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ABSTRACT

For Large Language Models (LLMs) to be reliably deployed, models must
effectively know when not to answer: abstain. Chain-of-Thought (CoT)
prompting has been gained popularity for improving model performance by
ensuring structured outputs that follow a logical sequence. In this paper, we
first investigate how current abstention methods perform with CoT outputs,
finding that direct use of reasoning traces can degrade performance of existing
abstention methods by more than 5%. As a result, we introduce a new frame-
work for thinking about hallucinations in LLMs not as answering a question
incorrectly but instead as LLMs answering the wrong question. Based on this
framework, we develop a new class of state-of-the-art abstention methods called
Trace Inversion. First, we generate the reasoning trace of a model. Based
on only the trace, we then reconstruct the most likely query that the model
responded to. Finally, we compare the initial query with the reconstructed
query. Low similarity score between the initial query and reconstructed query
suggests that the model likely answered the question incorrectly and is flagged
to abstain. We perform extensive experiments to find impressive perfor-
mance gains with our Trace Inversion methods. The code is publicly available at:
https://anonymous.4open.science/r/trace-inversion-9EE0/.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive performance across question an-
swering (Tan et al., 2023; Li et al., 2024; Yang et al., 2024b), text-generation (Mo et al., 2024;
Kurihara et al., 2025; Wu, 2024; Mahapatra & Garain, 2024), and complex problem solving tasks
(Ge et al., 2023; Gao et al., 2024; Pei et al., 2025; Renze & Guven, 2024; Singhi et al., 2025). How-
ever, LLMs also have a tendency to “hallucinate” information (Zhang et al., 2025b; Yao et al., 2023;
Tonmoy et al., 2024; Huang et al., 2025), generate overly certain responses (Xiong et al., 2023; Tao
et al., 2024; Yang et al., 2024a), answer with conflicting or incomplete information (Xu et al., 2024a;
Lee et al., 2024; Tan et al., 2024; Xu et al., 2023), and perpetuate social biases (Wan et al., 2023;
Kong et al., 2024; Taubenfeld et al., 2024). For LLMs to be reliably deployed, models must be
able to abstain from answering questions they do not know the answers to. Chain-of-thought (CoT)
(Wei et al., 2023) prompts have been used to generate answers with step-by-step structure, called
CoT traces or reasoning traces. In doing so, users require the model’s output to have more structure
and logical processing, inherently beneficial for domains like mathematical problem solving (Fung
et al., 2023; Yang et al., 2024c). It has been empirically shown that language models have improved
performance if they output reasoning trace tokens first (Nye et al., 2021; Zhang et al., 2022; Hsieh
et al., 2023), resulting in an interest to fine-tune models with these traces. Reasoning fine-tuning
LLMs has provided performance gains on various benchmarks (Vaillancourt & Thompson, 2024;
Zhang et al., 2025a; Sprague et al., 2024; Zelikman et al., 2022; Luo et al., 2025). However, reason-
ing fine-tuning has been shown to further degrade abstention ability (Kirichenko et al., 2025). We
thus pose the question: can we use reasoning traces to improve model abstention?

Previous approaches have posed abstention as a function of uncertainty, where a model should ab-
stain from generating low-confidence outputs. These abstention methods have employed techniques
to estimate the model’s confidence and then ensure the model abstains if the confidence score for
a response falls below some threshold (Feng et al., 2024). Model confidence has been calculated
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using token probabilities (Radford et al., 2019; Gupta et al., 2024) or even verbalized confidence
from the model itself (Lin et al., 2022; Tian et al., 2023). Self-consistency of generated reasoning
traces has also been used as a metric of model certainty (Wang et al., 2022; Besta et al., 2024) where
more inconsistent or contradictory traces signify that the model should abstain. While these meth-
ods have the potential to build upon a rich landscape of uncertainty quantification research, model
certainty may not be the best signal for model correctness (Xiao et al., 2025; von Clarmann et al.,
2021), as seen by high-certainty hallucinations (Simhi et al., 2025) where models confidently an-
swer questions incorrectly. Instead, we position model abstention as a decision based on the model’s
knowledge gap corresponding to the user’s question. But how can we detect such knowledge gaps?
Prompting approaches and multi-LLM systems review model responses in an attempt to identify
gaps in model knowledge (Wen et al., 2025; Feng et al., 2024). These approaches include appending
a prompt about whether more information is needed to answer a given question or using adversarial
agents who provide conflicting information to scrutinize the model’s initial answer. However, sev-
eral works have explored how LLM errors are may be correlated with one another (Laurito et al.,
2024; Kim et al., 2025), potentially causing issues with prompting and multi-LLM hallucination
detection.

In this work, we first investigate how current confidence estimation and answer reviewing methods
for abstention perform with CoT outputs. In addition to exploring how current methods perform with
CoT outputs, we propose a new class of methods with reasoning traces called Trace Inversion. We
introduce a new framework for thinking about abstention in LLMs as query-based knowledge gap
detection. In our framework, an abstention decision, or potential hallucination, is a consequence of
the model answering the wrong question rather than the model answering a question incorrectly. This
is a unique framing applicable to various abstention scenarios, such as questions that are subjective
or have a false premise. First, we generate the reasoning trace of a model. Based on only the
trace, we then reconstruct the most likely query that the model responded to. Finally, we compare
the initial query with the reconstructed query. Low similarity score between the initial query and
reconstructed query suggests that the model likely answered the question incorrectly and is flagged
to abstain (see Figure 1). We perform extensive experiments on eight datasets across domains with
five diverse models.

The main contributions of this work are as follows:

1. We demonstrate how direct use of reasoning traces can degrade performance of existing
abstention methods by an average 3.47%, reaching >5% for reading comprehension and
bias benchmarking datasets.

2. We introduce a new framework to think about hallucinations in LLMs as models answering
a different question than the one posed by the user.

3. We provide a new set of state-of-the-art method in abstention by inverting reasoning traces,
resulting in performance gains up to 19.8%.

2 RELATED WORK

Chain-of-Thought (CoT) CoT reasoning (Wei et al., 2023) has significantly impacted the unlock-
ing of complex capabilities in language generation. By explicitly eliciting a series of intermediate
reasoning steps, in the form of a scratchpad (Nye et al., 2021) or interpretable window, CoT has
become a powerful tool in enhancing the performance of LLMs on tasks that require structured and
logical processing (Lightman et al., 2023; Lee et al., 2025). Hu et al. (2024) studies this through a
theoretical lens by showing CoT as a statistical estimation process, where a model using CoT oper-
ates as a Bayesian estimator. The success of CoT prompting isn’t limited to few-shot scenarios; with
the improved pre-training and instruction-following capabilities LLMs can act as zero-shot reason-
ers too, invoked effectively by appending “Let’s think step by step” before answering (Kojima et al.,
2022).

Limitations of Chain-of-Thought While the “interpretable window” of human-like step-by-step
reasoning appears to offer an understanding into the internal thinking of LLMs, recent studies (Chen
et al., 2025; Arcuschin et al., 2025; Turpin et al., 2023) have revealed this interpretability to be su-
perficial. The perceived effectiveness of this interpretability might not align with the model’s true
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Figure 1: Overview of our three step trace inversion approach. We provide an example of how our
method particularly detects subtle hallucinations in a reasoning trace by comparing the user query q
with the model-interpreted query q→. In this provided example, the reconstructed query q→ based on
the trace includes the hallucinated context of how many hours Sam works per week. We interpret
this as a different question, since the ambiguity from the initial user query q (which is unanswerable
without more information) is not present in the model query, hence the model is answering the wrong

question. Because the user query and model query are meaningfully different, the model abstains.

internal workings (Bhambri et al., 2025; Korbak et al., 2025). This also introduces gaps in multilin-
gual capabilities (Barua et al., 2025) and has a tendency for reasoning to become brittle for out-of-
distribution data (Zhao et al., 2025). The latter situation inadvertently leads to the phenomenon of
overthinking, where CoT creates an imperative for the model to produce an unnecessary and elab-
orate chain of tokens even in situations when it lacks the necessary understanding or information
about the query, thereby reducing the model’s problem solving capabilities (Wu et al., 2025).

Model Abstention As use of LLMs has exploded in various user-facing applications while the
interpretability of such models remains limited, the greater community has steered into enforcing
reliability mechanisms that address ‘abstention’ (Wen et al., 2025; Kirichenko et al., 2025), a meta-
capability enabling a model to decline providing a definitive answer for uncertain, unanswerable,
or potentially harmful prompts. Tomani et al. (2024) have investigated the model’s ability to detect
its own knowledge gaps and to signal uncertainty as a safeguard against overconfidence or hallu-
cinated generations. Even with a model’s statistical uncertainty (via token probabilities), semantic
uncertainty, or verbalized uncertainty (Xiong et al., 2023; Xu et al., 2024b; Lin et al., 2022), they
often fail to correlate faithfully with actual correctness (Madhusudhan et al., 2025; Yadkori et al.,
2024). Feng et al. (2024) overcomes this limitation by exploring multi-LLM collaboration rather
than relying on a single monolithic model. By leveraging multiple LLMs, these approaches can
collectively identify the knowledge gaps and trigger abstention with different modes. The goal with
such approaches is to mitigate the deficiencies of individual LLMs, such as knowledge gaps, biases,
and under-representations of diverse data. However, multi-LLM approaches may suffer from error
correlation (Kim et al., 2025; Laurito et al., 2024), self-bias (Xu et al., 2024c; Panickssery et al.,
2024), and other documented LLM-as-judge limitations (Wang et al., 2024; Szymanski et al., 2025).

3 REASONING TRACES CAN DEGRADE MODEL ABSTENTION

Despite the proliferation of reasoning fine-tuned models and interest in using reasoning traces for
performance gains, the use of CoT outputs in the abstention setting has remained limited. We
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investigate how the use of CoT outputs affects current abstention methods. Specifically, we use
five baseline methods from two representative groups: confidence estimation and answer reviewing.
Confidence estimation methods estimate the model’s certainty and then ensure the model abstains if
the certainty score for a response falls below some threshold. These methods rely on good calibration
between the notions of model certainty and correctness. Answer reviewing methods use LLMs to
evaluate outputs in order to identify gaps in knowledge. We compare the abstention performance of
baselines when relying solely on the model’s final answer versus when incorporating CoT-prompted
outputs.

3.1 BASELINES

For confidence estimation methods, we use a held-out development set H = {(qi, āi)}Ni=1. For
each question qi, the LLM produces an answer ai = LLM(qi) and calculate a confidence score
pi → [0, 1]. We define correctness labels as

yi =

{
1 if ai = āi,
0 if ai ↑= āi.

Candidate thresholds are taken from a discretized grid T = {0.01, 0.02, . . . , 0.99}. For each thresh-
old t → T , we apply the abstention rule and compute the abstain error

âi(t) =

{
abstain, pi < t,
ai, pi ↓ t,

, E(t) =
N∑

i=1

1
(
pi < t ↔ yi = 1

)
+ 1

(
pi ↓ t ↔ yi = 0

)
.

The first term in E(t) penalizes unnecessary abstentions on correct answers, while the second
penalizes failures to abstain on incorrect answers. The abstention threshold is then chosen as
p→ = argmint↑T E(t). At inference time, the model answers if pi ↓ p→ and abstains otherwise
(Feng et al., 2024). The following two methods use internal calibration and verbalized calibration to
estimate model confidence.

Token probability (TOKENPROB) We compute the confidence score pi for a question using the
top-k token probabilities over the entire answer span where P is the language model’s predicted
token distribution at the final answer index. Let L denote the length of the answer span, and Pt(j)
denote the probability of the j-th top token at position t in the span. Then:

pi =
1

L

L∑

t=1

1

k

k∑

j=1

logPt(j)

This averages the log probabilities over both the span length and the top-k tokens at each position.
We use k = 5 for this baseline.

Ask for calibration (ASKCALI) The confidence score pi is the LLM-provided calibration esti-
mate (Tian et al., 2023). Full prompts for each method are provided in Appendix A.

Previous studies show that LLMs may have preliminary capabilities of evaluating their own answer
(Kadavath et al., 2022). The following baselines utilize LLMs to assess and review the model’s
own outputs. Based on the model’s assessment, an abstention decision is made. We consider both
individual and multi-LLM approaches for answer reviewing.

Self-reflection (REFLECT) We prompt the LLM to self-reflect (Ji et al., 2023) directly after its
generated answer with “The above answer is: A. True B. False”. LLMs should abstain when they
deem the generated answer ai as false.

Cooperative system (COOPERATE) We generate k experts from the LLM on domains d1, . . . , dk
through prompting-based self-specialization (Feng et al., 2024). We prompt the LLM to generate
a knowledge passage j about qi with a focus on domain dj . A domain-specific feedback is then
generated by prepending the knowledge passage fj = LLM(knowledgej , qi, ai) and prompting the
model to respond as a reviewer. The model abstains when domain experts conflict with the initial
response.
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Competitive system (COMPETE) Given initial answer ai for question qi, we prompt the LLM to
generate k alternative answers b = {b1, . . . bk}. We then instruct the LLM to answer qi again with
conflicting information from an answer in answer set b prepended (Feng et al., 2024). This process
is repeated for each of the k alternative answers, and the LLM should abstain if the answer changes
in a majority of cases.

COT VARIANTS OF BASELINES

We create CoT variants of the five baselines above: Tr-TOKENPROB, Tr-ASKCALI,
Tr-REFLECT, Tr-COOPERATE, and Tr-COMPETE. We repeat the procedures above except the
answer ai now also includes a trace response ri as the model is prompted with the CoT phrase
appended to the original user query:

Provide step-by-step reasoning, with ‘Step 1:’, ‘Step 2:’, etc. followed by ‘Final answer:.’

3.2 EXPERIMENTAL SETUP

Figure 2: Summary of main evaluation metrics and dataset breadth. 2a) Details how we evaluate
method performance, considering both answerable and unanswerable questions. 2b) Includes infor-
mation on the domain and question types across the eight datasets employed.

Datasets We use eight QA datasets across various domains and abstention scenarios (see Ap-
pendix C): MMLU (Hendrycks et al., 2021); Knowledge Crosswords (Ding et al., 2024); Hellaswag
(Zellers et al., 2019); Propaganda (Piskorski et al., 2023); Bias Benchmark for Question Answering
(BBQ) (Parrish et al., 2022); ‘Misconceptions’ task also from BIG-Bench (Srivastava et al., 2023);
Quail (Rogers et al., 2020); GSM-MC (Zhang et al., 2024; Cobbe et al., 2021). These datasets
vary in the nature of abstention expected of a model. For example, certain datasets like GSM-MC
contain all answerable questions but of varying difficulty, where the model is expected to abstain
when it does not have the knowledge to answer. In other datasets, there are a mix of answerable and
unanswerable questions, like Quail or BBQ (see Figure 2).

Evaluation Metrics We use two main metrics for evaluating methods (Wen et al., 2025). First,
we use reliable accuracy (R-Acc), which is the accuracy of LLM outputs when the LLM answers.
Second, we use abstention accuracy (A-Acc), which is the correctness of abstention decisions (see
Figure 2).

Model Selection To ensure sufficient model breadth, we choose five models of varying size, train-
ing paradigms, and model series: Mistral-7B-Instruct-v0.3 (Jiang et al., 2023), phi-4 (Abdin et al.,
2024), Qwen2.5-32B (Team, 2024), DeepSeek-R1-Distill-Qwen-32B (DeepSeek-AI et al., 2025),
and gpt-oss-20b (OpenAI, 2025). We provide the specifics of model initialization and hyperparam-
eters in Appendix C.
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3.3 RESULTS

We report the results in Table 1. Across models and datasets, we observe that incorporating chain-of-
thought (CoT) outputs into abstention methods consistently reduces reliable accuracy compared to
their standard counterparts by an average 3.47%. This degradation is not confined to any single ab-
stention strategy: token-level confidence (TOKENPROB), calibration-based approaches (ASKCALI),
self-reflection mechanisms (REFLECT), cooperation-based collaboration (COOPERATE), and ad-
versarial collaboration (COMPETE) all exhibit drops in reliable accuracy when applied to CoT-
augmented generations.

We notice larger performance decreases of more than 5.04% on average across models and methods
for bias dataset BBQ and reading comprehension dataset Quail, but the effect is also robust across
domains with diverse reasoning requirements. For instance, COMPETE achieves 0.837 on MMLU
without CoT but drops to 0.776 (-0.061) with CoT. Importantly, this degradation holds regardless of
model family or scale, spanning smaller open-weight models (Mistral-7B, phi-4) to larger frontier
systems (Qwen2.5-32B, DeepSeek-R1-Distill-Qwen-32B, gpt-oss-20b). We observe similar drops
in abstention accuracy with an average decrease of 2.26% (see Appendix E).

We posit that CoT generations do not provide additional information for abstention mechanisms
beyond what is already available in direct answers, since abstention ability declines (see Appendix
D). Thus, the observed decrease in reliable accuracy highlights a misalignment between abstention
signals in current methods and the style and verbosity of CoT outputs. There may be many rea-
sons behind degradation of abstention for these methods due to use of CoT outputs. Uncertainty
estimates of CoT outputs have been shown to be miscalibrated (Fu et al., 2025a), hindering the
performance of confidence estimation methods. Moreover, the persuasiveness and verbosity may
impede self-evaluation (de Wynter & Yuan, 2025). This finding suggests that naive application of
abstention methods to CoT traces can systematically hinder model confidence estimation and un-
dercut a model’s ability to review answers, motivating the need for abstention methods explicitly
adapted to reasoning-style generations.

MMLU K-Crosswords Hellaswag Propaganda

M P Q D G M P Q D G M P Q D G M P Q D G

TOKENPROB .661 .374 .645 .500 .485 .489 .420 .737 .578 .525 .678 .602 .693 .610 .598 .333 .323 .596 .470 .445
Tr-TOKENPROB .653 .349 .622 .488 .472 .498 .166 .635 .510 .520 .676 .415 .665 .630 .620 .330 .186 .593 .472 .480

ASKCALI .697 .434 .636 .643 .618 .550 .189 .713 .580 .600 .618 .708 .721 .677 .600 .608 .800 .669 .693 .585
Tr-ASKCALI .707 .369 .000 .532 .499 .709 .138 .727 .600 .590 .672 .671 .655 .640 .630 .733 .680 .667 .684 .675

REFLECT .662 .369 .398 .390 .375 .498 .430 .683 .500 .495 .673 .682 .660 .655 .650 .340 .360 .672 .674 .465
Tr-REFLECT .660 .350 .391 .380 .395 .504 .400 .615 .502 .505 .675 .664 .652 .645 .640 .315 .352 .667 .620 .525

COOPERATE .680 .388 .424 .410 .431 .498 .184 .724 .694 .700 .691 .385 .663 .635 .647 .450 .325 .500 .467 .452
Tr-COOPERATE .668 .394 .392 .400 .415 .498 .215 .707 .540 .550 .655 .416 .627 .667 .660 .474 .205 .450 .432 .463

COMPETE .837 .431 .681 .701 .695 .569 .542 .724 .608 .611 .812 .721 .729 .717 .711 .402 .434 .835 .427 .395
Tr-COMPETE .776 .347 .670 .680 .690 .589 .560 .653 .590 .600 .777 .705 .701 .690 .685 .394 .420 .853 .410 .407

BBQ Misconceptions Quail GSM

M P Q D G M P Q D G M P Q D G M P Q D G

TOKENPROB .725 .710 .447 .568 .578 .714 .239 .393 .609 .511 .726 .322 .806 .793 .781 .368 .370 .500 .481 .785

Tr-TOKENPROB .719 .705 .556 .550 .540 .721 .125 .400 .571 .566 .718 .262 .770 .687 .695 .353 .288 .504 .518 .679

ASKCALI .785 .792 .689 .695 .701 .703 .286 .627 .613 .615 .769 .765 .716 .717 .703 .368 .375 .286 .291 .796

Tr-ASKCALI .733 .730 .685 .680 .675 .684 .281 .650 .645 .640 .667 .660 .655 .650 .645 .342 .226 .274 .280 .687

REFLECT .672 .670 .661 .675 .663 .692 .690 .683 .676 .671 .711 .708 .705 .700 .698 .392 .395 .390 .385 .683
Tr-REFLECT .652 .655 .667 .660 .665 .652 .655 .667 .660 .665 .665 .670 .667 .662 .660 .370 .372 .375 .380 .686

COOPERATE .669 .671 .526 .530 .535 .696 .700 .603 .607 .611 .774 .793 .762 .763 .758 .420 .427 .398 .403 .407

Tr-COOPERATE .662 .660 .286 .290 .295 .720 .725 .600 .605 .610 .779 .780 .758 .755 .750 .416 .420 .385 .390 .395

COMPETE .759 .755 .254 .293 .268 .813 .811 .772 .740 .735 .793 .788 .786 .781 .777 .635 .648 .656 .675 .651
Tr-COMPETE .713 .723 .266 .270 .274 .796 .795 .750 .755 .763 .690 .696 .701 .704 .713 .641 .646 .653 .652 .661

Table 1: Results showing degradation of abstention baselines with CoT outputs. This table shows re-
duced reliable accuracy (R-Acc) across five models and eight datasets for each of the five abstention
baselines. For brevity, we use a mapping for this table where model abbreviations are as follows: M
for Mistral-7B-Instruct-v0.3; P for phi-4; Q for Qwen2.5-32B; D for DeepSeek-R1-Distill-Qwen-
32B; and G for gpt-oss-20b. Red rows indicate use of CoT outputs. Bold values indicate the higher
performance between the baseline and CoT variant.
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4 INVERSION OF REASONING TRACES

Motivated by our findings of how CoT outputs degrade current abstention methods, we propose a
new set of methods: Trace Inversion. Our approach builds on the observation that reasoning-style
generations, such as chain-of-thought traces, provide a window into how models internally interpret
user queries. Rather than thinking about abstention decisions as a consequence of a “knowledge
gap” that can be identified by reviewing model answers or correlated with model certainty, we
propose a query-based approach. We posit that hallucinations are the result of models answering
a different question than the intended query posed by the user (see Figure 3). In other words, we
frame LLMs as generative models that first resolve the user query q into an internal interpretation q→

before generating an answer from pω(y|q→). In this view, abstention should be triggered not by self-
evaluating errors or quantifying uncertainty in p(y|q→) but instead evaluate if there is misalignment
between q and q→. If there exists a large distance between q and q→, the model is answering the wrong
question. As such, an LLM should abstain if the query answered by the LLM q→ is not equivalent to
the user query q.

First, we generate the reasoning trace of a model from user query q. Based on only the trace, we
then reconstruct the most likely query that the model q→ responded to by prompting the LLM (see
Appendix A for detailed prompt). Finally, we compare the initial query with the reconstructed
query. Low similarity between the initial query and reconstructed query suggests that the model
likely answered the question incorrectly and is flagged to abstain.

Figure 3: Examples of how distinguishing between a user query q compared to model query q→ can
reveal hallucination patterns. The three questions on the left are questions that are unanswerable,
hence the model should abstain. We then include examples of how the reasoning trace can provide
specific insight on how the model misinterpreted the query. Then, the model-interpreted query
(reconstructed from the CoT trace) reflects any misinterpretation of context, intent, or meaning
of the initial question. Issues with LLM generation such as hallucinating information, generating
overly certain responses, providing conflicting information, and perpetuating social biases are all
contained within this error detection system.

To compare the distance (similarity) between the initial query and reconstructed query, we use the
following three methods:

• Sentence embedding similarity (TrInv-SE): We embed q and q→ using the sentence trans-
former model all-MiniLM-L6-v2 and compute the cosine similarity of the two vector
representations ωvq and ωvq→ as the similarity score.

• LLM assessment (TrInv-LLM): We prompt the LLM to compare q and q→ for similarity
in terms of intent, framing, and context provided.

• Groundedness detection with Granite Guardian (TrInv-GROUND): We use the ground-
edness risk detection capability of Granite-Guardian-3.3-8b (Padhi et al., 2024) to assess
whether q→ is grounded in q. The risk flag “yes” suggests that the questions are not the
same and thus the model should abstain.
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4.1 TRACE INVERSION OUTPERFORMS ABSTENTION BASELINES

We report the results in Table 2 and Figure 4. We use two additional baselines SC and ATC that
measure model confidence by evaluating the consistency of multiple generated reasoning traces
(see Appendix B). Across all eight datasets and five model families, our Trace Inversion methods
consistently outperform previous abstention baselines, achieving the highest reliable accuracy in 28
out of 40 evaluated settings. Moreover, Trace Inversion methods rank among the top two in 37 out
of 40 settings, indicating a broadly robust improvement over competing approaches.

Specifically, the Trace Inversion variants show notable gains across diverse domains, from common-
sense reasoning (Hellaswag, GSM) to specialized knowledge tasks (BBQ, Misconceptions) and stan-
dardized benchmarks (MMLU, K-Crosswords, Propaganda, Quail). For example, TrInv-GROUND
achieves impressive performance in nearly all MMLU and GSM evaluations (with gains up to
+0.198), while TrInv-LLM and TrInv-SE yield top-tier performance in K-Crosswords and Hel-
laswag. For the BBQ dataset, TrInv-GROUND with Mistral-7B reaches 0.929 R-Acc, a +0.144
gain over the strongest baseline (ASKCALI at 0.785). Similarly, with gpt-oss-20b, TrInv-GROUND
achieves 0.793, +0.097 higher than the next best method. This demonstrates that Trace Inversion is
effective across both small- and large-scale models. We observe similar gains in abstention accuracy
(see Appendix E).

MMLU K-Crosswords Hellaswag Propaganda

M P Q D G M P Q D G M P Q D G M P Q D G

TOKENPROB .661 .374 .645 .500 .485 .489 .420 .737 .578 .525 .678 .602 .693 .610 .598 .333 .323 .596 .470 .445
ASKCALI .697 .434 .636 .643 .618 .550 .189 .713 .580 .600 .618 .708 .721 .677 .600 .608 .800 .669 .693 .585
REFLECT .662 .369 .398 .390 .375 .498 .430 .683 .500 .495 .673 .682 .660 .655 .650 .340 .360 .672 .674 .465
COOPERATE .680 .388 .424 .410 .431 .498 .184 .724 .694 .701 .691 .385 .663 .635 .647 .450 .325 .500 .467 .452
COMPETE .837 .431 .681 .701 .695 .569 .542 .724 .608 .611 .812 .721 .729 .717 .711 .402 .434 .835 .427 .395
SC .678 .365 .344 .521 .412 .521 .397 .389 .525 .475 .697 .412 .389 .618 .533 .326 .389 .445 .363 .466
ATC .710 .732 .398 .580 .588 .550 .412 .450 .315 .660 .660 .498 .475 .289 .539 .450 .498 .512 .524 .570

TrInv-SE .571 .250 .398 .899 .590 .500 .412 .789 .719 .655 .688 .475 .733 .812 .655 .501 .498 .512 .614 .590
TrInv-LLM .702 .471 .650 .857 .588 .479 .654 .644 .812 .627 .743 .783 .769 .649 .688 .457 .516 .421 .400 .710

TrInv-GROUND .788 .612 .685 .675 .699 .602 .497 .787 .525 .800 .814 .498 .780 .612 .656 .409 .504 .929 .524 .688

BBQ Misconceptions Quail GSM

M P Q D G M P Q D G M P Q D G M P Q D G

TOKENPROB .725 .710 .447 .568 .578 .714 .239 .393 .609 .511 .726 .322 .806 .793 .781 .368 .370 .500 .481 .785
ASKCALI .785 .792 .689 .695 .701 .703 .286 .627 .613 .615 .769 .765 .716 .717 .703 .368 .375 .286 .291 .796

REFLECT .672 .670 .661 .675 .663 .692 .690 .683 .676 .671 .711 .708 .705 .700 .698 .392 .395 .390 .385 .683
COOPERATE .669 .671 .526 .530 .535 .696 .702 .603 .607 .611 .774 .793 .762 .763 .758 .420 .427 .398 .403 .407
COMPETE .759 .755 .254 .293 .268 .813 .811 .772 .740 .735 .793 .788 .786 .781 .777 .635 .648 .656 .675 .651
SC .704 .365 .344 .521 .714 .412 .333 .389 .728 .475 .498 .363 .411 .466 .533 .525 .445 .512 .577 .590
ATC .778 .398 .450 .580 .588 .439 .660 .512 .625 .670 .498 .412 .471 .524 .566 .498 .531 .543 .597 .600

TrInv-SE .812 .583 .501 .819 .688 .588 .512 .702 .813 .655 .604 .471 .523 .578 .611 .598 .550 .612 .680 .703
TrInv-LLM .754 .753 .742 .667 .661 .812 .827 .574 .748 .882 .493 .672 .655 .814 .690 .605 .612 .642 .708 .719
TrInv-GROUND .929 .812 .657 .677 .700 .784 .529 .800 .782 .886 .534 .798 .791 .848 .798 .607 .720 .657 .689 .793

TOKENPROB ASKCALI REFLECT COOPERATE COMPETE SC ATC TrInv-SE TrInv-LLM TrInv-GROUND

0.555 0.611 0.579 0.560 0.649 0.479 0.533 0.612 0.666 0.697

(a) Reliable accuracy (R-Acc) for each method averaged across all settings.

Table 2: Results showing how our Trace Inversion methods outperform previous abstention baselines
by reliable accuracy (R-Acc) across five models and eight datasets. For brevity, we again use a
mapping for this table where model abbreviations are as follows: M for Mistral-7B-Instruct-v0.3; P
for phi-4; Q for Qwen2.5-32B; D for DeepSeek-R1-Distill-Qwen-32B; and G for gpt-oss-20b. Blue
rows correspond to our Trace Inversion methods. Best results in bold and second best in underline.
Trace Inversion methods perform the best in 28 out of 40 settings and at least top two of the ten
methods in 37 out of 40 settings.

Importantly, the improvement afforded by Trace Inversion methods addresses the degradation ob-
served when using CoT outputs in prior baselines (as indicated by cross-hatched regions in Figure 4).
Unlike CoT-based predictions, Trace Inversion methods leverage inverted traces to recover the most
reliable model behavior, achieving higher alignment between abstention mechanisms and model
outputs. By thinking about abstention as evaluating whether the model is actually answering the
wrong question and leveraging the information provided by reasoning traces, Trace Inversion is ad-
dressing the core problem of abstention. Overall, these results indicate that Trace Inversion provides
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Figure 4: We highlight two of the 28 settings in which Trace Inversion methods outperform cur-
rent abstention baselines. We also show the aforementioned CoT-related degradation of abstention
through the cross-hatching portion.

a systematic and robust enhancement to abstention strategies, improving reliable accuracy across
heterogeneous tasks and models.

4.2 LIMITATIONS AND FUTURE WORK

Our methods have limitations and lay the ground work for future study. First, our evaluation fo-
cuses on a variety of benchmarks but does not capture the full variety of real-world queries, such as
those with false premises or temporal lags (Kirichenko et al., 2025), where abstention may behave
differently. Second, we frame abstention purely in terms of knowledge gaps, without considering
human-valued reasons for abstention such as safety or harm reduction with queries (Yang et al.,
2024d; Zhou et al., 2024). Finally, even though we observe promising gains in abstention perfor-
mance, our method depends on reconstructing queries through LLM generations, which introduces
potential noise; future work could explore reconstruction methods that leverage model internals to
obtain more faithful representations of the model’s implicit query.

5 CONCLUSION

This work introduces Trace Inversion, a set of methods for improving model abstention by invert-
ing reasoning traces. Across five LLMs and eight benchmark datasets, Trace Inversion outperformed
state-of-the-art abstention baselines, demonstrating its robustness to variety of tasks and domains.
We also propose a new framework for understanding hallucinations: rather than treating them as
models answering questions incorrectly, we frame them as models answering the wrong question.
This contribution suggests several avenues for future research, including the development of meth-
ods to probe misaligned internal reasoning, the design of training objectives paradigms that mini-
mize exploration of spurious reasoning paths, and the creation of evaluation benchmarks that capture
subtle errors in reasoning alignment. Finally, our findings reveal that Chain-of-Thought outputs can
sometimes degrade abstention baselines; Trace Inversion counteracts this issue by repurposing rea-
soning traces, ultimately turning them into a source of strength for abstention.

REPRODUCIBILITY STATEMENT

We have taken steps in this work to ensure the reproducibility of our results. All models and datasets
used in our experiments are available and we release the complete source code. In the main paper
and appendices material, we provide complete details of all experimental setups, including model
architectures and hyperparameters. We believe that the measures we have taken to ensure repro-
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ducibility will facilitate straightforward replication and verification of our findings, as well as allow
the community to build upon our results in the future.
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