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ABSTRACT

Latent diffusion models have achieved state-of-the-art performance on a variety
of generative tasks, such as image synthesis and image editing. However, the
robustness of latent diffusion models is not well studied. Previous works only
focus on the adversarial attacks against the encoder or the output image un-
der white-box settings, regardless of the denoising process. Therefore, in this
paper, we aim to analyze the robustness of latent diffusion models more thor-
oughly. We first study the influence of the components inside latent diffusion
models on their white-box robustness. We find out that the denoising process,
especially the Resnet, is the most vulnerable to adversarial attacks. In addition
to white-box scenarios, we evaluate the black-box robustness of latent diffusion
models via transfer attacks, where we consider both prompt-transfer and model-
transfer settings and possible defense mechanisms. We conclude that the adver-
sarial examples can transfer across model structures and prompts. The adversar-
ial vulnerability is inherited with the development of Stable Diffusion models,
and the adversarial attacks are still effective when possible defenses are present.
Additionally, analyzing the robustness of latent diffusion models needs a com-
prehensive benchmark dataset, which is missing in the literature. Therefore,
to facilitate the research on the robustness of latent diffusion models, we pro-
pose two automatic dataset construction pipelines for two kinds of image edit-
ing models and release the whole dataset. Our code and dataset are available at
https://anonymous.4open.science/r/Robust-LDM-7D36.

1 INTRODUCTION

Diffusion models have achieved state-of-the-art performance on a variety of generative tasks, such as
image synthesis and image editing Saharia et al. (2022); Ho et al. (2020). Among various diffusion
models, latent diffusion models Rombach et al. (2022) stand out for their efficiency in generating
or editing high-quality images via an iterative denoising process in the latent space. Specifically,
a latent noise is sampled from a uniform Gaussian distribution and denoised through the latent
diffusion model step by step to form a high-quality image. Furthermore, latent diffusion models
enable image editing through conditioning, which adds the embedding of a given image on the
sampled latent noise to do image editing. The image editing diffusion models have been widely
deployed in real-world applications such as DALL·E2Ramesh et al. (2022) and Stable Diffusion
Rombach et al. (2022). Therefore, we focus on the image editing diffusion models in this paper.

Despite the dazzling performance of latent diffusion models, recent studies show that they are sus-
ceptible to adversarial attacks Salman et al. (2023), which add human-imperceptible noise to a clean
image so that latent diffusion models will incorrectly edit the input image or generate low-quality
images. Therefore, for the sake of producing better diffusion models, it is important to analyze the
robustness of latent diffusion models.

However, the robustness of the diffusion models has not been well studied in the literature. First of
all, previous studies only focus on attacking the encoder Zhuang et al. (2023) or distorting the output
image Salman et al. (2023), without taking the core structure of diffusion models (the denoising
process) into consideration. Second, prior works only pay attention to the white-box setting, where
attackers can obtain the full information of the victim model, like model structures and weights
Goodfellow et al. (2014); Kurakin et al. (2016); Madry et al. (2017). However, they neglect the
black-box setting, which assumes that attackers do not know the internals of the models and is closer
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to the real-world settings Dong et al. (2018). Lastly, analyzing the robustness of latent diffusion
models needs a high-quality and publicly available benchmark, which is still missing in the literature.

Therefore, we endeavor to solve the aforementioned problems in this paper. To evaluate the robust-
ness of latent diffusion models, we deploy adversarial attacks under various white-box and black-
box settings. To facilitate the research on the robustness of latent diffusion models, we propose two
automatic dataset construction pipelines to generate test cases for two categories of image editing
diffusion models. The contributions of our work are threefold:

• We launch adversarial attacks on representative modules inside the latent diffusion models
to analyze their adversarial vulnerability. In addition, we compare the white-box robustness
of two categories of latent diffusion models for image editing. We find that the denoising
process, especially the Resnet, is the most vulnerable to adversarial attacks.

• We also study the black-box robustness of latent diffusion models via transfer attacks,
where we consider both prompt-transfer and model-transfer settings and possible defense
mechanisms. We conclude that adversarial examples transfer well across model structures
and prompts. Especially, SD-v2 is more vulnerable than SD-v1, and adversarial vulner-
abilities inside SD-v1 are inherited by SD-v2. Additionally, adversarial attacks are still
effective against defense methods.

• We propose automatic dataset construction pipelines for analyzing the robustness of two
kinds of image editing latent diffusion models. The dataset consists of 500 data pairs (image
+ prompt) for image variation models and 500 data triplets (image + prompt + mask) for
image inpainting models. We make the code and the built dataset publicly available.

2 RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models Ho et al. (2020); Rombach et al. (2022) have shown state-of-the-art performance
on generating realistic images recently. They are capable of generating images or editing images
via textual prompts. The core of the diffusion models is the diffusion process, which is a stochastic
differential denoising process. We suppose the image x is from the real image distribution, and the
diffusion process gradually adds a small Gaussian noise on the image for T steps. The image of
the (t+ 1)-th step xt+1 is exactly αtxt + βtϵt, where ϵt follows a Gaussian distribution, and αt as
well as βt are the parameters. By gradually adding noise on the image, the image will approximate
the Gaussian distribution N (0, I). The denoising process is to reverse the adding noise process to
generate high-quality images starting from the uniform Gaussian distribution. Therefore, diffusion
models predict the noise added on the step t with the input xt+1 to remove the noise.

However, diffusion models implement the denoising process on the image level, leading to low effi-
ciency and high computational resource costs. Then, latent diffusion models Rombach et al. (2022)
are proposed to enhance the efficiency by doing the denoising operation on the latent space instead
of directly on the images. Specifically, latent diffusion models utilize a variational autoencoder
to transform the image between the image and latent space. Furthermore, the prompt embedding
can be fused into the latent space via the cross attention mechanism in the denoising process for
prompt-guided image generation. In addition to image generation, latent diffusion models enable
image editing through conditioning. The denoising network initializes the latent feature with a com-
bination of the given image embedding through the encoder and a random sampled noise, while the
input prompt is the instruction on how to modify the given image. This modified version of the latent
diffusion model is called the image variation model. Another category of the latent diffusion model
for image editing is the image inpainting model, which is conditioning on both a given image and
a mask of the keeping region. The image region outside the mask will be modified by the diffusion
models.

The workflow of the image variation latent diffusion models is shown in Figure 1. The latent diffu-
sion models include three main stages: encoding, denoising, and decoding. The encoding process
has two key components: the Encoder and Quantization layers. Similarly, the decoding process
contains the Decoder and Post-Quantization layers. The denoising process is in a Unet structure
containing Resnet, Self-Attention, Cross-Attention, and Feed-Forward modules. In this paper, we
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Figure 1: The workflow of the image variation latent diffusion model for image editing.

aim to analyze the adversarial robustness of these modules. The workflow of image inpainting mod-
els is shown in Figure 5 in the Appendix.

2.2 ADVERSARIAL ATTACKS

Given the target image x and a DNN model f(x), adversarial attacks aim to find an adversarial
sample xadv , which can mislead the DNN model, while it is human-imperceptible, i.e., satisfying
the constraint

∥∥x− xadv
∥∥
p
< ϵ. ∥·∥p represents the Lp norm, and we focus on the L∞ norm in this

paper to align with previous adversarial attack research Dong et al. (2018); Lin et al. (2019).

Prevailing adversarial attacks like FGSM Goodfellow et al. (2014) usually craft adversarial samples
by solving the following constrained maximization problem for attacking an image classifier with
the cross entropy loss J(x, y), where y is the ground truth label for the image x:

max
xadv

J(xadv, y) s.t.
∥∥x− xadv

∥∥
∞ < ϵ.

However, in reality, the model structure and weights are hidden from the users. Therefore, re-
searchers focus on the adversarial attack under the black-box setting. Among different black-
box attack methodologies, transfer-based attacks stand out due to their severe security threat to
deep learning-based applications in practice. Therefore, we also examine the transfer-based attacks
against diffusion models in this paper. Specifically, transfer-based attacks Zhang et al. (2023) usu-
ally craft adversarial samples with a local source model using white-box attack methods and directly
employ the generated adversarial samples to mislead the target model. There are also some works
Xue et al. (2023); Chen et al. (2023) generate adversarial examples with the help of diffusion models.

2.3 ADVERSARIAL ATTACKS ON DIFFUSION MODELS

Current adversarial attacks on diffusion models mainly focus on the white-box scenario. Zhuang
et al. (2023) attacks diffusion models by adding extra meaningless characters to the input prompt
to mislead the text encoder. Salman et al. (2023); Liang & Wu (2023) tries to attack the image
encoder and distort the output image to disable the normal functionality of latent diffusion models.
Furthermore, some works Liang et al. (2023); Shan et al. (2023) also utilize adversarial examples
to prevent privacy issues. However, previous works do not explore the core of the diffusion models
(i.e., the denoising process). Besides, current research only considers the white-box situation and
neglects the black-box setting, which is closer to the real-world setting. In this paper, we more
thoroughly analyze the vulnerability of the modules inside diffusion models under the white-box
scenario. We also examine the attacking performance under the transfer-based black-box setting,
which covers both the prompt-transfer and model-transfer situations.

3 METHODOLOGY

In this section, We evaluate the robustness of latent diffusion models from the perspective of adver-
sarial attacks. We first state the problem of adversarial attacks on latent diffusion models. Then, we
explain our attacking objectives.
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3.1 PROBLEM STATEMENT

Given the input image x and a prompt p, the latent diffusion model f(·) generates the edited image
f(x, p) with the guidance of p. We aim to find the adversarial image xadv of the latent diffusion
model, such that the adversarial image cannot be edited following the guidance of p. Additionally,
xadv satisfies the constraint

∥∥x− xadv
∥∥
∞ < ϵ by following previous works Dong et al. (2018); Lin

et al. (2019).

Unlike the previous adversarial attacks on image classifiers, it is hard to quantify the effectiveness of
adversarial attacks on diffusion models with an explicit objective function. The generative model’s
output is usually evaluated by the human judgment H(·), which determines the similarity between
the edited image and the prompt. Therefore, attacking the latent diffusion model is to minimize
H(f(x, p), p), which can be formalized as follows:

min
xadv

H(f(xadv, p), p) s.t.
∥∥x− xadv

∥∥
∞ < ϵ. (1)

3.2 ATTACKING METHOD

However, the human judgment H(·) is a qualitative measurement, and we cannot directly minimize
H(·). Therefore, we instead perturb the intermediate features inside diffusion models. If the features
inside the diffusion models are largely perturbed, the original functionality of the diffusion models
is also expected to be largely destroyed, based on the assumptions from feature-level adversarial
attacks Zhang et al. (2022). Attacking the hidden representations also sheds light on analyzing the
vulnerability of each component inside diffusion models.

As a result, we maximize the l2 distance between the intermediate representations of the adversarial
example and the original one inside the latent diffusion model. As we discussed in the related work,
we propose to separately attack the three stages of latent diffusion models and their components.
The attacking objective is formulated as:

max
xadv

∥∥fm(x, p)− fm(xadv, p)
∥∥
2

s.t.
∥∥x− xadv

∥∥
∞ < ϵ, (2)

where fm(·) represents the output of the module m inside the model f given the input image x and
the prompt p.

3.3 ATTACKING MODULES

We propose to attack all important modules inside the model individually to comprehensively an-
alyze the robustness of latent diffusion models. The image editing latent diffusion models contain
three crucial processes: encoding, denoising, and decoding, as shown in Figure 1. The encoding
process first utilizes a variational autoencoder to encode the image and a vector quantization layer to
regularize the latent space. We select the image Encoder and the Quantization layer as the attacking
modules for the encoding part. Then, the Unet denoises the latent space and combines the infor-
mation from the prompt step by step. In each step, the Unet consists of two basic components: the
Resnet block and the transformer block, which compute the latent features and combine the informa-
tion from the prompt, respectively. Especially, the transformer block includes Self-Attention, Cross-
Attention, and Feed-Forward layers. Therefore, we select Resnet, Self-Attention, Cross-Attention,
and Feed-Forward layers (FF) for adversarial attacks. Finally, the latent features are decoded to the
output image through a Post-Quantization layer and the Decoder part of the variational autoencoder,
so we choose to attack the Post-Quantization layer and the Decoder.

3.4 DATASET CONSTRUCTION

In the literature, there is no publicly available dataset for adversarial attacks on diffusion models.
Therefore, in this section, we present our automatic dataset construction pipeline for building the
dataset. We first state the data source for dataset construction and illustrate the detailed steps to
build the dataset. The whole process is automatic, as shown in Figure 2 and Figure 6, and human
is only required to further guarantee the quality of the dataset at the last step. Please note that our
dataset is not only available for evaluating image editing diffusion models. The generated prompts
can also be utilized to evaluate the robustness of text2image diffusion models. More details are
shown in the Appendix.
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3.4.1 DATA SOURCE

To align with the experimental setting of the diffusion model evaluation Rombach et al. (2022),
we select the validation set of the coco dataset Lin et al. (2014) as the data source for construct-
ing the dataset. The coco validation dataset contains 5000 images sampled from the natural world
with 91 classes, which is complex and diverse enough to test the robustness of diffusion models.
Furthermore, coco is the most fundamental dataset for a variety of computer vision tasks, includ-
ing classification, segmentation, and caption, providing abundant information to fulfill the dataset
requirement, e.g., modifying the caption to the image editing prompt or extracting the mask for an
object.

Figure 2: The automatic dataset construction pipeline for image variation diffusion model.

3.4.2 CONSTRUCTION PIPELINE

We propose two different pipelines for the adversarial attack on the image editing functionality of
diffusion models based on the model category. One pipeline generates input pairs (image, prompt)
for the image variation diffusion model in Figure 2, and another pipeline produces input triplets
(image, prompt, mask) for the image inpainting diffusion models in Figure 6 in the Appendix.

Pipeline Image variation

The pipeline generates pairs of images and text prompts. Since the image caption task of the coco
dataset consists of 5 human descriptions per image, we can modify each description a little bit to a
text prompt without changing the main entity. Therefore, we can directly utilize the images from the
coco dataset and change the corresponding captions to form the image variation dataset.

Step 1: Data Preprocessing. The images from the coco dataset are sampled from the real world,
but the contents in the image are complex, and sometimes the main entity is not clear. With the aim
of selecting the images with clear main entities, we first rank the images based on the average CLIP
score Radford et al. (2021) between the image and each of the image captions. 10% of the images
are selected to form the dataset. Afterward, we select the top 3 captions for each image based on the
CLIP score to guarantee the high-quality of image captions. As a result, we obtain 500 high-quality
images and three high-quality captions per image.

Step 2: Prompt Generation. In order to automatically modify the image caption to the text prompt,
we deploy the strong power of the large language model Ouyang et al. (2022); Brown et al. (2020)
for modifying the captions. We query the ChatGPT (GPT 3.5 version) by the following question
“Please modify the following sentence ¡xxx¿ to generate 5 similar scenes without changing the
entities.” to generate 5 text prompts per image caption. For the purpose of successful image editing,
we rank and select the top-5 text prompts by the CLIP score between the generated prompt and the
output image of Stable Diffusion V1-5 Rombach et al. (2022). Finally, we obtain five high-quality
text prompts per image.

Extra Step: Human Evaluation. A human volunteer is asked to rank the data pair based on the
visual performance of the generated images and the coherence between the generated image and the
prompt. Finally, the top-100 images are selected, and there are 100*5=500 data pairs for the dataset.

4 EXPERIMENT

In this section, we conduct extensive experiments to analyze the robustness of latent diffusion models
under different experiment settings on the constructed dataset. We first specify the setup of the
experiments. Then, we present the white-box attacking results under different experiment settings.
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Table 1: The attacking performance against different modules inside SD-v1-5 image variation model
by various measurement. The best results are marked in bold.

Module CLIP PSNR SSIM MSSSIM FID IS
Encoder 33.82 15.58 0.226 0.485 172.5 15.05
Quant 34.54 16.19 0.250 0.533 168.2 15.77
Resnet 29.89 11.82 0.076 0.270 206.3 16.93

Self Attn 32.37 14.91 0.108 0.305 206.2 12.19
Cross Attn 34.48 16.22 0.250 0.557 171.3 15.24

FF 31.72 13.49 0.096 0.290 190.1 17.33
Post Quant 33.17 13.39 0.169 0.402 202.8 17.0

Decoder 34.14 15.05 0.223 0.509 184.0 20.59
Gaussian 34.18 15.49 0.198 0.510 179.0 15.41
Benign 34.74 ∞ 1.000 1.000 167.9 19.86

Table 2: The white-box attacking performance against different image variation diffusion models by
various measurement. The best results are marked in bold.

Model Module CLIP PSNR SSIM MSSSIM FID IS

SD-v1-4

Encoding 34.09 15.47 0.225 0.485 172.7 15.8
Denoising 30.93 12.23 0.080 0.288 193.4 19.8
Decoding 33.00 13.30 0.168 0.405 190.1 14.5
Gaussian 34.05 15.42 0.199 0.509 174.4 19.8
Benign 34.54 ∞ 1.000 1.000 174.5 19.8

SD-v1-5

Encoding 33.82 15.58 0.226 0.485 172.5 15.05
Denoising 29.89 11.82 0.076 0.270 206.3 16.93
Decoding 33.17 13.39 0.169 0.402 202.8 17.00
Gaussian 34.18 15.49 0.198 0.510 179.0 15.41
Benign 34.74 ∞ 1.000 1.000 167.9 19.86

SD-v2-1

Encoding 30.62 14.13 0.156 0.392 217.8 10.39
Denoising 27.98 12.25 0.111 0.314 217.4 13.57
Decoding 27.61 12.30 0.111 0.317 212.2 13.93
Gaussian 31.77 13.70 0.156 0.425 202.6 14.68
Benign 32.03 ∞ 1.000 1.000 201.8 13.74

Instruct

Encoding 33.94 9.89 0.125 0.338 180.9 16.06
Denoising 31.65 11.87 0.153 0.399 175.8 17.46
Decoding 33.75 9.81 0.146 0.364 167.9 20.86
Gaussian 33.98 12.13 0.197 0.457 167.9 20.86
Benign 34.45 ∞ 1.000 1.000 153.75 22.89

Besides, we demonstrate the black-box attacking performance under two transfer settings. Finally,
we illustrate the robustness of the adversarial examples.

4.1 EXPERIMENTAL SETUP

Target Model. We consider both image variation and image inpainting models as the target models.
For image variation models, we choose four widely used models, containing Stable Diffusion V1-4
(SD-v1-4) Rombach et al. (2022), Stable Diffusion V1-5 (SD-v1-5), Stable Diffusion V2-1 (SD-
v2-1), and Instruct-pix2pix (Instruct) Brooks et al. (2022). Different versions of diffusion models
have the same structure. The higher version is further trained based on the previous version. While,
Instruct-pix2pix has a different structure with Stable Diffusion Models. For image inpainting mod-
els, we consider two models: Stable Diffusion v1-5 and Stable Diffusion v2-1. Besides, we include
three input-level defense methods that are robust against adversarial attacks. These defenses cover
random resizing and padding (R&P) Xie et al. (2017), JPEG compression Liu et al. (2019), and
Gaussian noise (Gaussian) Li et al. (2019).

Metric. We evaluate the performance of adversarial attacks on diffusion models from two perspec-
tives: the quality of the generated image and the functionality of image editing. The quality of gen-
erated image are measured via Fréchet Inception Distance (FID) Heusel et al. (2017) and Inception
Score (IS) Salimans et al. (2016). The evaluations of image editing functionality are categorized into
two levels: image and text. The image level measures the similarity of generated images between
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Table 3: The prompt-transfer attacking performance on SD-v1-5 image variation model by various
measurement. The best results are marked in bold.

Module CLIP PSNR SSIM MSSSIM FID IS
Encoding 33.82 15.58 0.226 0.485 172.5 15.05
Denoising 28.27 11.92 0.074 0.271 183.33 24.00
Decoding 30.18 13.55 0.166 0.400 187.85 20.56
Gaussian 34.18 15.49 0.198 0.510 179.0 15.41

the adversarial examples and benign ones. We select Peak-Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index Measure (SSIM) Wang et al. (2004), and Multi-Scale Structural Similarity
Index Measure (MSSSIM) Wang et al. (2003) as the similarity metrics. The text level functionality
measures the similarity between the generated image and text prompt by the CLIP score Radford
et al. (2021). In general, image level similarity measures the normal function, reflecting the normal
execution given the input image and edited prompt. Similarly, text-level similarity represents the
expected function, representing the expected execution of the LDM given the edited prompt.

Parameter. All the experiments are conducted on an A100 GPU server. Following Kurakin et al.
(2016), we set the maximum perturbation budget ϵ = 0.1, the number of attack iterations T = 15,
and the step length ϵ′ = 0.01. The number of the diffusion step is set to be 15 for attack and 100 for
inference. We take strength and guidance of the diffusion models to be 0.7 and 7.5 by default.

4.2 WHITE-BOX PERFORMANCE

Clean Gaussian Encoding Denoising Decoding

Adversarial Images

Generated Images

Figure 3: Visualization of adversarial images and their output of the SD-v1-5 image variation model
with the prompt ”An artwork of a banana split in a plastic bowl”.

We first illustrate the white-box attacking performance on different modules inside the Stable Diffu-
sion V1-5 image variation and inpainting models, respectively. Then we select the most vulnerable
module for each process and evaluate the white-box performance on other diffusion models.

As shown in Table 1, we analyze the attacking performance on different modules of the SD-v1-5
image variation model. We first analyze the expected function that the CLIP scores of adversarial
attacks are all lower than the Gaussian noise, validating that the diffusion models are susceptible
to adversarial attacks. In addition, attacking the denoising process achieves the lowest CLIP score
compared with attacking the encoding or decoding process. Astonishingly, the CLIP score is re-
duced to 29.89 with a marginal drop of 4.85, destroying the expected function severely. From the
point of view of both normal function and image quality, attacking the denoising process and es-
pecially the Resnet module outperforms attacking other processes and modules. We also observe
that attacking the cross attention performs badly. We think the reason is the prompt information
dominates the cross attention module, so attacking the image is not effective, which requires textual
adversarial attacks to corrupt this module. The qualitative results are shown in Figure 3. In general,
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Table 4: The model-transfer attacking performance against different image variation diffusion mod-
els. The best results are marked in bold.

Model Module SD-v1-4 SD-v1-5 SD-v2-1 Instruct

SD-v1-4
Encoding 34.09 33.82 30.60 33.94
Denoising 30.93 31.40 29.13 33.70
Decoding 33.00 33.07 29.71 33.86

SD-v1-5
Encoding 34.11 33.82 30.65 33.94
Denoising 29.73 29.89 28.48 33.30
Decoding 33.15 33.17 29.47 33.93

SD-v2-1
Encoding 34.09 33.84 30.62 33.93
Denoising 33.85 33.94 27.98 33.90
Decoding 33.88 34.07 27.61 34.03

Instruct
Encoding 33.96 34.07 31.24 33.94
Denoising 34.08 34.02 30.52 31.65
Decoding 34.23 34.22 31.74 33.75

the generated images by the adversarial examples are of low visual quality, and the editing is mean-
ingless. Furthermore, the qualitative results also validate our conclusion that attacking the denoising
process is effective. We can achieve a similar conclusion on attacking image inpainting diffusion
models in the Appendix.

In addition to the white-box analysis on Stable Diffusion v1-5, we illustrate the attacking perfor-
mance on other diffusion models as shown in Table 2. We select to attack the most vulnerable
modules of each process and measure the attacking performance. We can see all the diffusion mod-
els are susceptible to adversarial attacks, which can largely influence the normal function and image
quality. The Instruct-pix2pix is more robust compared with standard stable diffusion models with
higher CLIP score and similarity with the benign output. Attacking the Denoising is consistently
effective compared with attacking other processes of the image variation diffusion models. More
white-box performance of the image inpainting model is shown in the Appendix.

SD-v1-4 SD-v2-1 R & P JPEG

Figure 4: Visualization of generated images by model-transfer attacks on SD-v1-4 and SD-v2-1,
and generated images of the SD-v1-5 against defense mechanisms with the prompt ”An artwork of
a banana split in a plastic bowl”.

4.3 BLACK-BOX PERFORMANCE

In this section, we demonstrate the black-box performance, especially, the transfer-based attacks.
Unlike the transfer-based attacks for image classifiers, we categorize the transfer-based attacks for
diffusion models into two classes: model-transfer and prompt-transfer. Model-transfer is similar
to transfer-based attacks on image classifiers in that the generated adversarial examples by one
diffusion model can mislead the other diffusion models. Prompt-transfer is from the perspective
of data that the generated adversarial examples can also influence the diffusion model with other
similar prompts.

We first illustrate the prompt-transfer performance on the Stable Diffusion V1-5 image variation
model. We craft the adversarial image under one prompt and transfer the crafted image combined
with other similar prompts to evaluate the generative results. As shown in Table 3, the prompt-
transfer achieves similar results on CLIP score and normal function with the original prompt. The
adversarial images crafted by one prompt can also mislead the guidance of other similar prompts.
Therefore, we can successfully mislead the diffusion models by adversarial samples without know-
ing the exact text prompts.
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Table 5: The attacking performance against SD-v1-5 image variation model by various defense
mechanisms. The best results are marked in bold.

Methods Module CLIP PSNR SSIM MSSSIM FID IS

R & P
Encoding 33.94 12.42 0.187 0.413 179.0 24.36
Denoising 33.84 12.20 0.173 0.397 181.0 23.64
Decoding 33.92 12.30 0.190 0.418 177.8 24.90

JPEG
Encoding 34.11 15.94 0.252 0.513 196.0 16.02
Denoising 30.75 12.23 0.087 0.299 234.8 9.74
Decoding 33.50 14.00 0.195 0.437 189.6 19.02

Gaussian
Encoding 33.84 14.58 0.140 0.441 170.3 22.04
Denoising 30.75 12.06 0.072 0.289 183.1 22.69
Decoding 33.39 13.50 0.127 0.401 173.4 22.94

Then, we consider the model-transfer performance that we craft adversarial examples on the victim
model and directly transfer the adversarial samples to other diffusion models. As shown in Table 4,
the transfer attacks can mislead the function because the CLIP scores are all reduced compared with
the benign results in Table 2. Instruct-pix2pix is hard to transfer to other standard diffusion models,
and other diffusion models are also hard to transfer to Instruct-pix2pix because of the different
model architectures. Considering the transfer attacks between different versions of standard stable
diffusion models, adversarial examples crafted by SD-v1-4 and SD-v1-5 are easy to mislead SD-v2-
1. The experiment result means the SD-v2-1 is more vulnerable, and the defects inside the previous
versions of stable diffusion models are inherited by SD-v2-1. Furthermore, adversarial samples from
SD-v2-1 cannot largely mislead SD-v1-4 or SD-v1-5, representing the deficiencies of SD-v2-1 are
not the common problems for SD-v1-4 or SD-v1-5. Combining the two observations, we conclude
the problems of SD-v1 are inherited by SD-v2, and SD-v2 has more defects compared with SD-v1.
With the updating of the stable diffusion models, models become more vulnerable and have more
defects, which raises the alarm about the robustness of diffusion models. The researchers should
also consider the robustness issue when they update the version of diffusion models. The qualitative
results are shown in Figure 4. We can see that transfer-based attacks can mislead the functionality
of other diffusion models, raising concerns about the robustness of diffusion models. More model-
transfer results on image inpainting diffusion models are shown in the Appendix.

4.4 ROBUSTNESS OF ADVERSARIAL EXAMPLES

We further analyze the robustness of adversarial examples because the robustness of the adversarial
examples has practical issues. If the adversarial images are robust, we can deploy them to avoid the
image editing model’s misuse in real life. We consider three kinds of defense mechanisms on the
image to mitigate the adversarial influence, including geometry transformation, compression, and
noise. Especially, We select Random Resizing and Padding (R & P), JPEG compression (JPEG),
and Gaussian noise (Gaussian) to evaluate the robustness of adversarial examples. All the defense
mechanisms can mitigate the adversarial influence on the normal function and expected function
as shown in Table 5. Significantly, the geometry transformation (R & P) can largely alleviate the
adversarial problems with a 3.95 increment of the CLIP score on attacking the Denoising. The
qualitative results are also shown in Figure 4. Although the defense mechanisms can mitigate the
adversarial issues, the expected function is still far from satisfaction in the qualitative examples.

5 CONCLUSION

In this paper, we explore the robustness of the diffusion models from the perspective of adversarial
attacks. We first demonstrate that the denoising process, especially the Resnet module, is the most
vulnerable component in the diffusion models. We further consider two transfer-based black-box
scenarios: prompt-transfer and model-transfer. The adversarial images can transfer well between
prompts and models. Significantly, we figure out that SD-v2 is more vulnerable than SD-v1, and de-
fects inside SD-v1 are inherited by SD-v2. This observation raises concerns about the robustness of
the diffusion model development. Additionally, we propose automatic dataset construction pipelines
for building a high-quality publicly available dataset to complement the literature.
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APPENDIX

In this appendix, Section A illustrates the workflow of image inpainting models. Section B demon-
strates the dataset construction pipeline for image inpainting models. Section C shows the detailed
experimental setting for each experiment in the paper. Section D illustrates the constructed dataset.
Section E reports the attacking performance against latent diffusion image inpainting models under
the white-box and black-box scenarios. Section F demonstrates more qualitative results on different
attacking scenarios. Finally, we discuss several aspects of the adversarial attacks on latent diffusion
models, including the usage, efficiency issues, and limitations in Section G.

A WORKFLOW OF IMAGE INPAINTING MODELS

The workflow of image inpainting model is in Figure5, which is similar to image variation model.

Figure 5: The workflow of image inpainting latent diffusion model for image editing.

B DATASET CONSTRUCTION PIPELINE

Pipeline Image Inpainting

Image inpainting pipeline generates triplets of image, prompt and mask. The mask covers the region
of the main entity, and the diffusion models change the remaining part of the image with the guidance
of the prompt. We utilize the bounding box in the detection task to discover the main entity of the
image and employ the segmentation task to directly achieve the mask of the main entity. The detailed
steps for the dataset construction are followed.

Step 1: Data Preprocessing. The same to pipeline image variation.

Step 2: Prompt Generation. The same to pipeline image variation.

Step 3: Main Entity Finder. We assume the size of the main entity as well as the similarity
between the main entity and the image should be large. Based on the first assumption, the top-5
large objects in the image have the potential to be the main entity. Then, We select the object with
the highest CLIP score between the image and each category of the potential object to be the main
entity. Besides, if other top-5 objects have the same category as the main entity, we consider there
are multiple main entities inside the image, and we take the union of their masks.

Step 4: Image Cropper. To avoid the diffusion models being unaware of the main entity, we
should guarantee the main entity object takes a large region in the image. Therefore, we adaptively
center-crop the image based on the size of the main entity.

Extra Step: Human Evaluation. The same to pipeline image variation.

C EXPERIMENTAL SETTING

In this section, we further clarify the experimental settings for each experiment in the paper.

There are, in total, six metrics to measure the functionality of the latent diffusion models from three
aspects. CLIP score measures the similarity between the generated image and the edited prompt
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Figure 6: The automatic dataset construction pipeline for image inpainting diffusion model.

representing the expected function. A low CLIP score means the generated image is far from the
expected editing of the prompt. The normal function disruption is measured by three metrics: PSNR,
SSIM, and MSSSIM. They compute the similarity between the benign input and the corresponding
adversarial input, and a low score reflects a large normal function disruption. The quality of the
generated image is measured by FID and IS. A lower FID and a higher IS indicate that the generated
images are of higher quality.

We select the most well-known latent diffusion models: Stable Diffusion v1-5 for the white-box
component experiments. We consider eight different modules inside the SD-v1-5, as explained in
Section 3.3 of the paper. We deploy the adversarial attacks described in Equation (2) on the target
model’s output to destroy the intermediate features of the target module. Since there are multiple
denoising steps, we consider to destroy the target module inside the denoising process on all the
steps. We also select Gaussian noises as the standard baseline. The experimental results show that
the adversarial noises are better than the Gaussian noise.

For the white-box experiment on other latent diffusion models, We select to attack the most vulnera-
ble modules of each process. Specifically, We choose the Encoder module for the Encoding process,
Resnet for denoising process, and Post Quantization layers for the Decoding process.

We consider two kinds of transfer-based attack scenarios in diffusion attacks. The prompt-transfer
means that the adversarial image crafted by one prompt can also mislead the functionality of the
diffusion model with a similarly edited prompt input. We test the prompt-transfer in a circulation
manner in the experiment. Specifically, we craft one adversarial image by the current prompt and
test the prompt-transfer by the next prompt of the image when we fix the image and model. We
also evaluate the model-transfer and directly transfer the adversarial image by fixing the image and
prompt.

D DATASET ILLUSTRATIONS

The dataset contains two subsets for different categories of image editing diffusion models. Each
subset includes 100 images and five edited prompts per image. The subset for image inpainting
diffusion models also has additional 100 image masks for the images. The qualitative results of the
dataset are shown in Figure 7 and Figure 8. We will release the whole dataset and the code for
constructing the dataset to boost the research on the robustness of diffusion models.

E ATTACKING PERFORMANCE

We present more results on attacking latent diffusion image inpainting models in this section. We
analyze the attacking performance on different modules of the SD-v1-5 image inpainting model and
the attacking performance on the selected image inpainting latent diffusion models under the white-
box scenario. Besides, we evaluate the model-transfer performance across different versions of the
Stable Diffusion models.

We show the attacking performance on different modules of the SD-v1-5 inpainting model in Table
6. Compared with attacking image variation models, it is challenging to mislead its functionality,
since the output image keeps the main entity, and the editing region is limited. However, adversarial
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Figure 7: The data pair examples of the constructed dataset for the image variation diffusion models.

Figure 8: The data triplet examples of the constructed dataset for the image inpainting diffusion
models.

attacks can still reduce the CLIP score by more than 1.3, and the image quality as well as the normal
function are influenced. The qualitative results are shown in Figure 9. Among the modules, attacking
the Resnet achieves the best performance on destroying the normal function and the image quality,
but it is a little bit inferior than attacking the Encoder. Since an image inpainting model has the mask
input, and the edited region is limited, attacking the Denoising may overfit the model, leading to a
slightly lower expected function disruption and a higher normal function disruption compared with
attacking the Encoder. Therefore, Resnet and Encoder are more vulnerable than other modules for
image inpainting diffusion models.

Additionally, as shown in Table 7, we can draw the same conclusion as the other image inpainting
latent diffusion models that the encoding and denoising are vulnerable. Attacking the encoding
process can disrupt the expected function, while destroying the denoising is able to mislead the
normal function and reduce the image quality, which can be validated from the qualitative results.

Besides, we illustrate the model-transfer performance in Table 8. We can see that the transfer attack
can achieve better performance than the Gaussian noise in Table 2. Therefore, the adversarial exam-
ples of image inpainting models still transfer across different models. Furthermore, the adversarial
images crafted from SD-v1-5 and SD-v2-1 can achieve similar performance on attacking SD-v2-1,
which means that the adversarial examples from SD-v1-5 are as effective as the ones from SD-v2-1
on misleading SD-v2-1. However, the adversarial examples crafted from SD-v2-1 cannot mislead
SD-v1-5 well. Thus, the image inpainting latent diffusion models suffer from the same robustness
problem as image variation models. The defects from SD-v1 are inherited by SD-v2, which also
includes new defects.
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Table 6: The attacking performance against different modules inside the SD-v1-5 image inpainting
model. The best results are marked in bold.

Module CLIP PSNR SSIM MSSSIM FID IS
Encoder 33.04 14.33 0.255 0.538 174.8 17.69
Quant 34.05 14.83 0.271 0.572 155.6 24.25
Resnet 33.44 13.53 0.219 0.495 172.3 14.82

Self Attn 33.61 13.89 0.220 0.500 162.2 18.99
Cross Attn 33.50 14.82 0.275 0.572 154.6 23.93

FF 33.57 14.27 0.221 0.500 162.4 20.97
Post Quant 33.69 13.29 0.248 0.520 166.3 21.65

Decoder 34.17 15.07 0.282 0.594 155.7 24.73
Gaussian 34.31 15.95 0.316 0.628 161.1 19.78
Benign 34.4 ∞ 1.000 1.000 156.4 22.45

Table 7: The white-box attacking performance against different image inpainting diffusion models.
The best results are marked in bold.

Model Module CLIP PSNR SSIM MSSSIM FID IS

SD-v1-5

Encoding 33.04 14.33 0.255 0.538 174.8 17.69
Denoising 33.44 13.53 0.219 0.495 172.3 14.82
Decoding 33.69 13.29 0.248 0.520 166.3 21.65
Gaussian 34.31 15.95 0.316 0.628 161.1 15.78
Benign 34.40 ∞ 1.000 1.000 156.4 22.45

SD-v2-1

Encoding 33.62 14.24 0.268 0.542 184.3 13.74
Denoising 33.98 13.75 0.252 0.524 174.1 17.83
Decoding 34.20 13.86 0.270 0.542 168.7 19.00
Gaussian 34.66 15.97 0.334 0.635 155.7 22.88
Benign 34.88 ∞ 1.000 1.000 153.0 23.56

Table 8: The model-transfer attacking performance against other image inpainting diffusion models.
The best results are marked in bold.

Model Module SD-v1-5 SD-v2-1

SD-v1-5
Encoding 33.04 33.61
Denoising 33.44 33.87
Decoding 33.69 34.31

SD-v2-1
Encoding 33.61 33.62
Denoising 33.72 33.98
Decoding 33.87 34.20

Clean Mask Generate Encoding Denoising Decoding

”A cluster of individuals holding a bright kite on a grassy plain.”

”A platter with a banana that is sliced, cookies, and a spoon resting on it.”

Figure 9: Visualization of adversarial images and their output of the SD-v1-5 image inpainting
model.
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F QUALITATIVE RESULTS

We add more white-box qualitative results against the SD-v1-5 image variation model in Figure
10. We also include the corresponding black-box qualitative results and the results against defense
mechanisms in Figure 11.

Clean Gaussian Encoding Denoising Decoding

”A group of people enjoying a bright kite flying in the recreational area.”

”Near a girl sitting inside a refrigerator.”

”The pigeon is dining from a bread bowl, savoring every bite.”

”A bowl on the ground is transformed into a cozy bed for a cat catching some z’s.”

”Trays with wraps next to a can of potted meat.”

”A white truck parked next to a sidewalk near a fence.”
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”In the image, a person is reaching for a doughnut from an open box.”

”A display case with tall glass walls featuring a mix of fruit and grass.”

” A car roof with a bird standing on it near a covered pavilion.”

Figure 10: More qualitative results of adversarial images and their output of the SD-v1-5 image
variation model.

SD-v1-4 SD-v2-1 R & P JPEG

”A group of people enjoying a bright kite flying in the recreational area.”

”Near a girl sitting inside a refrigerator.”

”The pigeon is dining from a bread bowl, savoring every bite.”
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”A bowl on the ground is transformed into a cozy bed for a cat catching some z’s.”

”Trays with wraps next to a can of potted meat.”

” A white truck parked next to a sidewalk near a fence.”

”In the image, a person is reaching for a doughnut from an open box.”

” A display case with tall glass walls featuring a mix of fruit and grass.”

”A car roof with a bird standing on it near a covered pavilion.”

Figure 11: More qualitative results of generated images by model-transfer attacks on SD-v1-4 and
SD-v2-1, and generated adversarial images of the SD-v1-5 against defense mechanisms.

G DISCUSSION

G.1 USAGE

Adversarial attacks can trigger bugs inside deep neural networks, and such technologies can be
misused in the real world. However, it is important to understand the inner bugs inside the diffusion
models. Our study can attract the attention of researchers and motivate the research on the robustness
of diffusion models, like improving the robustness of the diffusion models and designing powerful
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defense mechanisms to avoid adversarial attacks. Moreover, adversarial attack strategies can be
utilized in a good way to avoid intended malicious editing by the generative models for a harmonious
society.

G.2 EFFICIENCY ISSUES

The computation complexity of the adversarial attacks on latent diffusion models is high because of
multiple denoising steps. However, we take measures to reduce the computation cost, including the
computation time and memory. We only consider 15 denoising steps and 15 iterations for generating
the adversarial examples. The computation time for generating one image is reduced to around 1
minute, and the memory is reduced under 32G. We regard that more efficient adversarial attack
algorithms are required to further reduce computation complexity in the future.

G.3 LIMITATION

The limitation of our work is that we propose to destroy all the internal features of the target module
in the denoising process. However, we have no guarantee that attacking all the features is the optimal
strategy. It is possible that better results are achievable by attacking part of the steps, but this would
require tuning the step combination. We leave it to future work.
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