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Abstract

Prompt tuning (PT) which only tunes the em-001
beddings of an additional sequence of tokens002
per task, keeping the pre-trained language003
model (PLM) frozen, has shown remarkable004
performance in few-shot learning. Despite this,005
PT has been shown to rely heavily on good006
initialization of the prompt embeddings. In007
this work, we study meta prompt tuning (MPT)008
to systematically explore how meta-learning009
can help improve (if it can) cross-task general-010
ization in PT through learning to initialize the011
prompt embeddings from other relevant tasks.012
We empirically analyze a representative set of013
meta learning algorithms in a wide range of014
adaptation settings with different source/target015
task configurations on a large set of few-shot016
tasks. With extensive experiments and analysis,017
we demonstrate the effectiveness of MPT. We018
find the improvement to be significant particu-019
larly on classification tasks. For other kinds of020
tasks such as question answering, we observe021
that while MPT can outperform PT in most022
cases, it does not always outperform multi-task023
learning. We further provide an in-depth analy-024
sis from the perspective of task similarity.025

1 Introduction026

Humans can easily learn to perform new tasks with027

only few data by leveraging previously acquired028

knowledge from other relevant tasks. Such capa-029

bility is a hallmark of human intelligence (Carey030

and Bartlett, 1978). However, when it comes to031

the models, they often face over-fitting issues when032

they are tasked to learn from a few labeled exam-033

ples (Lake et al., 2017; Linzen, 2020), a problem034

commonly termed as few-shot learning (FSL).035

With the recent advancements in developing036

large-scale pre-trained language models (PLMs),037

prompt-based methods have shown promising re-038

sults in FSL. Brown et al. (2020) show that by039

virtue of in-context (meta) learning, a frozen GPT-040

3 model can achieve good results on a variety of041
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Figure 1: Illustration of cross-task generalization, where
the model is expected to learn an unseen target task
given the knowledge acquired from previously learned
source tasks.

few-shot tasks through manually designed prompts, 042

which are task instructions along with a few exam- 043

ples expressed in natural language. However, the 044

performance of in-context learning has been shown 045

to be highly sensitive to the design of such “dis- 046

crete” prompts (Zhao et al., 2021). It is also limited 047

by the maximum sequence length supported by the 048

PLMs (Li and Liang, 2021). Down this line, efforts 049

have been made on automatically searching and 050

optimizing for discrete prompts (Shin et al., 2020; 051

Schick and Schütze, 2021; Gao et al., 2021). 052

As an alternative to discrete prompts, recent ef- 053

forts attempt to learn “soft” prompts that add ad- 054

ditional trainable parameters (Liu et al., 2021b; Li 055

and Liang, 2021; Lester et al., 2021), showing bet- 056

ter results than discrete prompts (Liu et al., 2021a). 057

Lester et al. (2021) introduce prompt tuning (PT) 058

that prepends a sequence of tunable tokens to the 059

input and optimize their embeddings keeping the 060

PLM frozen. Despite its strong few-shot perfor- 061

mance, PT has been shown to be sensitive to the 062

initialization of the embeddings, which might limit 063

its practical application (Qin and Joty, 2022b). To 064

address this, Gu et al. (2022) propose pre-trained 065
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prompt tuning (PPT) to pre-train soft prompts using066

self-supervised tasks on unlabeled data. It relies067

on carefully designed pre-training tasks tailored to068

the downstream tasks, and the pre-training objec-069

tives are only applicable to classification tasks. Vu070

et al. (2022) introduce soft prompt transfer (SPoT),071

which uses the soft prompts learned from a set072

of source tasks through multi-task learning to ini-073

tialize the prompt for a target task. Both PPT074

and SPoT demonstrate cross-task generalization075

(Fig. 1) – learning of a new task can benefit from076

learning of other related tasks (Ye et al., 2021).077

In a recent survey, Lee et al. (2022) claim that078

meta learning (Schmidhuber, 1987) can play an im-079

portant role for cross-task generalization in NLP.1080

Different from multi-task learning which consid-081

ers the performance on the source tasks to learn082

the initial parameters, meta learning aims to find083

initial parameters suitable for adapting to a target084

few-shot task. Hence, it could outperform multi-085

task learning in several scenarios with full-model086

finetuning (Dou et al., 2019; Chen et al., 2020b).087

However, to our knowledge, there is no systematic088

study on the role of meta learning on PT. In a recent089

work, Huang et al. (2022) adopt MAML (Finn et al.,090

2017) for pre-training soft prompts. One major lim-091

itation of their study is that it is limited to only one092

type of meta learning algorithm and only sentiment093

classification tasks, lacking comprehensive under-094

standing of cross-task generalization. Min et al.095

(2022) and Chen et al. (2022) show the effective-096

ness of in-context learning for PLMs, whereas we097

mainly focus on optimization-based meta learning.098

To systematically study meta prompt tuning099

(MPT) for cross-task generalization, we conduct100

experiments on a large collection of few-shot tasks101

involving different types of datasets with a unified102

text-to-text format (Ye et al., 2021). We investigate103

a wide range of adaptation settings with different104

source/target task types, which helps better under-105

stand the capability and limitation of meta learning106

in PT. With extensive experiments, we aim to ad-107

dress the following research questions:108

• Q1. Can MPT improve cross-task generalization109

in PT? Is it better than multi-task learning?110

• Q2. What happens with more labelled data for111

source/target tasks (beyond few-shot settings)?112

1Unless otherwise specified, by meta learning in this paepr
we generally refer to the optimization-based meta learning
algorithms, and use more specific names for the other kinds
such as in-context learning for black-box meta learning and
metric learning for non-parametric meta learning.

• Q3. Does it help with more diverse source tasks? 113

• Q4. Is the performance gain of MPT consistent 114

across different backbone models? 115

To answer these questions, we empirically an- 116

alyze MAML (Finn et al., 2017), FoMAML and 117

Reptile (Nichol et al., 2018), which constitute a 118

representative set of meta learning methods. Ex- 119

perimental results show that MPT can indeed help 120

cross-task generalization, e.g., MAML improves 121

the performance of PT by more than 20% on clas- 122

sification tasks. However, we also notice that MPT 123

does not always outperform multi-task learning, es- 124

pecially on non-classification tasks. We provide an 125

in-depth analysis from the perspective of task sim- 126

ilarity. As for Q2, we find that MPT does benefit 127

cross-task generalization beyond few-shot settings. 128

For Q3, we observe that increasing the diversity 129

of source tasks does not necessarily improve cross- 130

task generalization. Finally, the consistent gain of 131

MPT across different models shows its robustness 132

to model type and size. In summary, the two main 133

contributions of this work are: 134

• To the best of our knowledge, we are the first 135

to extensively explore how meta learning helps 136

cross-task generalization in prompt tuning. 137

• With extensive experiments and analysis, we 138

show the effectiveness and limitation of meta 139

prompt tuning in various source/target settings. 140

Our code base is available at <redacted>. 141

2 Related Work 142

Few-shot Learning (FSL) FSL aims to learn a 143

task with only a few labeled examples, which often 144

leads to the over-fitting problem. Existing methods 145

to address this problem mainly focus on optimizing 146

the hypothesis space of the few-shot tasks (Tri- 147

antafillou et al., 2017; Finn et al., 2017; Hu et al., 148

2018) or augmenting the few-shot data (Gao et al., 149

2020; Qin and Joty, 2022a). Recently, large-scale 150

pre-trained language models (PLMs) have demon- 151

strated strong FSL ability through prompt-based 152

methods, including both discrete (Brown et al., 153

2020) and soft prompts (Lester et al., 2021). 154

Prompt-based Learning (PL) PL is a new 155

paradigm which prepends a task-specific template 156

or prompt to the input for learning new tasks (Liu 157

et al., 2021a). Initial PL methods mainly focus 158

on designing, searching or optimizing discrete 159

prompts (Brown et al., 2020; Shin et al., 2020; 160

Gao et al., 2021). However, discrete prompts are 161

hard to optimize. To solve this, recent PL methods 162
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attempt to optimize prompts in a continuous space,163

i.e., learn soft prompts (Li and Liang, 2021; Liu164

et al., 2021b; Lester et al., 2021), showing impres-165

sive FSL performance (Qin and Joty, 2022b). In166

addition to prompt design, several recent studies167

have explored the applications (Zhu et al., 2022;168

Li et al., 2022) and analysis (Zhong et al., 2021;169

Le Scao and Rush, 2021) of PL.170

Meta Learning Meta Learning or learning to171

learn, has been applied to boost few-shot perfor-172

mance on various NLP tasks, e.g., relation extrac-173

tion (Han et al., 2018) and machine translation174

(Gu et al., 2018). Meta learning algorithms can175

be divided into three main categories. First, black-176

box methods adopt additional meta learners to help177

adaptation (Santoro et al., 2016; Garnelo et al.,178

2018; Mishra et al., 2018; Brown et al., 2020). Sec-179

ond, non-parametric methods explore how to learn180

metrics that can compare the distances between181

different samples, i.e., learning to compare (Koch182

et al., 2015; Vinyals et al., 2016; Snell et al., 2017).183

Finally, optimization-based methods aim to learn184

better parameter initialization to effectively and185

efficiently adapt to unseen tasks, i.e., learning to186

initialize (Finn et al., 2017; Nichol et al., 2018;187

Kedia et al., 2021). Lee et al. (2022) claim that188

meta learning can be effective for cross-task gener-189

alization, especially the optimization-based meth-190

ods. They can be applied to various problems in191

a model-agnostic way to improve FSL on target192

tasks with model fine-tuning (Ye et al., 2021).193

Summary. Existing work shows that meta learn-194

ing can improve cross-task few-shot generalization195

with full model fine-tuning. However, there is no196

systematic study on whether (and how) meta learn-197

ing can do so with prompt tuning of PLMs. To198

fill this research gap, our work provides a com-199

prehensive understanding of the effectiveness and200

limitation of meta learning in prompt tuning.201

3 Preliminaries202

In this section, we revisit the basics about prompt203

tuning and optimization-based meta learning.204

3.1 Prompt Tuning205

Following Lester et al. (2021), we reframe all206

tasks into a text-to-text format. Given a training207

dataset Dtr = {(X1, Y1), ..., (Xn, Yn)} for a task208

T , different from traditional model fine-tuning,209

prompt tuning (PT) is a parameter-efficient learn-210

ing method which freezes the PLM θ and prepends211

the input text Xi with a sequence of tunable soft 212

tokens P , parameterized by prompt embeddings 213

ϕ. The prompt embeddings ϕ are initialized from 214

the vocabulary of the PLM and optimized through 215

gradient descent with the following objective: 216

LT
ϕ = L(ϕ,Dtr) = −

n∑
i=1

log p(Yi|[P,Xi], ϕ, θ) (1) 217

3.2 Optimization-based Meta Learning 218

The main goal of optimization-based meta learning 219

(or learning to initialize), is to learn better initial 220

parameters that can effectively and efficiently adapt 221

to a new task T new with limited data. We denote 222

the initial parameters (meta-parameters) as ϕ∗. 223

To obtain ϕ∗, the model needs to learn from a 224

series of meta-training tasks T meta = {T1, ..., Tn}. 225

The dataset Di of each task Ti is divided into two 226

disjoint sets: a support set Si and a query set Qi. 227

The objective for learning ϕ∗ is 228

ϕ∗ = argmin
ϕ

∑
Ti∈T meta

L
(
ϕ− α∇ϕL(ϕ,Si)︸ ︷︷ ︸

inner update

,Qi

)
(2) 229

where L is the objective function defined in Eq. (1), 230

ϕ is the set of parameters to meta-learn and α is 231

the inner learning rate. Denoting the overall loss 232

as LT meta

ϕ =
∑

Ti∈T meta L(ϕ′,Qi) with ϕ′ being the 233

inner-updated value of ϕ, we use gradient descent 234

to update ϕ further in the meta-training stage: 235

ϕ = ϕ− β∇ϕLT meta
ϕ (3) 236

where β is the outer learning rate. This is actu- 237

ally the Model-Agnostic Meta-Learning or MAML 238

(Finn et al., 2017). Notice that optimizing Eq. (3) 239

requires calculating second-order gradients, which 240

can be quite memory-consuming. To alleviate 241

this, First-order MAML (FoMAML) and Reptile 242

(Nichol et al., 2018) are proposed to use first-order 243

approximations, allowing lower memory costs. 244

After the meta-training stage, ϕ∗ serves as the 245

initial parameters for learning an unseen meta- 246

testing task T new which is usually few-shot. 247

4 Approach 248

In this section, we first introduce the problem set- 249

ting and evaluation metric. Then, we illustrate the 250

key methods for meta prompt tuning (MPT). 251

4.1 Problem Setting 252

To evaluate cross-task generalization in prompt tun- 253

ing, we select a large and diverse collection of few- 254

shot tasks from Ye et al. (2021), covering various 255
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types including classification, question answering256

and generation. We partition the set of all tasks257

T all into two disjoint parts: source tasks T src and258

target tasks T tgt. Details of the tasks and partitions259

are provided later in our experiment setup (§5).260

Following Min et al. (2022), we can divide the261

whole learning process into two stages (Fig. 1):262

• Upstream learning on source tasks In this263

stage, the model has access to T src, which is re-264

garded as meta-training tasks T meta in Eq. (2). We265

divide the dataset Di of every source task Ti into266

training (or support) and validation (or query) sets,267

and conduct optimization-based meta learning or268

multi-task learning on these sets to obtain meta-269

parameters ϕ∗. Note that we use both support and270

query sets for model training in multi-task learning271

to ensure fair data access for both methods.272

• Downstream learning on target tasks After273

the upstream learning stage, we use the learned274

meta-parameters ϕ∗ as the initial point for learning275

target tasks T tgt. Every target task Tk has its own276

training set Dtr
k , validation set Dval

k , and test set277

Dtest
k . The model is required to learn from Dtr

k via278

prompt tuning and will be evaluated on Dtest
k . The279

performance on Dval
k is used for hyper-parameters280

tuning and model selection.281

This two-stage learning paradigm can naturally282

reflect cross-task generalization where the model283

needs to learn an unseen task given previously ac-284

quired knowledge from other tasks.285

4.2 Evaluation Metric286

We evaluate the model performance on a set of287

target tasks T tgt. As T tgt may cover various task288

types, simply averaging the performance of differ-289

ent target tasks is unreasonable. Following Ye et al.290

(2021), we use average relative gain (ARG) as the291

main evaluation metric. We first calculate relative292

gain (RG) for each target task, i.e., relative per-293

formance improvement before and after applying294

the upstream (meta or multi-task) learning on the295

source tasks. Then we average the relative gains296

of all target tasks to obtain the final result which297

indicates the overall performance improvement.298

4.3 Meta Prompt Tuning (MPT)299

As shown in Fig. 2, the key idea of MPT is to ap-300

ply optimization-based meta-training as upstream301

learning to a set of source tasks in order to learn302

meta parameters, which in this case are prompt em-303

beddings. The learned prompt embeddings serve304

Meta-training
Source Tasks

...

... ...

... Soft prompts Optimization-based 
meta learning

Meta-testing
Target Tasks

...

Prompt 
initialization

...

...

...

Prompt tuning

Meta-parameters

Figure 2: Overview of Meta Prompt Tuning (MPT).
In the meta-training stage, we conduct optimization-
based meta learning on source tasks to obtain meta-
parameters (i.e., soft prompts). The meta-parameters
will then be used to initialize prompt embeddings for
learning unseen target tasks in the meta-testing stage.

as the initialization for learning unseen target tasks, 305

referred to as meta-testing or downstream learning. 306

4.3.1 Meta-training 307

We meta-train the prompt embeddings on source 308

tasks T src. Without loss of generality, we take 309

MAML (Finn et al., 2017) as an example. For 310

every iteration, we first sample one source task 311

Ti which has a support set Si and a query set Qi. 312

Then we sample a support batch Bs from Si and 313

a query batch Bq from Qi. Denoting the trainable 314

prompt embeddings as ϕ, Bs and Bq are used for 315

one gradient update with the following objective: 316

Li
ϕ = L(ϕ− α∇ϕL(ϕ,Bs),Bq)

ϕ = ϕ− β∇ϕLi
ϕ

(4) 317

where L is the task loss defined in Eq. (1), and α 318

and β are inner and outer learning rates, respec- 319

tively. During the meta-training stage, we iterate 320

over tasks in T src to update prompt embeddings 321

ϕ for a fixed number of steps. The learned meta- 322

parameters ϕ∗ is used in the meta-testing stage. 323

4.3.2 Meta-testing 324

In meta-testing, the model is expected to learn un- 325

seen target tasks T tgt. For each target task Tk, we 326

use the learned meta-parameters ϕ∗ to initialize the 327

prompt embeddings for the task. Denoting the train- 328

ing set of Tk as Dtr
k , the learning objective during 329

meta testing is defined as: 330

Lϕ∗(Dtr
k) = −

n∑
i=1

log p(Yi|[P ∗, Xi], ϕ
∗, θ) (5) 331

where θ is the frozen PLM, (Xi, Yi) ∼ Dtr
k is a 332

training sample and P ∗ are the prompt tokens. 333
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Source Target

Setting #tasks Setting #tasks

Random 114 Random 20

Classification (Cls) 45
Classification 10Both (Cls + Non-Cls) 23 + 22

Non-Classification 45

Classification 45
Non-Classification 12Both (Cls + Non-Cls) 23 + 22

Non-Classification 45

QA 22 QA 15Non-QA 33

Non-Paraphrase Cls 60 Paraphrase 4

Table 1: Statistics of ten distinct source/target task parti-
tions. Appendix A.1 for details about each partition.

We evaluate the model with the best validation334

performance on the test set and calculate average335

relative gain on the test sets of T tgt.336

5 Experimental Setup337

We first describe the source/target task partitions,338

and then introduce methods compared in our work.339

Finally, we present the implementation details.340

5.1 Task Partitions341

We experiment with ten different source/target task342

partitions as shown in Table 1. Depending on the343

type of the target tasks, we can divide these ten344

settings into several groups:345

• R→R (Random→Random): We first experi-346

ment with the R→R setting where both source347

and target tasks are randomly selected, meaning348

that they can cover any task type. This setting349

mimics the learning paradigm of humans and re-350

flects whether cross-task generalization can help351

obtain a general-purpose few-shot learner.352

• X→Cls (X=Cls, Both, Non-Cls): The target353

tasks involve classification, while the source354

tasks can be classification, non-classification355

tasks or both. This setting helps us better under-356

stand the influence of the source task distribution.357

• X→Non-Cls (X=Cls, Both, Non-Cls): The only358

difference between this and the previous setting359

is the type of target tasks. We investigate how360

meta learning improves cross-task generalization361

when target tasks are non-classification tasks.362

• X→QA (X=QA, Non-QA): Compared to the363

previous one, this group is more fine-grained.364

We only select target tasks from question answer-365

ing (QA) instead of all non-classification tasks.366

We conduct experiment on different source task367

types, including QA and Non-QA tasks.368

• NP→P (Non-Paraphrase Cls→Paraphrase): 369

This group has the finest granularity in our set- 370

ting. We choose paraphrase identification which 371

is a sub-category of classification as the target, 372

and non-paraphrase classification as the source. 373

The final two groups help understand how meta 374

learning performs in more fine-grained scenarios. 375

Note that we ensure that there is no overlap be- 376

tween the source and target tasks. Following Ye 377

et al. (2021), we use 16 samples per class in the 378

training (or support) and validation (or query) sets 379

for classification tasks, and 32 samples per set for 380

non-classification tasks. For every task, we sample 381

the training and validation sets 5 times with differ- 382

ent random seeds to reduce variance in few-shot 383

evaluation and cover more diverse samples in up- 384

stream learning. We provide full details of tasks 385

and partitions in Appendix A.1. 386

5.2 Methods Compared 387

We mainly use T5-Large (Raffel et al., 2019) as 388

the backbone language model and compare the 389

following methods in our work. 390

• Prompt Tuning (PT) on target tasks. It is our 391

baseline without the upstream learning. We di- 392

rectly apply PT (Lester et al., 2021) to target tasks 393

and use its performance as the basis for comput- 394

ing average relative gain for other methods. 395

• Model-Agnostic Meta-Learning (MAML). We 396

apply MAML (Finn et al., 2017) in the upstream 397

learning (meta-training) stage. The learned meta- 398

parameters are used to initialize prompt embed- 399

dings for learning target tasks. 400

• First-order MAML (FoMAML) and Reptile. 401

We also investigate two first-order meta learn- 402

ing algorithms: FoMAML (Finn et al., 2017) 403

and Reptile (Nichol et al., 2018). Compared to 404

MAML, they are more memory-efficient. 405

• Multi-task learning (MTL). We conduct multi- 406

task learning on source tasks instead of meta 407

learning to obtain initial parameters. This is a 408

straight-forward yet effective method as demon- 409

strated by Vu et al. (2022). 410

• Fine-tuning on target tasks. Fine-tuning is the 411

dominant paradigm where the whole language 412

model is tuned for learning target tasks. We in- 413

clude it to verify whether cross-task generaliza- 414

tion can help PT outperform fine-tuning. 415

In addition, we conduct experiments with differ- 416
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ent backbone models to verify MPT’s robustness.417

5.3 Implementation Details418

All our methods are implemented with Py-419

Torch/Transformers library (Wolf et al., 2020). We420

use higher library (Grefenstette et al., 2019) for421

higher-order optimization in meta learning meth-422

ods. The prompt length in PT is set to 100 tokens423

following Lester et al. (2021). We provide details424

of other hyperparameters in Appendix A.4.425

Since it is infeasible to search for optimal hy-426

perparameters for each of the meta- and multi-task427

learning methods in each of the settings, we select428

them based on the R→R setting. We randomly se-429

lect 5 tasks that are not in the source and target sets430

as validation tasks for hyperparameter search. The431

hyperparameters with best validation performance432

(ARG) are used for upstream learning. We select433

the inner learning rate, the outer learning rate and434

total training steps for MAML and adopt the same435

three hyperparameters for FoMAML and Reptile.436

6 Results and Analysis437

We now address the four research questions asked438

before in §1 with empirical results.439

Q1. Can meta prompt tuning improve cross-task

generalization? Is it better than multi-task learning?

The ARG of different methods w.r.t. PT in var-440

ious settings are shown in Table 2; more detailed441

results on every target task are in Appendix A.2.442

• MPT can indeed help cross-task generaliza-443

tion. From the results in Table 2, we observe that444

MPT outperforms the baseline PT in most cases445

with +ve ARG scores. Out of 30 different runs for446

three meta learning methods in ten different set-447

tings (see the 1st block of results), MPT achieves448

better performance than PT in 23 runs, demonstrat-449

ing its effectiveness in cross-task generalization.450

For the R→R setting, MAML achieves the best451

performance, showing that it is a good general-452

purpose few-shot learner. For adapting to classifi-453

cation tasks, MAML outperforms PT by 20.16% if454

the prompt embeddings are initialized from other455

classification tasks. The results in a more fine-456

grained setting (NP→P) also indicate the ability of457

MAML to learn classification tasks. While Reptile458

performs the best (20.44%) in this setting, MAML459

still outperforms PT by a large margin (11.14%).460

However, as shown in Table 2, MAML falls be-461

hind FoMAML when adapting to non-classification462

tasks. Among the three meta learning methods, Fo- 463

MAML achieves the best performance (9.81%) on 464

non-classification target tasks in the Both→Non- 465

Cls setting, showing effective knowledge transfer. 466

We observe similar results in more fine-grained 467

settings QA/Non-QA→QA, where FoMAML out- 468

performs MAML and Reptile significantly. While 469

Reptile is claimed empirically to be better than 470

MAML/FoMAML (Lee et al., 2022), it falls short 471

of MAML/FoMAML in many cases. This might 472

be because MAML and FoMAML are more similar 473

compared to Reptile from a gradient perspective 474

(Nichol et al., 2018). And since the hyperparame- 475

ter search is done based on MAML (§5.3), which 476

means Reptile’s method may be suboptimal. 477

In addition, we can see that meta learning helps 478

PT outperform fine-tuning in several settings in- 479

cluding Cls→Cls (MAML, FoMAML), Both→Cls 480

(FoMAML) and NP→P (MAML, Reptile), which 481

demonstrates the superiority of MPT. 482

• MPT does not always outperform multi-task 483

learning (MTL). While meta learning is specifi- 484

cally designed for quickly adapting to unseen target 485

tasks, it does not always outperform MTL in PT. 486

From Table 2, we can observe that MTL achieves 487

better performance than MPT in many cases, espe- 488

cially on non-classification target tasks. We analyze 489

the reasons as follows: 490

• Meta learning methods have been shown to be 491

highly sensitive to the hyperparameters (Anto- 492

niou et al., 2019), which we could not tune 493

exhaustively due to memory/time constraints 494

(see Appendix A.5 for hyperparameter sensitivity 495

analysis). As mentioned in §5.3, we select the 496

hyperparameters of MAML using the R→R set- 497

ting, and then use the same hyperparameters for 498

all meta learning methods in all settings, which 499

might limit the performance of MPT. 500

• There might be less shared structure (or features) 501

among non-classification tasks compared to clas- 502

sification. The classification tasks mostly involve 503

sentence-level classification and in some cases 504

the task labels correlate well (e.g., AG News and 505

DBpedia). Thus, they share some common se- 506

mantics in both source and target tasks. The 507

model can learn similar patterns (inferring the la- 508

bel of the entire input sentence) during both meta- 509

training and meta-testing stages, enabling better 510

knowledge transfer. The non-classification set 511

on the other hand can include different types of 512

tasks such as QA and summarization; modeling 513
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Method R→R
Cls

→Cls
Both
→Cls

Non-Cls
→Cls

Cls
→Non-Cls

Both
→Non-Cls

Non-Cls
→Non-Cls

QA
→QA

Non-QA
→QA

NP
→P

MAML 8.78±0.69 20.16±0.84 10.57±1.03 6.34±0.48 0.32±0.04 7.54±0.73 6.71±0.39 −16.59±1.36 3.26±0.24 11.14±0.93

FoMAML 1.24±0.18 18.80±1.13 17.84±1.21 7.32±0.42 6.42±0.51 9.81±0.64 3.88±0.31 16.63±1.58 9.83±0.76 −0.68±0.07

Reptile 8.42±0.46 −5.17±0.71 −4.18±0.37 2.42±0.21 −1.54±0.18 −3.38±0.49 0.78±0.07 0.77±0.09 −0.09±0.01 20.44±1.34

Multi-task learning 7.14±0.62 −5.64±0.92 5.73±0.43 4.97±0.39 8.51±1.16 13.47±0.97 19.67±1.72 25.65±1.93 17.23±1.08 −5.19±0.86

Fine-tuning −12.61±1.57 16.02±1.44 16.02±1.44 16.02±1.44 −35.70±2.73 −35.70±2.73 −35.70±2.73 −47.37±2.97 −47.37±2.97 1.56±0.12

Table 2: Average relative gain (ARG %) of different methods with respect to prompt tuning (PT) in various
settings. Bold indicates the best ARG score. ‘Cls’, ‘QA’, ‘P’ and ‘NP’ respectively stand for ‘classification’,
‘question answering’, ‘paraphrase’ and ‘non-paraphrase classification’.

them typically requires a Seq2Seq formulation.514

These tasks typically lack shared task semantics.515

For example, the structure of QA is context +516

question + answer, requiring reasoning ability. In517

contrast, the structure of summarization is long518

document + short summary, requiring summa-519

rizing ability. Although it has been shown that520

QA can help summarization in content selection521

(Arumae and Liu, 2019), it is more difficult for522

MPT to capture transferable knowledge as suc-523

cess of meta learning eventually depends on how524

much the tasks share (Finn, 2022).525

To provide an in-depth analysis of the difference526

between classification and non-classification tasks,527

we consider from the perspective of task similar-528

ity. Following (Lin et al., 2022), the correlation529

between input subspaces (the norm of projected530

subspace onto the other subspace) for two tasks531

could serve as the similarity score between them.532

We randomly pick 5 (cls,cls) task pairs as similar533

tasks. For dissimilar tasks, we randomly pick 5534

(QA, summarization) task pairs. The average simi-535

larity score for similar task pairs is 0.768 while the536

average similarity score for dissimilar task pairs is537

only 0.306 (see Appendix A.6 for detailed results),538

which verifies that classification tasks share more539

structure than non-classification tasks.540

Given the performance gap between MPT and541

MTL in some settings, we believe that exploring542

more advanced MPT methods could be a promising543

research direction.544

Q2. What happens with more labelled data for

source/target tasks (beyond few-shot settings)?

As mentioned in §5.1, we mainly explore how MPT545

improves cross-task generalization when both the546

source and target tasks are few-shot, which cor-547

responds to the way humans learn (Lake et al.,548

2017). We used 16 samples per class for classi-549

fication tasks, and 32 samples per dataset for non-550

classification tasks. To validate whether more la-551

16-shot 32-shot 64-shot 128-shot10
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Figure 3: ARG (%) of MPT (MAML) and multi-task
learning w.r.t. prompt tuning (ARG = 0) for varying
data size of source tasks in the Cls→Cls setting.

belled data for source/target tasks can influence 552

the performance of MPT, we conduct controlled 553

experiments with {32, 64, 128} samples per class 554

for source/target tasks in the Cls→Cls setting. 555

• Source We report the results of MAML and 556

MTL with more labelled data for the source tasks in 557

Fig. 3. We can observe that: (i) MPT outperforms 558

PT (ARG = 0) and MTL in all cases, showing its 559

robustness to data sizes. (ii) Increasing the number 560

of samples in source tasks does not necessarily lead 561

to better cross-task generalization for MPT. The 562

best ARG is achieved for 16-shot, which justifies 563

using few-shot source tasks. (iii) The performance 564

of MTL improves with more data for source tasks, 565

showing a different learning pattern from MPT. 566

• Target Table 3 shows the results for increasing 567

the number of examples in target tasks. We can 568

see that: (i) The performance gain of MPT is evi- 569

dent even at 128-shot (8.36%), demonstrating that 570

it does help cross-task generalization beyond few- 571

shot. (ii) MPT outperforms MTL by a large margin 572

in all settings. (iii) MTL is unstable in terms of 573

ARG scores; while it outperforms PT in 64-shot 574

(1.96%), it falls behind PT in all other settings, in- 575

dicating that MPT is a better choice when adapting 576

to classification tasks. 577

Q3. Does MPT help with more diverse source tasks?
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Method Shot

16 32 64 128

MPT (MAML) 20.16 9.10 5.64 8.36

Multi-task learning −5.64 −14.17 1.96 −0.20

Table 3: ARG (%) of different methods when more
labelled data is used in target tasks.

Method Source task number

12 24 45

MPT (MAML) 8.44 12.89 20.16

Table 4: ARG (%) of MPT (MAML) when using dif-
ferent number of source tasks in the Cls→Cls setting.

MPT aims to learn to initialize the prompt embed-578

dings from source tasks, which may cover different579

types. We hypothesize that the diversity of source580

tasks might influence its performance. To verify581

this, we analyze the influence of different source582

task selections on the same target tasks in two set-583

tings: varying the type and number of tasks.584

• Type of tasks. The results of learning from dif-585

ferent types of source tasks are reported in Table 2.586

The performance of MPT on non-classification587

target tasks improves when using more diverse588

source tasks, e.g., from Non-Cls/Cls→Non-Cls to589

Both→Non-Cls. However, for adapting to classi-590

fication task, the best ARG is achieved when all591

source tasks are classification, i.e., the Cls→Cls592

setting. Hence, we can conclude that increasing593

the type diversity of source tasks does not neces-594

sarily improve cross-task generalization, which is595

consistent with the finding in (Ye et al., 2021).596

• Number of tasks. To investigate the impact of597

the number of source tasks, we conduct controlled598

experiments on {12, 24} source tasks sampled599

from the original 45 source tasks in the Cls→Cls600

setting (see Appendix A.3 for a full list). From Ta-601

ble 4, we can observe that the performance of MPT602

keeps improving as the number of source tasks603

increases, showing better cross-task generalization.604

It is worthwhile to note that while our work pro-605

vides some insights on the choice of source tasks,606

more systematic studies on how to select the most607

suitable source tasks given a set of target tasks are608

needed. We hope that future analysis can provide a609

more comprehensive understanding of the relation-610

ship between source and target tasks.611

Q4. Is the performance gain of MPT consistent across

different backbone language models?

Method MAML FoMAML Reptile MTL Fine-tuning

T5-Large 11.14 −0.68 20.44 −5.19 1.56
T5-Base 9.24 4.15 7.96 1.64 7.41
T5-XLarge 14.35 2.46 10.74 5.72 −9.61
BART-Large 7.63 1.16 8.94 −2.37 2.74
GPT2-Large 3.19 −2.68 4.62 −1.43 3.75

Table 5: Average relative gain (ARG %) of all methods
with different backbone models in the NP→P setting.
‘MTL’ stands for ‘multi-task learning’.

Our experiments and analysis so far use T5-Large 612

as the backbone model. To verify whether the per- 613

formance gain of MPT is consistent across different 614

backbone models, we extend the experiments to T5- 615

Base, T5-XLarge, BART-Large and GPT2-Large 616

in the NP→P setting. From the results shown in Ta- 617

ble 5, we can see that MPT still outperforms PT and 618

MTL by a large margin when using other PLMs 619

as the backbone model, showing its robustness to 620

model size and type. In addition, the consistent 621

gain of MPT with T5-XLarge could also verify the 622

effectiveness of MPT for huge PLMs which have 623

been shown to perform better in prompt tuning 624

(Lester et al., 2021). 625

6.1 Further Analysis 626

Prompt tuning (PT) vs. Fine-tuning (FT). 627

While PT shows strong few-shot learning ability, 628

FT remains the dominant paradigm. As shown in 629

Table 2, FT outperforms PT when adapting to clas- 630

sification tasks even in few-shot settings, which 631

might be because PT has only a few tunable param- 632

eters. Though MPT is based on PT, its performance 633

gain over FT in all cases suggests that it can learn 634

to initialize the prompt embeddings from source 635

tasks, enabling effective knowledge transfer. 636

7 Conclusion 637

In this paper, we have introduced meta prompt tun- 638

ing (MPT), which learns to initialize the prompt 639

embeddings for adapting to a target task. We have 640

identified key research questions and systematically 641

studied where and how meta learning can improve 642

cross-task generalization in prompt tuning. We 643

have empirically analyzed a representative set of 644

meta learning methods in a variety of adaptation 645

settings on a large, diverse collection of few-shot 646

tasks. Extensive experimental results and analysis 647

verify the effectiveness of MPT. Given the find- 648

ings, in the future, we would like to explore more 649

advanced meta learning algorithms which can con- 650

sistently outperform multi-task learning. 651
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A Appendix1669

A.1 Task List1670

We report the full list of tasks used in ten differ-1671

ent settings in Table 8. All tasks are taken from1672

CROSSFIT (Ye et al., 2021).1673

A.2 Detailed Results on Every Target Task1674

We mainly report average relative gain (ARG) in1675

our experiments (§6). In this section, we show1676

detailed results on each target task in Fig. 4 ∼1677

Fig. 13.1678

A.3 Details of Sampled Tasks1679

We sample {12, 24} tasks from the original 451680

source tasks in the Cls→Cls setting to investigate1681

the influence of the number of source tasks. The1682

details of sampled tasks are shown in Table 9.1683

A.4 Details of Hyperparameters1684

For meta-training, we set the inner and outer learn-1685

ing rates to 3e−5 and 5e−1, respectively. We1686

use 5000 for total training steps. We set the in-1687

ner batch size to 2, 4 and 4, and inner update1688

steps to 1, 1 and 10 for MAML, FoMAML and1689

Reptile, respectively. For multi-task learning, we1690

set the learning rate, batch size and number of1691

epochs to 5e−1, 4 and 20, respectively. For1692

MAML, we select the inner learning rate from1693

{2e−5, 3e−5, 5e−5}, the outer learning rate from1694

{2e−1, 3e−1, 5e−1}, and total training steps from1695

{2500, 5000, 10000}. We adopt the same three1696

hyperparameters for FoMAML and Reptile. The1697

search range for the inner update steps of Reptile1698

is {2, 4, 6, 8, 10}. For multi-task learning, we se-1699

lect the learning rate from {2e−1, 3e−1, 5e−1},1700

the batch size from {2, 4, 6, 8}, and the number of1701

epochs from {5, 10, 20}.1702

For downstream learning, we mainly fol-1703

low the settings in Ye et al. (2021). For1704

prompt tuning, we select the learning rate from1705

{5e−1, 4e−1, 3e−1, 2e−1} based on the valida-1706

tion performance. For fine-tuning, the search range1707

for the learning rate is {5e−4, 3e−4, 2e−4, 1e−4}.1708

We set the batch size, total training steps and evalu-1709

ation interval to 8, 3000 and 50, respectively.1710

A.5 Hyperparameter Sensitivity Analysis 1711

As mentioned in Appendix A.4, for MAML, 1712

we select the inner learning rate from 1713

{2e−5, 3e−5, 5e−5}, the outer learning rate 1714

from {2e−1, 3e−1, 5e−1}, and total training 1715

steps from {2500, 5000, 10000} in the R→R 1716

setting. The best validation performance (10.14% 1717

ARG) is achieved with {3e−5, 5e−1, 5000}, 1718

while the worst validation ARG is −16.21% 1719

when using {5e−5, 2e−1, 2500}. We can see that 1720

MPT is quite sensitive to hyperparameters. It 1721

performs even worse than PT with inappropriate 1722

hyperparameters. 1723

A.6 Task Similarity Analysis 1724

As discussed in §6, we use the correlation between 1725

input subspaces for two tasks as the similarity score 1726

between them. Detailed results of randomly picked 1727

similar and dissimilar task pairs are shown in Ta- 1728

ble 6. 1729

A.7 Case Study 1730

To take a closer look at the influence of different 1731

source task types on a particular target task, we fur- 1732

ther conduct a case study where we ensure that the 1733

task under consideration appears in the target task 1734

partitions.2 Results are shown in Table 7; for exam- 1735

ple, the first block indicates that Amazon_Polarity 1736

appears as a target task in both R→R and Cls→Cls 1737

settings. We can observe that there is no consistent 1738

conclusion on how we should choose the source 1739

tasks for a specific target task, which is consistent 1740

with our view in Q3. 1741

A.8 Limitations 1742

Although comprehensive, our study of MPT in this 1743

work has couple of limitations: 1744

• As mentioned in §5.3, because of infeasiblity 1745

to search for optimal hyperparameters for each 1746

of the meta learning methods in each of the ten 1747

settings, we choose to use the R→R setting as our 1748

main representative setting. This could be one of 1749

the reasons for MPT underperforming MTL in 1750

some non-classification tasks (noted in §6-Q1). 1751

• We mainly focus on how upstream meta learn- 1752

ing can improve the performance on target tasks. 1753

However, meta learning also enables faster con- 1754

vergence. We leave how it could help reduce the 1755

convergence time of PT as future work. 1756

2As before, we ensure it does not appear in the source.
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Task Pair Index
Average

1 2 3 4 5

Similar 0.772 0.695 0.754 0.819 0.802 0.768

Dissimilar 0.326 0.311 0.283 0.315 0.297 0.306

Table 6: Similarity scores of randomly picked similar
and dissimilar task pairs.

Target Task Partition ∆MPT ∆MTL

Amazon_Polarity
R→R 3.10 2.25

Cls→Cls 7.40 10.45

AI2_ARC
R→R 12.54 5.55

Both→Non-Cls 8.17 6.69

Samsum
R→R 1.97 6.77

Both→Non-Cls 2.50 5.71

Superglue-Copa
Both→Non-Cls 1.20 10.00

QA→QA −3.20 4.80

Table 7: Relative gain in % for MPT and MTL when
the same target task appears in different patitions.

Aside from that, meta prompt tuning (MPT) as a1757

method has a limitation that it is Memory-intensive.1758

Optimization-based meta learning methods, espe-1759

cially MAML, are memory-intensive, which limits1760

the tuning of the inner batch size and inner up-1761

date steps (Appendix A.4). One potential solution1762

is to build more memory-efficient meta learning1763

libraries.1764

19



Partition: Random Source
glue-mrpc, math_qa, quarel, e2e_nlg_cleaned, tweet_eval-stance_atheism, lama-squad, tab_fact, aqua_rat, tweet_eval-emoji, glue-wnli, codah, tweet_eval-offensive,
wiki_qa, blimp-ellipsis_n_bar_1, openbookqa, sms_spam, acronym_identification, blimp-determiner_noun_agreement_with_adj_irregular_1, ethos-national_origin,
spider, hellaswag, superglue-wsc, numer_sense, ade_corpus_v2-dosage, blimp-ellipsis_n_bar_2, kilt_ay2, squad-no_context, google_wellformed_query, xsum,
wiqa, tweet_eval-stance_abortion, reddit_tifu-tldr, ade_corpus_v2-effect, qa_srl, ethos-religion, commonsense_qa, biomrc, superglue-multirc, ethos-race, eli5-askh,
glue-qqp, paws, ethos-directed_vs_generalized, glue-sst2, tweet_eval-hate, glue-rte, blimp-anaphor_number_agreement, lama-conceptnet, hate_speech_offensive,
superglue-wic, boolq, kilt_hotpotqa, quartz-no_knowledge, aslg_pc12, sick, tweet_eval-stance_climate, tweet_eval-sentiment, crows_pairs, glue-mnli, medi-
cal_questions_pairs, break-QDMR-high-level, qasc, imdb, ethos-gender, trec-finegrained, adversarialqa, onestop_english, web_questions, duorc, swag, proto_qa,
scitail, tweet_eval-stance_feminist, limit, common_gen, scicite, blimp-irregular_past_participle_adjectives, social_i_qa, anli, kilt_zsre, cosmos_qa, superglue-record,
squad-with_context, emotion, blimp-existential_there_quantifiers_1, race-middle, kilt_wow, sciq, wino_grande, rotten_tomatoes, superglue-cb, poem_sentiment,
ropes, reddit_tifu-title, piqa, climate_fever, lama-google_re, search_qa, mc_taco, blimp-wh_questions_object_gap, hotpot_qa, emo, kilt_nq, kilt_trex, quartz-
with_knowledge, dbpedia_14, yahoo_answers_topics, superglue-copa, blimp-anaphor_gender_agreement, hate_speech18, gigaword, multi_news, aeslc, quail

Partition: Random Target
quoref, wiki_split, ethos-disability, yelp_polarity, superglue-rte, glue-cola, ethos-sexual_orientation, blimp-sentential_negation_npi_scope, ai2_arc, amazon_polarity,
race-high, blimp-sentential_negation_npi_licensor_present, tweet_eval-irony, crawl_domain, freebase_qa, glue-qnli, hatexplain, ag_news, circa, samsum

Partition: Classification Source
superglue-rte, tweet_eval-sentiment, discovery, glue-rte, superglue-wsc, scicite, glue-mrpc, tweet_eval-stance_hillary, tweet_eval-offensive, emotion, hatexplain, glue-
cola, sick, paws, ethos-sexual_orientation, glue-qqp, tweet_eval-emotion, sms_spam, health_fact, glue-mnli, imdb, ethos-disability, glue-wnli, scitail, trec-finegrained,
yahoo_answers_topics, liar, glue-sst2, tweet_eval-stance_abortion, circa, tweet_eval-stance_climate, glue-qnli, tweet_eval-emoji, ethos-directed_vs_generalized,
ade_corpus_v2-classification, ag_news, hate_speech_offensive, superglue-wic, google_wellformed_query, tweet_eval-irony, ethos-gender, onestop_english, trec,
rotten_tomatoes, kilt_fever

Partition: Non-Classification Source
ade_corpus_v2-dosage, art, biomrc, blimp-anaphor_number_agreement, blimp-ellipsis_n_bar_2, blimp-sentential_negation_npi_licensor_present, blimp-
sentential_negation_npi_scope, break-QDMR-high-level, commonsense_qa, crows_pairs, dream, duorc, eli5-asks, eli5-eli5, freebase_qa, gigaword, hellaswag,
hotpot_qa, kilt_ay2, kilt_hotpotqa, kilt_trex, kilt_zsre, lama-conceptnet, lama-google_re, lama-squad, math_qa, numer_sense, openbookqa, piqa, proto_qa, qa_srl,
quarel, quartz-no_knowledge, race-high, reddit_tifu-title, reddit_tifu-tldr, ropes, sciq, social_i_qa, spider, superglue-multirc, wiki_bio, wikisql, xsum, yelp_review_full

Partition: Both (Classification + Non-Classification) Source
ade_corpus_v2-dosage, biomrc, blimp-ellipsis_n_bar_2, blimp-sentential_negation_npi_scope, commonsense_qa, crows_pairs, duorc, hellaswag, kilt_zsre, lama-
google_re, lama-squad, math_qa, numer_sense, openbookqa, piqa, proto_qa, quartz-no_knowledge, race-high, reddit_tifu-tldr, ropes, sciq, wiki_bio, discovery,
emotion, ethos-disability, ethos-sexual_orientation, glue-cola, glue-mnli, glue-mrpc, glue-qqp, glue-rte, glue-wnli, hatexplain, health_fact, imdb, paws, scicite, sick,
sms_spam, superglue-rte, superglue-wsc, tweet_eval-emotion, tweet_eval-offensive, tweet_eval-sentiment, tweet_eval-stance_hillary

Partition: Classification Target
superglue-cb,dbpedia_14,wiki_qa,emo,yelp_polarity,ethos-religion,amazon_polarity,tab_fact,anli,ethos-race

Partition: Non-Classification Target
multi_news, superglue-copa, quail, blimp-anaphor_gender_agreement, common_gen, acronym_identification, quoref, wiki_split, ai2_arc, break-QDMR,
crawl_domain, samsum

Partition: QA Source
biomrc, boolq, freebase_qa, hotpot_qa, kilt_hotpotqa, kilt_nq, kilt_trex, kilt_zsre, lama-conceptnet, lama-google_re, lama-squad, lama-trex, mc_taco, numer_sense,
quoref, ropes, search_qa, squad-no_context, superglue-multirc, superglue-record, tweet_qa, web_questions

Partition: Non-QA Source
hate_speech_offensive, google_wellformed_query, circa, glue-sst2, scitail, emo, ag_news, art, paws, kilt_ay2, glue-qnli, ade_corpus_v2-classification, hatexplain,
emotion, glue-qqp, kilt_fever, dbpedia_14, glue-mnli, discovery, gigaword, amazon_polarity, tab_fact, tweet_eval-emoji, tweet_eval-offensive, tweet_eval-sentiment,
imdb, liar, anli, wikisql, xsum, yahoo_answers_topics, yelp_polarity, yelp_review_full

Partition: QA Target
ai2_arc, codah, cosmos_qa, dream, hellaswag, qasc, quail, quarel, quartz-no_knowledge, quartz-with_knowledge, sciq, superglue-copa, swag, wino_grande, wiqa

Partition: Non-Paraphrase Classification Source
ade_corpus_v2-classification, ag_news, amazon_polarity, anli, circa, climate_fever, dbpedia_14, discovery, emo, emotion, ethos-directed_vs_generalized, ethos-
disability, ethos-gender, ethos-national_origin, ethos-race, ethos-religion, ethos-sexual_orientation, financial_phrasebank, glue-cola, glue-mnli, glue-qnli, glue-
rte, glue-sst2, glue-wnli, google_wellformed_query, hate_speech18, hate_speech_offensive, hatexplain, health_fact, imdb, kilt_fever, liar, onestop_english,
poem_sentiment, rotten_tomatoes, scicite, scitail, sick, sms_spam, superglue-cb, superglue-rte, superglue-wic, superglue-wsc, tab_fact, trec, trec-finegrained,
tweet_eval-emoji, tweet_eval-emotion, tweet_eval-hate, tweet_eval-irony, tweet_eval-offensive, tweet_eval-sentiment, tweet_eval-stance_abortion, tweet_eval-
stance_atheism, tweet_eval-stance_climate, tweet_eval-stance_feminist, tweet_eval-stance_hillary, wiki_qa, yahoo_answers_topics, yelp_polarity

Partition: Paraphrase Target
glue-mrpc, glue-qqp, medical_questions_pairs, paws

Table 8: Full datasets for all settings described in Section 5.1. We provide references for all datasets in Table 10.

12 source tasks
superglue-rte, tweet_eval-sentiment, discovery, glue-rte, hatexplain, glue-cola, health_fact, glue-mnli, imdb, ethos-disability, glue-wnli, scitail

24 source tasks
superglue-rte, tweet_eval-sentiment, discovery, glue-rte, superglue-wsc, scicite, hatexplain, glue-cola, tweet_eval-emotion, sms_spam, health_fact, glue-mnli, imdb,
ethos-disability, glue-wnli, scitail, glue-sst2, tweet_eval-stance_abortion, glue-qnli, ethos-directed_vs_generalized, ag_news, hate_speech_offensive, ethos-gender,
kilt_fever

Table 9: Details of sampled {12, 24} tasks for investigating the impact of the number of source tasks.
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Task Name Reference

eli5-eli5 Fan et al. 2019
ethos-race Mollas et al. 2020
tweet_qa Xiong et al. 2019
tweet_eval-stance_hillary Barbieri et al. 2020
piqa Bisk et al. 2020
acronym_identification Pouran Ben Veyseh et al. 2020
wiki_split Botha et al. 2018
scitail Khot et al. 2018
emotion Saravia et al. 2018
medical_questions_pairs McCreery et al. 2020
blimp-anaphor_gender_agreement Warstadt et al. 2020
sciq Welbl et al. 2017
paws Zhang et al. 2019
yelp_review_full Zhang et al. 2015; (link)
freebase_qa Jiang et al. 2019
anli Nie et al. 2020
quartz-with_knowledge Tafjord et al. 2019b
hatexplain Mathew et al. 2020
yahoo_answers_topics (link)
search_qa Dunn et al. 2017
tweet_eval-stance_feminist Barbieri et al. 2020
codah Chen et al. 2019
lama-squad Petroni et al. 2019, 2020
superglue-record Zhang et al. 2018
spider Yu et al. 2018
mc_taco Zhou et al. 2019
glue-mrpc Dolan and Brockett 2005
kilt_fever Thorne et al. 2018
eli5-asks qa Fan et al. 2019
imdb Maas et al. 2011
tweet_eval-stance_abortion Barbieri et al. 2020
aqua_rat Ling et al. 2017
duorc Saha et al. 2018
lama-trex Petroni et al. 2019, 2020
tweet_eval-stance_atheism Barbieri et al. 2020
ropes Lin et al. 2019
squad-no_context Rajpurkar et al. 2016
superglue-rte Dagan et al. 2005
qasc Khot et al. 2020
hate_speech_offensive Davidson et al. 2017
trec-finegrained Li and Roth 2002; Hovy et al. 2001
glue-wnli Levesque et al. 2012
yelp_polarity Zhang et al. 2015; (link)
kilt_hotpotqa Yang et al. 2018
glue-sst2 Socher et al. 2013
xsum Narayan et al. 2018
tweet_eval-offensive Barbieri et al. 2020
aeslc Zhang and Tetreault 2019
emo Chatterjee et al. 2019
hellaswag Zellers et al. 2019
social_i_qa Sap et al. 2019
kilt_wow Dinan et al. 2019
scicite Cohan et al. 2019
superglue-wsc Levesque et al. 2012
hate_speech18 de Gibert et al. 2018
adversarialqa Bartolo et al. 2020
break-QDMR Wolfson et al. 2020
dream Sun et al. 2019
circa Louis et al. 2020
wiki_qa Yang et al. 2015
ethos-directed_vs_generalized Mollas et al. 2020
wiqa Tandon et al. 2019
poem_sentiment Sheng and Uthus 2020
kilt_ay2 Hoffart et al. 2011
cosmos_qa Huang et al. 2019
reddit_tifu-title Kim et al. 2019
superglue-cb de Marneffe et al. 2019
kilt_nq Kwiatkowski et al. 2019
quarel Tafjord et al. 2019a
race-high Lai et al. 2017
wino_grande Sakaguchi et al. 2020
break-QDMR-high-level Wolfson et al. 2020
tweet_eval-irony Barbieri et al. 2020
liar Wang 2017
openbookqa Mihaylov et al. 2018
superglue-multirc Khashabi et al. 2018
race-middle Lai et al. 2017
quoref Dasigi et al. 2019
cos_e Rajani et al. 2019
reddit_tifu-tldr Kim et al. 2019
ai2_arc Clark et al. 2018
quail Rogers et al. 2020
crawl_domain Zhang et al. 2020
glue-cola Warstadt et al. 2019
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Task Name Reference

art Bhagavatula et al. 2020
rotten_tomatoes Pang and Lee 2005
tweet_eval-emoji Barbieri et al. 2020
numer_sense Lin et al. 2020a
blimp-existential_there_quantifiers_1 Warstadt et al. 2020
eli5-askh qa Fan et al. 2019
ethos-national_origin Mollas et al. 2020
boolq Clark et al. 2019
qa_srl He et al. 2015
sms_spam Almeida et al. 2011
samsum Gliwa et al. 2019
ade_corpus_v2-classification Gurulingappa et al. 2012
superglue-wic Pilehvar and Camacho-Collados 2019
ade_corpus_v2-dosage Gurulingappa et al. 2012
tweet_eval-stance_climate Barbieri et al. 2020
e2e_nlg_cleaned Dušek et al. 2020, 2019
aslg_pc12 Othman and Jemni 2012
ag_news Gulli (link)
math_qa Amini et al. 2019
commonsense_qa Talmor et al. 2019
web_questions Berant et al. 2013
biomrc Pappas et al. 2020
swag Zellers et al. 2018
blimp-determiner_noun_agreement_with_adj_irregular_1 Warstadt et al. 2020
glue-mnli Williams et al. 2018
squad-with_context Rajpurkar et al. 2016
blimp-ellipsis_n_bar_2 Warstadt et al. 2020
financial_phrasebank Malo et al. 2014
sick Marelli et al. 2014
ethos-religion Mollas et al. 2020
hotpot_qa Yang et al. 2018
tweet_eval-emotion Barbieri et al. 2020
dbpedia_14 Lehmann et al. 2015
ethos-gender Mollas et al. 2020
tweet_eval-hate Barbieri et al. 2020
ethos-sexual_orientation Mollas et al. 2020
health_fact Kotonya and Toni 2020
common_gen Lin et al. 2020b
crows_pairs Nangia et al. 2020
ade_corpus_v2-effect Gurulingappa et al. 2012
blimp-sentential_negation_npi_scope Warstadt et al. 2020
lama-conceptnet Petroni et al. 2019, 2020
glue-qnli Rajpurkar et al. 2016
quartz-no_knowledge Tafjord et al. 2019b
google_wellformed_query Faruqui and Das 2018
kilt_trex Elsahar et al. 2018
blimp-ellipsis_n_bar_1 Warstadt et al. 2020
trec Li and Roth 2002; Hovy et al. 2001
superglue-copa Gordon et al. 2012
ethos-disability Mollas et al. 2020
lama-google_re Petroni et al. 2019, 2020
discovery Sileo et al. 2019
blimp-anaphor_number_agreement Warstadt et al. 2020
climate_fever Diggelmann et al. 2020
blimp-irregular_past_participle_adjectives Warstadt et al. 2020
tab_fact Chen et al. 2020a
gigaword Napoles et al. 2012
glue-rte Dagan et al. 2005
tweet_eval-sentiment Barbieri et al. 2020
limit Manotas et al. 2020
wikisql Zhong et al. 2017
glue-qqp (link)
onestop_english Vajjala and Lučić 2018
amazon_polarity McAuley and Leskovec 2013
blimp-wh_questions_object_gap Warstadt et al. 2020
multi_news Fabbri et al. 2019
proto_qa Boratko et al. 2020
wiki_bio Lebret et al. 2016
kilt_zsre Levy et al. 2017
blimp-sentential_negation_npi_licensor_present Warstadt et al. 2020

Table 10: References for all datasets.
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Figure 4: Random to Random
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Figure 5: Classification to Classification
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Figure 6: Non-Classification to Classification
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Figure 7: Both (Classification + Non-Classification) to
Classification
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Figure 8: Non-Classification to Non-Classification
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Figure 9: Classification to Non-Classification
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Figure 10: Both (Classification + Non-Classification) to
Non-Classification
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Figure 11: Non-Paraphrase Classification to Paraphrase
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Figure 12: QA to QA
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Figure 13: Non-QA to QA
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