Parameter-Efficient Tuning on Layer Normalization for Pre-trained
Language Models

Anonymous ACL submission

Abstract

Given the magnitude of the current Pre-trained
Language Models (PLMs), conventional fine-
tuning becomes increasingly challenging, there-
fore parameter-efficient tuning is now the fo-
cus of cutting-edge research. For PLMs to
accomplish transferability, prior techniques in
this field added tunable adapters into Multi-
Head Attention (MHA) or/and Feed-Forward
Network (FFN) of Transformer blocks. How-
ever, the ability of Layer Normalization (Lay-
erNorm) for parameter-efficient tuning is dis-
regarded while being a crucial component of
Transformer architecture. In this paper, we first
propose LN-tuning, which is time-efficient and
performs better than BitFit with only half tun-
able parameters. Moreover, SOTA performance
is achieved by the unified framework of com-
bining prefix-tuning and LN-tuning. Lastly,
LN-tuning is better understood by an ablation
investigation and a visualization experiment of
the bias and gain terms.

1 Introduction

Natural language processing (NLP) is presently
dominated by the transfer learning from Pre-trained
Language Models (PLMs) paradigm (Devlin et al.,
2019; Han et al., 2021), which produces superior
results in many tasks (Qiu et al., 2020; Peters et al.,
2018; Devlin et al., 2019). The typical method used
by PLMs to integrate the information they gained
during the pre-training stage into downstream tasks
is fine-tuning. A copy of the model needs to be
retrained and saved for each downstream operation,
which could be expensive given the enormous size
of modern PLMs. To address the aforementioned
issue, parameter-efficient tuning techniques have
been proposed, which only modify a small subset
of the pre-trained parameters and freeze the ma-
jority of them. To make measurable progress in
this area, a lot of work has been done. Ziegler
et al.; Houlsby et al.; Pfeiffer et al.; He et al. pro-
pose several adapter techniques that insert trainable

bottleneck layers into the Feed-forward Network
layer of each PLM block. Prefix-tuning (Li and
Liang, 2021), P-tuning v2 (Qin and Eisner, 2021),
and deep prompt tuning are used in MHA to opti-
mize MLP networks and achieve continuous prefix
prompt. More recently, research efforts have been
made to create a unified framework that simultane-
ously tunes the representations of MHA and FFN,
including those of the MAM adapter (He et al.,
2021a) and UniPELT (Mao et al., 2022). By inte-
grating adapter-based approaches that operate on
both MHA and FEN, they are able to attain SOTA
performance. It is clear from this that earlier ap-
proaches in this area included tunable adapters to
the MHA or/and FFEN of Transformer blocks to
provide parameter-efficient tuning. Nevertheless,
the power of LayerNorm for parameter-efficient
tuning is overlooked while being a crucial com-
ponent of Transformer-based PLMs. Following
the normalization of mean and variance, the gain
and bias terms are applied for affine transformation
on each input neuron in LayerNorm, acting as a
fine-grained adaptive module on the data (Ba et al.,
2016). In earlier techniques, it is ignored and kept
to be fixed in tuning. However, since LayerNorm
enables smoother gradients, faster training and bet-
ter generalization accuracy with a wide application
in deep learning (Xu et al., 2019), we argue it
may also help to achieve better data adaptation in
parameter-efficient tuning. In this research, we pro-
vide a straightforward but efficient technique called
LN-tuning with the learnable gain and bias term of
LayerNorm. Following are some examples of our
contribution:

* We propose LN-tuning, which first explores
the potential of LayerNorm for parameter-
efficient tuning, achieving comparable perfor-
mance to prior approaches with a very small
number of parameters and a high time effi-
ciency.

A

~J Block

\
\
0000 N _.\ LayerNorm
@ \
Gain \\ Feed-Forward Network
0000 \
@ 4
Input Vi

O000 /// Multi-Head Attention
/
/7

Learnable
Element-Wise Affine

Figure 1: Illustration of our proposed LN-tuning.

* Prefix-tuning combined with LN-tuning leads
to SOTA performance, outperforming MAM
(i.e. the adapter-based unified framework that
tunes MHA and FFN simultaneously) by less
tunable parameters.

* LN-tuning is better understood thanks to the
ablation study of terms, layers, and modules,
as well as the visualization experiment of the
gain and bias term.

2 Method

Layer normalization (LayerNorm) is a technique to
normalize the distributions of intermediate layers.
It enables smoother gradients, faster training, and
better generalization accuracy (Xu et al., 2019). As
Eq. 1 shows, LayerNorm involves two stages: (1)
normalize & by mean and variance (2) forward by
the scale and shift operations consisting of the gain
term g and bias term b, respectively.

Our proposed LN-Tuning keeps parameters in the
gain term (for scale operation) and bias term (for
shift operation) trainable, which are initialized
from the pre-training stage, while fixing other pa-
rameters of PLMs. The scale and shift operation
in LN-tuning is a unique, sped-up FFN that only
conducts projection on a single neuron, as opposed
to linear aggregation between input layer neurons.

LayerNorm(x) = g O(x—np)+b (1)

where

1 H
M:EZ:EZ g =
=1

3 Experiments

We validate the effectiveness of the proposed
method on 11 benchmark datasets and seven types

of downstream tasks, including both NLU and
NLG ones, with the presence of six state-of-the-
art baselines.

3.1 General Setup

Task Setup. To evaluate the proposed LN-tuning
comprehensively, we conduct cross-task, cross-
PLM-architecture, and cross-PLM-scale experi-
ments. For cross-task validation, we conduct both
NLU and NLG tasks.

Baseline Methods. We compare our methods
with six state-of-the-art tuning methods including
full-tuning, scaled parallel adapter-tuning (Pfeiffer
et al., 2021; He et al., 2021a), prefix-tuning (Liu
et al., 2022), LoRA (Hu et al., 2021), MAM
adapter (He et al., 2021a), BitFit (Zaken et al.,
2022) and 3V! (Yang et al., 2022). For brevity,
we agree to use adapter, prefix, MAM to repre-
sent scaled parallel adapter-tuning, prefix-tuning,
and MAM Adapter respectively in all tables of this

paper.

More implementation details can be found in sec-
tion A of Appendix.

3.2 Main Results

Method #Para. CN04 Twiiter SICK SNLI SST-2 CB CSQA SocIQA Avg.
BERT-Large

FT 100% 85.2 75.8 86.2 854 928 804 69.8 634 799

Adapter 0.33% 82.8 76.3 864 850 930 741 626 65.3 78.2

Prefix 0.33% 814 762 863 83 934 750 632 654 783

LoRA 0.33% 823 77.1 864 852 934 746 627 65.1 78.4

MAM 0.66% 83.0 78.1 86.6 852 931 776 632 65.5 79.0
3V 0.0006% 68.1 73.6 813 828 8.1 702 - - -
BitFit 0.07% 79.2 74.2 778 816 926 705 59.7 62.8 74.8

LN 0.03% 789 769 858 838 898 705 59.6 63.3 76.1
Prefix4LN 036% 842 772 866 854 938 812 640 655 79.8
BERT-Base

FT 100% 87.2 75.3 845 842 909 827 502 550 763
Adapter 028% 725 75.7 837 844 915 738 60.6 616 755
Prefix 028% 779 759 842 840 919 768 604 61.6 76.6

LoRA 033% 742 755 838 842 913 731 603 614 755
MAM 056% 803 763 848 845 916 738 604 618 767
3V 0.0014% 672 707 850 822 881 720 - - -
BitFit 0.08% 809 715 744 799 899 685 553 576 722

LN 0.04% 791 767 740 824 914 738 585 588 743

Prefix+LN 0.32% 80.7 76.1 845 846 919 741 60.6 61.7 76.8

Table 1: Results with BERT e and BERT . We
report the average score with the standard deviation as
the subscript. The best and 2nd best methods on each
dataset are in bold and underlined, respectively.*3V
can not be applied into these two QA tasks and thus is
omitted to calculate the average values and rank metric.

In Table 1, we present the comparison results for
the NLU tasks on BERT}ype and BERTpyge. It is
clear from this that full-tuning and MAM adapter
may typically achieve superior performance. Bet-
ter performance is expected because more recently
introduced parameters and multiple PLM modules

'we name it 3V in our paper for clarity and brevity.

E2E

Method Para.

Samsum

WebNLG Rank]

BLEU NIST MET R-L CIDEr | R-1 R-2 R-L | BLEU MET TER|] Mover BERT BLEURT

FT 100% | 65.07 8.61 4342 67.90 238 |44.70 20.37 41.57 | 3943 034 055 0.65 0.93 0.39 2.43
Adapter 0.13% | 6493 846 4421 68.63 239 |43.23 18.67 40.17 | 3840 033 0.56 0.64 0.93 0.38 3.79
Prefix 0.13% | 6527 855 4370 6827 237 |43.70 1997 40.83 | 38.87 033 0.54 0.65 0.93 0.38 3.50
LoRA 0.13% | 6491 847 4336 68.60 236 |4338 18.65 40.13 | 3851 033 0.55 0.65 0.93 0.38 4.93
MAM 0.26% | 64.80 846 4390 68.67 236 |43.50 19.40 4033 | 3887 033 0.55 0.65 0.93 0.38 4.43
BitFit 0.09% | 64.27 854 41.80 67.63 2.17 |39.27 1523 36.17 | 3533 030 0.61 0.62 0.92 0.32 7.14
LN 0.03% | 64.07 834 43.63 6797 235 |42.77 1880 39.53 | 3847 033 0.55 0.64 0.93 0.36 6.36
Prefix+LN 0.16% | 65.24 857 43.75 6843 239 |43.88 20.03 41.07 | 39.16 034 0.54 0.65 0.93 0.38 343

Table 2: Results with GPT-2,.4ium. We report the average score with the standard deviation as the subscript. The
best and 2nd best methods on each dataset are in bold and underlined respectively. 3V can not be applied into NLG

tasks and thus is omitted as a baseline here.

need to be tuned. Compared to other earlier ap-
proaches, 3V and BitFit performs the poorest with
less parameters. Under the tunable parameter align-
ment setting, the performance of prefix tuning and
adapter tuning is comparable to one another.

The performance of LN-tuning is then examined.
Comparing approaches whereas the ratio of the
tunable parameters is more significant than 0.3%,
LN-tuning is inferior to them by tuning only
0.03%-0.04% of parameters. By using almost half
the tunable parameters of BitFit, LN-tuning per-
forms much better than BitFit. LN-tuning outper-
forms 3V in terms of performance and is also ap-
plicable to a wider variety of NLP tasks than 3V,
including QA tasks for NLU and NLG tasks.

The methods’ overall performance in NLG tasks
is similar to that in NLU tasks, With a few limited
differences. First, prefix-tuning outperforms MAM
adapter. Second, our LN-tuning exhibits a perfor-
mance closer to that of adapter-based approaches,
such as adapter and MAM adapter, compared to
the NLU task.

3.3 Efficiency Analysis

Setup. In order to compare the training and in-
ference time efficiency between our method and
earlier ones, we generate statistics from running
logs. Then, in comparison to Full-Tuning (FT),
we report the relative training and inference times.
This includes the average time costs for three NLG
datasets for GPT-2 and eight NLU datasets for
BERT. The time cost of FT is normalized to 100.

Result. As shown in Fig. 2, our proposed LN-
tuning takes the least time in all PLM architectures
for training process. LN-tuning, along with BitFit
and FT, costs the similar least time for inference
process as expected. The above results on both
training and inference show the significant superi-
ority of our method in time efficiency comparing

previous adapter-based methods. More details of
analysis can be found in Section B of Appendix.

4 Visualization of Gain and Bias Term.

Setup. We visualize the change of the gain and bias
term on each layer of PLMs to give a further un-
derstanding about LN-tuning. Specifically, follow-
ing BitFit, we use ﬁ(t) [to — ty]|1 to measure the
amount of change for terms, where ¢ represents the
gain term g or the bias term b of LayerNorm, which
means the average absolute change, across its di-
mensions, between the initial LM values ¢, and
its fine-tuned values t;. We choose five datasets
which covers all type of NLU tasks in Sec. 3.1 and
use BERT)y for the experiment.

Result. As shown in Fig. 3, there can be oberse-
ved that the terms of layers close to the output, i.e.
layer 15 to 24, changes more than those close to
input, whether the gain or bias. Meanwhile, in
those layers close to output, the gain term change
more than bias term (This doesn’t mean that the
gain term is more important than the bias term in
LN-tuning). Comparing results between tasks, the
task complexity and the dataset scale may affect
the extent of terms’ change. Firstly, comparing
SST-2 and the other two datasets of binary classi-
fication tasks, there is a greater change in terms
of LN-tuning. This may be because that there
are larger solution spaces (greater task complex-
ity) for the QA (CSQA) and NER (Twitter) task
than binary classification tasks such as sentiment
analysis (SST-2), Paraphrase Identification (SICK)
or Natural Language Inference (CB) task. There
needs greater variation in the terms of LN-tuning
in CSQA and Twitter dataset. Secondly, the order
of term variation in binary classification tasks is
SST-2 > SICK > CB, which is the same as the order
of their data scale: SST-2 (67,349 items) > SICK
(4,439 items) > CB (250 items). A reasonable ex-
planation for this different degree of variation is

[‘&Q‘e‘ & - we{* <« SN

(a) BERT-base Training

b&?‘a‘ o g o & N

(b) BERT-large Training

P

o

(c) GPT-2 Medium Training

Figure 2: Time Efficiency Comparison of Training.

CSQA

Gain MHA 0.04
Gain FFN
Bias MHA 0.02
Bias FFN :
0 5 10 15 20

Twitter

Gain MHA
Gain FFN
Bias MHA
Bias FFN

0 5 10 15 20

0.03
0.02
0.01

SST-2

Gain MHA 0.03
Gain FFN

Bias MHA 0.02
Bias FFN 0,01

0 5 10 15 20
SICK

Gain MHA 0015
Gain FFN

Bias MHA o010
Bias FFN 0.005

[¢] 5 10 15 20
cB

Gain MHA
Gain FFN 0.0020
Bias MHA
Bias FFN 0.0015

0 5 10 15 20
Layer

Figure 3: Change in gain and bias term on five type
of NLU tasks. ‘Gain MHA’ means the gain term of
LayerNorm module after MHA in each layer of PLMs,
and so forth for other labels of Y-axis.

that larger data sizes require a more significant term
variation to accommodate a variety of data samples
from a wider range of domains.

5 Ablation Study

Setup. To explore whether LN-tuning may be en-
hanced to be more parameter-efficient, we under-
take an ablation study from three aspects: terms,
modules, and layers. Specifically, for terms, we
only keep one option of the gain or the bias term
trainable. For layers, we keep vectors of Layer-
Norm of only the half layers close to input or out-
put trainable, i.e. from layer 1 to 12 or from 13
to 24, if using BERT,ee. The same way is for us-
ing BERT},s.. For modules, since there are two
LayerNorm modules in each block of Transformer,
where one is after MHA and the other is after FFN,

we keep vectors trainable of only one module in
each Transformer block. We use both BERT ;g
and BERTy,g for the experiment in this section.

Result. As shown in Table 5 of appendix, com-
paring to full LN-tuning method, all ablated tech-
niques obtain a performance drop, which validates
no extraneous components for LN-tuning. Further,
the influence of layers seems more critical than that
of modules due to a larger performance decrease
comparing ablated layer methods and ablated mod-
ule methods. For term ablation type, the method
with only the bias term performs better than that
with only the gain term, whether in BERTyge OF
BERT},.se, Which indicates that the bias term plays
a more critical role than the gain term in LN-tuning.
The added MHA learnable module looks more rel-
evant for module ablation type than the added FFN
learnable module. For layer ablation type, the lay-
ers adjacent to input seems to be more importan
than that close to output in BERT},,s., however, the
outcome is the opposite for BERT)yge. This shows
that the importance of layers is quite different in
different size of PLMs in LN-tuning and those lay-
ers close to output can play a more significant role
in larger size of PLMs.

6 Conclusions

In this paper, we first propose LN-Tuning, which
only tunes the bias and gain term of LayerNorm to
enable parameter-efficient transferring for PLMs.
Later, we investigate a unified framework for merg-
ing LN-tuning with earlier parameter-efficient tech-
niques and discover that SOTA performance can
be achieved by combining prefix-tuning with LN-
tuning. Finally, the ablation study of terms, layers,
and modules, as well as the visualization experi-
ment of the gain and bias term further understand
LN-tuning.

Limitation

While prefix-tuning and LN-tuning operate to-
gether to attain SOTA performance and LN-tuning
has a high time efficiency with very few tunable
parameters, there are still worthwhile areas for addi-
tional research. First, take note that the LN-tuning
approach for tuning gain and bias term is a novel
tuning technique that can be used after any PLM
output vector. Exist any undiscovered techniques
to perform SOTA by only learnable modules in LN-
tuning? Further investigation can be done in future
work to determine why the unified framework of in-
tegrating LN-tuning and Prefix-tuning (MHA+LN)
can perform better than earlier adapter-based tech-
niques (MHA+FFN).

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E
Hinton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Anja Belz and Ehud Reiter. 2006. Comparing auto-
matic and human evaluation of nlg systems. In //th
conference of the european chapter of the association
for computational linguistics, pages 313-320.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
EMNLP.

Xavier Carreras and Lluis Marquez. 2004. Introduction
to the conll-2004 shared task: Semantic role labeling.
In CoNLL 2004, pages 89-97.

Leon Derczynski, Kalina Bontcheva, and Ian Roberts.
2016. Broad twitter corpus: A diverse named entity
recognition resource. In COLING 2016, pages 1169—
1179.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of deep
bidirectional transformers for language understanding.
In NAACL-HLT 2019, pages 4171-4186.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and
Aleksander Wawer. 2019. Samsum corpus: A human-
annotated dialogue dataset for abstractive summariza-
tion. EMNLP-IJCNLP 2019, page 70.

Wenjuan Han, Bo Pang, and Ying Nian Wu. 2021. Ro-
bust transfer learning with pretrained language models
through adapters. In ACL/IJCNLP 2021, pages 854—
861.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021a. Towards a uni-
fied view of parameter-efficient transfer learning. CoRR,
abs/2110.04366.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jia-Wei Low, Lidong Bing, and
Luo Si. 2021b. On the effectiveness of adapter-based
tuning for pretrained language model adaptation. In
ACL/IJCNLP 2021, pages 2208-2222.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In /CML
2019, pages 2790-2799.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu Chen.
2021. Lora: Low-rank adaptation of large language
models. CoRR, abs/2106.09685.

Alon Lavie and Abhaya Agarwal. 2007. METEOR: an
automatic metric for MT evaluation with high levels
of correlation with human judgments. In WMT@ACL
2007, pages 228-231.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
ACL/IJCNLP 2021, pages 4582-4597.

Chin-Yew Lin. 2004. Rouge: a package for automatic
evaluation of summaries. In Workshop on Text Summa-
rization Branches Out, Post-Conference Workshop of
ACL 2004, Barcelona, Spain, pages 74-81.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning across
scales and tasks. In ACL 2022, pages 61-68.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Scott Yih, and Madian
Khabsa. 2022. Unipelt: A unified framework for
parameter-efficient language model tuning. In ACL
2022, pages 6253-6264.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zamparelli.
2014. A SICK cure for the evaluation of compositional
distributional semantic models. In Proceedings of the
Ninth International Conference on Language Resources

and Evaluation (LREC’14), pages 216-223.

Linyong Nan, Dragomir R. Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xiangru
Tang, Aadit Vyas, Neha Verma, Pranav Krishna, Yangx-
iaokang Liu, Nadia Irwanto, Jessica Pan, Faiaz Rahman,
Ahmad Zaidi, Mutethia Mutuma, Yasin Tarabar, Ankit
Gupta, Tao Yu, Yi Chern Tan, Xi Victoria Lin, Caiming
Xiong, Richard Socher, and Nazneen Fatema Rajani.
2021. DART: open-domain structured data record to
text generation. In NAACL-HLT 2021, pages 432—-447.

Jekaterina Novikova, Ondrej Dusek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-to-end
generation. In Proceedings of the 18th Annual SIG-
dial Meeting on Discourse and Dialogue, Saarbriicken,
Germany, August 15-17, 2017, pages 201-206.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In ACL, pages 311-318.

https://aclanthology.org/W04-2412/
https://aclanthology.org/W04-2412/
https://aclanthology.org/W04-2412/
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2021.acl-short.108
https://doi.org/10.18653/v1/2021.acl-short.108
https://doi.org/10.18653/v1/2021.acl-short.108
https://doi.org/10.18653/v1/2021.acl-short.108
https://doi.org/10.18653/v1/2021.acl-short.108
http://arxiv.org/abs/2110.04366
http://arxiv.org/abs/2110.04366
http://arxiv.org/abs/2110.04366
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
http://proceedings.mlr.press/v97/houlsby19a.html
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://aclanthology.org/2022.acl-short.8
https://aclanthology.org/2022.acl-short.8
https://aclanthology.org/2022.acl-short.8
https://aclanthology.org/2022.acl-short.8
https://aclanthology.org/2022.acl-short.8
https://aclanthology.org/2022.acl-long.433
https://aclanthology.org/2022.acl-long.433
https://aclanthology.org/2022.acl-long.433
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/w17-5525
https://doi.org/10.18653/v1/w17-5525
https://doi.org/10.18653/v1/w17-5525

Matthew E. Peters, Mark Neumann, Mohit lyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL-HLT 2018, pages 2227-2237.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021. Adapter-
fusion: Non-destructive task composition for transfer
learning. In EACL 2021, pages 487-503.

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulic, Sebastian Ruder, Kyunghyun Cho,
and Iryna Gurevych. 2020. Adapterhub: A framework
for adapting transformers. In EMNLP 2020, pages 46—
54.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying Ims with mixtures of soft prompts. In
NAACL-HLT 2021.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained mod-
els for natural language processing: A survey. Science
China Technological Sciences, 63(10):1872—1897.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. Social iqga: Common-
sense reasoning about social interactions. In EMNLP-
IJCNLP 2019, pages 4463-4473.

Mathew Snover, Bonnie Dorr, Richard Schwartz, John
Makhoul, Linnea Micciulla, and Ralph Weischedel.
2005. A study of translation error rate with targeted
human annotation. Technical report, Technical Report
LAMP-TR-126, CS-TR-4755, UMIACS-TR-2005-58,
University of

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowledge.
In NAACL 2019, pages 4149-4158.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image descrip-
tion evaluation. In CVPR, 2015, pages 4566-4575.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019a. Superglue: A stickier
benchmark for general-purpose language understanding
systems. In NeurIPS 2019, pages 3261-3275.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis platform
for natural language understanding. In /CLR 2019.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao,
and Junyang Lin. 2019. Understanding and improving
layer normalization. In NeurIPS 2019, pages 4383—
4393.

Haoran Yang, Piji Li, and Wai Lam. 2022. Parameter-
efficient tuning by manipulating hidden states of pre-
trained language models for classification tasks. CoRR,
abs/2204.04596.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models. In ACL
2022, pages 1-9.

Zachary M. Ziegler, Luke Melas-Kyriazi, Sebastian
Gehrmann, and Alexander M. Rush. 2019. Encoder-
agnostic adaptation for conditional language generation.
CoRR, abs/1908.06938.

https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n18-1202
https://aclanthology.org/2021.eacl-main.39/
https://aclanthology.org/2021.eacl-main.39/
https://aclanthology.org/2021.eacl-main.39/
https://aclanthology.org/2021.eacl-main.39/
https://aclanthology.org/2021.eacl-main.39/
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://proceedings.neurips.cc/paper/2019/hash/2f4fe03d77724a7217006e5d16728874-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2f4fe03d77724a7217006e5d16728874-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2f4fe03d77724a7217006e5d16728874-Abstract.html
https://doi.org/10.48550/arXiv.2204.04596
https://doi.org/10.48550/arXiv.2204.04596
https://doi.org/10.48550/arXiv.2204.04596
https://doi.org/10.48550/arXiv.2204.04596
https://doi.org/10.48550/arXiv.2204.04596
https://aclanthology.org/2022.acl-short.1
https://aclanthology.org/2022.acl-short.1
https://aclanthology.org/2022.acl-short.1
http://arxiv.org/abs/1908.06938
http://arxiv.org/abs/1908.06938
http://arxiv.org/abs/1908.06938

A Implementation Details for
Experiments

Specifically, for NLU tasks, we choose seven
type datasets: (1) Named-Entity Recogniza-
tion (NER), including CoNLL2004 (Carreras and
Marquez, 2004) and Twitter (Derczynski et al.,
2016); (2) Natural Language Inference (NLI), in-
cluding SNLI (Bowman et al., 2015) and CB (Wang
et al., 2019a); (3) Paraphrase Identification (PI),
including SICK (Marelli et al., 2014); (4) Senti-
ment Analysis (SA), including SST-2 (Wang et al.,
2019b); (5) Question Answering (QA), including
CSQA (Talmor et al., 2019) and SocIQA (Sap et al.,
2019); (6) Table-to-Text Generation, including
E2E (Novikova et al., 2017) and DART (Nan et al.,
2021); (7) Dialogue Summarization, including
Samsum (Gliwa et al., 2019) .

The cross-PLM-architecture validation requires
approaches to be verified on both encoder-only
(BERT (Devlin et al., 2019)) and decoder-only
(GPT-2 (Radford et al., 2019)) Transformer archi-
tecture. The cross-PLM-scale validation requires
approaches to be verified on PLMs of different
scales. Specifically, the same experiments for NLU
are conducted on both BERTpase and BERT yge,
while GPT-2edium 18 for NLG.

We conduct experiments on two NVIDIA GeForce
RTX 3090 GPUs. The results are evaluated by
different measures as suggested by different tasks.
To reduce the interference of randomness, we re-
peat the experiments for three times and the av-
erage scores (for NLU) or the rank (for NLG) is
returned as results. According to the recorded ex-
perience (Houlsby et al., 2019; Pfeiffer et al., 2020;
Li and Liang, 2021; He et al., 2021a), the com-
mon hyper-parameters are adjusted according to
the statistical characteristics of datasets.

For NLU tasks, we set the training epoch 30, with
an early stopping strategy of 10 non-decrease vali-
dation loss. The batch size setting can be found in
Table 3. For LN-tuning, we adjust the learning rate
from the priority order in {le-2, le-3, 2e-4} 2. We
adjust the learning rate from the priority order in
{1e-3, 2e-4} for other methods.

For NLG tasks, we set the training epoch 20. The
batch size setting can be found in Table 4, and
the learning rate is 2e-4 for all methods. The

2We empirically find that LN-tuning needs larger learning
rate than other approaches in some datasets.

E2E dataset contains about 50K examples whose
average output length is 22.9. We use the offi-
cial evaluation script ® to calculate BLEU (Pap-
ineni et al., 2002), NIST (Belz and Reiter, 2006),
METEOR (Lavie and Agarwal, 2007), ROUGE-
L (Lin, 2004), and CIDEr (Vedantam et al., 2015).
The Samsum dataset contains about 15K exam-
ples, whose average output length is 23.7. We
use the standard python package rouge to cal-
culate ROUGE-1, ROUGE-2, ROUGE-L (Lin,
2004). The DART dataset consists of 82K exam-
ples, whose average output length is 27.3. We use
the official evaluation script * to calculate BLEU,
METEOR, and TER (Snover et al., 2005). We use
GPT-2eqium (Radford et al., 2019) as the exper-
imental PLM, where the max generation length
is set to [35, 35, 45] for [E2E, Samsum, DART],
respectively.

We align the tunable amount of additional parame-
ters of different methods to ensure a fair compari-
son, which is accomplished by setting hyperparam-
eters. Specifically, for prefix-tuning, the hyperpa-
rameter to be adjusted is its prefix length [, where
we set | = 16 for BERTyyge, | = 24 for BERT e,
and | = 16 for GPT-2edium. For adapter, we ad-
just the intermediate dimension dj, where we set
dy = 16 for BERTpase, dp = 24 for BERT e,
dp = 16 for GPT-2edium. For MAM adapter, we
adjust the both, keeping d, = | = 8 for BERT e,
dy = 16,1 = 8 for BERT}yge, and d, = 8,1 = 8
for GPT‘2medium-

Methods ‘ CNO4 Twitter SICK SNLI SST-2 CB CSQA SociQA

BERT-Base
FT 128 128 512 512 256 48 48 48
MAM 128 128 512 512 392 64 64 48
Others 128 128 512 512 392 64 64 64
BERT-Large
FT 32 32 256 256 128 24 16 12
MAM 48 48 256 256 256 32 24 24
Others 48 48 256 256 256 32 32 24

Table 3: Batch size setting for NLU tasks.

Method | Samsum E2E WebNLG

FT 32 48 40
Others | 36 96 84

Table 4: Batch size setting for NLG tasks.

The detailed batch size settings for NLU and NLG
tasks are displayed in the Table 3 and able 4 respec-
tively. In order to conduct a fair comparison, we

Shttps://github.com/tuetschek/
e2e-metrics
*https://github.com/Yale-LILY/dart

https://github.com/tuetschek/e2e-metrics
https://github.com/tuetschek/e2e-metrics
https://github.com/Yale-LILY/dart

make full use of the GPUs’ VRAM capacity and
work to make sure the batch size parameters for
each approach are identical. We decrease the value
of batch size to prevent a "CUDA Out Of Memory"
problem because full-tuning and MAM Adapter
have more tunable parameters.

B Details of Efficiency Analysis

In Fig.2(a), all parameter-efficient methods require
training times that are less than 90% of those of FT
in BERTy,qe and less than 80% of those of FT in
BERT,ge, demonstrating that parameter-efficient
methods can train PLMs of greater scales more
quickly. From Fig. 2(a), Fig. 2(b) and Fig. 2(c),
we can observe that parameter-efficient methods
show higer time efficiency in training in NLG tasks
than in NLU tasks comparing with FT. However,
whether in training or inference, MAM adapter typ-
ically has the lowest time efficiency, demonstrating
that the unified methods of both tuning MHA and
FFN require a significant investment in computa-
tional resources despite being able to produce better
performance. Further, adapter-tuning shows higher
time efficiency than prefix-tuning in training and
inference, except for the NLG inference process.

C Details of Ablation Study

Ablation Type Method CNO4 Twitter SICK SNLI SST-2 CB CSQA SociQA Avg
BERT-Large

Full* 80.2 77.2 849 8.0 919 741 605 63.2 77.0

Term Only Gain 695 695 763 809 916 Tl4 533 579 713

Only Bias 798 72.6 710 812 91.8 732 558 60.9 74.0

Module Only FFN 71.3 76.5 822 819 926 728 556 61.0 75.0

Only MHA 75.8 7.4 820 816 922 723 562 58.8 746

Only Layer 1-12 73.2 75.1 824 784 918 731 517 56.4 72.8

Layer Only Layer 13-24

738

757

82.4

78.6

93.2

79

538

56.6

73.4

Full*

Term Only Gain

79.8
729

BERT-Base

76.4
68.8

81.0
67.5

83.3
76.7

91.4
87.7

70.2
732

57.9
50.0

59.1
529

Only Bias 76.5 67.8 715 763 897 714 5Ll 534

Module Only FFN 79.1 76.6 815 770 916 762 533 538
Only MHA 784 76.5 818 772 912 750 526 54.0

Only Layer 1-6 782 76.0 679 741 907 744 508 50.6

Layer Only Layer 7-12

71.3

74.9

68.2

739

90.8

738

50.3

50.3

74.9
68.7
705
73.6
733
703
69.2

Table 5: Results of ablation study about terms, layers
and modules with BERTj,rse and BERTa6c. *We use
italic font to show results of the full LN-tuning, which
is as a standard for comparison.

RS

o AR

e'\‘?\‘ W <« \p@ ?‘é‘* ‘M,x'\ »s\"@‘z‘

(a) BERT-base Inference (b) BERT-large Inference (¢) GPT-2 Medium Inference

Figure 4: Time Efficiency Comparison of Inference.

