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Abstract

Large language models have emerged as an important tool for information ex-
traction and as scientific assistants in materials science and discovery. However,
their performance is limited due to a lack of domain expertise. In this work, we
propose LLAMAT models, namely, LLAMAT-2-7B and LLAMAT-3-8B, which
are obtained by continuously pre-training META’s LLaMA-2-7B and LLaMA-3-
8B models, respectively, on a large corpus of materials science text to improve
their domain expertise. We also developed LLAMAT-Chat models, the instruction
fine-tuned variants of LLAMAT models tailored through a dataset of one million
instruction-output pairs, enabling interaction and information extraction abilities
for the materials science domain. We show that LLAMAT achieves state-of-the-art
performance on several information extraction tasks from materials science text,
where LLAMAT-3-8B emerges as the best model. We also demonstrate the appli-
cation of the developed model on structured information extraction capabilities of
the developed chat models and compare their performance on 4 datasets ranging
from named entity and relation extraction from text and understanding composition
tables from materials science research papers.

1 Introduction

Knowledge about materials has been reported in the form of text, which includes books, research
papers, patents, and technical reports, to name a few. It is humanly intractable for humans to go
through a large amount of text and find answers to specific questions related to different materials
science aspects[1, 2]. Dissemination of textual information in a natural language is an important
aspect of democratising access to knowledge about materials science. However, developing a model
capable of performing different types of tasks with high accuracy is a challenging task, which has
been taken up by several researchers trying to address it by developing foundational models like large
language models (LLMs) [3, 4].

LLMs have started revolutionizing both scientific and non-scientific domains. Due to their capability
to perform a variety of tasks by understanding input in human language, they are also called founda-
tional models. Recently, several researchers have attempted to develop and understand the capabilities
of foundational models for chemistry ([5, 6]) and the medical domain([7]) or use general-purpose
foundational models for domain-specific tasks either directly or after finetuning([8–12]). The benefits
of domain adaptation of foundational models are well documented. Considering the wide variety of
sub-domains in materials science, a foundational model will enable the researchers to get the answers
to highly specialised questions.
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In response to the growing need for a foundational language model tailored to the domain of materials
science, we propose LLaMat-2 and LLaMat-3 (Large Language Model for Materials Science).
These models build upon the architecture of LLaMA-2-7B[13] and LLaMA-3-8B[14] respectively,
undergoing further pretraining on a carefully curated corpus of high-quality materials science texts to
enhance the models’ domain-specific knowledge and performance on downstream tasks.

Figure 1: LLAMAT and LLAMAT-Chat development
pipeline

To provide LLAMAT with conversa-
tional abilities, we introduce LLA-
MAT-Chat models which are devel-
oped by instruction fine-tuning (IFT)
on a dataset comprising ≈ one mil-
lion instruction-output pairs. The IFT
process equips the model with the ca-
pability to understand and generate
responses based on given instructions,
thus facilitating interactive and user-
friendly applications. The chat mod-
els are proficient in performing classi-
cal natural language processing (NLP)
tasks such as Named Entity Recogni-
tion, Abstract Classification, Relation
Extraction, and Event Extraction for
materials science datasets. In addition
to these tasks, LLAMAT-Chat models
can also extract information in a structured way and understand complex data structures like tables
from materials science research papers. Fig. 1 shows the pipeline of development of LLAMAT and
LLAMAT-Chat models and their applications.

2 R2CID - Pretrain Dataset
To obtain LLAMAT models by continued pretraining of the LLaMA models, we consider the text
from Research papers, a subset of Redpajama dataset, Cif (crystallographic information files) files
Dataset. We call our training corpus the R2CID database. The details of each part are provided as
follows.

Research Papers: We sourced research papers from around 500 Elsevier[15] journals and 300
Springer[16] journals to compile a comprehensive and high-quality dataset. The inclusion criteria
required full-text availability in XML format for Elsevier papers and HTML format for Springer
papers, ensuring compatibility with our data processing pipeline. The choice of Elsevier and Springer
journals was influenced by the constraints of our institution’s subscription contract, which provided
access to a wide range of journals from these publishers. This contractual limitation shaped the
scope of our dataset. The selected research papers’ Digital Object Identifiers (DOIs) were retrieved
using the CrossRef API[17]. After obtaining the DOIs, the full texts of the research papers were
downloaded using the publisher specific APIs[18, 16]. These APIs facilitated access to the papers in
the specified formats (XML for Elsevier and HTML for Springer), which were then incorporated into
the R2CID corpus.

RedPajama Sample: The RedPajama dataset[19] was employed as the foundational corpus for the
initial training phase of the LLaMA-2 model. We systematically extracted approximately 700 million
tokens from this corpus to ensure a representative sample. The primary objective of incorporating this
subset into R2CID is to address the issue of catastrophic forgetting, thereby preserving the model’s
comprehension and utility derived from its original, general-purpose training corpus. This ensures
the model retains its foundational knowledge while effectively assimilating new information.

Crystallographic Information Files: While many text-based crystal representations exist [20],
concrete material structures are often best obtained through diffraction studies and are reported as
Crystallography Information Files. These are standardized text files used for storing and exchanging
crystallographic data. These files contain unit cell parameters like the lengths of cell edges and angles
between them. They also include symmetry information, such as the space group and symmetry
operations, and atomic coordinates that specify the positions of atoms within the unit cell. To allow
an increased understanding of CIF files, we considered a total of 470k CIF files and obtained their
description in natural language using RoboCrystallographer[21]. The R2CID consists of these CIF
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files and their descriptions from the Materials Project[22], Google GNoME[23], and AMSCSD
database[24].
Merging the components to form R2CID: To enhance the effectiveness of model training and
mitigate catastrophic forgetting, research papers were periodically interleaved with text from the
RedPajama corpus. The periodic interleaving strategy was refined through a series of empirical
evaluations. The selected interleaving period of 100 million research-related tokens with 2.3 million
RedPajama tokens provided a balance that enhanced the model’s ability to generalize and retain
relevant information from both datasets. The CIF files were included in the posterior 10% of the
corpus and interleaved with research papers.

3 Pretraining Methodology
LLAMAT-2 and LLAMAT-3 were initialised with weights of LLaMA-2-7B and LLaMA-3-8B,
respectively, and then pretrained on R2CID for one epoch. The learning rate for both the models was
initialised at 0, increased to 3 × 10−4 and 7 × 10−5 and then adhered to a cosine decay schedule to
stop at 3 × 10−5 and 7 × 10−6 for LLAMAT-2 and LLAMAT-3, respectively. The pretraining of
LLAMAT-2 was done using the Megatron-LLM library introduced by [25] and extended to LLaMA-
2-7B by [7], which utilises 3D model parallelism for efficient training of LLMs. The pretraining was
done on 16 A100 NVIDIA GPUs for approximately 9 days. We train LLAMAT-3 model on 2 ×
Cerebras CS-2 Wafer Scale Engine (WSE-2) in approximately 3 days. The CS-2 have 850, 000 core
optimized for sparse linear algebra and 40 GB of on chip memory making it incredibly fast. It has
a weight streaming based novel software stack that eliminates the need for model parallelism and
enable linear scalability to hundred’s of CS-2 without any code change [[26]].

4 Instruction Fine-Tune Methodology
LLAMAT-Chat models were initialized with the weights of the respective LLAMAT models. The
instruction fine-tuning process was conducted in three distinct stages:

• Stage 1: LLAMAT-Chat was first fine-tuned on the OpenOrca dataset for one epoch. The
objective of this stage was to enable the pretrained model to learn how to follow common
English instructions.

• Stage 2: The model was further fine-tuned on a dataset of mathematical questions for three
epochs. This stage aimed to enhance the mathematical reasoning capabilities of LLAMAT-
Chat. Due to the relatively small size of this dataset, we observed a decrease in validation
loss over the three epochs.

• Stage 3: In the final stage, LLAMAT-Chat was fine-tuned on a combined dataset constructed
from MatSciInstruct, MatSciNLP, MatBookQA, and MaScQA (for one epoch).

The fine-tuning process was performed using the Megatron-LLM library. The learning rate for each
stage was initialized at 2 × 10−6 and increased to 2 × 10−5 over the first 10% of the total iterations.
Following this initial increase, the learning rate adhered to a cosine decay schedule. The same process
was followed for obtaining chat models of LLAMAT-2 and LLAMAT-3.

5 Results
5.1 Downstream Tasks Table 1: Details of downstream datasets

Task Dataset Train Val
sc sofc_sent 1893 1889
re structured_re 1788 1786

ner matscholar 1062 1061
ner sc_comics 937 936
sar synthesis_actions 565 569
re sc_comics 376 373
pc glass_non_glass 300 299
ee sc_comics 287 288

ner sofc_token 175 177
sf sofc_token 175 179

qna squad 1042 1042
mcq hellaswag 981 980
mcq boolqa 500 499

To continuously evaluate the improved under-
standing of Materials Science principles gained
by pretraining on R2CID and to measure any
potential degradation in understanding conversa-
tional or informal English, we curated a dataset
consisting of Materials Science and English
Comprehension tasks. Table 1 shows the list of
different tasks, datasets, and the number of sam-
ples in training and validation sets. The dataset
has the following tasks: sc: sentence classifica-
tion, re: relation extraction, ner: named entity
extraction, sar: synthesis action retrieval, a type
of classification task, pc: paragraph classifica-
tion, ee: entity extraction, sf: slot filling, qna:
question answering, and mcq : multiple choice question answering. The details of these tasks can be
found in [27]. The samples from the training set were used to fine-tune the models before evaluation
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Table 2: Left:Performance on val set of downstream tasks, Right: Performance on test set of
DISCOMAT dataset.

Model Macro F1 Micro F1
LLaMA-2-7B 77.745 84.239
LLAMAT-2 82.26 87.85

LLAMAT-2-Chat 84.66 89.51
LLaMA-3-8B 80.827 87.636
LLAMAT-3 83.706 89.704

LLAMAT-3-Chat 85.157 90.52

Task LLAMAT-2-7B LLAMAT-3-8B
exact-match 513/720 395/589
comptable 0.81 0.835
regextable 0.857 0.789

glass id 0.695 0.59
composition labels 0.331 0.621

chemical labels 0.645 0.627

on the validation set to ensure that the models learned to follow the instructions. The performance
of different models on these datasets is shown in Table 2. The Macro and Micro F1 scores were
averaged over all the materials science tasks. It can be observed from Table 2 that domain-specific
pretraining helped both LLaMA-2-7B and LLaMA-3-8B. However, the performance improvement is
more for the former than the latter. Overall, the LLAMAT-3-Chat model emerges as the best on this
dataset.
5.2 Structured information extraction
Extracting information in a structured manner allows ready conversion of extracted data to machine-
readable form. Since the proposed LLAMAT models possess domain knowledge and information
about structured data due to instruction fine-tuning, it is assumed these models shall perform rea-
sonably well on such tasks. To this end, we take the chat models and pre-train them further on
instruction-output pairs obtained by mixing four datasets: doping, general materials, metal-organic
frameworks [8], and DISCOMAT [28]. The first three tasks are related to extracting named entities
and their relations from the text, while the DISCOMAT dataset comprises tables from materials
science research papers. To convert the first three datasets for instruction fine-tuning, we create
six system prompts and use them as prefixes in a sentence comprising of the question, followed by
delimiters and then the answer, which is in the form of a JSON schema as proposed in the literature
[8](see Appendix 7.2.1). The original DiSCoMaT dataset was not meant for the instruction-finetuning
of language models. Hence, we transform the existing annotations into JSON objects, which shall
be generated by the language models when instructed. Considering the superior performance of
LLAMAT-Chat models on downstream data, we evaluate only LLAMAT-Chat models on these
datasets. Table 3 shows the F1 scores obtained using GPT-3, LLAMAT models on relation extraction
tasks. Table 2 shows the performance of LLAMAT models on table understanding tasks (dataset
detail in Appendix 7.2.2). It can be observed thatLLAMAT models exhibit reasonable performance
for both tasks which can be improved further by training on more data or using methods like LoRA.
Table 3: Named entity recognition and relation extraction scores for three tasks in materials science
using models with a JSON output schema

Task Relation GPT-3 LLAMAT-2-Chat LLAMAT-3-Chat

Doping host-dopant 0.726 0.396 0.794

General formula - application 0.537 0.644 0.568

General formula - description 0.354 0.208 0.375

General formula - structure or phase 0.482 0.335 0.268

MOFs name - applications 0.573 0.427 0.515

MOFs name - guest species 0.616 0.667 0.491

6 Conclusion and future work
The results indicate that domain-specific continued pre-training improves performance on several
tasks useful for materials discovery. The improvement in LLAMAT-2-Chat model over initial model
is ≈ 7% and 5% in macro and micro F1 scores as compared to LLAMAT-3-Chat model where
these numbers are ≈ 4% and 3%. For structured IE and table understanding tasks, the models show
promising performance, exhibiting the wide range of capabilities of the proposed LLMs. Since the
training corpus included information about different tasks related to materials discovery, like research
papers, crystallography information files, information extraction tasks, and question-answering pairs,
it will be interesting to evaluate the effect of each component of the corpus on the final performance
of the model on specific tasks.
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7 Appendix

7.1 Instruction Fine-Tune Dataset

We use various openly available instruction fine-tuning datasets related to Material science and
general English question answering. We also construct a dataset for free-form question answering for
material science questions by prompting GPT4 with a context and asking it to generate questions. We
call this dataset MatBookQA (Material Science Book-based Question Answering dataset). We also
introduce another question-answering dataset based on questions asked in the GATE examination in
India, which is taken by undergraduate students to apply for admissions in Masters and PhD programs
in premier institutes in India and some foreign institutions of repute. The details of each dataset are
provided as follows.

7.1.1 OpenOrca

This dataset comprises 800, 000 high-quality and diverse textual instructions. A model fine-tuned on
this dataset may demonstrate enhanced performance in comprehending technical jargon, responding
to complex queries, and producing coherent and contextually appropriate text across various domains.
Previous research, as detailed in [29], has demonstrated that large language models (LLMs) fine-tuned
on this dataset outperform other models on a range of benchmarks.

7.1.2 Math

To induce the ability of mathematical problem-solving in our model, we train our model on the
MATH dataset introduced by [30]. It consists of 7500 instructions aimed at complex mathematical
reasoning.

7.1.3 MatSci

We utilize openly available instruction fine-tuning datasets for material science, complemented by
a curated dataset generated through GPT-4(gpt-4-0613). By prompting GPT-4 with open-source
material science textbooks, we elicit contextually complete questions covering various subdomains
of material science. This diverse prompting ensures comprehensive coverage of the field.

We incorporate MatSciInstruct, as introduced in [12]. MatSciInstruct generates specialized instruction
data through a two-step framework—Generation and Verification. In the Generation step, an instructor
model creates domain-specific instruction data focused on materials science. The Verification step
involves a separate verifier model for cross-verifying the instruction data for accuracy and relevance.
Additionally, we employ the MatSciNLP training dataset and augment it with our MatBookQA
dataset, as discussed below.

7.1.4 MatBookQA

We use an open-source book on Material Science and prompt GPT4 with one chapter at a time. We
ask it to generate both short and long question-answer pairs for each chapter. We first curate a list
of ten prompts each (see Appendix) to obtain short and long descriptions. This resulted in 2069
question-answer pairs, of which 1887 are short and 182 are long.

7.1.5 MaScQA

This dataset consists of 1036 and 549 questions from the civil and chemical engineering exams,
respectively. The questions in this dataset can be divided into four types based on their structure:
multiple-choice questions, matching-type questions, numerical answer questions with multiple
choices, and numerical answer-based questions with no options. More details about the question
structure can be found in Zaki et al. [31] An earlier version of MaScQA reported by Zaki et
al.[31] also comprises 650 questions from the same materials science-related questions from the
GATE exam. These questions come from various subdomains of materials science, like atomic
structure, thermodynamics, electrical and magnetic behaviour of materials, materials manufacturing,
applications, processing, and testing. Both these datasets cover vast subdomains of materials science,
therefore serving as a challenging benchmark for evaluating the performance of large language
models.
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7.2 Structured information extraction downstream datasets

7.2.1 Named entity recognition and relation extraction dataset

This dataset is taken from [8] where authors have provided the input and output pairs for extracting
different entities like host and dopants for the doping dataset; formula, name, acronym, applications,
description, and structure or phase for the IE dataset for general materials science; and name, formula,
application, and guest species for IE from text related to metal-organic frameworks (MOFs). The
relation is established by connecting the extracted named entities from a given sentence. Hence, the
performance on named entity extraction tasks influences the performance of relation extraction tasks.

7.2.2 DISCOMAT

This dataset was originally not prepared as an IFT dataset[28]. Therefore, we identify the task from
the original dataset and prepare a JSON schema which can be easily used for IFT. The exact-match
metric means the generated JSON is exactly the same as that of the original JSON. Another task is
whether the given table is a composition table, which is reflected by the comptable task. Similarly,
regex task means the composition from the given table can be extracted using domain-specific regular
expression parsers. The glass id identification task involves generating the index of a table row or
column where glass id, i.e., the unique id of materials present in the given table, is mentioned. The
composition task comprises predicting the index of the rows or columns of the given table where the
constituents corresponding to each material can be found. Finally, in the chemical task, the model
has to generate the index of the rows or columns where constituent chemicals of the materials are
present inside the given table.

A sample prompt along with the definition of different keys of JSON schema for table tasks are listed
below:

You are an expert in materials science and extracting data from
tables. You have the fill the following dictionary
for the given table. Each key is defined as follows:
‘comp_table’- If the input table has material compositions
then return [1], else [0];
‘regex_table’- If the input table has material compositions and
they can be extracted using a regular expression
parser, then return [1], else [0]
‘composition_row_index’-The list containing the index of rows
which have complete information about material composition.
‘chemical_col_index’-The list containing the index of columns
which report values of constituent chemicals of the material.
‘composition_col_index’-The list containing the index of columns
which have complete information about material composition.
‘chemical_row_index’-The list containing the index of rows which
report values of constituent chemicals of the material.
‘gid_row_index’-The index of row having material identifier.
‘gid_col_index’-The index of column having material identifier.
dictionary =
{‘comp_table’: [],
‘regex_table’: [],
‘composition_row_index’: [],
‘composition_col_index’: [],
‘chemical_row_index’: [],
‘chemical_col_index’: [],
‘gid_row_index’: [],
‘gid_col_index’: []}
NOTE:The output will be the dictionary with keys having
non-empty lists ONLY
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7.3 MatSci-NLP

To benchmark and compare the performance of LLaMat-Chat against other state-of-the-art models
within the materials science domain, we utilized the MatSci-NLP dataset, a comprehensive benchmark
for materials science NLP tasks [27]. The evaluation was conducted in a zero-shot manner. The
substantial improvement in performance indicates that our pretraining corpus effectively imparts
knowledge of various materials science principles to LLaMat-Chat, while our fine-tuning process
enhances its instruction-following capabilities. Table 4 shows the performance of various models on
the MatSci-NLP. Performance numbers for other models have been adapted from [12] while ensuring
identical experimental settings. The scores are Macro-F1(Top) and Micro-F1(Bottom). It should
be noted that the performance of all models except LLaMA-3-8B and LLAMAT-Chat models is
taken from [12]. It can be observed that materials domain specific pretraining has improved the
performance of both LLAMAT-2-Chat and LLAMAT-3-Chat models, however, the performance of
the former is slightly better than the latter. This may be explained by the similar choice of batch sizes,
and learning rate parameters for both the models.

Table 4: Zero-shot performance of LLMs based on MatSci-NLP. The numbers in bold represent best
scores, and the underlined numbers are the second best.

Model Named Entity
Recognition

Relation
Extraction

Event Argument
Extraction

Paragraph
Classification

Synthesis Action
Retrieval

Sentence
Classification

Slot
Filling

Overall
(All Tasks)

Zero-Shot LLM Performance

LLaMA-7b
0.042
0.064

0.094
0.013

0.160
0.042

0.279
0.218

0.052
0.013

0.096
0.087

0.142
0.010

0.208
0.064

LLaMA-13b
0.057
0.066

0.109
0.016

0.042
0.054

0.233
0.189

0.039
0.009

0.079
0.074

0.138
0.008

0.1
0.059

Alpaca-7b
0.031
0.018

0.053
0.037

0.029
0.009

0.375
0.294

0.179
0.129

0.180
0.180

0.139
0.039

0.141
0.101

Alpaca-13b
0.053
0.046

0.016
0.035

0.111
0.072

0.310
0.237

0.442
0.278

0.375
0.334

0.110
0.015

0.202
0.145

Chat-GPT
0.063
0.052

0.232
0.145

0.204
0.203

0.433
0.450

0.300
0.183

0.320
0.318

0.368
0.280

0.274
0.233

Claude
0.063
0.048

0.232
0.143

0.195
0.169

0.442
0.467

0.280
0.177

0.329
0.326

0.393
0.305

0.276
0.234

GPT-4
0.189
0.121

0.445
0.432

0.453
0.353

0.679
0.522

0.743
0.677

0.788
0.689

0.502
0.483

0.543
0.468

LLaMa-3-8B
0.591
0.675

0.816
0.852

0.676
0.787

0.631
0.832

0.891
0.891

0.924
0.951

0.727
0.899

0.751
0.841

LLAMAT-2-Chat 0.827
0.898

0.968
0.952

0.633
0.836

0.843
0.871

0.938
0.962

0.773
0.917

0.744
0.839

0.813
0.894

LLAMAT-3-Chat 0.772
0.835

0.861
0.884

0.724
0.824

0.651
0.856

0.901
0.902

0.941
0.960

0.712
0.892

0.795
0.879
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