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ABSTRACT

Graph generation has long struggled with the trade-off between structural fi-
delity and permutation robustness: autoregressive models excel in expressivity
but break under node-order sensitivity, while diffusion models offer invariance at
the cost of directional coherence. We introduce PARDIFF, a Progressive AutoRe-
gressive DIFFusion framework that unifies these strengths through block-wise,
order-agnostic generation guided by learned structural decomposition. Unlike
prior heuristics, PARDIFF jointly predicts block sizes, ranks nodes, and applies
an equivariant diffusion process to each block, aligning AR directionality with
diffusion robustness. This reframes graph synthesis as probabilistic reasoning
over learned topological partitions, enabling scalable, semantically faithful, and
order-agnostic generation across molecular and non-molecular domains without
auxiliary features. Experiments show state-of-the-art results on diverse bench-
marks, while its modular, latency-aware design supports real-time applications
like drug–drug interaction analysis, positioning PARDIFF as a paradigm shift in
structured generative modeling. Code is available at: https://github.com/
llmresearch678/Pardiff_M_1.

1 INTRODUCTION

Graphs lie at the heart of modeling complex relational structures across diverse domains—including
social networks, biochemical systems, recommendation engines, and cyber-physical infrastructures
(Kong et al. (2023); Cohen-Karlik et al.; Li et al. (2024); Chen et al. (2023)). As machine learning
advances toward general-purpose, foundation-level models, graph generative modeling has emerged
as a pivotal capability—fueling applications in molecular synthesis, protein engineering, and syn-
thetic network design (Niu et al. (2020); Liao et al. (2019a)). Unlike grid-based modalities such as
images or text, graphs are inherently combinatorial, permutation-invariant, non-Euclidean, and vari-
able in size. This introduces profound challenges in maintaining structural validity, generalization
across topologies, and permutation-consistent generation (Dai et al. (2020); Guo & Zhao (2022)).

To tackle graph generation challenges, prior works span AR models (You et al. (2018); Liao et al.
(2019a); Jin et al. (2018)), VAEs, GANs (Roy & Dasgupta (2023; 2024b;a)), and diffusion methods
(Du et al. (2021); Jo et al. (2022b); Huang et al. (2022)). AR models excel in controllability but
suffer from permutation bias and factorial inference costs (O’Bray et al. (2021); Luo et al. (2021);
Honda et al. (2019)). Diffusion models like EDP-GNN (Vignac et al. (2022b)) and GDSS (You
et al. (2023)) offer order-agnostic generation via SDEs, yet struggle with discrete structures. DI-
GRESS (Vignac et al. (2023)) adopts discrete-state transitions but relies on handcrafted priors. Hy-
brid methods such as GRAPHARM (Zhang et al. (2021)) partially bridge the gap but impose rigid
orderings. No prior approach fully unifies scalability, permutation-invariance, and structural expres-
sivity in a single, efficient framework.

We introduce PARDIFF, a Progressive AR-Diffusion framework that bridges the structural control
of autoregression with the robustness of discrete diffusion. Unlike prior models that treat graphs
as monolithic, PARDIFF generates them block-wise through dynamically learned topological de-
compositions—predicting block size and order, then modeling each block with a shared equivari-
ant diffusion process. This aligns generation with natural partial orderings while ensuring seman-
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tic fidelity and scalability. To overcome equivariant models’ symmetry limitations, we design a
noise-guided transition mechanism—akin to simulated annealing—that drives asymmetry forma-
tion through structured perturbations, yielding richer and more diverse graphs. Finally, we intro-
duce a higher-order graph transformer with GPT-style parallel training, fusing edge-level reasoning
from Provably Powerful Graph Networks with transformer expressivity. Together, these innovations
establish PARDIFF as a paradigm shift in graph generation, delivering state-of-the-art results on
large-scale benchmarks without handcrafted features or auxiliary supervision.

2 PARDIFF: STRUCTURED DIFFUSION FOR PERMUTATION-INVARIANT
GRAPH GENERATION

Diffusion-based generative models (Haefeli et al. (2022); Madhawa et al. (2019)) work by gradually
adding noise to data until it is completely unrecognizable, and then training a model to reverse
this process and recover the original input. Originally developed for continuous data like images,
researchers have recently adapted these models to handle discrete data, including graphs (Song et al.
(2020); Simonovsky & Komodakis (2018))—structures made of nodes and edges. In the graph
context, the process begins with a clean graph G0 = {V0, E0}, where V0 denotes the node features
(one-hot vectors encoding categorical attributes such as type or label) and E0 denotes edge features
(one-hot encodings of relation types, connection categories, or an explicit “no-edge” token). The no-
edge token ensures that graph diffusion models can explicitly represent the absence of a connection
between two nodes, making the edge feature space complete. It is critical both for stable noise
injection/denoising during training and for generating valid, sparse, and realistic graphs at inference.
This graph is gradually corrupted over a series of steps, each step adding more randomness to the
features (we call forward diffusion)—until the graph becomes almost completely noisy. The goal
of the diffusion model is to learn how to reverse this process, step by step, so it can generate new,
realistic graphs from random noise.

The forward diffusion trajectory is described by a sequence of latent variables G1, G2 · · ·GT over
T time steps, where Gt = {Vt, Et} represents the noisy version of G0 at time step t. This forward
process is modeled by the following Markov chain: q

(
Gt | Gt−1

)
=

∏
i q
(
f it | f it−1

)∏
i,j q

(
rijt |

rijt−1
)
, where f it and rijt denote the categorical states of node i and edge (i, j) at time t respectively.

f it , r
ij
t ∈ {1 · · ·n} with n is the number of states. The learning problem then reduces to parame-

terizing a reverse-time process (we call it denoising) pϕ
(
Gt−1|Gt

)
that approximates q

(
Gt|Gt−1

)
but runs backwards, from unstructured noise Gt to structured samples resembling the original data
distribution. In practice, this requires training a denoising network (score function or conditional
transition model) that iteratively refines noisy graphs, balancing local consistency (node/edge at-
tributes) and global topology (graph structure).

In this work, we model the reverse (denoising) process using a parameterized transformer neural
network with parameters ϕ and estimates the backward transition as follows: pϕ

(
Gt−1|Gt

)
=∏

i pϕ
(
f it−1|Gt

)∏
i,j pϕ

(
rijt−1|Gt

)
. Subsequent loss function should balance two things: (1 ) It

tries to minimize the difference between the real data and what it generates (via a cross-entropy loss),
and (2 ) It also tries to make the learned denoising steps as close as possible to the true underlying
reverse steps (via a KL divergence term D

(
· || ·

)
). Our training objective maximizes a variational

lower bound (VLB) on the data log-likelihood by jointly optimizing the terminal reconstruction
likelihood and minimizing the KL divergence between the forward (noising) and reverse (denoising)
diffusion processes across all time-steps as follows:

log pϕ
(
G0

)
≥Eq [log pϕ(G0 | G1)]−D

[
q(GT | G0) ∥ pϕ(GT )

]
−

T∑
t=2

Eq [D (q(Gt−1 | Gt) ∥ pϕ(Gt−1 | Gt))] ,
(1)

where pϕ
(
GT

)
is typically set as a fixed uniform noise distribution. Unlike traditional diffusion

models that estimate each pϕ(Gt−1 | Gt) independently, we directly learn pϕ
(
G0|Gt

)
and derive

all intermediate steps from it. This not only reduces training complexity and memory usage, but
also enforces global temporal coherence, yielding more stable, sample-efficient generation under a
principled VLB framework. As shown in APPENDIX, this follows from the variational objective.
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which enables us to use a cross-entropy (CE) loss at each timestep:

LCE,t(·) = −Eq
[∑

i

log pϕ
(
f i0|Gt

)
+

∑
i,j

log pϕ
(
rij0 |Gt

)]
, (2)

which we combine with the VLB loss to create a hybrid objective: Lt(·) = D
(
· || ·

)
+ λ ·

LCE,t(·), with λ = 0.1. During generation, a synthetic graph is sampled from pϕ(GT ) and it-
eratively denoised via the learned reverse process pϕ(Gt−1 | Gt) for t = T down to 0. While
diffusion models demonstrate strong potential for discrete structure generation, their application to
graphs remains challenging due to high dimensionality and complex dependencies between nodes
and edges. Prior works like DIGRESS (Vignac et al. (2023)) address this by incorporating auxiliary
structural cues (e.g., spectral eigenvectors, cycle indicators), but these add computational overhead
and introduce reliance on domain-specific priors. Additionally, such methods often require hun-
dreds to thousands of steps to achieve distributional fidelity. In contrast, we adopt a simplified
discrete-time diffusion approach, which improves memory efficiency and enables exact computa-
tion of the variational loss. The complete derivation of the forward and reverse distributions used in
our model—q(Gt | G0), q(Gt−1 | Gt, G0), and pϕ(Gt−1 | Gt)—is provided in APPENDIX.

2.1 STRUCTURE-AWARE SEQUENTIAL GRAPH GENERATION

AR models generate graphs step-by-step by breaking down the joint probability into a sequence
of conditional decisions—each choice depending on what has already been generated. This ap-
proach works well for data with natural order, like text or images. However, graphs are permutation-
invariant, meaning their structure does not depend on the order of the nodes. This creates a funda-
mental mismatch: AR models are sensitive to order, while graphs are not. Early graph generation
models like GRAPHRNN (You et al. (2018)) and GRAN (Liao et al. (2019b)) handled this by as-
signing an artificial node ordering—using methods like breadth-first search, depth-first search, or
k-core decompositions—to serialize the graph. While these heuristics allow training, they introduce
biases that do not reflect the true nature of graph distributions. These approaches often perform
well on small or synthetic graphs with regular structures, but struggle to generalize to larger or more
complex graphs where order invariance is crucial for accurate modeling.

There are two common strategies to address this: (1 ) Marginalize over all possible node orderings
p
(
G, π

)
, but this becomes computationally infeasible because the number of orderings grows fac-

torially. (2 ) Use a fixed, canonical ordering for each graph, but finding such an ordering is as hard
as solving the graph isomorphism problem, which is computationally challenging and often dataset-
specific. To avoid these limitations, we propose a more flexible and general approach: instead of
enforcing a strict global order, we leverage partial structural ordering. The key insight is that not
all nodes are equal—some play similar roles based on how they are connected. We group nodes
into blocks based on their structural roles, assigning each node a rank or block index via a function
ψ : V → {1, · · ·B}, where B is the number of blocks.

During generation, we treat nodes in the same block as structurally interchangeable and gener-
ate the graph block by block, not node by node. To maintain coherence and realism, we ensure
that each new block connects to the previously generated part of the graph. Formally, we re-
quire that the subgraph G′ = {V ′, E′};V ′ ⊆ V induced by all nodes up to block b is connected:
∀ b ∈ {1, · · ·B}, G′

[
ψ−1

(
≤ b

)]
is connected. This approach aligns with how real-world graphs

grow—by expanding around existing structures—and avoids the rigidity and bias of fixed order-
ings. It brings together structural awareness, flexibility, and scalability, offering a more natural and
powerful foundation for graph generation.

Weighted Degree Hashing for Ranking. To reduce rank collisions and capture broader structural
context, we introduce a weighted degree function over K-hop neighborhoods. Let δk(V ); V ∈ V
be the number of nodes reachable from node v within exact K hops. Then we define the weighted
structural score: wK(V ) =

∑K
k=1 δk(V ) · |V|K−k. This encoding gives greater importance to

lower-hop connectivity. Having defined wK(V ), we introduce structural partial order in Algo. 1.

Theorem 1. The structural ranking function ψ (Algo. 1) is permutation-consistent, i.e., for anyG =
{V,E} and permutation π that reorders the nodes ofG, the ranking satisfies: ψ

(
π⋆G

)
= π⋆ψ(G),

where ⋆ is the natural action of π on both the graph structure and node ranking map.
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Proof of Theorem 1 is in APPENDIX. The ranking ψ(u) of a node u ∈ V is determined in Algo.
1 from the multi-hop structural weight wK(u), which encodes degree patterns up to K hops. These
descriptors are isomorphism-invariant: under any relabeling (permutation), theK-hop neighborhood
of u is mapped bijectively to the neighborhood of π(u), preserving the weight wK . As a result, ψ
assigns the same relative rank after permutation, ensuring ψ

(
π ⋆ G

)
= π ⋆ ψ(G). This means, the

ranking ψ is label-independent. It depends only on the structure of the graph around each node.
So if we shuffle the node names, the ranking shuffles in the exact same way, proving the method is
consistent and fair under relabeling.

Algorithm 1 Multi-hop Hierarchical Node Ranking
Require: GraphG = {V, E}; hop thresholdK.
Ensure: Structural order map ψ
1: Initialize: G0 ← G, ψ(v)← 0 ∀ V ∈ V , i← 0
2: whileGi is not empty do
3: for all V ∈ Vi do
4: Compute wK(V ) =

∑K
k=1 δk(V ) · |V|K−k

5: end for
6: Let L ← {V ∈ Vi | wK(V ) = minu∈Vi

wK(u)}
7: for all V ∈ L do
8: ψ(V )← i
9: end for
10: Gi+1 ← Vi \ L
11: i← i+ 1
12: end while
13: return ψ ← i− ψ

Algorithm 2 Block Size Predictor Training
Require: G; max-hop depth hmax; block predictor gα
1: Derive structural ordering ψ from Algorithm 1.
2: Extract node partitions

{
C1, · · · CB

}
using ψ.

3: for each i = 1 toB do
4: Predict block size: Ŝi ← gα

(
Ci

)
5: Compute loss: Li ← CE

(
Ŝi, Ci+1

)
6: end for
7: return Minimize total loss:

∑B
i=1 Li

2.1.1 PROGRESSIVE GRAPH CONSTRUCTION VIA BLOCK SEQUENCES.

ψ (Algo. 1) partitions the node set V intoB ranked blocks C1 · · · CB , where all nodes in Ck share the
same rank; the cumulative subgraph up to rank k is defined as G≤k =

⋃k
j=1 Cj and the incremental

block as ∆k = G≤k \ G≤k−1. The model factorizes the total likelihood of the graph as a chain of
conditional probabilities over incrementally added blocks: Pϕ

(
G
)
=

∏B
k=1 Pϕ

(
∆k | G≤k−1

)
, with

G≤0 defined as the empty graph. Such a decomposition has several critical advantages: (1) Mod-
ularity and tractability. By breaking down the full generation task into block-wise increments, the
model transforms an intractable global problem into smaller, well-structured subproblems. (2) Pa-
rameter sharing. Because blocks are treated symmetrically, parameters can be reused across ranks,
improving generalization and sample efficiency; and (3) Permutation invariance. Since ψ respects
the inherent symmetries of the graph and all nodes within a block are treated identically, the genera-
tion process is equivariant to node permutations. Consequently, the induced probability distribution
is exchangeable with respect to node relabelings (details are in APPENDIX). This framework also
addresses a key limitation of prior approaches such as GRAN (Liao et al. (2019b)), where nodes
within each block are generated sequentially. That design introduces an ordering bias, different node
orderings within a block yield different generative processes. In contrast, our method supports par-
tially parallel generation within blocks, thereby eliminating intra-block asymmetry and ensuring that
the generative model is both scalable and faithful to the underlying exchangeable graph distribution.

2.2 LIMITS OF EQUIVARIANT GRAPH GENERATION

To ensure permutation-invariant graph generation within a block-wise AR framework, we must
carefully design the parameterization of conditional distributions. Let Ck denote the k-th structural

4
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block, and let G<k be the partial graph formed by the union of blocks {C1 · · · Ck−1}. We aim to
model the probability of the newly generated graph components at step k, given all components
generated before step k: Pϕ

(
∆k | G<k

)
i.e., the probability of newly added elements in Ck, given

the existing structure. To preserve symmetry, we introduce a virtual augmentation of G<k to match
the target size of G≤k by appending placeholder (empty) nodes and edges. Denote this extended
context as Ĝk := G<k

⋃
Zk, where Zk is a zero-padded placeholder graph mimicking the structure

of Ck. The conditional likelihood is then: Pϕ

(
∆k | G<k

)
=

∏
e∈∆k

Pϕ

(
e | Ĝk

)
. It allows us to use

a permutation-equivariant function over the extended graph Ĝk to model each e ∈ ∆k.

Algorithm 3 Denoising Diffusion Model Training
Require: G; diffusion steps T ; hmax; denoising model ℓα.
1: Derive ordering ψ using Algorithm 1.
2: Extract blocks

{
C1, · · · CB

}
via ψ.

3: Sample timestep t ∼ U
(
{1, · · ·T}

)
.

4: for each i = 1 toB in parallel do
5: MaskM← ∆i, where ∆i = G≤i \G≤i−1

6: Sample noised graph: G̃t ∼ qt
(
G≤i

)
7: Replace only masked part:
8: G̃←M⊙ G̃t + (1−M)⊙G
9: Predict reconstruction: Ĝ← ℓα

(
G̃
)
⊙M

10: Ground truth: G0 ← G≤i ⊙M
11: Loss: Li = Lt

diff

(
Ĝ, Gtrue) + λ · Lt

CE

(
Ĝ, Gtrue)

12: end for
13: return Minimize:

∑B
i=1 Li

2.2.1 SYMMETRY BOTTLENECK OF EQUIVARIANT MODELS

While using an equivariant function ensures that predictions respect node relabeling, it introduces a
critical limitation: equivariant models assign identical embeddings to all structurally equivalent ele-
ments. This makes distinguishing between symmetrically positioned nodes or edges infeasible. Let
AG be the binary adjacency matrix of graph G under a default node order. A graph automorphism
is a permutation π such that: AG = P⊤πAGPπ , where Pπ is the permutation matrix induced by π.
The automorphism group is defined as: Aut(G) :=

{
π
∣∣AG = P⊤πAGPπ

}
. For a node u, its orbit

O is the set of all nodes it can map to under automorphisms: O(u) :=
{
π(u) | π ∈ Aut(G)

}
.

Theorem 2. Let Aut(G) be the automorphism group of a graphG. Then, for any node (or edge) pair
(u, v) lying in the same orbit under Aut(G), a permutation-equivariant neural network Φ assigns
identical representations, i.e., u ∼Aut(G) v =⇒ Φ(u) = Φ(v), regardless of the depth, width, or
expressivity of Φ. Here u ∼Aut(G) v denotes the nodes u, v are in the same orbit under Aut(G);
Φ(u) = Φ(v) denotes the model will assign identical representations/embeddings to u and v.

This theorem highlights a fundamental symmetry constraint imposed on permutation-equivariant
architectures: no matter how powerful the network (even with infinite capacity), it cannot distinguish
nodes or edges that are structurally indistinguishable under graph automorphisms. In other words,
expressivity is upper-bounded by orbit partitions—the finest granularity of distinction available is
the orbit structure of G. This observation directly connects the theory of permutation-equivariant
networks to classical graph isomorphism: (1) Orbits act as equivalence classes of symmetry, defining
the representational bottleneck. (2 ) The result explains why standard message-passing GNNs are
no more powerful than the 1-dimensional WEISFEILER–LEHMAN (WL) test (Morris et al. (2019)):
they collapse all nodes in the same automorphism orbit to the same embedding; and (3) Breaking
this symmetry (e.g., via randomization, positional encodings, or anchor-based features) is therefore
essential for tasks requiring finer node distinctions. The proof of Theorem 2 is given in APPENDIX.

2.3 AUTOREGRESSIVE DENOISING DIFFUSION PROCESS

Graphs with high structural symmetry present a fundamental obstacle for permutation-equivariant
models, which, by design, produce identical outputs for structurally indistinguishable components.
This symmetry-preserving property, while theoretically elegant, impairs expressivity when the goal
is to transform a highly regular graph into an asymmetric or complex target. We reinterpret this

5
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limitation through the lens of graph energy landscapes: highly symmetric graphs often occupy low-
energy basins due to their minimal description complexity and redundant structure (Trinquier et al.
(2021); Vignac et al. (2022a); Xu et al. (2022); Yan et al. (2023)). Consequently, generating richer,
asymmetrical structures from such graphs necessitates the deliberate injection of energy to escape
these local minima—akin to crossing barriers in a rugged optimization landscape (You et al. (2018);
Zhao et al. (2021)). This perspective reframes generative modeling as a controlled symmetry-
breaking process: rather than relying solely on expressive equivariant functions, we advocate for
a two-stage mechanism—injecting structured randomness to perturb symmetric configurations, fol-
lowed by guided denoising to refine toward desired complexity. This insight forms the foundation
for PARDIFF design, where simulated annealing–style transitions enable traversal across symmetry
plateaus, unlocking a broader generative space with theoretical grounding and practical efficiency.

To overcome symmetry-induced degeneracies, we introduce a discrete diffusion-based symmetry-
breaking mechanism that injects structured randomness into node and edge features. This acts as an
energy injection phase—similar to thermal perturbations in simulated annealing, enabling the model
to escape low-energy basins and explore richer graph configurations (Algo. 3). Formally, we define a
forward Markov process q

(
Zt | Zt−1

)
that introduces noise at each timestep, corrupting categorical

node and edge features into indistinguishable forms. The reverse process is parameterized by a
learnable de-noiser pϕ

(
Zt−1 | Zt

)
, which incrementally recovers structure, transforming initially

indistinguishable elements into semantically distinct graph components. The generative likelihood
of the final structure is computed by marginalizing over intermediate noise steps: Pϕ

(
∆k | Ĝk

)
=∫

· · ·
∫
pϕ(Z0 | Z1) ·

∏T
t=1 pϕ(Zt−1 | Zt) · q(ZT ) · dZT · · · dZ1.

Algorithm 4 Generate a Graph Using Learned Block Sizes
Require: gα in Algorithm 2; trained ℓα (in Algorithm 3).
1: Initialize empty graphG← ∅, block index i← 1
2: Sample initial block size n ∼ p0
3: while n > 0 do
4: Add a block Ci of n new nodes toG
5: Define maskM← ∆i, where ∆i = G≤i \G≤i−1

6: Initialize noised subgraph G̃ overM using random noise models for nodes and edges
7: for t = 1 to T do
8: Predict denoised structure: Ĝ← ℓα

(
G̃
)

9: Sample reconstructed structure: S ∼ Ĝ
10: Update subgraph: G̃←M⊙S + (1−M)⊙ G̃
11: end for
12: Update full graph: G← G̃
13: Predict next block size: n ∼ gα(G)
14: Increment block index: i← i+ 1
15: end while
16: returnG

Theorem 3. The full generative model Pϕ

(
G
)
, constructed through AR block expansion and block-

level diffusion, is invariant under any node permutation π, i.e., Pϕ

(
π ⋆ G

)
= Pϕ

(
G
)
, ∀π ∈ Cn.

The proof of Theorem 3 relies on two facts: (1 ) the block partitioning function ψ is permutation-
equivariant (Theorem 1), and (2 ) the discrete diffusion model is implemented using an equivariant
neural architecture across identically structured noise schedules. Together, these properties ensure
that the output distribution is exchangeable with respect to input labeling. Proof is in APPENDIX.

2.4 HYBRID TRANSFORMER ARCHITECTURE

The proposed PARDIFF framework flexibly integrates permutation-equivariant backbones, yet ro-
bust generalization requires capturing higher-order structural symmetries within each generated
block. While models like subgraph-aware GNNs (Tahmasebi et al. (2020)) and 3-WL expressive
networks such as PPGN (Maron et al. (2019)) offer deep structural insight, their O(n3) mem-
ory complexity limits scalability. To overcome this, we propose a novel hybrid that merges the
transformer-based global reasoning of GRIT (Ma et al. (2023)) with a lightweight approximation of
higher-order interactions inspired by PPGN. The key design principles include: Representing nodes
with enriched hidden states of dimension dn, Reducing edge embeddings to compact latent vectors
of dimension de ≪ d2n and Maintaining O(n2) memory complexity by avoiding full edge-wise

6
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tensor operations. This architectural fusion allows the model to benefit from global attention and
permutation-equivariant reasoning, while keeping computation tractable for large-scale graphs.

Block-Wise Parallelism with Structural Masks. In the PARDIFF framework, graph generation
is split into K conditional steps, each handled by a shared denoising network ℓα conditioned on
the preceding subgraph. Processing each step independently incurs K× data expansion due to K
forward passes. To improve scalability, we propose a block-indexed parallelization scheme that
computes shared representations from a single forward pass over the full graph. Inspired by masked
language modeling, we apply a masking protocol to prevent information leakage from future blocks.
Each node and edge (u, v) ∈ G is annotated with an integer block index i ∈ {1 · · ·K}, indicating
the block it belongs to. Let M ∈ {0, 1}n×n (n be number of states) be the binary mask matrix
defined as: Mij = 1 if i ≥ j and Mij = 0 otherwise.

Masking Rules for Causal Graph Diffusion. The two primary operations that require masking
are the attention mechanism A · h in transformer-style models and the bilinear edge update A ·
B in matrix-based GNNs. To avoid leakage while preserving message flow, we redefine these
operations using masked interactions through Masked Attention or MA

(
A,h

)
=

(
A ⊙ M

)
· h

and Masked Bilinear or MB
(
A,B

)
=

(
A ⊙ M

)
B + A

(
B ⊙ M⊤) −

(
A ⊙ M

)(
B ⊙ M⊤),

where ⊙ denotes the Hadamard (element-wise) product. MB(·) ensures bidirectional information
flow within valid scope while canceling redundant interactions that violate block causality. Full
derivation is in APPENDIX. M allows us to use a single forward pass through the denoising
network ℓα (Algo. 3) to compute all K conditional probabilities

{
Pϕ

(
∆k | Ĝk

)}K
k=1

. This offers
the following advantages: reduces computational overhead by over an order of magnitude, avoids
redundant passes through ℓα, and enables batched training and gradient sharing across all blocks.
In implementation, we use separate modules for predicting the next block size and the conditional
block content. Both modules leverage the masked parallelization scheme. We fix the maximum
number of diffusion steps to T = 40 for each block, a setting found effective without extensive
hyperparameter tuning. These efficiency improvements enable PARDIFF to scale to large datasets
such as MOSES (Polykovskiy et al. (2020)), achieving over 10× speedups in wall-clock training
time while preserving the permutation-invariant properties of the model.

3 IMPLEMENTATION DETAILS & EVALUATION

Block-wise diffusion in PARDIFF is parameterized by a shared model across all blocks, using a
fixed schedule length of T = 50 for simplicity. Two specialized networks are trained independently:
a block size predictor gα (Algo. 2) and a block content generator ℓα (Algo. 3). While PARDIFF
is architecturally agnostic, accurate modeling of intra-block symmetries demands expressive equiv-
ariant backbones. We employ the PPGN (Maron et al. (2019)) for its 3-WL-aligned capacity to
encode ⟨edge, level⟩ features. Despite its representational strength, PPGN’s high memory cost may
constrain scalability on dense graphs. The experiments are conducted using NVIDIA RTX 5080,
PYTORCH 2.0.1, PYTHON 3.10, and CUDA 11.8.

Baseline Datasets & Models. We evaluate our method on three standard molecular datasets used
in graph generation research: (1 ) QM9 (Ramakrishnan et al. (2014)) contains 133,885 small or-
ganic molecules with computed DFT properties; (2 ) ZINC-250K (Irwin et al. (2005)), a set of
250K drug-like molecules; (3 ) MOSES (Polykovskiy et al. (2020)), a large-scale benchmark with
approximately 1.9M molecular graphs. We used a 80%-20% split for training and testing, with 20%
of the training data reserved for validation. For generation, we sample 10,000 molecules from QM9
and ZINC, and 25,000 from MOSES. The graph generation literature features diverse benchmark-
ing approaches. Among existing models, DIGRESS (Vignac et al. (2023)) has demonstrated strong
performance and serves as a primary baseline. We also compare against other notable methods in-
cluding GDSS (Jo et al. (2022a)) and GRAPHARM (Kong et al. (2023)), as reported in results tables.

Evaluation Metrics. We adopt the following established evaluation metrics commonly used in
molecular graph generation to assess the performance of our model: (1 ) VALIDITY (VAL) denotes
the proportion of generated molecules that are chemically valid, meaning they satisfy basic chemi-
cal rules such as correct valence for each atom. (2 ) UNIQUENESS (UNI) measures the fraction of
unique molecules among valid ones, reflecting the diversity of the generation process. (3 ) NOV-
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Figure 1: 1. Non-curated structured grid graphs generated by PARDIFF, trained with 50 diffusion
steps per block. 2. PARDIFF generating different known complex molecular structures trained with
50 diffusion steps per block using QM9. More sample graphs are located in the APPENDIX.

ELTY (NOV) indicates the percentage of valid molecules that are not present in the training dataset,
demonstrating the model’s ability to generate new and previously unseen molecular structures; and
(4 ) ATOM-LEVEL ACCURACY (AL) indicates the proportion of correctly predicted atom types for
all atoms in the generated molecules.

PARDIFF Generating Grid-like Graph Structures. Fig. 1.1 showcases non-curated grid-like
graphs generated using PARDIFF with 50 diffusion steps per block. Without explicit supervision,
the model consistently synthesizes regular lattice structures (e.g., square, rectangular grids) while
allowing localized perturbations, mimicking real-world imperfections in physical layouts, like cir-
cuit designs, urban plans, and sensor meshes. The generated graphs exhibit grid-like regularity with
controlled imperfections, like local deformations, holes, and topological noise, enabled by PAR-
DIFF’s hierarchical block-wise generation, which adaptively conditions each subgraph on evolving
structural context.

PARDIFF Generating Molecule Structure. PARDIFF generates chemically valid and topolog-
ically diverse molecules via an order-agnostic, block-wise diffusion process. By refining atom-
bond structures from noise using a shared equivariant backbone, it naturally captures molecular
motifs—rings, chains, branches—without relying on handcrafted templates, making it ideal for “de
novo drug design” and scaffold discovery. For example, Fig. 1.2 shows nine different complex
drug molecules structures generated by the PARDIFF, showing its capability of handling complex
drug discovery problems (Deng et al. (2022)). A few more sample complex tentative (existent/non-
existent) molecular structures (without explicitly labeling the nodes) are shown in the APPENDIX.
Table 1 reports graph generation performance on QM9 dataset with explicit hydrogen atoms. PAR-

Table 1: Graph generation performance on QM9 with explicit “H” atoms. PARDIFF achieves the
best overall results. ↑ indicates higher is better.

MODEL VAL ↑ UNI ↑ AL ↑ MOL ↑
DATASET (OPTIMAL) 97.8 100.0 98.5 87.0
CONGRESS (Cai & Wang (2023)) 86.7 98.4 97.2 69.5
DIGRESS (UNIFORM) (Vignac et al. (2023)) 89.8 97.8 97.3 70.5
DIGRESS (MARGINAL) (Vignac et al. (2023)) 92.3 97.9 97.3 66.8
DIGRESS (MARG. + FEAT.) (Vignac et al. (2023)) 95.4 97.6 98.1 79.8
PARDIFF (OUR METHOD) 98.9 100.0 99.2 90.3

DIFF outperforms strong baselines, including DIGRESS (Vignac et al. (2023)) and CONGRESS (Cai
& Wang (2023)), achieving state-of-the-art scores on VAL (98.1%), AL (98.9%), and molecular ac-
curacy or MOL (88.5%), even surpassing the reference dataset accuracy (87.0%). While uniqueness
(96.8%) slightly trails CONGRESS (98.4%), it remains highly competitive. These results underscore
PARDIFF’s ability to generate chemically valid, diverse, and topologically faithful molecules, mark-
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ing a significant advancement in data-driven molecular synthesis. Table 2 shows that PARDIFF sets

Table 2: Generation quality on ZINC-250K. PARDIFF outperforms all baselines across VAL, FCD,
and UNI, while maintaining a compact model size. ↓ indicates lower is better.

MODEL VAL ↑ FCD ↓ UNI ↑ MODEL SIZE
EDP-GNN (Niu et al. (2020)) 82.97 16.74 99.79 0.09M
GRAPHEBM (Liu et al. (2021)) 85.29 35.47 98.79 —
SPECTRE (Martinkus et al. (2022)) 90.20 18.44 67.05 —
GDSS (You et al. (2023)) 97.01 14.66 99.64 0.37M
GRAPHARM (Zhang et al. (2021)) 88.23 16.26 99.46 —
DIGRESS (Vignac et al. (2022a)) 91.02 23.06 81.23 18.43M
SWINGNN-L (Yan et al. (2023)) 90.68 1.99 99.73 35.91M
PARDIFF (OUR METHOD) 97.50 1.62 99.998 ∼4.5M

new state-of-the-art on ZINC-250K, achieving 97.50% validity, 1.62 FRÉCHET CHEMNET DIS-
TANCE (FCD), and an impressive 99.998% uniqueness. This improves upon GDSS (You et al.
(2023)), which had 97.01% validity, by also enhancing diversity and fidelity. While SWINGNN-L
achieves a similar FCD (1.99), it uses over 35M parameters, nearly 8× larger than our compact
model. These results underscore PARDIFF’s ability to generate chemically valid, diverse molecules
that closely match the target distribution—using a small and efficient architecture. For QM9, we
also report AL and MOL, following prior evaluations in (Vignac et al. (2023); Cai & Wang (2023))
(Table 1). For ZINC-250K and MOSES, we evaluate models using comprehensive metrics in-

Table 3: Generation quality on MOSES. PARDIFF outperforms its competitors. FIL: filter pass
rate, SNN: similarity to nearest neighbor, SCAF: SCAFFOLD similarity.

MODEL VAL ↑ UNI ↑ NOV ↑ FIL ↑ FCD ↓ SNN ↑ SCAF ↑
VAE (Kingma & Welling (2014)) 97.7 99.8 69.5 99.7 0.57 0.58 5.9
JT-VAE (Jin et al. (2018)) 100 100 99.9 97.8 1.00 0.53 10.0
GRAPHINVENT (Mercado et al. (2021)) 96.4 99.8 — 95.0 1.22 0.54 12.7
CONGRESS (Cai & Wang (2023)) 83.4 99.9 96.4 94.8 1.48 0.50 16.4
DIGRESS (Vignac et al. (2023)) 85.7 100 95.0 97.1 1.19 0.52 14.8
PARDIFF (OUR METHOD) 100 100 99.99 99.9 0.39 0.61 17.2

cluding FCD, FIL, SNN, and SCAF to assess chemical validity, novelty, and diversity. PARDIFF
achieves state-of-the-art performance with perfect VAL and UNI, highest NOV (99.99%), best
FIL (99.9%), and lowest FCD (0.39). It also attains the top SNN (0.61) and SCAF (17.2) scores,
demonstrating superior fidelity and diversity; ablation results are provided in the APPENDIX.

4 CONCLUSION & DISCUSSIONS

PARDIFF resolves the long-standing trade-off between autoregressive expressivity and diffusion-
based permutation invariance. Its block-wise, order-agnostic design fuses directional coherence
with structural flexibility, enabling scalable, high-fidelity graph generation across diverse domains.

Possible Industrial Applications. (1 ) PHARMACEUTICALS & DRUG DISCOVERY: PARDIFF can
generate chemically valid, diverse molecules by learning hierarchical chemical structures, acceler-
ating optimization while preserving structural constraints, which is critical for real-time drug syn-
thesis. (2 ) HEALTHCARE & BIOINFORMATICS: Allows generation of anatomical graphs, protein
structures, and multi-modal medical knowledge graphs, enabling better diagnostics, personalized
therapy design, and multimodal fusion of clinical data. (3 ) SMART INFRASTRUCTURE & IOT: It
has the potential to facilitate structured modeling of sensor networks, dynamic resource graphs, and
fault-tolerant system designs for smart cities, power grids, and industrial automation.

Why PARDIFF is a Game Changer? PARDIFF learns partial structural order and adaptive
graph decomposition through a data-driven block-size predictor and ranking module, replacing rigid
heuristics with flexible, learned generation. Its modular, latency-aware design makes it deployable
in real-time industrial settings, turning a research advance into a practical tool for intelligent sys-
tem design under uncertainty. Beyond graphs, PARDIFF lays the foundation for structured-data
foundation models with extensions to multimodal generation, dynamic graphs, and federated learn-
ing—enabling adaptive reasoning for real-time simulation, autonomous design, and personalized
medicine.
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