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Abstract

In recent years, much work has been devoted to designing certified defences for1
neural networks, i.e., methods for learning neural networks that are provably robust2
to certain adversarial perturbations. Due to the non-convexity of the problem, dom-3
inant approaches in this area rely on convex approximations, which are inherently4
loose. In this paper, we question the effectiveness of such approaches for realistic5
computer vision tasks. First, we provide extensive empirical evidence to show that6
certified defences suffer not only worse accuracy but also worse robustness and7
fairness than empirical defences. We hypothesise that the reason for why certified8
defences suffer in generalisation is (i) the large number of relaxed non-convex9
constraints and (ii) the strong alignment between the adversarial perturbations and10
the "signal" direction. We provide a combination of theoretical and experimental11
evidence to support these hypotheses.12

1 Introduction13

Several works have shown the existence of adversarial examples: imperceptible perturbations to the14
input can fool state-of-the-art classifiers [2, 22]. Consequently, robustness to adversarial examples15
has become a crucial design goal for machine learning models. In real-world scenarios, robustness16
against many different types of input perturbations may be desired depending on the domain of17
application. Therefore, to build robust models, we must first define a threat model for the adversary.18
In this paper, we consider the well-studied ℓp-ball threat model, where Bϵ := {δ : ∥δ∥p ≤ ϵ}19

represents the set of allowed perturbations for some ℓp-ball with radius ϵ centred around the origin.20
21

Once a threat model is defined, we can formalise the problem of building models that are22
robust to adversarial examples. For any distribution D, neural network model fθ : Rd → Rk23
parameterised by the weights θ ∈ Rp, and loss function L, our goal is to solve the following robust24
optimisation problem:25

min
θ

Rϵ(θ) := E(x,y)∼D

[
max
δ∈Bϵ

L(fθ(x+ δ), y)

]
(1)

We call Rϵ(θ) the robust error when L is the 0-1 loss function. In practice, as the distribution D is26
unknown, we minimise the empirical robust error on a finite dataset D sampled from D. Further,27
in the case of neural networks, the inner-maximisation is a non-convex optimisation problem and28
prohibitively hard to solve from a computational perspective [12, 24]. Instead, two efficient techniques29
are widely used to overcome the computational barrier: empirical defences that provide a lower30
bound on the solution and certified defences that provide an upper bound.31

Among empirical defences, Adversarial Training (AT) [11, 16] is one of the few that has stood the32
test of time. AT minimises the worst-case empirical loss in Equation (1) by approximately solving33
the inner-maximisation problem with first-order gradient-based optimisation methods. However,34
despite its simplicity and computational efficiency, owing to its heuristic nature, AT is incapable of35
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(a) Standard error
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(b) Robust error
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(c) Unfairness

Figure 1: Results for ℓ2-adversaries on the CIFAR-10 dataset. We compare ResNet architectures trained using
state-of-the-art certified defenses CROWN-IBP [31, 28] and COAP [26, 25] against the most popular empirical
defense to date AT [16, 11]. In Figures 1a, 1b and 2g we plot respectively standard error, robust error and
accuracy discrepancy as the perturbation budget increases. See Appendix D.3 for complete experimental details.

guaranteeing that no adversarial examples exist. In many safety critical domains, such guarantees are36
of immense importance.37

To address this limitation, recently, there has been significant interests in designing certified defences,38
i.e., methods for learning neural networks that are provably robust to norm-bounded perturbations39
on the training data. Many recent works [25, 18, 7, 31] have proposed to solve a convex relaxation40
of the inner-maximisation problem by relaxing the non-convex ReLU constraint sets with convex41
ones. Despite all of these progresses, certified defences based on convex relaxations suffer from an42
inherent flaw: the upper bound they provide on the robust error is far from being tight due to the43
looseness of the convex relaxation [20]. In this paper, we argue that the fundamental looseness of44
convex relaxations hinders the practical effectiveness of current certified defences. In particular, as45
shown in Figure 1, certified defences suffer significantly worse accuracy, robustness, and fairness on46
the test data compared to adversarial training. Our contributions are as follows:47

• In Section 2, we show that current certified defences hurt accuracy, robustness, and fairness across48
a range of ℓ2-ball perturbations on real-world vision datasets like MNIST and CIFAR-10.49

• In Section 3, we provide experimental evidence that certified defences hurt generalisation because50
of (i) the large number of relaxed non-convex constraints and (ii) strong alignment between the51
adversarial perturbations and the signal direction.52

2 Certified defences hurt generalisation on real-world data53

In this section, we show that certified defences hurt standard error, robust error, and fairness on two54
common computer vision datasets: MNIST [15] and CIFAR-10 [14]. Among certified defences,55
we consider the convex outer adversarial polytope (COAP) [26, 25], which achieves state-of-the-art56
certified robustness under ℓ2-ball perturbations. Additionally, we consider CROWN-IBP [30, 28],57
which uses the tight convex relaxation CROWN [30] and achieves state-of-the-art certified robustness58
under ℓ∞-ball perturbations. Among empirical defences, we consider adversarial training (AT) [16,59
11], which is one of the most popular and effective defences to date.60

Models and robust evaluation We consider the ℓ2-ball perturbations threat model. To reliably61
evaluate the robust error, we use the strongest version of AutoAttack (AA+) [5]. For CIFAR-10, we62
train a residual network (ResNet) and for MNIST we train a large convolutional neural network (CNN).63
Both architectures were introduced in Wong et al. [26] as standard benchmarks for certified defences.64

Certified defences hurt standard and robust error Several studies have shown that adversarial65
training may lead to an increase in standard error when compared with standard training [19, 23, 29].66
We observe the same phenomenon to a much higher degree in certified defences. Our experimen-67
tal results show that certified defences not only suffer worse standard error but also worse robust68
error than adversarial training. First, we observe on both MNIST and CIFAR-10 in Figures 2a69
and 2c, respectively, that for increasing perturbation budget, the standard error gap between certi-70
fied (CROWN-IBP, COAP) and empirical defences (AT) increases. Secondly, we observe that the71
robust error gap increases with increasing perturbation budget for both MNIST and CIFAR-10 in72
Figures 2b and 2d, respectively.73

Certified defences hurt fairness Previously, we showed that certified defences hurt both standard74
and robust generalisation. Taking it one step further, we show that certified defences (CROWN-IBP,75
COAP) suffer significantly worse fairness than empirical defences (AT). Let R(θ) be the standard76
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(a) MNIST Standard error
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(b) MNIST Robust error
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(c) CIFAR-10 Standard error
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(d) CIFAR-10 Robust error
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(e) MNIST Unfairness
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(f) MNIST Robust unfairness
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(g) CIFAR-10 Unfairness
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(h) CIFAR-10 Robust unfairness

Figure 2: Results for ℓ2-adversaries on MNIST and CIFAR-10 datasets. In Figures 2a, 2b, 2e and 2f we plot
respectively the standard error, robust error, accuracy discrepancy and robust accuracy discrepancy for a CNN
trained on MNIST, as the perturbation budget ϵ increases. In Figures 2c, 2d, 2g and 2h we plot respectively
the standard error, robust error, accuracy discrepancy and robust accuracy discrepancy, for a ResNet trained on
CIFAR-10, as the perturbation budget ϵ increases.

error of the classifier fθ and Rk(θ) the standard error conditioned on the class label k. We measure77

the degree of unfairness as follows: (maxkR
k(θ)−R(θ))(1−R(θ))−1. Using the terminology in78

Sanyal et al. [21], we refer to this metric as accuracy discrepancy. Similarly, we also consider the79
discrepancy in robust accuracy, as it was observed in Xu et al. [27] that adversarial defences may80
induce a large discrepancy of robustness among different classes. We refer to this metric as robust81
accuracy discrepancy where we replace the standard error with the robust error.82

We present our experimental results comparing the fairness of certified and empirical defences. For83
MNIST, we observe in Figure 2e and 2f that COAP and CROWN-IBP have a significant discrepancy84
for both standard and robust accuracy. For large perturbations, these methods obtain 100% discrep-85
ancy, indicating that their accuracy on the worst class can be as low as 0%. By contrast, AT preserves86
fairness for both standard and robust accuracy much better. In particular, the discrepancy for standard87
accuracy is always less than 2% for all perturbation budgets considered. Similarly, for CIFAR-1088
AT maintains a constant accuracy discrepancy around 20% for all perturbation budgets considered,89
whereas for certified defences it steadily increases with the perturbation budget, reaching above 80%.90
Additionally, for robust accuracy, we observe a discrepancy gap of 35% between the best certified91
and empirical defences for the largest perturbation budget considered.92

3 Developing intuition on synthetic datasets93

In this section, we hypothesise that certified defences hurt robust and standard generalisation because94
of (i) the large number of relaxed non-convex constraints and (ii) strong alignment between the95
adversarial perturbations and the signal direction. We investigate these hypotheses on more controlled96
settings. Specifically, we consider two synthetic data distributions: a linearly separable distribution as97
in Clarysse et al. [4], which is similar to the one in in Nagarajan and Kolter [17], Tsipras et al. [23],98
and the concentric spheres distribution studied in Gilmer et al. [10], Nagarajan and Kolter [17].99

Data and threat models Similarly to the previous section, we focus on ℓ2-ball perturbations of100
size ϵ. As for distributions, we consider the linearly separable distribution where first, the label101
y ∈ {+1,−1} is drawn with equal probability. Then, for some γ > 0, the covariate vector is created102

as x = [γ sgn(y); x̃], where x̃ ∈ Rd−1 is a random vector drawn from a standard normal distribution103

x̃ ∼ N
(
0, σ2Id−1

)
and [; ] represents concatenation. We sample the concentric spheres dataset as104

follows; for 0 < R1 < R−1, we first draw a binary label y ∈ {+1,−1} with equal probability and105

then the covariate vector x ∈ Rd is distributed uniformly on the sphere of radius Ry. Observe that106
achieving a low test error on the concentric spheres distribution requires a non-linear classifier.107

In Figure 3e and 3f, we plot the robust error of standard training (ST), adversarial training (AT),108
and certified training (COAP) on the linear and concentric spheres distributions respectively. We109
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(c) Standard error
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(d) Robust error
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(e) Linearly separable distribution
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(f) Concentric spheres distribution
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(g) COAP active neurons

Figure 3: We report mean and standard deviation over 15 seeds. In Figures 3e and 3f we plot the robust
error for standard training (ST), adversarial training (AT) and convex outer adversarial polytope (COAP), when
training on the linearly separable and concentric spheres distributions respectively. In Figure 3g, we plot
the percentage of neurons in the activation set for the linearly separable and concentric spheres distribution
respectively. In Figure 3a we plot a 2-D visualisation of the concentric spheres dataset, the black arrow illustrates
the signal direction. In Figure 3b we plot the cosine similarity between ℓ2-ball perturbations on the training data
(average) and the signal directed vector. In Figure 3c and 3d we plot standard and robust error for adversarial
training (AT) and convex outer adversarial polytope (COAP).

see that in contrast to the linear setting, COAP has a much higher robust error on the concentric110
spheres distribution than AT and ST, where the gap increases for increasing perturbation budget111
ϵ. The intuition for why this happens is two-fold: first of all COAP relaxes the non-convex ReLU112
constraints for all neurons that activate within the perturbation set, i.e., there exists δ ∈ Bϵ for which113
the input to the neuron equals 0. Hence, the larger the percentage of relaxed neurons, the worse the114
approximation. This is formally captured by Theorem A.1 in Appendix A. Secondly, the ℓ2-ball115
perturbations are significantly aligned with the signal direction, meaning that they effectively reduce116
the information about the label in the data. Applying an approximation in this direction yields poor117
generalisation. We prove this in Theorem B.1 in Appendix B for the linearly separable distribution.118

COAP relaxes many constraints on the concentric spheres In Figure 3g we empirically show119
that COAP convexly approximates a large number of constraints when training on the concentric120
spheres distribution. We plot the percentage of active neurons on the concentric spheres and linear121
distributions against increasing perturbation budgets: the percentage is much higher for the concentric122
spheres than for the linearly separable distribution and increases with perturbation budget ϵ. Indeed,123
the complex spherical decision boundary requires much more active neurons compared to the linear124
decision boundary which only needs 1 active neuron.125

ℓ2-ball perturbations align with the signal direction We empirically show that ℓ2-ball perturba-126
tions align with the signal direction on the concentric spheres distribution. Note that for a point x127
drawn from the concentric spheres distribution, the signal direction is given by y x

∥x∥2
(see Figure 3a128

for a 2D visualization). In Figure 3b, we plot the cosine distance between the ℓ2-perturbations129
computed on the training set, and the signal direction. Comparing Figures 3b to 3d, we see that during130
the early stages of training, the ℓ2-ball perturbations are not aligned with the signal direction and the131
robust and standard errors for COAP are similar to AT. However, after some epochs, when the ℓ2-ball132
perturbations start to align with the signal direction, both the robust and standard error gaps between133
COAP and AT increase. This provides evidence that, as training progresses, ℓ2-ball perturbations134
become significantly aligned with the signal direction and the generalisation gap worsens.135

4 Conclusions136

In this paper, we show that certified defences can hurt robustness, accuracy and fairness for realistic137
datasets and adversarial perturbations. Further, we develop intuition on synthetic datasets for why138
certified defences hurt generalisation, combining both theoretical and experimental evidence. We139
believe that understanding the performance gap between empirical and certified defences will lead to140
better approaches for adversarial robustness.141
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A COAP for signal-directed adversaries228

In this section, we extend COAP to signal-directed adversaries, our derivation can be seen as an229
extension of Wong and Kolter [25], Erdemir et al. [8]. We consider the hypothesis class to be the set230
of one-hidden layer neural networks fθ : Rd → R2 with parameters θ = {W1, b1,W2, b2}:231

x
x+δ−→ z1

W1z1+b1−→ ẑ2
ReLU(·)−→ z2

W2z2+b2−→ ẑ3 (2)

where x ∈ Rd and z1 ∈ Bϵ(x). We define the adversarial polytope Zϵ(x) as the set of all final-layer232
activations attainable by perturbing x with some x̃ ∈ Bϵ(x):233

Zϵ(x) = {fθ(x̃) : x̃ ∈ Bϵ(x)} (3)

Our approach will be to construct a convex outer bound on this adversarial polytope: if no adversarial234
example exists in this outer approximation, then we are guaranteed that no adversarial example exists235
in the original polytope. We relax the ReLU activations z = ReLU (ẑ) with their convex envelopes:236

z ≥ 0, z ≥ ẑ, (u− ℓ)z ≤ uẑ − uℓ (4)

where u and ℓ are respectively the pre-activations ẑ upper and lower bounds, for which we provide a237
closed form solution in Appendix A.1. We define the outer bound on the adversarial polytope we get238

from relaxing ReLU constraints as Z̃ϵ(x). Given a sample x with known label y, we can write the239
linear program formulation of the adversary’s problem for our network as follows:240

min
ẑ3

[ẑ3]y − [ẑ3]ȳ = c⊤ẑ3 s.t. ẑ3 ∈ Z̃ϵ (5)

where ȳ is the binary negation of y. Note that if we solve this linear program and find that the241
objective is positive, then we know that no input perturbation can misclassify the example. Since242
solving the linear program (5) for every example in the dataset is intractable, we consider the dual243
formulation and take a feasible solution. In Theorem A.1, we state the dual problem formulation of244
the linear program with ReLU relaxations (5).245

Theorem A.1. The dual of the linear program (5) can be written as246

max
α

J̃ϵ (x, gθ(c, α))

s.t. αj ∈ [0, 1], ∀j
(6)

where J̃ϵ(x, ν1, ν2, ν3) is equal to247

−
2∑
i=1

ν⊤i+1bi +
∑
j∈I

ℓj [ν2]
+
j − ν̂⊤1 x− ϵ ∥[ν̂1]1∥1 (7)

and gθ is a one-hidden layer neural network given by the equations248

ν3 = −c
ν̂2 =W⊤

2 ν3
[ν2]j = 0, j ∈ I−

[ν2]j = [ν̂2]j , j ∈ I+

[ν2]j =
uj

uj−ℓj [ν̂2]
+
j − αj [ν̂2]

−
j , j ∈ I

ν̂1 =W⊤
1 ν2

(8)

where I−, I+ and I denote the sets of activations in the hidden layer where ℓ and u are both negative,249
both positive and span zero, respectively.250

In particular, this theorem states that we can represent the dual problem as a linear back propagation251
network, which provides a tractable solution for a lower bound on the primal objective. In practice,252
rather than solving the exact dual problem, we choose the fixed, dual feasible solution: αj =

uj

uj−ℓj .253

A.1 Computing upper and lower bounds254

We address here the problem of obtaining the upper and lower bounds u and ℓ for the pre-activations255
ẑ, which so far we have assumed to be known. In Proposition A.2 we give a closed form solution for256
ℓ and u.257
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Proposition A.2. Consider the neural network defined in Equation (2). Let w1 be the first column of258
W1 and x be a given example, then we have the following element-wise bound:259

ℓ ≤ ẑ2 ≤ u (9)

where260

ℓ =W1x+ b1 − ϵ|w1|, u =W1x+ b1 + ϵ|w1| (10)

Proof. Given an example x, let x̃ = x+ δ be the perturbed input to the network. We want to upper261
bound the pre-activations values ẑ2:262

ẑ2 =W1(x+ δ) + b1 =W1x+ b1 +W1δ (11)

In particular, we want to solve the following optimisation problem for each component of the263
pre-activation vector:264

ui = max
x̃∈Bϵ(x)

[ẑ2]i = [W1x]i + [b1]i + max
x̃∈Bϵ(x)

[W1δ]i (12)

where u will be the vector containing element-wise upper bounds. Note that δ = βe1, thus the265
optimisation problem can be rewritten as:266

max
x̃∈Bϵ(x)

[W1δ]i = max
∥β∥1≤ϵ

β · [w1]i = ϵ · ∥[w1]i∥1 (13)

where w1 is the first column of W1. The vector of upper bounds will then be:267

u =W1x+ b1 + ϵ|w1| (14)

Along the same lines, we can derive the vector of lower bounds ℓ:268

l =W1x+ b1 − ϵ|w1| (15)

269

A.2 Proof of Theorem A.1270

Theorem A.1. The dual of the linear program (5) can be written as271

max
α

J̃ϵ (x, gθ(c, α))

s.t. αj ∈ [0, 1], ∀j
(6)

where J̃ϵ(x, ν1, ν2, ν3) is equal to272

−
2∑
i=1

ν⊤i+1bi +
∑
j∈I

ℓj [ν2]
+
j − ν̂⊤1 x− ϵ ∥[ν̂1]1∥1 (7)

and gθ is a one-hidden layer neural network given by the equations273

ν3 = −c
ν̂2 =W⊤

2 ν3
[ν2]j = 0, j ∈ I−

[ν2]j = [ν̂2]j , j ∈ I+

[ν2]j =
uj

uj−ℓj [ν̂2]
+
j − αj [ν̂2]

−
j , j ∈ I

ν̂1 =W⊤
1 ν2

(8)

where I−, I+ and I denote the sets of activations in the hidden layer where ℓ and u are both negative,274
both positive and span zero, respectively.275
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Proof. Given an example x, let x̃ = x+ δ be the perturbed input to the network. First, we explicit276
all the constraints for the linear program defined in (5):277

min
ẑ3

[ẑ3]y − [ẑ3]ȳ = c⊤ẑ3 , s.t.

x̃ ∈ Bϵ(x)
z1 = x̃

ẑ2 =W1z1 + b1
ẑ3 =W2z2 + b2

[z2]j = 0, ∀j ∈ I−

[z2]j = [ẑ2]j , ∀j ∈ I+

[z2]j ≥ 0, ∀j ∈ I
[z2]j ≥ [ẑ2]j , ∀j ∈ I
((uj − ℓj) [z2]j −uj [ẑ2]j) ≤ −ujℓj , ∀j ∈ I

(16)

where I−, I+ and I denote the sets of activations in the hidden layer where ℓ and u are both negative,278
both positive, or span zero respectively. In order to compute the dual of this problem, we associate279
the following Lagrangian variables with each of the constraints:280

ẑ2 =W1z1 + b1 ⇒ ν2
ẑ3 =W2z2 + b2 ⇒ ν3
z1 = x+ δ ⇒ ψ

−[z2]j ≤ 0 ⇒ µj , ∀j ∈ I
[ẑ2]j − [z2]j ≤ 0 ⇒ τj , ∀j ∈ I

((uj − ℓj) [z2]j − uj [ẑ2]j) ≤ −ujℓj ⇒ λj , ∀j ∈ I

(17)

note that we do not define explicit dual variables for [z2]j = 0 and [z2]j = [ẑ2]j as we can easily281
eliminate them. We write the Lagrangian as follows:282

L(z, ẑ, ν, δ, λ, τ, µ, ψ) =−
(
W⊤

1 ν2 + ψ
)⊤
z1 −

∑
j∈I

(
µj + τj − λj (uj − ℓj) +

[
W⊤

2 ν3
]
j

)
[z2]j

+
∑
j∈I

(τj − λjuj + [ν2]j) [ẑ2]j + (c+ ν3)
⊤
ẑ3 −

2∑
i=1

ν⊤i+1bi

+
∑
j∈I

λjujℓj + ψ⊤x+ ψ⊤δ +
∑
j∈I−

[ẑ2]j [ν2]j

+
∑
j∈I+

[z2]j
(
[ν2]j − [W⊤

2 ν3]j
)

s.t. x̃ ∈ Bϵ(x)
(18)

and we take the infimum w.r.t. z, ẑ, δ:283

inf
z,ẑ,δ

L(z, ẑ, ν, δ, λ, τ, µ, ψ) =− inf
z2

∑
j∈I

(
µj + τj − λj (uj − ℓj) +

[
W⊤

2 ν3
]
j

)
[z2]j

+ inf
ẑ2

∑
j∈I

(τj − λjuj + [ν2]j) [ẑ2]j + inf
ẑ3

(c+ ν3)
⊤
z3 −

2∑
i=1

ν⊤i+1bi

+
∑
j∈I

λjujℓj + ψ⊤x+ inf
x̃∈Bϵ(x)

ψ⊤δ − inf
z1

(
W⊤

1 ν2 + ψ
)⊤
z1

+ inf
ẑ2

∑
j∈I−

[ẑ2]j [ν2]j + inf
z2

∑
j∈I+

[z2]j
(
[ν2]j − [W⊤

2 ν3]j
)

(19)
Now, we compute the infimum for the ψ⊤δ term:284

inf
x̃∈Bϵ(x)

ψ⊤δ = inf
∥β∥1≤ϵ

ψ1 · β = −ϵ · ∥ψ1∥1 (20)
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and since for all the other terms the infimum of a linear function is −∞, except in the special case285
when it is identically zero, the infimum of L(·) becomes:286

inf
z,ẑ,δ

L(.) =

{
−
∑2
i=1 ν

⊤
i+1bi +

∑
j∈I λjujℓj + ψ⊤x− ϵ ∥ψ1∥1 if conditions

−∞ else
(21)

where the conditions to satisfy are:287

ν3 = −c
W⊤

1 ν2 = −ψ
[ν2]j = 0, j ∈ I−

i

[ν2]j =
[
W⊤

2 ν3
]
j
, j ∈ I+

i

(uj − ℓj)λj − µj − τj =
[
W⊤

2 ν3
]
j

[ν2]j = ujλj − τj

}
j ∈ I

λ, τ, µ ≥ 0

(22)

Thus, we can rewrite the dual problem as follows:288

max
ν,ψ,λ,τ,µ

−
2∑
i=1

ν⊤i+1bi +
∑
j∈I

λjujℓj + ψ⊤x− ϵ ∥ψ1∥1

s.t. ν3 = −c
W⊤

1 ν2 = −ψ
[ν2]j = 0, j ∈ I−

i

[ν2]j =
[
W⊤

2 ν3
]
j
, j ∈ I+

i

(uj − ℓj)λj − µj − τj =
[
W⊤

2 ν3
]
j

[ν2]j = ujλj − τj

}
j ∈ I

λ, τ, µ ≥ 0

(23)

Note that the dual variable λ corresponds to the upper bounds in the convex ReLU relaxation, while µ289
and τ correspond to the lower bounds. By the complementarity property, we know that at the optimal290
solution, these variables will be zero if the ReLU constraint is non-tight, or non-zero if the ReLU291
constraint is tight. Since the upper and lower bounds cannot be tight simultaneously, either λ or292
µ+ τ must be zero. This means that at the optimal solution to the dual problem we can decompose293
[W⊤

2 ν3]j into positive and negative parts since (uj − ℓj)λj ≥ 0 and τj + µj ≥ 0 :294

(uj − ℓj)λj = [W⊤
2 ν3]

+
j

τj + µj = [W⊤
2 ν3]

−
j

(24)

combining this with the constraint [ν2]j = ujλj − τj leads to295

[ν2]j =
uj

uj − ℓj
[W⊤

2 ν3]
+
j − αj [W

⊤
2 ν3]

−
j (25)

for j ∈ I and 0 ≤ αj ≤ 1. Hence, we have that:296

λj =
uj

uj − ℓj
[ν̂2]

+
j (26)

Now, we denote ν̂1 = −ψ to make our notation consistent, and putting all of this together the dual297
objective becomes:298

−
2∑
i=1

ν⊤i+1bi +
∑
j∈I

λjujℓj + ψ⊤x− ϵ ∥ψ1∥1 = −
2∑
i=1

ν⊤i+1bi +
∑
j∈I

ujℓj
uj − ℓj

[ν̂2]
+
j − ν̂⊤1 x− ϵ ∥[ν̂1]1∥1

= −
2∑
i=1

ν⊤i+1bi +
∑
j∈I

ℓj [ν2]
+
j − ν̂⊤1 x− ϵ ∥[ν̂1]1∥1

(27)
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and the final dual problem:299

max
ν,ν̂

−
∑2
i=1 ν

⊤
i+1bi +

∑
j∈I ℓj [ν2]

+
j − ν̂⊤1 x− ϵ ∥[ν̂1]1∥1

s.t. ν3 = −c
ν̂2 =W⊤

2 ν3
[ν2]j = 0, j ∈ I−

[ν2]j = [ν̂2]j , j ∈ I+

[ν2]j =
uj

uj−ℓj [ν̂2]
+
j − αj [ν̂2]

−
j , j ∈ I

ν̂1 =W⊤
1 ν2

(28)

300

B Approximations along the signal direction hurt generalisation301

In this section, we further investigate our hypothesis that certified defences hurt generalisation when302
adversarial perturbations are aligned with the signal direction. In particular, we study the linearly303
separable distribution from the previous section and assume that the adversarial attacks concentrate304
all of their perturbation budget along the signal direction. In Theorem B.1, we prove for a simple305
neural network that, in high dimensions, certified defences (COAP) yield higher robust error than306
empirical defences (AT) for large perturbation budgets. We then corroborate our theoretical results307
with extensive experimental evidence on synthetic data.308

Data and threat models We consider the linearly separable distribution described in Section 3.309
As for the threat model, we consider signal-directed attacks that efficiently concentrate their attack310
budget on the signal in the input. Since the signal direction corresponds to the first component of the311
data, we define the set of allowed perturbations as:312

Bϵ(x) = {z1 = x+ e1β | |β| ≤ ϵ} (29)

where e1 is the standard basis vector of the first coordinate. Further, as the original formulation of313
COAP only allows ℓp-adversaries, we provide an extension of COAP that covers our theoretical and314
experimental setting in Appendix A.315

One gradient step training We consider the hypothesis class to be the set of one-neuron shallow316
neural networks fθ : Rd −→ R, defined by:317

fθ(x) = aReLU
(
θ⊤x

)
+ b (30)

where x ∈ Rd, θ ∈ Rd, a ∈ R, b ∈ R and the only trainable parameter is θ1. Note that as our318
distribution is linearly separable, our hypothesis class includes the ground truth.319

We study the early phase of neural network optimisation. Under structural assumptions on the data, it320
has been proved that one gradient step with sufficiently large learning rate can drastically decrease the321
training loss [3] and extract task-relevant features [9, 6]. A similar setting was also studied recently322
in Ba et al. [1] for the MSE loss in the high-dimensional asymptotic limit. Here, we focus on the323
classification setting with binary cross-entropy loss. Below we state our main theorem.324

Theorem B.1. Let θ̄ and θ̃ be the network parameters after one step of gradient descent with respect325
to AT and COAP objectives. Let,326

∥θ2:d∥2
∥θ1∥2

>

√
24γ3

σ2
and

2

3
γ < ϵ < γ (31)

where θ are the network parameters at initialization. Then, COAP yields higher robust risk than AT:327

Rϵ(θ̃) > Rϵ(θ̄) (32)

Theorem B.1 relies on two main assumptions. The first is an assumption on the data dimensionality328
and the initialisation of the network parameters θ. For instance, if the network parameters are329
initialised sampling from a standard multivariate gaussian θ ∼ N (0, Id), then we know that ∥θ∥2330

11



3 3.5 4 4.5 5 5.5

0
0.05
0.1

0.15
0.2

0.25 COAP
AT
ST

Perturbation budget ϵ

St
an

da
rd

 e
rro

r

(a) Small sample size regime
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(b) Small sample size regime
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(c) Large sample size regime
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(d) Large sample size regime

Figure 4: We report mean and standard deviation over 15 seeds. In Figure 4a and 4b we plot respectively
the standard and robust errors in the small sample size (n = 50) regime for standard training (ST), adversarial
training (AT) and convex outer adversarial polytope (COAP) as the perturbation budget ϵ increases. In Figure 4c
and 4d we plot respectively the standard and robust errors in the large sample size (n = 10000) regime
for standard training (ST), adversarial training (AT) and convex outer adversarial polytope (COAP) as the
perturbation budget ϵ increases. See Appendix D.1 for complete experimental details.

concentrates around
√
d with high probability. Hence, the assumption is satisfied when the data331

dimensionality d is sufficiently high. Further, the second assumption requires that the perturbation332
budget ϵ is sufficiently close to the separation margin γ. This is consistent with the experimental333
evidence we presented so far, as the generalisation of certified defences significantly worsen for large334
perturbation budgets.335

Synthetic experiments We corroborate our theory with experimental evidence using a one-hidden336
layer neural network with 100 neurons. In particular, we investigate the effect of perturbation budget ϵ337
on generalisation for three different models: standard training (ST), adversarial training (AT) [16, 11]338
and convex outer adversarial polytope (COAP) [25, 26]. In Figure 4, we plot robust and standard339
errors for both small and large sample size regimes as the perturbation budget ϵ increases. The340
generalisation gap in the small sample size regime between standard and adversarial training was341
already observed in Clarysse et al. [4] for linear classifiers. Here, we observe a further generalisation342
gap between AT and COAP in both small and large sample size regimes, which surprisingly worsens343
in the large sample regime.344

C Theoretical results for signal-directed adversaries345

We consider a similar generative distribution P as in [4, 17, 23]: The label y ∈ {+1,−1} is drawn346
with equal probability and the covariate vector is sampled for an γ > 0 as x = [γ sgn(y), x̃], with the347

random vector x̃ ∈ Rd−1 drawn from a standard normal distribution, x̃ ∼ N
(
0, σ2Id−1

)
. We denote348

by D = {(xi, yi)}ni=1 a dataset of size n i.i.d. drawn from P. We consider the hypothesis class to be349

the set of one-neuron shallow neural networks fθ : Rd −→ R:350

fθ(x) = aReLU
(
θ⊤x

)
+ b (33)

where x ∈ Rd, θ ∈ Rd, a ∈ R, b ∈ R and the only trainable parameter is θ1. Moreover, we assume351
w.l.o.g. that at initialisation θ1 > 0, and since a and b are not trainable parameters we must have a > 0352
and b < 0 to solve the problem. Note that as our distribution is linearly separable, our hypothesis353
class includes the ground truth. Further, we consider the binary cross-entropy loss function:354

L(x, y) = y log (x) + (1− y) log (1− x) (34)

C.1 Adversarial training gradients355

Given a sample x with known label y ∈ {−1, 1}, we can find the point that minimizes this class by356
solving the following optimisation problem:357

Jϵ = min
δ

sgn(y)fθ(x+ δ) subject to x+ δ ∈ Bϵ(x) (35)
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For our simplified network we have a closed form solution of this problem:358

Jϵ = min
x+δ∈Bϵ(x)

sgn(y)
(
b+ aReLU

(
θ⊤(x+ δ)

))
=

{
sgn(y) (b+ amax(0, ℓ)) if a sgn(y) > 0

sgn(y) (b+ amax(0, u)) if a sgn(y) < 0

=

{
sgn(y) (b+ amax(0, ℓ)) if ν̂2 < 0

sgn(y) (b+ amax(0, u)) if ν̂2 > 0

(36)

where ℓ = θ⊤x − ϵθ1 and u = θ⊤x + ϵθ1 are respectively lower and upper bounds on the pre-359
activations. Thus, we can compute the gradients for adversarial training w.r.t the signal weight:360

∂

∂θ1
Jϵ =

{
sgn(y)a(x1 − ϵ sgn(θ1))1{ℓ > 0} if ν̂2 < 0

sgn(y)a(x1 + ϵ sgn(θ1))1{u > 0} if ν̂2 > 0
(37)

and w.r.t. the non-signal weights (k ≥ 2):361

∂

∂θk
Jϵ =

{
sgn(y)axk1{ℓ > 0} if ν̂2 < 0

sgn(y)axk1{u > 0} if ν̂2 > 0
(38)

Finally by the chain-rule we have:362

∂

∂θk
L (σ (sgn(y)Jϵ) , y) =

∂

∂Jϵ
L (σ (sgn(y)Jϵ) , y) ·

∂

∂θk
Jϵ (39)

= sgn(y) [σ (sgn(y)Jϵ)− 1{y = 1}] · ∂

∂θk
Jϵ (40)

= − sgn(y)σ (−Jϵ)
{
axk1{ℓ > 0} if ν̂2 < 0

axk1{u > 0} if ν̂2 > 0
(41)

C.2 COAP gradients363

We compute now the dual approximation J̃ϵ to the optimisation problem (35), as defined in Theo-364

rem A.1. In particular we are interested in the cases where Jϵ ̸= J̃ϵ, that is when the certified and365
adversarial training objectives differ. First, we consider the case when the neuron is always dead, i.e.,366
ℓ < u < 0. The dual variables are:367

ν3 = − sgn(y)

ν̂2 = −a sgn(y)
ν2 = 0

ν̂1 = 0

(42)

Hence, there is no mismatch in this case:368

J̃ϵ = sgn(y)b = Jϵ (43)
where the last equality follows from (36).369
Next, we consider the case when the neuron is always active, i.e., 0 < ℓ < u. The dual variables are:370

ν3 = − sgn(y)

ν̂2 = −a sgn(y)
ν2 = −a sgn(y)
ν̂1 = −a sgn(y) · θ

(44)

and the dual objective becomes:371

J̃ϵ = −ν⊤3 b− ν̂⊤1 x− ϵ ∥[ν̂1]1∥1 (45)

= sgn(y)
(
b+ a(θ⊤x)

)
− ϵ∥a sgn(y)θ1∥ (46)

=

{
sgn(y) (b+ aℓ) if a sgn(y) > 0

sgn(y) (b+ au) if a sgn(y) < 0
(47)

= Jϵ (48)
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where the last equality follows from the fact that 0 < ℓ < u.372
Finally, we consider the case when the neuron is in the activation set I, i.e., ℓ < 0 < u. The dual373
variables are:374

ν3 = − sgn(y)

ν̂2 = −a sgn(y)

ν2 = −a sgn(y) u

2ϵ ∥θ1∥1
ν̂1 = −a sgn(y) u

2ϵ ∥θ1∥1
· θ

(49)

Here we have two cases, when ν̂2 > 0 we can rewrite the dual objective as:375

J̃ϵ = sgn(y) (b+ au) = Jϵ (50)

hence the dual approximation is tight. When ν2 < 0 we can rewrite the dual objective as:376

J̃ϵ = sgn(y)

(
b+

auℓ

2ϵ ∥θ1∥1

)
̸= Jϵ (51)

It follows that the only case when certified training differs from adversarial training is when ν2 < 0377
and the neuron belongs to the activation set I. We compute the partial derivative w.r.t. the signal378
weight θ1 in this case, by the chain rule we have:379

∂

∂θ1
L
(
σ
(
sgn(y) · J̃ϵ

)
, y
)

(52)

=
∂

∂J̃ϵ
L
(
σ
(
sgn(y) · J̃ϵ

)
, y
)
· ∂

∂θ1
J̃ϵ (53)

= sgn(y)
[
σ
(
sgn(y) · J̃ϵ

)
− 1{y = 1}

]
· ∂

∂θ1
J̃ϵ (54)

= −
a sgn(y)σ

(
−J̃ϵ

)
2ϵ

(
ℓ

∥θ1∥1
(x1 + ϵ sgn(θ1)) + u

x1 ∥θ1∥1 − θ⊤x sgn(θ1)

θ21

)
(55)

and finally we compute the partial derivative w.r.t. the non-signal weight θk(k ≥ 2):380

∂

∂θk
L
(
σ
(
sgn(y) · J̃ϵ

)
, y
)

(56)

=
∂

∂J̃ϵ
L
(
σ
(
sgn(y) · J̃ϵ

)
, y
)
· ∂

∂θk
J̃ϵ (57)

= sgn(y)
[
σ
(
sgn(y) · J̃ϵ

)
− 1{y = 1}

]
· ∂

∂θk
J̃ϵ (58)

= −
axk sgn(y)σ

(
−J̃ϵ

)
θ⊤x

ϵ ∥θ1∥1
(59)

C.3 Auxiliary lemmas381

Lemma C.1. Let fθ be the neural network defined in Equation (33). We define the robust risk Rϵ of382
fθ as follows:383

Rϵ(θ) := P(x,y) [∃z ∈ Bϵ(x) : y ̸= sgn (fθ(z))] (60)

Then, Rϵ(θ) is monotonically decreasing in ∥θ1∥2.384

14



Proof.

Rϵ(θ) := P(x,y) [∃z ∈ Bϵ(x) : y ̸= sgn (fθ(z))] (61)

=
1

2

(
Px
[
θ⊤x < ∥b∥1 | x1 = γ − ϵ

]
+ Px

[
θ⊤x > ∥b∥1 | x1 = ϵ− γ

])
(62)

=
1

2

(
Px

[
d∑
i=2

xiθi < −θ1(γ − ϵ) + ∥b∥1

]
+ Px

[
d∑
i=2

xiθi > θ1(γ − ϵ) + ∥b∥1

])
(63)

=
1

2

(
Φ

(
−
(γ − ϵ) ∥θ1∥2
σ ∥θ2:d∥2

+
∥b∥1

σ ∥θ2:d∥2

)
+Φ

(
−
(γ − ϵ) ∥θ1∥2
σ ∥θ2:d∥2

−
∥b∥1

σ ∥θ2:d∥2

))
(64)

hence Rϵ(θ) is monotonically decreasing in ∥θ1∥2 and the statement follows.385

Lemma C.2. Let f : R → R be the function defined by f(x) = exp(x). When x ≤ 0 and n is even386
we have:387

f(x) ≤ 1 + x+
x2

2!
+ · · ·+ xn

n!
(65)

Proof. Let g : (−∞, 0] → R be the function defined by388

g(x) = 1 + x+
x2

2!
+ · · ·+ xn

n!
− exp(x) (66)

Since g(x) → ∞ as x → −∞, g must attain an absolute minimum somewhere on the interval389
(−∞, 0]. Now, differentiating we have:390

• If f has an absolute minimum at 0 , then for all x, f(x) ≥ f(0) = 1− exp(0) = 0, so we391
are done.392

• If f has an absolute minimum at y for some y < 0, then f ′(y) = 0. But differentiating,

f ′(y) = 1 + y +
y2

2!
+ · · ·+ yn−1

(n− 1)!
− exp(y) = f(y)− yn

n!
.

Therefore, for any x,

f(x) ≥ f(y) =
yn

n!
+ f ′(y) =

yn

n!
> 0,

since n is even.393

394

Lemma C.3. Let f : R2 → R be the function defined by f(x, y) = Φ(y)− Φ(x). When x < y < 0395
we have:396

ϕ(0)

(
y − x+

x3

6

)
≤ Φ(y)− Φ(x) (67)

Proof. First, we want to prove that 2x√
π

is a lower bound for the error function erf(x) when x ≤ 0.397

That is, we want to show that f(x) ≥ 0 where f : (−∞, 0] → R is the function defined by:398

f(x) = erf(x)− 2x√
π

(68)

Since f is continuous and f(x) → ∞ as x → −∞, f must attain an absolute minimimum on the399
interval (−∞, 0]. Now, differentiating we have:400

f ′(x) =
2√
π
exp(−x2)− 2√

π
(69)

hence f attains an absolute minimum at 0 and we have f(x) ≥ f(0) = 0.401
Next, we show that 2√

π
(x− x3/3) is an upper bound for erf(x) when x ≤ 0. Let g : (−∞, 0] → R402

the function defined by:403

g(x) =
2√
π
(x− x3/3)− erf(x) (70)
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Similarly, since g is continuous and g(x) → ∞ as x→ −∞, g must attain an absolute minimimum404
on the interval (−∞, 0]. Now, differentiating we have:405

g′(x) =
2√
π
(1− x2 − exp(−x2)) (71)

hence g attains an absolute minimum at 0 and we have g(x) ≥ g(0) = 0.406
Now, since a < b < 0 we can use the erf bounds derived above:407

Φ(b)− Φ(a) =
1

2

(
erf(b/

√
2)− erf(a/

√
2)
)

(72)

≥ 1√
π

(
b√
2
− a√

2
+

a3

6
√
2

)
(73)

= ϕ(0)

(
b− a+

a3

6

)
(74)

which concludes the proof.408

Lemma C.4. Suppose f : R → R is defined as follows:409

f(r) = γ2 − ϵ2 − 2σ2r2 − σr
(γ − 3ϵ)ϕ(β)− (γ + ϵ)ϕ(α)

Φ(β)− Φ(α)
(75)

where α := −γ+ϵ
rσ , β := −γ−ϵ

rσ , Φ and ϕ are respectively the standard normal cdf and pdf. Assume410
that:411

5 + 2
√
3

13
γ < ϵ < γ (76)

Then, we have:412

f(r) < 0, ∀r >
√

24γ3

σ2
(77)

Proof. We begin by providing a lower bound on the difference of gaussian cdfs. Applying Lemma413
C.3 with x = α and y = β we have:414

Φ(β)− Φ(α) ≥
(
2ϵ

rσ
− (γ + ϵ)3

6σ3r3

)
ϕ(0), α < β < 0 (78)

Next, we can upper-bound f :415

f(r) ≤ γ2 − ϵ2 − 2σ2r2 − σr
(γ − 3ϵ)ϕ(β)− (γ + ϵ)ϕ(α)(

2ϵ
σr −

(γ+ϵ)3

6σ3r3

)
ϕ(0)

(79)

≤ γ2 − ϵ2 − 2σ2r2 − σ2r2
(γ − 3ϵ)ϕ(0)− (γ + ϵ)ϕ(α)(

2ϵ− (γ+ϵ)3

6r2σ2

)
ϕ(0)

(80)

= γ2 − ϵ2 − 2σ2r2 − σ2r2
(γ − 3ϵ)− (γ + ϵ) exp(−α2/2)

2ϵ− (γ+ϵ)3

6σ2r2

(81)

Now, we use the upper-bound for the exponential function from Lemma C.2 with n = 2:416

exp(x) ≤ 1 + x− x2/2, ∀x ≤ 0 (82)

and substituting it back into our upper-bound for f we get:417

f(r) ≤ γ2 − ϵ2 − 2σ2r2 − σ2r2
(γ − 3ϵ)− (γ + ϵ)(1− (γ+ϵ)2

2r2σ2 + (γ+ϵ)4

8r4σ4 )

2ϵ− (γ+ϵ)3

6r2σ2

(83)
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which can be further simplified:418

f(r) ≤ γ2 − ϵ2 − 2σ2r2 − σ2r2
(γ − 3ϵ)− (γ + ϵ)(1− (γ+ϵ)2

2r2σ2 + (γ+ϵ)4

8r4σ4 )

2ϵ− (γ+ϵ)3

6r2σ2

(84)

=
(γ − 7ϵ)(γ + ϵ)4 + 4r2σ2(γ + ϵ)(γ2 − 10γϵ+ 13ϵ2)

4(γ + ϵ)3 − 48r2σ2ϵ
(85)

= u(r) (86)

and we have that for ϵ > 5+2
√
3

13 γ and r >
√
max

(
(7ϵ−γ)(γ+ϵ)4

4σ2(γ2−10γϵ+13ϵ2) ,
(γ+ϵ)3

12σ2ϵ

)
the upper bound is419

negative, i.e. u(r) < 0. Finally, for the sake of clarity we can further simplify the condition on r:420

r >

√
24γ3

σ2
>

√
max

(
(7ϵ− γ)(γ + ϵ)4

4σ2(γ2 − 10γϵ+ 13ϵ2)
,
(γ + ϵ)3

12σ2ϵ

)
(87)

which concludes the proof.421

Lemma C.5. Let fθ the network defined in Equation (33), J̃ϵ be the COAP training objective, σ (·)422
the sigmoid function and I⋆ = {(x, y) : ℓ < 0 ∧ u > 0 ∧ y = 1}. Assume that:423

∥θ2:d∥2
∥θ1∥2

>

√
24γ3

σ2
and

5 + 2
√
3

13
γ < ϵ < γ (88)

Then, we have:424

E(x,y)

[
∇θ1L

(
σ
(
sgn(y)J̃ϵ

)
, y
)
| (x, y) ∈ I⋆

]
> 0 (89)

Proof. Our strategy will be to lower-bound the expectation in Equation (89) with some strictly425

positive quantity. We define Z =
∑d
i=2 θixi and plug-in the gradient computed in Appendix C.2:426

E(x,y)

[
∇θ1L

(
sgn(y)σ

(
J̃ϵ

)
, y
)
| (x, y) ∈ I⋆

]
(90)

= E(x,y)

aσ
(
−J̃ϵ

)
2ϵ

(
− ℓ

θ1
(γ + ϵ) + u

∑d
i=2 xiθi
θ21

)
| (x, y) ∈ I⋆

 (91)

=
a

2θ1ϵ
E(x,y)

[
σ
(
−J̃ϵ

)(
−ℓ(γ + ϵ) + u

Z

θ1

)
| (x, y) ∈ I⋆

]
(92)

=
a

2θ1ϵ
E(x,y)

[
σ
(
−J̃ϵ

)
u
Z

θ1
− σ

(
−J̃ϵ

)
ℓ(γ + ϵ) | (x, y) ∈ I⋆

]
(93)

Now, we observe that Z is always negative on the set I⋆:427

(x, y) ∈ I⋆ =⇒ −θ1(γ + ϵ) <

d∑
i=2

θixi < −θ1(γ − ϵ) < 0 (94)

since we need to satisfy the constraint ℓ < 0 < u. Further, from Equation (51) we have:428

(x, y) ∈ I⋆ =⇒ σ
(
−J̃ϵ

)
≥ 1

2
(95)

Combining these two observations we can lower-bound the expectation:429

E(x,y)

[
∇θ1L

(
sgn(y)σ

(
J̃ϵ

)
, y
)
| (x, y) ∈ I⋆

]
(96)

=
a

2θ1ϵ
E(x,y)

[
σ
(
−J̃ϵ

)
u
Z

θ1
− σ

(
−J̃ϵ

)
ℓ(γ + ϵ) | (x, y) ∈ I⋆

]
(97)

≥ a

2θ1ϵ
E(x,y)

[
u
Z

θ1
− γ + ϵ

2
ℓ | (x, y) ∈ I⋆

]
(98)
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Hence for our purpose it is enough to show that this lower-bound is strictly positive:430

E(x,y)

[
u
Z

θ1
− γ + ϵ

2
ℓ | (x, y) ∈ I⋆

]
> 0 (99)

we can further expand this expression:431

E(x,y)

[
u
Z

θ1
− γ + ϵ

2
ℓ | (x, y) ∈ I⋆

]
(100)

= −(γ2 − ϵ2)θ21 + (γ + ϵ)θ1E [Z | (x, y) ∈ I⋆] + 2E
[
Z2 | (x, y) ∈ I⋆

]
(101)

Note that Z | (x, y) ∈ I⋆ is a truncated normal with α = − θ1(γ+ϵ)
σ∥θ2:d∥2

, β = − θ1(γ−ϵ)
σ∥θ2:d∥2

. Hence, we can432

plug the expectations in and obtain the following:433

− (γ2 − ϵ2)θ21 + θ1(γ + ϵ)E [Z | (x, y) ∈ I⋆] + 2E
[
Z2 | (x, y) ∈ I⋆

]
(102)

= −(γ2 − ϵ2)θ21 + 2σ2 ∥θ2:d∥22 + σ ∥θ2:d∥2 θ1
(γ − 3ϵ)ϕ(β)− (γ + ϵ)ϕ(α)

Φ(β)− Φ(α)
(103)

∝ −(γ2 − ϵ2) + 2σ2r2 + σr
(γ − 3ϵ)ϕ(β)− (γ + ϵ)ϕ(α)

Φ(β)− Φ(α)
(104)

= −f(r) (105)

where we define r = ∥θ2:d∥2

∥θ1∥2
. Now, under our assumption, from Lemma C.4 we have:434

f(r) < 0, ∀r >
√

24γ3

σ2
(106)

which concludes the proof.435

C.4 Proof of Theorem B.1436

Theorem B.1. Let θ̄ and θ̃ be the network parameters after one step of gradient descent with respect437
to AT and COAP objectives. Let,438

∥θ2:d∥2
∥θ1∥2

>

√
24γ3

σ2
and

2

3
γ < ϵ < γ (31)

where θ are the network parameters at initialization. Then, COAP yields higher robust risk than AT:439

Rϵ(θ̃) > Rϵ(θ̄) (32)

Proof. Let Jϵ be the adversarial training inner maximisation as defined in Equation (35). Then, AT440
solves the following optimisation problem:441

min
θ

E(x,y) [L (σ (sgn(y)Jϵ) , y)] (107)

Similarly, let J̃ϵ be the COAP dual approximation to the inner maximization described in Appendix442
C.2. Then, COAP solves the following optimisation problem:443

min
θ

E(x,y)

[
L
(
σ
(
sgn(y)J̃ϵ

)
, y
)]

(108)

In what follows, θ̄(t) refers to the parameter trained with adversarial training at iteration t and θ̃(t) to444
the COAP counterpart. After one step of gradient descent, we have:445 ∥∥∥θ̄(1)2:d

∥∥∥
2
=
∥∥∥θ̃(1)2:d

∥∥∥
2

(109)

since we only train the signal component. Further, from Lemma C.1 we have that adversarial training446
yields smaller robust risk than certified if the following to holds:447 ∥∥∥θ̄(1)1

∥∥∥
2
>
∥∥∥θ̃(1)1

∥∥∥
2

(110)
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which, after one step of gradient descent, is equivalent to:448

E(x,y)

[
∇θ̄1L (σ (sgn(y)Jϵ) , y)

]
< E(x,y)

[
∇θ̃1

L
(
σ
(
sgn(y)J̃ϵ

)
, y
)]

(111)

In Appendix C.2 and C.1 we compute gradients for both objectives. In particular, we have that the449
gradients of adversarial and certified training differ only on the set I⋆:450

(x, y) /∈ I⋆ =⇒ ∇θ̄1L (σ (sgn(y)Jϵ) , y) = ∇θ̃1
L
(
σ
(
sgn(y)J̃ϵ

)
, y
)
< 0 (112)

and451

(x, y) ∈ I⋆ =⇒ 0 = ∇θ̄1L (σ (sgn(y)Jϵ) , y) ̸= ∇θ̃1
L
(
σ
(
sgn(y)J̃ϵ

)
, y
)

(113)

Hence for our purpose it is enough to show that:452

E(x,y)

[
∇θ̃1

L
(
σ
(
sgn(y)J̃ϵ

)
, y
)
| (x, y) ∈ I⋆

]
> 0 (114)

which is a direct consequence of Lemma C.5. Thus we have that:453 ∥∥θ̄1∥∥2 > ∥∥∥θ̃1∥∥∥2 and
∥∥θ̄2:d∥∥2 =

∥∥∥θ̃2:d∥∥∥
2

(115)

and from Lemma C.1 follows:454
Rϵ(θ̃) > Rϵ(θ̄) (116)

which concludes the proof.455

D Experimental details456

D.1 Synthetic experiments with signal-directed adversaries457

Below we provide detailed experimental details to reproduce Figure 4. For all the experiments, we use458
the one hidden layer architecture defined in Equation (2) with 100 neurons. We use PyTorch SGD op-459
timiser and train all networks for 100 epochs. We sweep over the learning rate η ∈ {0.1, 0.01, 0.001}460
and for each perturbation budget, we choose the one that interpolates the training set and minimises461
robust error on the test set. We perform all the attacks to evaluate robust risk at test-time using exact462
line search; this is computationally tractable since the attacks are directed along one dimension.463

For the linearly separable distribution we set d = 1000, ntest = 105, γ = 6.464

Standard training. We train the network to minimise the cross-entropy loss.465

Adversarial training [16, 11]. We train the network to minimise the robust binary cross-entropy loss.466
At each epoch, we compute an exact adversarial example using line search and update the weights467
using a gradient with respect to this example.468

Certified training [25, 26]. At each epoch, we compute upper and lower bounds u and ℓ as described469
in Proposition A.2. We then train the network to minimize the upper-bound on robust error derived in470
Theorem A.1.471

D.2 Synthetic experiments with ℓ2 adversaries472

Below we provide detailed experimental details to reproduce Figure 3.473

For the spheres dataset, we consider a data distribution similar to Gilmer et al. [10] that consists of474
two concentric spheres in d dimensions: we generate a random x ∈ R where ∥x∥2 is either γmin or475
γmax , with equal probability assigned to each norm. We associate with each x a label y such that476
y = 0 if ∥x∥2 = γmin and y = 1 if ∥x∥2 = γmax. We can sample uniformly from this distribution by477
sampling z ∼ N (0, Id) and then setting x = z

∥z∥2
γmin or x = z

∥z∥2
γmax.478

For the linearly separable distribution we set d = 1000, n = 50, ntest = 105, γ = 6. For the479
concentric spheres distribution we set d = 100, , n = 50, ntest = 105, γmin = 1 and γmax = 12.480

For all the experiments, we use the MLP architecture with W = 100 neurons in each hidden layer481
and ReLU (·) activation functions. We use PyTorch SGD optimiser with a momentum of 0.95 and482
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train the network for 150 epochs. We sweep over the learning rate η ∈ {0.1, 0.01, 0.001} and for483
each perturbation budget, we choose the one that minimises robust error on the test set among the484
classifiers that interpolate the training set. We perform the attacks to evaluate robust risk at test-time485
using Auto-PGD [5] with 100 iterations and 5 random restarts. We use both the cross-entropy and486
difference of logits loss to prevent gradient masking. For all attacks we use the implementation487
provided in AutoAttack [5] with some adjustments to allow for non-image inputs.488

Standard training. We train the network to minimise the cross-entropy loss.489

Adversarial training [16, 11]. We train the network to minimise the robust cross-entropy loss. At490
each epoch, we search for adversarial examples using Auto-PGD with a budget of 10 steps and 1491
random restart. Then, we update the weights using a gradient with respect to this example.492

Certified training [25, 26]. We consider the tightest convex relaxation, i.e. the convex outer493
adversarial polytope derived in Wong and Kolter [25]. We train the network to minimise their494
upper-bound on the robust error. Our implementation is based on the code released by the authors.495

D.3 Image experiments496

Below we provide experimental details to reproduce Figures 2.497

For CIFAR-10, we train the residual network (ResNet) with the same structure used in Wong et al.498
[26]. For MNIST, we train the large convolutional neural network (CNN) architecture (see Table 1)499
introduced in Wong et al. [26], with four convolutional layer and two fully connected layers of 512500
units.501

For MNIST we use full 28×28 images without any augmentations and normalization. For CIFAR-10502
we use random horizontal flips and random crops as data augmentation, and normalize images503
according to per-channel statistics.504

For all ℓp-adversaries considered, we evaluate the robust error using the most expensive version of505
AutoAttack (AA+) [5] , which includes the following attacks:506

• untargeted APGD-CE (5 restarts)507

• untargeted APGD-DLR (5 restarts)508

• untargeted APGD-DLR (5 restarts)509

• Square Attack (5000 queries)510

• targeted APGD-DLR (9 target classes)511

• targeted FAB (9 target classes)512

AT training details For MNIST, we train 100 epochs using Adam optimiser [13] with a learning513
rate of 0.001, momentum of 0.9 and a batch size of 128; we reduce the learning rate by a factor 0.1 at514
epochs 40 and 80. For CIFAR-10 and ResNet, we train 150 epochs using SGD with a learning rate of515
0.05 and a batch size of 128; we reduce the learning rate by a factor 0.1 at epochs 80 and 120. For516
the inner optimisation, adversarial examples are generated with 10 iterations of Auto-PGD [5].517

COAP training details We follow the settings proposed by the authors and report them here. For518
MNIST , we use the Adam optimiser with a learning rate of 0.001 and a batch size of 50. We schedule519
ϵ starting from 0.01 to the desired value over the first 20 epochs, after which we decay the learning520
rate by a factor of 0.5 every 10 epochs for a total of 60 epochs. For CIFAR-10 , we use the SGD521
optimiser with a learning rate of 0.05 and a batch size of 50. We schedule ϵ starting from 0.001 to the522
desired value over the first 20 epochs, after which we decay the learning rate by a factor of 0.5 every523
10 epochs for a total of 60 epochs. For all experiments, we use random projection of 50 dimensions.524

CROWN-IBP training details For MNIST, we train 200 epochs with a batch size of 256. We use525
Adam optimizer and set learning rate to 5× 10−4 . We warm up with 10 epochs of regular training,526
and gradually ramp up ϵtrain from 0 to ϵ in 50 epochs. We reduce the learning rate by a factor 0.1 at527
epoch 130 and 190. For CIFAR-10, we train 2000 epochs with a batch size of 256, and a learning rate528
of 5× 10−4. We warm up for 100 epochs, and ramp-up ϵ for 800 epochs. Learning rate is reduced by529
a factor 0.1 at epoch 1400 and 1700. For Tiny ImageNet, we train 600 epochs with batch size 128.530
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The first 100 epochs are clean training, then we gradually increase ϵtrain with a schedule length of 400.531
For all datasets, an hyper-parameter β to balance LiRPA bounds and IBP bounds for the output layer532
is gradually decreased from 1 to 0 (1 for only using LiRPA bounds and 0 for only using IBP bounds),533
with the same schedule of ϵ. For all experiments, we use the implementation provided in the auto534
LiRPA library [28].535

CNN-SMALL CNN-LARGE

CONV 16 4× 4 + 2 CONV 32 3× 3 + 1
CONV 32 4× 4 + 1 CONV 32 4× 4 + 2
FC 100 CONV 64 3× 3 + 1

CONV 64 4× 4 + 2
FC 512
FC 512

Table 1: Model architectures. All layers are followed by ReLU (·) activations. The last fully
connected layer is omitted. "CONV k w × h+ s" corresponds to a 2D convolutional layer with k
filters of size w × h using a stride of s in both dimensions. "FC n" corresponds to a fully connected
layer with n outputs.
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