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ABSTRACT

We investigate how feature correlations influence the capacity of Dense Asso-
ciative Memory (DAM), a Transformer attention-like model. Practical machine
learning scenarios involve feature-correlated data and learn representations from
input space, but current capacity analyses do not account for this. We develop an
empirical framework to analyze the effects of data structure on capacity dynam-
ics. Specifically, we systematically construct datasets that vary in feature corre-
lation and pattern separation using Hamming distance from information theory,
and compute the model’s corresponding storage capacity using a simple binary
search algorithm. Our experiments confirm that memory capacity scales expo-
nentially with increasing separation in the input space. Feature correlations do
not alter this relationship fundamentally, but reduce memory capacity slightly at
constant separation. This effect is amplified at higher polynomial degrees in the
energy function, suggesting that Associative Memory is more limited in depicting
higher-order interactions between features than patterns. Our findings bridge the-
oretical work and practical settings for DAM, and might inspire more data-centric
methods.

1 INTRODUCTION

Hopfield networks have gained renewed attention because they exhibit parallels with Transformer
architectures and demonstrate strong empirical performance in diverse applications (Vaswanil,[2017;
Ramsauer et al. [2020; [Widrich et al.l [2020). Originally, their fundamental ability to store and
retrieve patterns was limited to a fraction of the number of its neurons (Hopfield, {1982} [1984).
Researchers recently expanded its storage capabilities up to exponentially many memories as Dense
Associative Memory (DAM) (Krotov & Hopfield| 2016} Demircigil et al.L[2017), and simplified their
integration into modern machine learning architectures for practical problem solving (Ramsauer,
et al., [2020).

However, capacity dynamics under real-world data remain under-explored. While we know that the
distribution of memories, and pattern separation in particular, affects storage limits (Wu et al.,|2024),
most capacity analyses assume theoretically convenient distributions of nearly ideally-separated pat-
terns with independent variables (Krotov & Hopfield, [2016} Demircigil et al.,2017;|Ramsauer et al.,
2020). This assumption does not hold for practical settings, and real-world data capacity already
deviates in part from theoretical predictions (Chaudhry et al.| [2023). Therefore understanding how
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Hopfield models behave in data scenarios with imperfect separation and codependent feature is an
open question.

To address this, we examine Dense Associative Memory (DAM) in raw input space—mirroring
scenarios where feature dimensions are fixed—to reflect practical machine learning contexts (Kempe
et al., 2024). We develop a rigorous framework to systematically measure DAM capacity under
various data scenarios. Our approach generates patterns with controlled separations to isolate the
role of feature correlations in memory storage and retrieval, and measures memory capacity for
various model configurations. This work offers insights into capacity behavior that complement
existing theoretical analyses.

2 RELATED WORK AND BACKGROUND

Dense Associative Memory. Hopfield networks are a model of auto-associative memory, which
is able to recover learned patterns from disrupted versions of themselves (Hopfield, |1982). Dense
Associative Memory (DAM) is a variant of it that has a rectified polynomial of degree n as its
activation function, and large storage capacity that increases with n (Krotov & Hopfield, [2016).

Memory Capacity. This is the number of patterns the network can store and retrieve reliably at
a given error probability. Our target is P.,.,, = 0. We follow common practice and initialize
the network with each pattern in question and perform one asynchronous update to check retrieval
performance (Lucibello & Mézard, 2024; |Ramsauer et al., 2020; |Demircigil et al., [2017).

Kernel Capacity Methods. Recent work exploits kernel transformations to increase Hopfield-like
model capacity by making patterns more separable in a high-dimensional feature space via either the
energy function of the model, or by reshaping the dataset directly (Wu et al., 2024} |Hu et al., [2024)).
These techniques presuppose freedom to alter data and semantic representations—an assumption
that does not always hold in practical settings with fixed input dimensions, such as raw images.

Pattern Separation and Hamming distance. Higher average pairwise pattern separation increases
memory capacity, and Hamming distance can be used to identify and remove overlapping patterns
to do the same (Hu et al.| [2024; 2023} [Manandhar & Sadanandal, 2002). We view stored patterns as
Hamming codes from information theory[Hamming|(1950);/Shannon|(1948]). For a formal definition
of Hamming distance (HD) in context: given two bitstrings (; and (2, the Hamming distance be-
tween them counts the number of differing bit positions. In our framework, this metric is especially
useful because each bit difference translates into a discrete, uniform step of dissimilarity, making it
easier to design construction algorithms that control average separation.

3 METHOD AND EXPERIMENTAL SETUP

We want to measure memory capacity for a set of patterns of different separation. For this, we need
to (1) create datasets for both synthetic and real data for a given level of average separation to isolate
effects of feature correlations, and (2) compute memory capacity efficiently.

Dataset Construction. We create two main datasets to compare capacity dynamics. The first dataset
is the baseline, an “artificial” dataset that contains 50 subsets of skewed i.i.d. Rademacher patterns.
This distribution is parameterized by a single parameter which determines whether we sample 1
or —1. We vary the parameter between (0.5, 1] in steps of eps = 0.01, resulting in a dataset of
size 50 x 50 x 784. The average Hamming distance consequently ranges from (0,392). The
second dataset consists of binarized MNIST images at threshold 128. We use a greedy selection
procedure—an iterative hill-climbing algorithm—to ensure a specified Hamming distance in each
subset. Specifically, we randomly sample a pattern and accept it into our subset only if it increases
or maintains the target HD across all previously accepted patterns. Since data structure inherent to
MNIST limits average separation in subsets to 30 < HD < 190, we create 53 subsets to evenly
space out data points. This results in a dataset of size 53 x 50 x 784.

Model Setup. We fix the number of neurons at N = 784 for a 28 x 28 input size, and use a rectified
polynomial as in|Krotov & Hopfield (2016), with n controlling the polynomial degree. We compute
capacities for n € [6, 38] with step size 2 for values larger than 11. Our program also stores input
patterns in-memory instead of training weights for simplicity and speed.
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Capacity Measurement. We would need to train and test each model configuration on all possible
datasets, which is very resource-intensive. In practice, we can only to test a representative subset
that we need to identify: given a constructed subset of size S, we apply binary search to find memory
capacity Kqz, which is the largest X' < S such that our DAM can store and retrieve the first &
patterns perfectly (normalized inner product = 1). This method reduces computational costs from
O(s) to O(log s), s being the number of evaluated K's. Importantly, we re-calculate the mean
separation after we determine K, ,, to accurately represent separation in plots. We also exclude
values of K4, > 49 from results to avoid distortions: since all subsets contain 50 patterns S = 50,
memory capacity K., saturates at 50 for high polynomial degrees of n even though the actual
K4, might be larger than 50. Lastly, we also use early stopping based on K, thresholds to
optimize computational efficiency.

4 RESULTS
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Figure 1: Comparing memory capacity scaling for synthetic and real data. We observe a slightly
increasing constant difference between them at various levels of n.
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Figure 2: Capacity scaling for increasing n at different Hamming distance buckets.

As a baseline analysis, we confirm empirically that memory capacity K,y scales exponentially
with the average separation in the dataset, shown in Appendix [A.T] In Figure[I] we fix n and sweep
the mean separation. As expected, capacity K,a.x grows sharply with separation, but synthetic data
achieves consistently higher K.« for a given separation than MNIST. This effect becomes slightly
more apparent at higher n. To better understand this dynamic, we plot K,,,, against polynomial
degree n for both synthetic (blue) and MNIST (red) data across different mean Hamming distance
buckets in Figure[2] Buckets have a HD leeway of 10 on both sides.

As expected, capacity grows exponentially with n. While pattern separation primarily drives ca-
pacity, correlated data is disadvantaged at higher n. At higher polynomial degrees, correlated data
(MNIST) notably suffers an increasing capacity drop relative to synthetic data. Higher separation
somewhat mitigates the strength of this divergence, but its effect is substantial for the the practical
dataset in question: the MNIST train set with 3000 of each digit has an avg. HD ~ 112, where
divergence for large n is still significant.
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5 DISCUSSION AND FUTURE DIRECTIONS

With this paper, we bridge the gap between theoretical analyses and nuanced realities of real data.
Our results highlight that feature correlations affect memory capacity of Hopfield networks signif-
icantly and are relevant for practical settings. Ignoring feature correlations can overestimate real-
world capacity. These observations might also imply that Transformer architectures are constrained
in their learning capacity in the same way. By extension, Large Language Models (LLMs) might
also be affected by some type of bottleneck caused by patterns with high feature correlations.

We leave a rigorous theoretical explanation and intuition of how these effects come about to future
work. Another, more immediate next research step could be how continuous-space input data affects
capacity dynamics. It would also be interesting to study bounds below optimal memorization and
more towards generalization, or recall under the assumption of non-zero error rates, both of which
usually happen in practical machine learning scenarios.
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A APPENDIX

A.1 BASELINE ANALYSIS.

We empirically confirm the known fact that memory capacity K, scales exponentially with aver-
age separation in the dataset (Hu et al.| [2024)).
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Figure 3: We calculate memory capacity K,,,, of Dense Associative Memory for 50 sets of biased
Rademacher patterns and 53 sets of MNIST of increasing separation. Capacity grows exponentially
with data separation for both types. This is in line with|Hu et al.|(2024]))’s theoretical proposition that
average separation scales in O(In M), where M is K, as memory capacity. When patterns are
sufficiently separated, the chance of retrieval error drops dramatically due to lack of crosstalk. The
general scaling relationship for feature-correlated data is not different from synthetic data, but there
exist important differences which are explained in the results section.

A.2 EXPERIMENT AND CODE.

All numerical computations were performed using Apple’s MLX framework, with patterns and net-
work states represented as 32-bit floating-point arrays.

Our implementation of methods and experiments is publicly available on|GitHub.


https://github.com/stefanbielmeier/feature-correlations-am
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