

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PARDIFF: BRIDGING AUTOREGRESSIVE AND DIFFUSION MODELS FOR ORDER-AGNOSTIC GRAPH GENERATION

006
007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 Graph generation has long struggled with the trade-off between structural fidelity
014 and permutation robustness: autoregressive models excel in expressivity
015 but break under node-order sensitivity, while diffusion models offer invariance at
016 the cost of directional coherence. We introduce PARDIFF, a Progressive AutoRe-
017 gressive DIFFusion framework that unifies these strengths through block-wise,
018 order-agnostic generation guided by learned structural decomposition. Unlike
019 prior heuristics, PARDIFF jointly predicts block sizes, ranks nodes, and applies
020 an equivariant diffusion process to each block, aligning AR directionality with
021 diffusion robustness. This reframes graph synthesis as probabilistic reasoning
022 over learned topological partitions, enabling scalable, semantically faithful, and
023 order-agnostic generation across molecular and non-molecular domains without
024 auxiliary features. Experiments show state-of-the-art results on diverse bench-
025 marks, while its modular, latency-aware design supports real-time applications
026 like drug–drug interaction analysis, positioning PARDIFF as a paradigm shift in
027 structured generative modeling. Code is available at: https://github.com/11mresearch678/Pardiff_M_1.

050 1 INTRODUCTION

051 Graphs lie at the heart of modeling complex relational structures across diverse domains—including
052 social networks, biochemical systems, recommendation engines, and cyber-physical infrastructures
053 (Kong et al. (2023); Cohen-Karlik et al.; Li et al. (2024); Chen et al. (2023)). As machine learning
054 advances toward general-purpose, foundation-level models, graph generative modeling has emerged
055 as a pivotal capability—fueling applications in molecular synthesis, protein engineering, and syn-
056 thetic network design (Niu et al. (2020); Liao et al. (2019a)). Unlike grid-based modalities such as
057 images or text, graphs are inherently combinatorial, permutation-invariant, non-Euclidean, and vari-
058 able in size. This introduces profound challenges in maintaining structural validity, generalization
059 across topologies, and permutation-consistent generation (Dai et al. (2020); Guo & Zhao (2022)).

060 To tackle graph generation challenges, prior works span AR models (You et al. (2018); Liao et al.
061 (2019a); Jin et al. (2018)), VAEs, GANs (Roy & Dasgupta (2023; 2024b;a)), and diffusion methods
062 (Du et al. (2021); Jo et al. (2022b); Huang et al. (2022)). AR models excel in controllability but
063 suffer from permutation bias and factorial inference costs (O’Bray et al. (2021); Luo et al. (2021);
064 Honda et al. (2019)). Diffusion models like EDP-GNN (Vignac et al. (2022b)) and GDSS (You
065 et al. (2023)) offer order-agnostic generation via SDEs, yet struggle with discrete structures. DI-
066 GRESS (Vignac et al. (2023)) adopts discrete-state transitions but relies on handcrafted priors. Hy-
067 brid methods such as GRAPHARM (Zhang et al. (2021)) partially bridge the gap but impose rigid
068 orderings. No prior approach fully unifies scalability, permutation-invariance, and structural expres-
069 sivity in a single, efficient framework.

070 We introduce PARDIFF, a Progressive AR-Diffusion framework that bridges the structural control
071 of autoregression with the robustness of discrete diffusion. Unlike prior models that treat graphs
072 as monolithic, PARDIFF generates them block-wise through dynamically learned topological de-
073 compositions—predicting block size and order, then modeling each block with a shared equivari-
074 ant diffusion process. This aligns generation with natural partial orderings while ensuring seman-

tic fidelity and scalability. To overcome equivariant models’ symmetry limitations, we design a noise-guided transition mechanism—akin to simulated annealing—that drives asymmetry formation through structured perturbations, yielding richer and more diverse graphs. Finally, we introduce a higher-order graph transformer with GPT-style parallel training, fusing edge-level reasoning from Provably Powerful Graph Networks with transformer expressivity. Together, these innovations establish PARDIFF as a paradigm shift in graph generation, delivering state-of-the-art results on large-scale benchmarks without handcrafted features or auxiliary supervision.

2 PARDIFF: STRUCTURED DIFFUSION FOR PERMUTATION-INVARIANT GRAPH GENERATION

Diffusion-based generative models (Haefeli et al. (2022); Madhawa et al. (2019)) work by gradually adding noise to data until it is completely unrecognizable, and then training a model to reverse this process and recover the original input. Originally developed for continuous data like images, researchers have recently adapted these models to handle discrete data, including graphs (Song et al. (2020); Simonovsky & Komodakis (2018))—structures made of nodes and edges. In the graph context, the process begins with a clean graph $G_0 = \{\mathcal{V}_0, E_0\}$, where \mathcal{V}_0 denotes the node features (one-hot vectors encoding categorical attributes such as type or label) and E_0 denotes edge features (one-hot encodings of relation types, connection categories, or an explicit “no-edge” token). The no-edge token ensures that graph diffusion models can explicitly represent the absence of a connection between two nodes, making the edge feature space complete. It is critical both for stable noise injection/denoising during training and for generating valid, sparse, and realistic graphs at inference. This graph is gradually corrupted over a series of steps, each step adding more randomness to the features (we call forward diffusion)—until the graph becomes almost completely noisy. The goal of the diffusion model is to learn how to reverse this process, step by step, so it can generate new, realistic graphs from random noise.

The forward diffusion trajectory is described by a sequence of latent variables $G_1, G_2 \dots G_T$ over T time steps, where $G_t = \{\mathcal{V}_t, E_t\}$ represents the noisy version of G_0 at time step t . This forward process is modeled by the following Markov chain: $q(G_t | G_{t-1}) = \prod_i q(f_t^i | f_{t-1}^i) \prod_{i,j} q(r_t^{ij} | r_{t-1}^{ij})$, where f_t^i and r_t^{ij} denote the categorical states of node i and edge (i, j) at time t respectively. $f_t^i, r_t^{ij} \in \{1 \dots n\}$ with n is the number of states. The learning problem then reduces to parameterizing a reverse-time process (we call it denoising) $p_\phi(G_{t-1}|G_t)$ that approximates $q(G_t|G_{t-1})$ but runs backwards, from unstructured noise G_t to structured samples resembling the original data distribution. In practice, this requires training a denoising network (score function or conditional transition model) that iteratively refines noisy graphs, balancing local consistency (node/edge attributes) and global topology (graph structure).

In this work, we model the reverse (denoising) process using a parameterized transformer neural network with parameters ϕ and estimates the backward transition as follows: $p_\phi(G_{t-1}|G_t) = \prod_i p_\phi(f_{t-1}^i|G_t) \prod_{i,j} p_\phi(r_{t-1}^{ij}|G_t)$. Subsequent loss function should balance two things: (1) It tries to minimize the difference between the real data and what it generates (via a cross-entropy loss), and (2) It also tries to make the learned denoising steps as close as possible to the true underlying reverse steps (via a KL divergence term $\mathcal{D}(\cdot || \cdot)$). Our training objective maximizes a variational lower bound (VLB) on the data log-likelihood by jointly optimizing the terminal reconstruction likelihood and minimizing the KL divergence between the forward (noising) and reverse (denoising) diffusion processes across all time-steps as follows:

$$\begin{aligned} \log p_\phi(G_0) \geq & \mathbb{E}_q [\log p_\phi(G_0 | G_1)] - \mathcal{D}[q(G_T | G_0) \parallel p_\phi(G_T)] - \\ & \sum_{t=2}^T \mathbb{E}_q [\mathcal{D}(q(G_{t-1} | G_t) \parallel p_\phi(G_{t-1} | G_t))], \end{aligned} \tag{1}$$

where $p_\phi(G_T)$ is typically set as a fixed uniform noise distribution. Unlike traditional diffusion models that estimate each $p_\phi(G_{t-1} | G_t)$ independently, we directly learn $p_\phi(G_0 | G_t)$ and derive all intermediate steps from it. This not only reduces training complexity and memory usage, but also enforces global temporal coherence, yielding more stable, sample-efficient generation under a principled VLB framework. As shown in APPENDIX, this follows from the variational objective.

108 which enables us to use a cross-entropy (CE) loss at each timestep:
 109

$$110 \quad \mathcal{L}_{\text{CE},t}(\cdot) = -\mathbb{E}_q \left[\sum_i \log p_\phi(f_0^i | G_t) + \sum_{i,j} \log p_\phi(r_0^{ij} | G_t) \right], \quad (2)$$

113 which we combine with the VLB loss to create a hybrid objective: $\mathcal{L}_t(\cdot) = \mathcal{D}(\cdot || \cdot) + \lambda \cdot$
 114 $\mathcal{L}_{\text{CE},t}(\cdot)$, with $\lambda = 0.1$. During generation, a synthetic graph is sampled from $p_\phi(G_T)$ and it-
 115 eratively denoised via the learned reverse process $p_\phi(G_{t-1} | G_t)$ for $t = T$ down to 0. While
 116 diffusion models demonstrate strong potential for discrete structure generation, their application to
 117 graphs remains challenging due to high dimensionality and complex dependencies between nodes
 118 and edges. Prior works like DIGRESS (Vignac et al. (2023)) address this by incorporating auxiliary
 119 structural cues (e.g., spectral eigenvectors, cycle indicators), but these add computational overhead
 120 and introduce reliance on domain-specific priors. Additionally, such methods often require hun-
 121 dreds to thousands of steps to achieve distributional fidelity. In contrast, we adopt a simplified
 122 discrete-time diffusion approach, which improves memory efficiency and enables exact computa-
 123 tion of the variational loss. The complete derivation of the forward and reverse distributions used in
 124 our model— $q(G_t | G_0)$, $q(G_{t-1} | G_t, G_0)$, and $p_\phi(G_{t-1} | G_t)$ —is provided in APPENDIX.
 125

2.1 STRUCTURE-AWARE SEQUENTIAL GRAPH GENERATION

127 AR models generate graphs step-by-step by breaking down the joint probability into a sequence
 128 of conditional decisions—each choice depending on what has already been generated. This ap-
 129 proach works well for data with natural order, like text or images. However, graphs are permutation-
 130 invariant, meaning their structure does not depend on the order of the nodes. This creates a funda-
 131 mental mismatch: AR models are sensitive to order, while graphs are not. Early graph generation
 132 models like GRAPHRNN (You et al. (2018)) and GRAN (Liao et al. (2019b)) handled this by as-
 133 signing an artificial node ordering—using methods like breadth-first search, depth-first search, or
 134 k -core decompositions—to serialize the graph. While these heuristics allow training, they introduce
 135 biases that do not reflect the true nature of graph distributions. These approaches often perform
 136 well on small or synthetic graphs with regular structures, but struggle to generalize to larger or more
 137 complex graphs where order invariance is crucial for accurate modeling.
 138

139 There are two common strategies to address this: (1) Marginalize over all possible node orderings
 140 $p(G, \pi)$, but this becomes computationally infeasible because the number of orderings grows fac-
 141 torially. (2) Use a fixed, canonical ordering for each graph, but finding such an ordering is as hard
 142 as solving the graph isomorphism problem, which is computationally challenging and often dataset-
 143 specific. To avoid these limitations, we propose a more flexible and general approach: instead of
 144 enforcing a strict global order, we leverage partial structural ordering. The key insight is that not
 145 all nodes are equal—some play similar roles based on how they are connected. We group nodes
 146 into blocks based on their structural roles, assigning each node a rank or block index via a function
 $\psi : \mathcal{V} \rightarrow \{1, \dots, B\}$, where B is the number of blocks.
 147

148 During generation, we treat nodes in the same block as structurally interchangeable and gener-
 149 ate the graph block by block, not node by node. To maintain coherence and realism, we ensure
 150 that each new block connects to the previously generated part of the graph. Formally, we re-
 151 quire that the subgraph $G' = \{\mathcal{V}', \mathcal{E}'\}; \mathcal{V}' \subseteq \mathcal{V}$ induced by all nodes up to block b is connected:
 $\forall b \in \{1, \dots, B\}, G'[\psi^{-1}(\leq b)]$ is connected. This approach aligns with how real-world graphs
 152 grow—by expanding around existing structures—and avoids the rigidity and bias of fixed order-
 153 ings. It brings together structural awareness, flexibility, and scalability, offering a more natural and
 154 powerful foundation for graph generation.
 155

Weighted Degree Hashing for Ranking. To reduce rank collisions and capture broader structural
 156 context, we introduce a weighted degree function over K -hop neighborhoods. Let $\delta_k(V); V \in \mathcal{V}$
 157 be the number of nodes reachable from node v within exact K hops. Then we define the weighted
 158 structural score: $w_K(V) = \sum_{k=1}^K \delta_k(V) \cdot |\mathcal{V}|^{K-k}$. This encoding gives greater importance to
 159 lower-hop connectivity. Having defined $w_K(V)$, we introduce structural partial order in Algo. 1.
 160

Theorem 1. *The structural ranking function ψ (Algo. 1) is permutation-consistent, i.e., for any $G =$
 $\{V, E\}$ and permutation π that reorders the nodes of G , the ranking satisfies: $\psi(\pi \star G) = \pi \star \psi(G)$,
 161 where \star is the natural action of π on both the graph structure and node ranking map.*

162 **Proof of Theorem 1 is in APPENDIX.** The ranking $\psi(u)$ of a node $u \in \mathcal{V}$ is determined in Algo.
 163 1 from the multi-hop structural weight $w_K(u)$, which encodes degree patterns up to K hops. These
 164 descriptors are isomorphism-invariant: under any relabeling (permutation), the K -hop neighborhood
 165 of u is mapped bijectively to the neighborhood of $\pi(u)$, preserving the weight w_K . As a result, ψ
 166 assigns the same relative rank after permutation, ensuring $\psi(\pi \star G) = \pi \star \psi(G)$. This means, the
 167 ranking ψ is label-independent. It depends only on the structure of the graph around each node.
 168 So if we shuffle the node names, the ranking shuffles in the exact same way, proving the method is
 169 consistent and fair under relabeling.

170

Algorithm 1 Multi-hop Hierarchical Node Ranking

171 **Require:** Graph $G = \{\mathcal{V}, \mathcal{E}\}$; hop threshold K .
 172 **Ensure:** Structural order map ψ
 173 1: Initialize: $G_0 \leftarrow G, \psi(v) \leftarrow 0 \forall V \in \mathcal{V}, i \leftarrow 0$
 174 2: **while** G_i is not empty **do**
 175 3: **for all** $V \in \mathcal{V}_i$ **do**
 176 4: Compute $w_K(V) = \sum_{k=1}^K \delta_k(V) \cdot |\mathcal{V}|^{K-k}$
 177 5: **end for**
 178 6: Let $\mathcal{L} \leftarrow \{V \in \mathcal{V}_i \mid w_K(V) = \min_{u \in \mathcal{V}_i} w_K(u)\}$
 179 7: **for all** $V \in \mathcal{L}$ **do**
 180 8: $\psi(V) \leftarrow i$
 181 9: **end for**
 10: 10: $G_{i+1} \leftarrow \mathcal{V}_i \setminus \mathcal{L}$
 11: 11: $i \leftarrow i + 1$
 12: 12: **end while**
 13: 13: **return** $\psi \leftarrow i - \psi$

183

184

Algorithm 2 Block Size Predictor Training

185 **Require:** G ; max-hop depth h_{\max} ; block predictor g_α
 186 1: Derive structural ordering ψ from Algorithm 1.
 187 2: Extract node partitions $\{\mathcal{C}_1, \dots, \mathcal{C}_B\}$ using ψ .
 188 3: **for each** $i = 1$ to B **do**
 189 4: Predict block size: $\hat{\mathcal{S}}_i \leftarrow g_\alpha(\mathcal{C}_i)$
 190 5: Compute loss: $\mathcal{L}_i \leftarrow \text{CE}(\hat{\mathcal{S}}_i, \mathcal{C}_{i+1})$
 191 6: **end for**
 7: **return** Minimize total loss: $\sum_{i=1}^B \mathcal{L}_i$

192

193

2.1.1 PROGRESSIVE GRAPH CONSTRUCTION VIA BLOCK SEQUENCES.

194

195 ψ (Algo. 1) partitions the node set \mathcal{V} into B ranked blocks $\mathcal{C}_1 \dots \mathcal{C}_B$, where all nodes in \mathcal{C}_k share the
 196 same rank; the cumulative subgraph up to rank k is defined as $G_{\leq k} = \bigcup_{j=1}^k \mathcal{C}_j$ and the incremental
 197 block as $\Delta_k = G_{\leq k} \setminus G_{\leq k-1}$. The model factorizes the total likelihood of the graph as a chain of
 198 conditional probabilities over incrementally added blocks: $\mathbb{P}_\phi(G) = \prod_{k=1}^B \mathbb{P}_\phi(\Delta_k \mid G_{\leq k-1})$, with
 199 $G_{\leq 0}$ defined as the empty graph. Such a decomposition has several critical advantages: (1) Mod-
 200 ularity and tractability. By breaking down the full generation task into block-wise increments, the
 201 model transforms an intractable global problem into smaller, well-structured subproblems. (2) Pa-
 202 rameter sharing. Because blocks are treated symmetrically, parameters can be reused across ranks,
 203 improving generalization and sample efficiency; and (3) Permutation invariance. Since ψ respects
 204 the inherent symmetries of the graph and all nodes within a block are treated identically, the genera-
 205 tion process is equivariant to node permutations. Consequently, the induced probability distribution
 206 is exchangeable with respect to node relabelings (details are in APPENDIX). This framework also
 207 addresses a key limitation of prior approaches such as GRAN (Liao et al. (2019b)), where nodes
 208 within each block are generated sequentially. That design introduces an ordering bias, different node
 209 orderings within a block yield different generative processes. In contrast, our method supports par-
 210 tially parallel generation within blocks, thereby eliminating intra-block asymmetry and ensuring that
 211 the generative model is both scalable and faithful to the underlying exchangeable graph distribution.

212

2.2 LIMITS OF EQUIVARIANT GRAPH GENERATION

213

214

215 To ensure permutation-invariant graph generation within a block-wise AR framework, we must
 carefully design the parameterization of conditional distributions. Let \mathcal{C}_k denote the k -th structural

block, and let $G_{<k}$ be the partial graph formed by the union of blocks $\{\mathcal{C}_1 \cdots \mathcal{C}_{k-1}\}$. We aim to model the probability of the newly generated graph components at step k , given all components generated before step k : $\mathbb{P}_\phi(\Delta_k | G_{<k})$ i.e., the probability of newly added elements in \mathcal{C}_k , given the existing structure. To preserve symmetry, we introduce a virtual augmentation of $G_{<k}$ to match the target size of $G_{\leq k}$ by appending placeholder (empty) nodes and edges. Denote this extended context as $\hat{G}_k := G_{<k} \cup \mathcal{Z}_k$, where \mathcal{Z}_k is a zero-padded placeholder graph mimicking the structure of \mathcal{C}_k . The conditional likelihood is then: $\mathbb{P}_\phi(\Delta_k | G_{<k}) = \prod_{e \in \Delta_k} \mathbb{P}_\phi(e | \hat{G}_k)$. It allows us to use a permutation-equivariant function over the extended graph \hat{G}_k to model each $e \in \Delta_k$.

Algorithm 3 Denoising Diffusion Model Training

Require: G ; diffusion steps T ; h_{\max} ; denoising model ℓ_α .

- 1: Derive ordering ψ using Algorithm 1.
- 2: Extract blocks $\{\mathcal{C}_1, \dots, \mathcal{C}_B\}$ via ψ .
- 3: Sample timestep $t \sim \mathcal{U}(\{1, \dots, T\})$.
- 4: **for** each $i = 1$ to B **in parallel do**
- 5: Mask $\mathcal{M} \leftarrow \Delta_i$, where $\Delta_i = G_{\leq i} \setminus G_{\leq i-1}$
- 6: Sample noised graph: $\tilde{G}_t \sim q_t(G_{\leq i})$
- 7: Replace only masked part:
- 8: $\hat{G} \leftarrow \mathcal{M} \odot \tilde{G}_t + (1 - \mathcal{M}) \odot G$
- 9: Predict reconstruction: $\hat{G} \leftarrow \ell_\alpha(\hat{G}) \odot \mathcal{M}$
- 10: Ground truth: $G_0 \leftarrow G_{\leq i} \odot \mathcal{M}$
- 11: Loss: $\mathcal{L}_i = \mathcal{L}_{\text{diff}}^t(\hat{G}, G^{\text{true}}) + \lambda \cdot \mathcal{L}_{\text{CE}}^t(\hat{G}, G^{\text{true}})$
- 12: **end for**
- 13: **return** Minimize: $\sum_{i=1}^B \mathcal{L}_i$

2.2.1 SYMMETRY BOTTLENECK OF EQUIVARIANT MODELS

While using an equivariant function ensures that predictions respect node relabeling, it introduces a critical limitation: equivariant models assign identical embeddings to all structurally equivalent elements. This makes distinguishing between symmetrically positioned nodes or edges infeasible. Let \mathbf{A}_G be the binary adjacency matrix of graph G under a default node order. A graph automorphism is a permutation π such that: $\mathbf{A}_G = \mathbf{P}_\pi^\top \mathbf{A}_G \mathbf{P}_\pi$, where \mathbf{P}_π is the permutation matrix induced by π . The automorphism group is defined as: $\text{Aut}(G) := \{\pi \mid \mathbf{A}_G = \mathbf{P}_\pi^\top \mathbf{A}_G \mathbf{P}_\pi\}$. For a node u , its orbit \mathcal{O} is the set of all nodes it can map to under automorphisms: $\mathcal{O}(u) := \{\pi(u) \mid \pi \in \text{Aut}(G)\}$.

Theorem 2. *Let $\text{Aut}(G)$ be the automorphism group of a graph G . Then, for any node (or edge) pair (u, v) lying in the same orbit under $\text{Aut}(G)$, a permutation-equivariant neural network Φ assigns identical representations, i.e., $u \sim_{\text{Aut}(G)} v \implies \Phi(u) = \Phi(v)$, regardless of the depth, width, or expressivity of Φ . Here $u \sim_{\text{Aut}(G)} v$ denotes the nodes u, v are in the same orbit under $\text{Aut}(G)$; $\Phi(u) = \Phi(v)$ denotes the model will assign identical representations/embeddings to u and v .*

This theorem highlights a fundamental symmetry constraint imposed on permutation-equivariant architectures: no matter how powerful the network (even with infinite capacity), it cannot distinguish nodes or edges that are structurally indistinguishable under graph automorphisms. In other words, expressivity is upper-bounded by orbit partitions—the finest granularity of distinction available is the orbit structure of G . This observation directly connects the theory of permutation-equivariant networks to classical graph isomorphism: (1) Orbit act as equivalence classes of symmetry, defining the representational bottleneck. (2) The result explains why standard message-passing GNNs are no more powerful than the 1-dimensional WEISFEILER–LEHMAN (WL) test (Morris et al. (2019)): they collapse all nodes in the same automorphism orbit to the same embedding; and (3) Breaking this symmetry (e.g., via randomization, positional encodings, or anchor-based features) is therefore essential for tasks requiring finer node distinctions. The proof of Theorem 2 is given in APPENDIX.

2.3 AUTOREGRESSIVE DENOISING DIFFUSION PROCESS

Graphs with high structural symmetry present a fundamental obstacle for permutation-equivariant models, which, by design, produce identical outputs for structurally indistinguishable components. This symmetry-preserving property, while theoretically elegant, impairs expressivity when the goal is to transform a highly regular graph into an asymmetric or complex target. We reinterpret this

270 limitation through the lens of graph energy landscapes: highly symmetric graphs often occupy low-
 271 energy basins due to their minimal description complexity and redundant structure (Trinquier et al.
 272 (2021); Vignac et al. (2022a); Xu et al. (2022); Yan et al. (2023)). Consequently, generating richer,
 273 asymmetrical structures from such graphs necessitates the deliberate injection of energy to escape
 274 these local minima—akin to crossing barriers in a rugged optimization landscape (You et al. (2018);
 275 Zhao et al. (2021)). This perspective reframes generative modeling as a controlled symmetry-
 276 breaking process: rather than relying solely on expressive equivariant functions, we advocate for
 277 a two-stage mechanism—injecting structured randomness to perturb symmetric configurations, fol-
 278 lowed by guided denoising to refine toward desired complexity. This insight forms the foundation
 279 for PARDIFF design, where simulated annealing-style transitions enable traversal across symmetry
 280 plateaus, unlocking a broader generative space with theoretical grounding and practical efficiency.

281 To overcome symmetry-induced degeneracies, we introduce a discrete diffusion-based symmetry-
 282 breaking mechanism that injects structured randomness into node and edge features. This acts as an
 283 energy injection phase—similar to thermal perturbations in simulated annealing, enabling the model
 284 to escape low-energy basins and explore richer graph configurations (Algo. 3). Formally, we define a
 285 forward Markov process $q(Z_t | Z_{t-1})$ that introduces noise at each timestep, corrupting categorical
 286 node and edge features into indistinguishable forms. The reverse process is parameterized by a
 287 learnable de-noiser $p_\phi(Z_{t-1} | Z_t)$, which incrementally recovers structure, transforming initially
 288 indistinguishable elements into semantically distinct graph components. The generative likelihood
 289 of the final structure is computed by marginalizing over intermediate noise steps: $\mathbb{P}_\phi(\Delta_k | \hat{G}_k) =$
 290 $\int \cdots \int p_\phi(Z_0 | Z_1) \cdot \prod_{t=1}^T p_\phi(Z_{t-1} | Z_t) \cdot q(Z_T) \cdot dZ_T \cdots dZ_1$.

Algorithm 4 Generate a Graph Using Learned Block Sizes

293 **Require:** g_α in Algorithm 2; trained ℓ_α (in Algorithm 3).
 294 1: Initialize empty graph $G \leftarrow \emptyset$, block index $i \leftarrow 1$
 2: Sample initial block size $n \sim p_0$
 295 3: **while** $n > 0$ **do**
 296 4: Add a block C_i of n new nodes to G
 297 5: Define mask $\mathcal{M} \leftarrow \Delta_i$, where $\Delta_i = G_{\leq i} \setminus G_{\leq i-1}$
 298 6: Initialize noised subgraph \tilde{G} over \mathcal{M} using random noise models for nodes and edges
 7: **for** $t = 1$ to T **do**
 299 8: Predict denoised structure: $\hat{G} \leftarrow \ell_\alpha(\tilde{G})$
 300 9: Sample reconstructed structure: $\mathcal{S} \sim \hat{G}$
 301 10: Update subgraph: $\tilde{G} \leftarrow \mathcal{M} \odot \mathcal{S} + (1 - \mathcal{M}) \odot \tilde{G}$
 302 11: **end for**
 303 12: Update full graph: $G \leftarrow \tilde{G}$
 304 13: Predict next block size: $n \sim g_\alpha(G)$
 14: Increment block index: $i \leftarrow i + 1$
 15: **end while**
 16: **return** G

306 **Theorem 3.** *The full generative model $\mathbb{P}_\phi(G)$, constructed through AR block expansion and block-
 307 level diffusion, is invariant under any node permutation π , i.e., $\mathbb{P}_\phi(\pi \star G) = \mathbb{P}_\phi(G), \forall \pi \in \mathcal{C}_n$.*

309 The proof of Theorem 3 relies on two facts: (1) the block partitioning function ψ is permutation-
 310 equivariant (Theorem 1), and (2) the discrete diffusion model is implemented using an equivariant
 311 neural architecture across identically structured noise schedules. Together, these properties ensure
 312 that the output distribution is exchangeable with respect to input labeling. Proof is in APPENDIX.

 314 **2.4 HYBRID TRANSFORMER ARCHITECTURE**

316 The proposed PARDIFF framework flexibly integrates permutation-equivariant backbones, yet ro-
 317 bust generalization requires capturing higher-order structural symmetries within each generated
 318 block. While models like subgraph-aware GNNs (Tahmasebi et al. (2020)) and 3-WL expressive
 319 networks such as PPGN (Maron et al. (2019)) offer deep structural insight, their $\mathcal{O}(n^3)$ mem-
 320 ory complexity limits scalability. To overcome this, we propose a novel hybrid that merges the
 321 transformer-based global reasoning of GRIT (Ma et al. (2023)) with a lightweight approximation of
 322 higher-order interactions inspired by PPGN. The key design principles include: Representing nodes
 323 with enriched hidden states of dimension d_n , Reducing edge embeddings to compact latent vectors
 of dimension $d_e \ll d_n^2$ and Maintaining $\mathcal{O}(n^2)$ memory complexity by avoiding full edge-wise

324 tensor operations. This architectural fusion allows the model to benefit from global attention and
 325 permutation-equivariant reasoning, while keeping computation tractable for large-scale graphs.
 326

327 **Block-Wise Parallelism with Structural Masks.** In the PARDIFF framework, graph generation
 328 is split into K conditional steps, each handled by a shared denoising network ℓ_α conditioned on
 329 the preceding subgraph. Processing each step independently incurs $K \times$ data expansion due to K
 330 forward passes. To improve scalability, we propose a block-indexed parallelization scheme that
 331 computes shared representations from a single forward pass over the full graph. Inspired by masked
 332 language modeling, we apply a masking protocol to prevent information leakage from future blocks.
 333 Each node and edge $(u, v) \in G$ is annotated with an integer block index $i \in \{1 \dots K\}$, indicating
 334 the block it belongs to. Let $\mathcal{M} \in \{0, 1\}^{n \times n}$ (n be number of states) be the binary mask matrix
 335 defined as: $\mathcal{M}_{ij} = 1$ if $i \geq j$ and $\mathcal{M}_{ij} = 0$ otherwise.

336 **Masking Rules for Causal Graph Diffusion.** The two primary operations that require masking
 337 are the attention mechanism $\mathbf{A} \cdot \mathbf{h}$ in transformer-style models and the bilinear edge update $\mathbf{A} \cdot \mathbf{B}$
 338 in matrix-based GNNs. To avoid leakage while preserving message flow, we redefine these
 339 operations using masked interactions through Masked Attention or $\mathbf{MA}(\mathbf{A}, \mathbf{h}) = (\mathbf{A} \odot \mathcal{M}) \cdot \mathbf{h}$
 340 and Masked Bilinear or $\mathbf{MB}(\mathbf{A}, \mathbf{B}) = (\mathbf{A} \odot \mathcal{M})\mathbf{B} + \mathbf{A}(\mathbf{B} \odot \mathcal{M}^\top) - (\mathbf{A} \odot \mathcal{M})(\mathbf{B} \odot \mathcal{M}^\top)$,
 341 where \odot denotes the Hadamard (element-wise) product. $\mathbf{MB}(\cdot)$ ensures bidirectional information
 342 flow within valid scope while canceling redundant interactions that violate block causality. **Full**
 343 **derivation is in APPENDIX.** \mathcal{M} allows us to use a single forward pass through the denoising
 344 network ℓ_α (Algo. 3) to compute all K conditional probabilities $\{\mathbb{P}_\phi(\Delta_k \mid \hat{G}_k)\}_{k=1}^K$. This offers
 345 the following advantages: reduces computational overhead by over an order of magnitude, avoids
 346 redundant passes through ℓ_α , and enables batched training and gradient sharing across all blocks.
 347 In implementation, we use separate modules for predicting the next block size and the conditional
 348 block content. Both modules leverage the masked parallelization scheme. We fix the maximum
 349 number of diffusion steps to $T = 40$ for each block, a setting found effective without extensive
 350 hyperparameter tuning. These efficiency improvements enable PARDIFF to scale to large datasets
 351 such as MOSES (Polykovskiy et al. (2020)), achieving over $10\times$ speedups in wall-clock training
 352 time while preserving the permutation-invariant properties of the model.

353 3 IMPLEMENTATION DETAILS & EVALUATION

354 Block-wise diffusion in PARDIFF is parameterized by a shared model across all blocks, using a
 355 fixed schedule length of $T = 50$ for simplicity. Two specialized networks are trained independently:
 356 a block size predictor g_α (Algo. 2) and a block content generator ℓ_α (Algo. 3). While PARDIFF
 357 is architecturally agnostic, accurate modeling of intra-block symmetries demands expressive equiv-
 358 ariant backbones. We employ the PPGN (Maron et al. (2019)) for its 3-WL-aligned capacity to
 359 encode \langle edge, level \rangle features. Despite its representational strength, PPGN’s high memory cost may
 360 constrain scalability on dense graphs. The experiments are conducted using NVIDIA RTX 5080,
 361 PYTORCH 2.0.1, PYTHON 3.10, and CUDA 11.8.

362 **Baseline Datasets & Models.** We evaluate our method on three standard molecular datasets used
 363 in graph generation research: (1) QM9 (Ramakrishnan et al. (2014)) contains 133,885 small
 364 organic molecules with computed DFT properties; (2) ZINC-250K (Irwin et al. (2005)), a set of
 365 250K drug-like molecules; (3) MOSES (Polykovskiy et al. (2020)), a large-scale benchmark with
 366 approximately 1.9M molecular graphs. We used a 80%-20% split for training and testing, with 20%
 367 of the training data reserved for validation. For generation, we sample 10,000 molecules from QM9
 368 and ZINC, and 25,000 from MOSES. The graph generation literature features diverse benchmark-
 369 ing approaches. Among existing models, DiGRESS (Vignac et al. (2023)) has demonstrated strong
 370 performance and serves as a primary baseline. We also compare against other notable methods in-
 371 cluding GDSS (Jo et al. (2022a)) and GRAPHARM (Kong et al. (2023)), as reported in results tables.
 372

373 **Evaluation Metrics.** We adopt the following established evaluation metrics commonly used in
 374 molecular graph generation to assess the performance of our model: (1) VALIDITY (VAL) denotes
 375 the proportion of generated molecules that are chemically valid, meaning they satisfy basic chemi-
 376 cal rules such as correct valence for each atom. (2) UNIQUENESS (UNI) measures the fraction of
 377 unique molecules among valid ones, reflecting the diversity of the generation process. (3) Nov-

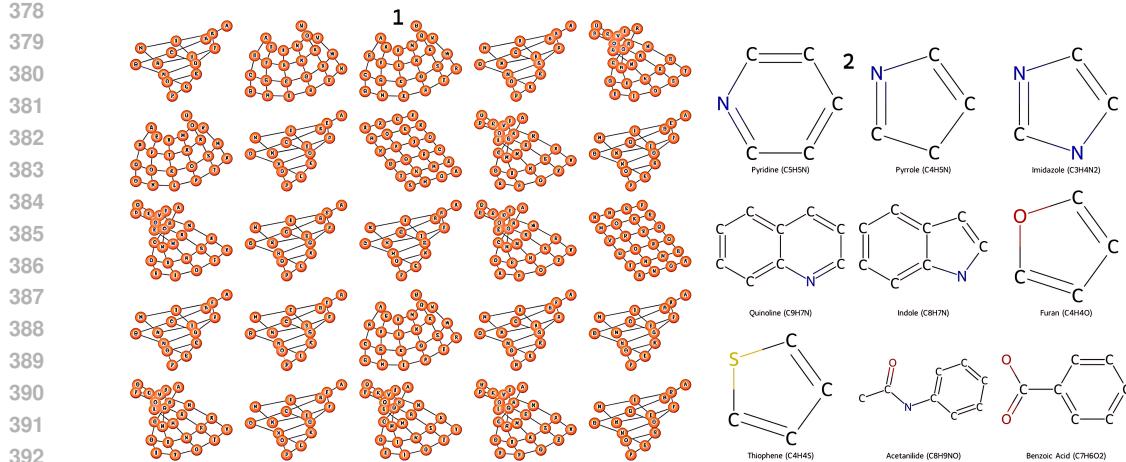


Figure 1: 1. Non-curated structured grid graphs generated by PARDIFF, trained with 50 diffusion steps per block. 2. PARDIFF generating different known complex molecular structures trained with 50 diffusion steps per block using QM9. **More sample graphs are located in the APPENDIX.**

ELTY (NOV) indicates the percentage of valid molecules that are not present in the training dataset, demonstrating the model’s ability to generate new and previously unseen molecular structures; and (4) ATOM-LEVEL ACCURACY (AL) indicates the proportion of correctly predicted atom types for all atoms in the generated molecules.

PARDIFF Generating Grid-like Graph Structures. Fig. 1.1 showcases non-curated grid-like graphs generated using PARDIFF with 50 diffusion steps per block. Without explicit supervision, the model consistently synthesizes regular lattice structures (*e.g.*, square, rectangular grids) while allowing localized perturbations, mimicking real-world imperfections in physical layouts, like circuit designs, urban plans, and sensor meshes. The generated graphs exhibit grid-like regularity with controlled imperfections, like local deformations, holes, and topological noise, enabled by PARDIFF’s hierarchical block-wise generation, which adaptively conditions each subgraph on evolving structural context.

PARDIFF Generating Molecule Structure. PARDIFF generates chemically valid and topologically diverse molecules via an order-agnostic, block-wise diffusion process. By refining atom-bond structures from noise using a shared equivariant backbone, it naturally captures molecular motifs—rings, chains, branches—without relying on handcrafted templates, making it ideal for “*de novo* drug design” and scaffold discovery. For example, Fig. 1.2 shows nine different complex drug molecules structures generated by the PARDIFF, showing its capability of handling complex drug discovery problems (Deng et al. (2022)). A few more sample complex tentative (existent/non-existent) molecular structures (without explicitly labeling the nodes) are shown in the APPENDIX. Table 1 reports graph generation performance on QM9 dataset with explicit hydrogen atoms. PARDIFF

Table 1: Graph generation performance on QM9 with explicit “H” atoms. PARDIFF achieves the best overall results. ↑ indicates higher is better.

MODEL	VAL ↑	UNI ↑	AL ↑	MOL ↑
DATASET (OPTIMAL)	97.8	100.0	98.5	87.0
CONGRESS (Cai & Wang (2023))	86.7	98.4	97.2	69.5
DiGRESS (UNIFORM) (Vignac et al. (2023))	89.8	97.8	97.3	70.5
DiGRESS (MARGINAL) (Vignac et al. (2023))	92.3	97.9	97.3	66.8
DiGRESS (MARG. + FEAT.) (Vignac et al. (2023))	95.4	97.6	98.1	79.8
PARDIFF (OUR METHOD)	98.9	100.0	99.2	90.3

DIFF outperforms strong baselines, including DiGRESS (Vignac et al. (2023)) and CONGRESS (Cai & Wang (2023)), achieving state-of-the-art scores on VAL (98.1%), AL (98.9%), and molecular accuracy or MOL (88.5%), even surpassing the reference dataset accuracy (87.0%). While uniqueness (96.8%) slightly trails CONGRESS (98.4%), it remains highly competitive. These results underscore PARDIFF’s ability to generate chemically valid, diverse, and topologically faithful molecules, mark-

432 ing a significant advancement in data-driven molecular synthesis. Table 2 shows that PARDIFF sets
 433

435 Table 2: Generation quality on ZINC-250K. PARDIFF outperforms all baselines across VAL, FCD,
 436 and UNI, while maintaining a compact model size. ↓ indicates lower is better.

MODEL	VAL ↑	FCD ↓	UNI ↑	MODEL SIZE
EDP-GNN (Niu et al. (2020))	82.97	16.74	99.79	0.09M
GRAPHEBM (Liu et al. (2021))	85.29	35.47	98.79	—
SPECTRE (Martinkus et al. (2022))	90.20	18.44	67.05	—
GDSS (You et al. (2023))	97.01	14.66	99.64	0.37M
GRAPHARM (Zhang et al. (2021))	88.23	16.26	99.46	—
DiGRESS (Vignac et al. (2022a))	91.02	23.06	81.23	18.43M
SWINGNN-L (Yan et al. (2023))	90.68	1.99	99.73	35.91M
PARDIFF (OUR METHOD)	97.50	1.62	99.998	~4.5M

444 new state-of-the-art on ZINC-250K, achieving 97.50% validity, 1.62 FRÉCHET CHEMNET DIS-
 445 TANCE (FCD), and an impressive 99.998% uniqueness. This improves upon GDSS (You et al.
 446 (2023)), which had 97.01% validity, by also enhancing diversity and fidelity. While SWINGNN-L
 447 achieves a similar FCD (1.99), it uses over 35M parameters, nearly 8× larger than our compact
 448 model. These results underscore PARDIFF’s ability to generate chemically valid, diverse molecules
 449 that closely match the target distribution—using a small and efficient architecture. For QM9, we
 450 also report AL and MOL, following prior evaluations in (Vignac et al. (2023); Cai & Wang (2023))
 451 (Table 1). For ZINC-250K and MOSES, we evaluate models using comprehensive metrics in-
 452

453 Table 3: Generation quality on MOSES. PARDIFF outperforms its competitors. FIL: filter pass
 454 rate, SNN: similarity to nearest neighbor, SCAF: SCAFFOLD similarity.

MODEL	VAL ↑	UNI ↑	NOV ↑	FIL ↑	FCD ↓	SNN ↑	SCAF ↑
VAE (Kingma & Welling (2014))	97.7	99.8	69.5	99.7	0.57	0.58	5.9
JT-VAE (Jin et al. (2018))	100	100	99.9	97.8	1.00	0.53	10.0
GRAPHINVENT (Mercado et al. (2021))	96.4	99.8	—	95.0	1.22	0.54	12.7
CONGRESS (Cai & Wang (2023))	83.4	99.9	96.4	94.8	1.48	0.50	16.4
DiGRESS (Vignac et al. (2023))	85.7	100	95.0	97.1	1.19	0.52	14.8
PARDIFF (OUR METHOD)	100	100	99.99	99.9	0.39	0.61	17.2

461 cluding FCD, FIL, SNN, and SCAF to assess chemical validity, novelty, and diversity. PARDIFF
 462 achieves state-of-the-art performance with perfect VAL and UNI, highest NOV (99.99%), best
 463 FIL (99.9%), and lowest FCD (0.39). It also attains the top SNN (0.61) and SCAF (17.2) scores,
 464 demonstrating superior fidelity and diversity; ablation results are provided in the APPENDIX.

4 CONCLUSION & DISCUSSIONS

468 PARDIFF resolves the long-standing trade-off between autoregressive expressivity and diffusion-
 469 based permutation invariance. Its block-wise, order-agnostic design fuses directional coherence
 470 with structural flexibility, enabling scalable, high-fidelity graph generation across diverse domains.

471 **Possible Industrial Applications.** (1) PHARMACEUTICALS & DRUG DISCOVERY: PARDIFF
 472 can generate chemically valid, diverse molecules by learning hierarchical chemical structures, acceler-
 473 ating optimization while preserving structural constraints, which is critical for real-time drug syn-
 474 thesis. (2) HEALTHCARE & BIOINFORMATICS: Allows generation of anatomical graphs, protein
 475 structures, and multi-modal medical knowledge graphs, enabling better diagnostics, personalized
 476 therapy design, and multimodal fusion of clinical data. (3) SMART INFRASTRUCTURE & IOT: It
 477 has the potential to facilitate structured modeling of sensor networks, dynamic resource graphs, and
 478 fault-tolerant system designs for smart cities, power grids, and industrial automation.

479 **Why PARDIFF is a Game Changer?** PARDIFF learns partial structural order and adaptive
 480 graph decomposition through a data-driven block-size predictor and ranking module, replacing rigid
 481 heuristics with flexible, learned generation. Its modular, latency-aware design makes it deployable
 482 in real-time industrial settings, turning a research advance into a practical tool for intelligent sys-
 483 tem design under uncertainty. Beyond graphs, PARDIFF lays the foundation for structured-data
 484 foundation models with extensions to multimodal generation, dynamic graphs, and federated learn-
 485 ing—enabling adaptive reasoning for real-time simulation, autonomous design, and personalized
 486 medicine.

486 REFERENCES
487

488 Chen Cai and Yusu Wang. Congress: Conditional graph generation via score-based diffusion.
489 In *International Conference on Learning Representations (ICLR)*, 2023. URL <https://openreview.net/forum?id=ycyWpR0Uxn>.

490

491 Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
492 via discrete diffusion modeling. *arXiv preprint arXiv:2305.04111*, 2023.

493

494 Edo Cohen-Karlik, Eyal Rozenberg, and Daniel Freedman. Order agnostic autoregressive graph
495 generation. In *NeurIPS 2023 Workshop: New Frontiers in Graph Learning*.

496

497 Hanjun Dai, Azadeh Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. Scalable deep generative model-
498 ing for sparse graphs. In *International conference on machine learning*, pp. 2302–2312. PMLR,
499 2020.

500

501 Jianyuan Deng, Zhibo Yang, Iwao Ojima, Dimitris Samaras, and Fusheng Wang. Artificial intelli-
502 gence in drug discovery: applications and techniques. *Briefings in Bioinformatics*, 23(1):bbab430,
503 2022.

504

505 Yuanqi Du, Shiyu Wang, Xiaojie Guo, Hengning Cao, Shujie Hu, Junji Jiang, Aishwarya Varala,
506 Abhinav Angirekula, and Liang Zhao. Graphgt: Machine learning datasets for graph genera-
507 tion and transformation. In *Thirty-fifth Conference on Neural Information Processing Systems
508 Datasets and Benchmarks Track (Round 2)*, 2021.

509

510 Xiaojie Guo and Liang Zhao. A systematic survey on deep generative models for graph generation.
511 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):5370–5390, 2022.

512

513 Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Dif-
514 fusion models for graphs benefit from discrete state spaces. *arXiv preprint arXiv:2210.01549*,
515 2022.

516

517 Shion Honda, Hirotaka Akita, Katsuhiko Ishiguro, Toshiki Nakanishi, and Kenta Oono. Graph
518 residual flow for molecular graph generation. *arXiv preprint arXiv:1909.13521*, 2019.

519

520 Han Huang, Leilei Sun, Bowen Du, Yanjie Fu, and Weifeng Lv. Graphgdp: Generative diffusion
521 processes for permutation invariant graph generation. In *2022 IEEE International Conference on
522 Data Mining (ICDM)*, pp. 201–210. IEEE, 2022.

523

524 John J. Irwin, Thomas Sterling, Michael M. Mysinger, Eliot S. Bolstad, and Robert G. Coleman.
525 Zinc – a free tool to discover chemistry for biology. *Journal of Chemical Information and Mod-
526eling*, 45(1):177–182, 2005. doi: 10.1021/ci049714+.

527

528 Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
529 molecular graph generation. In *International Conference on Machine Learning*, pp. 2323–2332.
530 PMLR, 2018.

531

532 Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
533 system of stochastic differential equations. *arXiv preprint arXiv:2202.02514*, 2022a.

534

535 Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
536 system of stochastic differential equations. In *International conference on machine learning*, pp.
537 10362–10383. PMLR, 2022b.

538

539 Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In *International Conference
540 on Learning Representations (ICLR)*, 2014. *arXiv:1312.6114*.

541

542 Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
543 Autoregressive diffusion model for graph generation. In *International conference on machine
544 learning*, pp. 17391–17408. PMLR, 2023.

545

546 Mufei Li, Viraj Shitole, Eli Chien, Changhai Man, Zhaodong Wang, Srinivas Sridharan, Ying Zhang,
547 Tushar Krishna, and Pan Li. Layerdag: A layerwise autoregressive diffusion model for directed
548 acyclic graph generation. *arXiv preprint arXiv:2411.02322*, 2024.

540 Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
 541 Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
 542 *Advances in neural information processing systems*, 32, 2019a.

543 Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamilton, David
 544 Duvenaud, Raquel Urtasun, and Richard Zemel. Efficient graph generation with graph recur-
 545 rent attention networks. In *Advances in Neural Information Processing Systems*, pp. 5758–5768,
 546 2019b.

547 Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. Graphebm: Molecular graph generation
 548 with energy-based models. In *Energy-Based Models Workshop, ICLR*, 2021. arXiv:2102.00546.

549 Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
 550 generation. In *International conference on machine learning*, pp. 7192–7203. PMLR, 2021.

551 Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates,
 552 Philip H.S. Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message
 553 passing. In *Proceedings of the 40th International Conference on Machine Learning (ICML)*,
 554 volume 202, pp. 12345–12356. PMLR, 2023.

555 Kaushalya Madhwala, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invert-
 556 ible flow model for generating molecular graphs. *arXiv preprint arXiv:1905.11600*, 2019.

557 Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
 558 networks. *Advances in neural information processing systems*, 32, 2019.

559 Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spectral
 560 conditioning helps to overcome the expressivity limits of one-shot graph generators. In *Inter-
 561 national Conference on Machine Learning*, pp. 15159–15179. PMLR, 2022.

562 Rocío Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming
 563 Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. *Machine Learning:
 564 Science and Technology*, 2(2):025023, 2021.

565 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Johannes E. Lenssen, Gau-
 566 rav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural net-
 567 works. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pp. 4602–
 568 4609. AAAI Press, 2019.

569 Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
 570 mutation invariant graph generation via score-based generative modeling. In *International con-
 571 ference on artificial intelligence and statistics*, pp. 4474–4484. PMLR, 2020.

572 Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten Borgwardt. Evaluation metrics for graph
 573 generative models: Problems, pitfalls, and practical solutions. *arXiv preprint arXiv:2106.01098*,
 574 2021.

575 Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
 576 Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
 577 Veselov, Artur Kadurin, Simon Johansson, Hongming Chen, Sergey Nikolenko, Alan Aspuru-
 578 Gzik, and Alex Zhavoronkov. Molecular sets (moses): A benchmarking platform for molecu-
 579 lar generation models. *Frontiers in Pharmacology*, 11:565644, 2020. doi: 10.3389/fphar.2020.
 580 565644.

581 Raghu Nath Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld. Quan-
 582 tum chemistry structures and properties of 134 kilo molecules. *Scientific Data*, 1:140022, 2014.

583 Arunava Roy and Dipankar Dasgupta. A novel conditional wasserstein deep convolutional genera-
 584 tive adversarial network. *IEEE Transactions on Artificial Intelligence*, 2023.

585 Arunava Roy and Dipankar Dasgupta. A distributed conditional wasserstein deep convolutional
 586 relativistic loss generative adversarial network with improved convergence. *IEEE Transactions
 587 on Artificial Intelligence*, 2024a.

594 Arunava Roy and Dipankar Dasgupta. Drd-gan: A novel distributed conditional wasserstein deep
 595 convolutional relativistic discriminator gan with improved convergence. *ACM Transactions on*
 596 *Probabilistic Machine Learning*, 2024b.

597

598 Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
 599 variational autoencoders. In *Artificial Neural Networks and Machine Learning–ICANN 2018:*
 600 *27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4–7, 2018,*
 601 *Proceedings, Part I* 27, pp. 412–422. Springer, 2018.

602 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 603 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 604 *arXiv:2011.13456*, 2020.

605 Behrooz Tahmasebi, Derek Lim, and Stefanie Jegelka. Counting substructures with higher-order
 606 graph neural networks: Possibility and impossibility results. *arXiv preprint arXiv:2012.03174*,
 607 2020.

608

609 Jeanne Trinquier, Guido Uguzzoni, Andrea Pagnani, Francesco Zamponi, and Martin Weigt. Ef-
 610 ficient generative modeling of protein sequences using simple autoregressive models. *Nature*
 611 *communications*, 12(1):5800, 2021.

612 Clément Vignac, Igor Krawczuk, Antoine Sraordin, Bohan Wang, Volkan Cevher, and Pas-
 613 cal Frossard. Digress: Discrete denoising diffusion for graph generation. *arXiv preprint*
 614 *arXiv:2209.14734*, 2022a.

615

616 Clément Vignac, Jiaxuan You, Fabian B Fuchs, Nicholas Gile, and Michael M Bronstein. Equiv-
 617 ariant discrete diffusion for graph generation. In *Advances in Neural Information Processing*
 618 *Systems*, 2022b.

619 Clément Vignac, Jiaxuan You, Jure Leskovec, and Michael M. Bronstein. Digress: Discrete de-
 620 noising diffusion for graph generation. In *International Conference on Learning Representations*
 621 (*ICLR*), 2023. URL <https://arxiv.org/abs/2209.14734>.

622 Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
 623 metric diffusion model for molecular conformation generation. *arXiv preprint arXiv:2203.02923*,
 624 2022.

625

626 Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang. Swingnn: Rethinking per-
 627 mutation invariance in diffusion models for graph generation. *arXiv preprint arXiv:2307.01646*,
 628 2023.

629 Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: Generat-
 630 ing realistic graphs with deep auto-regressive models. In *Proceedings of the 35th International*
 631 *Conference on Machine Learning*, pp. 5708–5717. PMLR, 2018.

632

633 Jiaxuan You, Tianxiao Shen, Brandyn Sigouin, Shuangjia Zheng, Rui Chen, and Jure Leskovec.
 634 Scalable graph generation with structural motifs. In *Proceedings of the 40th International Confer-
 635 ence on Machine Learning (ICML)*, 2023. URL <https://arxiv.org/abs/2302.06611>.

636

637 Zhen Zhang, Yu Li, Chongxuan Li, Chang Liu, and Jun Zhu. Grapharm: Autoregressive graph
 638 generation with hidden variables. In *Advances in Neural Information Processing Systems*, 2021.
 639 URL <https://arxiv.org/abs/2110.07585>.

640 Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn
 641 with local structure awareness. *arXiv preprint arXiv:2110.03753*, 2021.

642

643

644

645

646

647