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Abstract

Given the magnitude of the current Pre-trained001
Language Models (PLMs), conventional fine-002
tuning becomes increasingly challenging, there-003
fore parameter-efficient tuning is now the fo-004
cus of cutting-edge research. For PLMs to005
accomplish transferability, prior techniques in006
this field added tunable adapters into Multi-007
Head Attention (MHA) or/and Feed-Forward008
Network (FFN) of Transformer blocks. How-009
ever, the ability of Layer Normalization (Lay-010
erNorm) for parameter-efficient tuning is dis-011
regarded while being a crucial component of012
Transformer architecture. In this paper, we first013
propose LN-tuning, which is time-efficient and014
performs better than BitFit with only half tun-015
able parameters. Moreover, SOTA performance016
is achieved by the unified framework of com-017
bining prefix-tuning and LN-tuning. Lastly,018
LN-tuning is better understood by an ablation019
investigation and a visualization experiment of020
the bias and gain terms.021

1 Introduction022

Natural language processing (NLP) is presently023

dominated by the transfer learning from Pre-trained024

Language Models (PLMs) paradigm (Devlin et al.,025

2019; Han et al., 2021), which produces superior026

results in many tasks (Qiu et al., 2020; Peters et al.,027

2018; Devlin et al., 2019). The typical method used028

by PLMs to integrate the information they gained029

during the pre-training stage into downstream tasks030

is fine-tuning. A copy of the model needs to be031

retrained and saved for each downstream operation,032

which could be expensive given the enormous size033

of modern PLMs. To address the aforementioned034

issue, parameter-efficient tuning techniques have035

been proposed, which only modify a small subset036

of the pre-trained parameters and freeze the ma-037

jority of them. To make measurable progress in038

this area, a lot of work has been done. Ziegler039

et al.; Houlsby et al.; Pfeiffer et al.; He et al. pro-040

pose several adapter techniques that insert trainable041

bottleneck layers into the Feed-forward Network 042

layer of each PLM block. Prefix-tuning (Li and 043

Liang, 2021), P-tuning v2 (Qin and Eisner, 2021), 044

and deep prompt tuning are used in MHA to opti- 045

mize MLP networks and achieve continuous prefix 046

prompt. More recently, research efforts have been 047

made to create a unified framework that simultane- 048

ously tunes the representations of MHA and FFN, 049

including those of the MAM adapter (He et al., 050

2021a) and UniPELT (Mao et al., 2022). By inte- 051

grating adapter-based approaches that operate on 052

both MHA and FFN, they are able to attain SOTA 053

performance. It is clear from this that earlier ap- 054

proaches in this area included tunable adapters to 055

the MHA or/and FFN of Transformer blocks to 056

provide parameter-efficient tuning. Nevertheless, 057

the power of LayerNorm for parameter-efficient 058

tuning is overlooked while being a crucial com- 059

ponent of Transformer-based PLMs. Following 060

the normalization of mean and variance, the gain 061

and bias terms are applied for affine transformation 062

on each input neuron in LayerNorm, acting as a 063

fine-grained adaptive module on the data (Ba et al., 064

2016). In earlier techniques, it is ignored and kept 065

to be fixed in tuning. However, since LayerNorm 066

enables smoother gradients, faster training and bet- 067

ter generalization accuracy with a wide application 068

in deep learning (Xu et al., 2019), we argue it 069

may also help to achieve better data adaptation in 070

parameter-efficient tuning. In this research, we pro- 071

vide a straightforward but efficient technique called 072

LN-tuning with the learnable gain and bias term of 073

LayerNorm. Following are some examples of our 074

contribution: 075

• We propose LN-tuning, which first explores 076

the potential of LayerNorm for parameter- 077

efficient tuning, achieving comparable perfor- 078

mance to prior approaches with a very small 079

number of parameters and a high time effi- 080

ciency. 081
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Figure 1: Illustration of our proposed LN-tuning.

• Prefix-tuning combined with LN-tuning leads082

to SOTA performance, outperforming MAM083

(i.e. the adapter-based unified framework that084

tunes MHA and FFN simultaneously) by less085

tunable parameters.086

• LN-tuning is better understood thanks to the087

ablation study of terms, layers, and modules,088

as well as the visualization experiment of the089

gain and bias term.090

2 Method091

Layer normalization (LayerNorm) is a technique to092

normalize the distributions of intermediate layers.093

It enables smoother gradients, faster training, and094

better generalization accuracy (Xu et al., 2019). As095

Eq. 1 shows, LayerNorm involves two stages: (1)096

normalize x by mean and variance (2) forward by097

the scale and shift operations consisting of the gain098

term g and bias term b, respectively.099

Our proposed LN-Tuning keeps parameters in the100

gain term (for scale operation) and bias term (for101

shift operation) trainable, which are initialized102

from the pre-training stage, while fixing other pa-103

rameters of PLMs. The scale and shift operation104

in LN-tuning is a unique, sped-up FFN that only105

conducts projection on a single neuron, as opposed106

to linear aggregation between input layer neurons.107

LayerNorm(x) =
g

σ
⊙ (x− µ) + b (1)108

where109

µ =
1

H

H∑
i=1

xi σ =

√√√√ 1

H

H∑
i=1

(xi − µ)2110

3 Experiments111

We validate the effectiveness of the proposed112

method on 11 benchmark datasets and seven types113

of downstream tasks, including both NLU and 114

NLG ones, with the presence of six state-of-the- 115

art baselines. 116

3.1 General Setup 117

Task Setup. To evaluate the proposed LN-tuning 118

comprehensively, we conduct cross-task, cross- 119

PLM-architecture, and cross-PLM-scale experi- 120

ments. For cross-task validation, we conduct both 121

NLU and NLG tasks. 122

Baseline Methods. We compare our methods 123

with six state-of-the-art tuning methods including 124

full-tuning, scaled parallel adapter-tuning (Pfeiffer 125

et al., 2021; He et al., 2021a), prefix-tuning (Liu 126

et al., 2022), LoRA (Hu et al., 2021), MAM 127

adapter (He et al., 2021a), BitFit (Zaken et al., 128

2022) and 3V1 (Yang et al., 2022). For brevity, 129

we agree to use adapter, prefix, MAM to repre- 130

sent scaled parallel adapter-tuning, prefix-tuning, 131

and MAM Adapter respectively in all tables of this 132

paper. 133

More implementation details can be found in sec- 134

tion A of Appendix. 135

3.2 Main Results 136

Method #Para. CN04 Twiiter SICK SNLI SST-2 CB CSQA SocIQA Avg.
BERT-Large

FT 100% 85.2 75.8 86.2 85.4 92.8 80.4 69.8 63.4 79.9
Adapter 0.33% 82.8 76.3 86.4 85.0 93.0 74.1 62.6 65.3 78.2
Prefix 0.33% 81.4 76.2 86.3 85.3 93.4 75.0 63.2 65.4 78.3
LoRA 0.33% 82.3 77.1 86.4 85.2 93.4 74.6 62.7 65.1 78.4
MAM 0.66% 83.0 78.1 86.6 85.2 93.1 77.6 63.2 65.5 79.0

3V 0.0006% 68.1 73.6 81.3 82.8 89.1 70.2 - - -
BitFit 0.07% 79.2 74.2 77.8 81.6 92.6 70.5 59.7 62.8 74.8

LN 0.03% 78.9 76.9 85.8 83.8 89.8 70.5 59.6 63.3 76.1
Prefix+LN 0.36% 84.2 77.2 86.6 85.4 93.8 81.2 64.0 65.5 79.8

BERT-Base
FT 100% 87.2 75.3 84.5 84.2 90.9 82.7 50.2 55.0 76.3

Adapter 0.28% 72.5 75.7 83.7 84.4 91.5 73.8 60.6 61.6 75.5
Prefix 0.28% 77.9 75.9 84.2 84.0 91.9 76.8 60.4 61.6 76.6
LoRA 0.33% 74.2 75.5 83.8 84.2 91.3 73.1 60.3 61.4 75.5
MAM 0.56% 80.3 76.3 84.8 84.5 91.6 73.8 60.4 61.8 76.7

3V 0.0014% 67.2 70.7 85.0 82.2 88.1 72.0 - - -
BitFit 0.08% 80.9 71.5 74.4 79.9 89.9 68.5 55.3 57.6 72.2

LN 0.04% 79.1 76.7 74.0 82.4 91.4 73.8 58.5 58.8 74.3
Prefix+LN 0.32% 80.7 76.1 84.5 84.6 91.9 74.1 60.6 61.7 76.8

Table 1: Results with BERTlarge and BERTbase. We
report the average score with the standard deviation as
the subscript. The best and 2nd best methods on each
dataset are in bold and underlined, respectively.*3V
can not be applied into these two QA tasks and thus is
omitted to calculate the average values and rank metric.

In Table 1, we present the comparison results for 137

the NLU tasks on BERTlarge and BERTbase. It is 138

clear from this that full-tuning and MAM adapter 139

may typically achieve superior performance. Bet- 140

ter performance is expected because more recently 141

introduced parameters and multiple PLM modules 142

1we name it 3V in our paper for clarity and brevity.
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Method Para.
E2E Samsum WebNLG

Rank↓
BLEU NIST MET R-L CIDEr R-1 R-2 R-L BLEU MET TER↓ Mover BERT BLEURT

FT 100% 65.07 8.61 43.42 67.90 2.38 44.70 20.37 41.57 39.43 0.34 0.55 0.65 0.93 0.39 2.43
Adapter 0.13% 64.93 8.46 44.21 68.63 2.39 43.23 18.67 40.17 38.40 0.33 0.56 0.64 0.93 0.38 3.79
Prefix 0.13% 65.27 8.55 43.70 68.27 2.37 43.70 19.97 40.83 38.87 0.33 0.54 0.65 0.93 0.38 3.50
LoRA 0.13% 64.91 8.47 43.36 68.60 2.36 43.38 18.65 40.13 38.51 0.33 0.55 0.65 0.93 0.38 4.93
MAM 0.26% 64.80 8.46 43.90 68.67 2.36 43.50 19.40 40.33 38.87 0.33 0.55 0.65 0.93 0.38 4.43
BitFit 0.09% 64.27 8.54 41.80 67.63 2.17 39.27 15.23 36.17 35.33 0.30 0.61 0.62 0.92 0.32 7.14

LN 0.03% 64.07 8.34 43.63 67.97 2.35 42.77 18.80 39.53 38.47 0.33 0.55 0.64 0.93 0.36 6.36
Prefix+LN 0.16% 65.24 8.57 43.75 68.43 2.39 43.88 20.03 41.07 39.16 0.34 0.54 0.65 0.93 0.38 3.43

Table 2: Results with GPT-2medium. We report the average score with the standard deviation as the subscript. The
best and 2nd best methods on each dataset are in bold and underlined respectively. 3V can not be applied into NLG
tasks and thus is omitted as a baseline here.

need to be tuned. Compared to other earlier ap-143

proaches, 3V and BitFit performs the poorest with144

less parameters. Under the tunable parameter align-145

ment setting, the performance of prefix tuning and146

adapter tuning is comparable to one another.147

The performance of LN-tuning is then examined.148

Comparing approaches whereas the ratio of the149

tunable parameters is more significant than 0.3%,150

LN-tuning is inferior to them by tuning only151

0.03%–0.04% of parameters. By using almost half152

the tunable parameters of BitFit, LN-tuning per-153

forms much better than BitFit. LN-tuning outper-154

forms 3V in terms of performance and is also ap-155

plicable to a wider variety of NLP tasks than 3V,156

including QA tasks for NLU and NLG tasks.157

The methods’ overall performance in NLG tasks158

is similar to that in NLU tasks, With a few limited159

differences. First, prefix-tuning outperforms MAM160

adapter. Second, our LN-tuning exhibits a perfor-161

mance closer to that of adapter-based approaches,162

such as adapter and MAM adapter, compared to163

the NLU task.164

3.3 Efficiency Analysis165

Setup. In order to compare the training and in-166

ference time efficiency between our method and167

earlier ones, we generate statistics from running168

logs. Then, in comparison to Full-Tuning (FT),169

we report the relative training and inference times.170

This includes the average time costs for three NLG171

datasets for GPT-2 and eight NLU datasets for172

BERT. The time cost of FT is normalized to 100.173

Result. As shown in Fig. 2, our proposed LN-174

tuning takes the least time in all PLM architectures175

for training process. LN-tuning, along with BitFit176

and FT, costs the similar least time for inference177

process as expected. The above results on both178

training and inference show the significant superi-179

ority of our method in time efficiency comparing180

previous adapter-based methods. More details of 181

analysis can be found in Section B of Appendix. 182

4 Visualization of Gain and Bias Term. 183

Setup. We visualize the change of the gain and bias 184

term on each layer of PLMs to give a further un- 185

derstanding about LN-tuning. Specifically, follow- 186

ing BitFit, we use 1
dim(t)∥to − tf∥1 to measure the 187

amount of change for terms, where t represents the 188

gain term g or the bias term b of LayerNorm, which 189

means the average absolute change, across its di- 190

mensions, between the initial LM values to and 191

its fine-tuned values tf . We choose five datasets 192

which covers all type of NLU tasks in Sec. 3.1 and 193

use BERTlarge for the experiment. 194

Result. As shown in Fig. 3, there can be oberse- 195

ved that the terms of layers close to the output, i.e. 196

layer 15 to 24, changes more than those close to 197

input, whether the gain or bias. Meanwhile, in 198

those layers close to output, the gain term change 199

more than bias term (This doesn’t mean that the 200

gain term is more important than the bias term in 201

LN-tuning). Comparing results between tasks, the 202

task complexity and the dataset scale may affect 203

the extent of terms’ change. Firstly, comparing 204

SST-2 and the other two datasets of binary classi- 205

fication tasks, there is a greater change in terms 206

of LN-tuning. This may be because that there 207

are larger solution spaces (greater task complex- 208

ity) for the QA (CSQA) and NER (Twitter) task 209

than binary classification tasks such as sentiment 210

analysis (SST-2), Paraphrase Identification (SICK) 211

or Natural Language Inference (CB) task. There 212

needs greater variation in the terms of LN-tuning 213

in CSQA and Twitter dataset. Secondly, the order 214

of term variation in binary classification tasks is 215

SST-2 > SICK > CB, which is the same as the order 216

of their data scale: SST-2 (67,349 items) > SICK 217

(4,439 items) > CB (250 items). A reasonable ex- 218

planation for this different degree of variation is 219
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(a) BERT-base Training (b) BERT-large Training (c) GPT-2 Medium Training

Figure 2: Time Efficiency Comparison of Training.

Figure 3: Change in gain and bias term on five type
of NLU tasks. ‘Gain MHA’ means the gain term of
LayerNorm module after MHA in each layer of PLMs,
and so forth for other labels of Y-axis.

that larger data sizes require a more significant term220

variation to accommodate a variety of data samples221

from a wider range of domains.222

5 Ablation Study223

Setup. To explore whether LN-tuning may be en-224

hanced to be more parameter-efficient, we under-225

take an ablation study from three aspects: terms,226

modules, and layers. Specifically, for terms, we227

only keep one option of the gain or the bias term228

trainable. For layers, we keep vectors of Layer-229

Norm of only the half layers close to input or out-230

put trainable, i.e. from layer 1 to 12 or from 13231

to 24, if using BERTlarge. The same way is for us-232

ing BERTbase. For modules, since there are two233

LayerNorm modules in each block of Transformer,234

where one is after MHA and the other is after FFN,235

we keep vectors trainable of only one module in 236

each Transformer block. We use both BERTlarge 237

and BERTbase for the experiment in this section. 238

Result. As shown in Table 5 of appendix, com- 239

paring to full LN-tuning method, all ablated tech- 240

niques obtain a performance drop, which validates 241

no extraneous components for LN-tuning. Further, 242

the influence of layers seems more critical than that 243

of modules due to a larger performance decrease 244

comparing ablated layer methods and ablated mod- 245

ule methods. For term ablation type, the method 246

with only the bias term performs better than that 247

with only the gain term, whether in BERTlarge or 248

BERTbase, which indicates that the bias term plays 249

a more critical role than the gain term in LN-tuning. 250

The added MHA learnable module looks more rel- 251

evant for module ablation type than the added FFN 252

learnable module. For layer ablation type, the lay- 253

ers adjacent to input seems to be more importan 254

than that close to output in BERTbase, however, the 255

outcome is the opposite for BERTlarge. This shows 256

that the importance of layers is quite different in 257

different size of PLMs in LN-tuning and those lay- 258

ers close to output can play a more significant role 259

in larger size of PLMs. 260

6 Conclusions 261

In this paper, we first propose LN-Tuning, which 262

only tunes the bias and gain term of LayerNorm to 263

enable parameter-efficient transferring for PLMs. 264

Later, we investigate a unified framework for merg- 265

ing LN-tuning with earlier parameter-efficient tech- 266

niques and discover that SOTA performance can 267

be achieved by combining prefix-tuning with LN- 268

tuning. Finally, the ablation study of terms, layers, 269

and modules, as well as the visualization experi- 270

ment of the gain and bias term further understand 271

LN-tuning. 272
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Limitation273

While prefix-tuning and LN-tuning operate to-274

gether to attain SOTA performance and LN-tuning275

has a high time efficiency with very few tunable276

parameters, there are still worthwhile areas for addi-277

tional research. First, take note that the LN-tuning278

approach for tuning gain and bias term is a novel279

tuning technique that can be used after any PLM280

output vector. Exist any undiscovered techniques281

to perform SOTA by only learnable modules in LN-282

tuning? Further investigation can be done in future283

work to determine why the unified framework of in-284

tegrating LN-tuning and Prefix-tuning (MHA+LN)285

can perform better than earlier adapter-based tech-286

niques (MHA+FFN).287
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A Implementation Details for446

Experiments447

Specifically, for NLU tasks, we choose seven448

type datasets: (1) Named-Entity Recogniza-449

tion (NER), including CoNLL2004 (Carreras and450

Màrquez, 2004) and Twitter (Derczynski et al.,451

2016); (2) Natural Language Inference (NLI), in-452

cluding SNLI (Bowman et al., 2015) and CB (Wang453

et al., 2019a); (3) Paraphrase Identification (PI),454

including SICK (Marelli et al., 2014); (4) Senti-455

ment Analysis (SA), including SST-2 (Wang et al.,456

2019b); (5) Question Answering (QA), including457

CSQA (Talmor et al., 2019) and SocIQA (Sap et al.,458

2019); (6) Table-to-Text Generation, including459

E2E (Novikova et al., 2017) and DART (Nan et al.,460

2021); (7) Dialogue Summarization, including461

Samsum (Gliwa et al., 2019) .462

The cross-PLM-architecture validation requires463

approaches to be verified on both encoder-only464

(BERT (Devlin et al., 2019)) and decoder-only465

(GPT-2 (Radford et al., 2019)) Transformer archi-466

tecture. The cross-PLM-scale validation requires467

approaches to be verified on PLMs of different468

scales. Specifically, the same experiments for NLU469

are conducted on both BERTbase and BERTlarge,470

while GPT-2medium is for NLG.471

We conduct experiments on two NVIDIA GeForce472

RTX 3090 GPUs. The results are evaluated by473

different measures as suggested by different tasks.474

To reduce the interference of randomness, we re-475

peat the experiments for three times and the av-476

erage scores (for NLU) or the rank (for NLG) is477

returned as results. According to the recorded ex-478

perience (Houlsby et al., 2019; Pfeiffer et al., 2020;479

Li and Liang, 2021; He et al., 2021a), the com-480

mon hyper-parameters are adjusted according to481

the statistical characteristics of datasets.482

For NLU tasks, we set the training epoch 30, with483

an early stopping strategy of 10 non-decrease vali-484

dation loss. The batch size setting can be found in485

Table 3. For LN-tuning, we adjust the learning rate486

from the priority order in {1e-2, 1e-3, 2e-4} 2. We487

adjust the learning rate from the priority order in488

{1e-3, 2e-4} for other methods.489

For NLG tasks, we set the training epoch 20. The490

batch size setting can be found in Table 4, and491

the learning rate is 2e-4 for all methods. The492

2We empirically find that LN-tuning needs larger learning
rate than other approaches in some datasets.

E2E dataset contains about 50K examples whose 493

average output length is 22.9. We use the offi- 494

cial evaluation script 3 to calculate BLEU (Pap- 495

ineni et al., 2002), NIST (Belz and Reiter, 2006), 496

METEOR (Lavie and Agarwal, 2007), ROUGE- 497

L (Lin, 2004), and CIDEr (Vedantam et al., 2015). 498

The Samsum dataset contains about 15K exam- 499

ples, whose average output length is 23.7. We 500

use the standard python package rouge to cal- 501

culate ROUGE-1, ROUGE-2, ROUGE-L (Lin, 502

2004). The DART dataset consists of 82K exam- 503

ples, whose average output length is 27.3. We use 504

the official evaluation script 4 to calculate BLEU, 505

METEOR, and TER (Snover et al., 2005). We use 506

GPT-2medium (Radford et al., 2019) as the exper- 507

imental PLM, where the max generation length 508

is set to [35, 35, 45] for [E2E, Samsum, DART], 509

respectively. 510

We align the tunable amount of additional parame- 511

ters of different methods to ensure a fair compari- 512

son, which is accomplished by setting hyperparam- 513

eters. Specifically, for prefix-tuning, the hyperpa- 514

rameter to be adjusted is its prefix length l, where 515

we set l = 16 for BERTbase, l = 24 for BERTlarge, 516

and l = 16 for GPT-2medium. For adapter, we ad- 517

just the intermediate dimension db, where we set 518

db = 16 for BERTbase, db = 24 for BERTlarge, 519

db = 16 for GPT-2medium. For MAM adapter, we 520

adjust the both, keeping db = l = 8 for BERTbase, 521

db = 16, l = 8 for BERTlarge, and db = 8, l = 8 522

for GPT-2medium. 523

Methods CN04 Twitter SICK SNLI SST-2 CB CSQA SociQA

BERT-Base
FT 128 128 512 512 256 48 48 48

MAM 128 128 512 512 392 64 64 48
Others 128 128 512 512 392 64 64 64

BERT-Large
FT 32 32 256 256 128 24 16 12

MAM 48 48 256 256 256 32 24 24
Others 48 48 256 256 256 32 32 24

Table 3: Batch size setting for NLU tasks.

Method Samsum E2E WebNLG

FT 32 48 40
Others 36 96 84

Table 4: Batch size setting for NLG tasks.

The detailed batch size settings for NLU and NLG 524

tasks are displayed in the Table 3 and able 4 respec- 525

tively. In order to conduct a fair comparison, we 526

3https://github.com/tuetschek/
e2e-metrics

4https://github.com/Yale-LILY/dart
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make full use of the GPUs’ VRAM capacity and527

work to make sure the batch size parameters for528

each approach are identical. We decrease the value529

of batch size to prevent a "CUDA Out Of Memory"530

problem because full-tuning and MAM Adapter531

have more tunable parameters.532

B Details of Efficiency Analysis533

In Fig.2(a), all parameter-efficient methods require534

training times that are less than 90% of those of FT535

in BERTbase and less than 80% of those of FT in536

BERTlarge, demonstrating that parameter-efficient537

methods can train PLMs of greater scales more538

quickly. From Fig. 2(a), Fig. 2(b) and Fig. 2(c),539

we can observe that parameter-efficient methods540

show higer time efficiency in training in NLG tasks541

than in NLU tasks comparing with FT. However,542

whether in training or inference, MAM adapter typ-543

ically has the lowest time efficiency, demonstrating544

that the unified methods of both tuning MHA and545

FFN require a significant investment in computa-546

tional resources despite being able to produce better547

performance. Further, adapter-tuning shows higher548

time efficiency than prefix-tuning in training and549

inference, except for the NLG inference process.550

C Details of Ablation Study551

Ablation Type Method CN04 Twitter SICK SNLI SST-2 CB CSQA SociQA Avg

BERT-Large
- Full* 80.2 77.2 84.9 84.0 91.9 74.1 60.5 63.2 77.0

Term
Only Gain 69.5 69.5 76.3 80.9 91.6 71.4 53.3 57.9 71.3
Only Bias 79.8 72.6 77.0 81.2 91.8 73.2 55.8 60.9 74.0

Module
Only FFN 77.3 76.5 82.2 81.9 92.6 72.8 55.6 61.0 75.0
Only MHA 75.8 77.4 82.0 81.6 92.2 72.3 56.2 58.8 74.6

Layer
Only Layer 1-12 73.2 75.1 82.4 78.4 91.8 73.1 51.7 56.4 72.8

Only Layer 13-24 73.8 75.7 82.4 78.6 93.2 72.9 53.8 56.6 73.4

BERT-Base
- Full* 79.8 76.4 81.0 83.3 91.4 70.2 57.9 59.1 74.9

Term
Only Gain 72.9 68.8 67.5 76.7 87.7 73.2 50.0 52.9 68.7
Only Bias 76.5 67.8 77.5 76.3 89.7 71.4 51.1 53.4 70.5

Module
Only FFN 79.1 76.6 81.5 77.0 91.6 76.2 53.3 53.8 73.6
Only MHA 78.4 76.5 81.8 77.2 91.2 75.0 52.6 54.0 73.3

Layer
Only Layer 1-6 78.2 76.0 67.9 74.1 90.7 74.4 50.8 50.6 70.3
Only Layer 7-12 71.3 74.9 68.2 73.9 90.8 73.8 50.3 50.3 69.2

Table 5: Results of ablation study about terms, layers
and modules with BERTlarge and BERTbase. *We use
italic font to show results of the full LN-tuning, which
is as a standard for comparison.

.
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(a) BERT-base Inference (b) BERT-large Inference (c) GPT-2 Medium Inference

Figure 4: Time Efficiency Comparison of Inference.
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