB.

Figure 8: Reconstructed images in CIFAR-10 (Krizhevsky & Hinton, 2009). The images denote
original data samples (top rows), reconstructed images (bottom rows). Each column corresponds to
one data instance in the test set.
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(a) ALI (Dumoulin et al., 2017). (b) VAE-GAN (Larsen et al., 2016) (γ=1).

(c) 2-Stage VAE (Dai & Wipf, 2019). (d) GWAE (NP, λD=1, λW =10, λH=0.0001).

Figure 9: Generated images in CelebA (Liu et al., 2015). We show 100 images sampled from the
generative model pθ(x) without conducting cherry-picking.
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Figure 10: Generated images in CelebA (Liu et al., 2015) using the GWAE model without the
regularization term RH.

Figure 11: Reconstructed images in CelebA (Liu et al., 2015) using the GWAE model without
the regularization term RH. Each column corresponds to one test data instance. The rows denote
original (top) and reconstructed (bottom) images.
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(a) The estimation of the GW metric using FNP.
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(b) The isometry in GWAE with FNP.

Figure 12: The estimation and minimization of the GW metric. This trial of training is conduced in
GWAE (FNP, λD=1, λW =1, λH=1) using the MNIST (LeCun et al., 1998) dataset, which is the same
settings as Fig. 1 except for FNP. (a) The curves show the GW values estimated by the loss term LGW

(solid, blue) and the empirical GW computed by the POT package (Flamary et al., 2021) (dashed,
orange). The values are computed using the validation set. (b) The axes ∆x = dX (x,x′) (vertical)
and ∆z = dZ(z, z

′) (horizontal) respectively denote the difference in the data and latent spaces
between generated samples (x, z), (x′, z′) ∼ pθ(x, z). The histogram contains 10,000 generated
sample pairs.

37



Published as a conference paper at ICLR 2023

20 0 20
t-SNE Dimension 1

30

20

10

0

10

20

30

t-S
N

E 
D

im
en

si
on

 2

40 30 20 10 0 10 20 30 40
t-SNE Dimension 1

40

30

20

10

0

10

20

30

40

t-S
N

E 
D

im
en

si
on

 2

(a) VAE (Kingma & Welling, 2014).
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(b) DAGMM (Zong et al., 2018).
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(c) GWAE (GMP).

Figure 13: The t-SNE visualizations (van der Maaten & Hinton, 2008) for latent space samples z ∼
πθ(z) for the OoD detection in Fig. 3. The left plot presents the sampled points of the t-SNE
embeddings, and the right one presents the kernel density estimation (KDE) of these embeddings.
The sample size is equally 1,024 in each reported model.
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