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Abstract

Robot co-design requires joint optimization of morphology and its control mecha-
nism and is thus associated with a vast, high-dimensional design space. Traditional
co-design methods are sample-inefficient, and are thus used for incremental re-
finement of known designs rather than the discovery of novel, high-performing
embodiments by effectively traversing this complex space. Our method extends
RoboNet, a novel Generative Flow Network based robot co-design method that
excels in generating superior designs in a sample-efficient manner but does that
with independent training of control mechanism for each individual robot, resulting
in good designs paired with weak controllers. In this paper, we propose a novel
policy transfer mechanism to continuously learn a modularized policy, comprising
a core network shared across all robot morphologies, and morphology-specific
adapters. By effectively disentangling morphology-specific and transferable control
components, our framework addresses the critical challenge of knowledge transfer
between robot morphologies and their topologies with varying DoFs. Experi-
ments in four distinct co-design environments show that our method, TE-RoboNet,
achieves up to 40% improvement in performance compared to the closest co-design
baselines under equivalent memory and computational budgets.

1 Introduction

The design of robotic systems is inherently intertwined with policies that control them. A robot’s
morphology profoundly influences its capabilities, and optimal control strategies often depend on
the specific morphological traits of the robot. This mutual dependency gives rise to the problem of
robot co-design in which the simultaneous optimization of both a robot’s body and its control policy
is required. Additionally, as robots become increasingly diverse and are deployed in unstructured
environments, co-design becomes essential for achieving high-performance, task-specific solutions.
However, robot co-design poses a unique set of challenges. The joint design space encompassing dis-
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crete morphological configurations with continuous parametric representations and high-dimensional
policy manifolds is vast [Crespo Marquez, 2022, non-differentiable, and often lacks smooth gradients
[Levine et al.l 2018, |Hal, [2019]. This makes conventional optimization techniques ineffective or
sample-inefficient. In practice, a new robot design often requires re-training a control policy from
scratch, leading to prohibitively high computational costs. Recent advances have attempted to address
this problem by leveraging evolutionary algorithms [Wang et al.| 2019| [Doncieux et al.|[2015| [Lipson
and Pollack, 2000, |Gupta et al.l 2021]], harnessing early-stopping [Nagiredla et al.l 2024b]], and
reinforcement learning [Luck et al.| 2020} |Yuan et al.| 2021} |Lu et al., 2025/ [Fan et al.| 2024]. Yet,
many of these methods suffer from poor sample efficiency often converging to local optima under
reasonable sampling budgets.

A recent promising line of work, RoboNet [Nagiredla et al.| 2024a], uses Generative Flow Networks
(GFlowNets) [Bengio et al., 2021]] to sample robot designs in a reward-aware manner, and formulates
robot morphology as a graph to generate designs based on downstream performance. While this
method shows impressive capabilities in exploring the design spaces and generates a diverse set of
well-performing designs, it still treats each robot-control pair independently, thus producing excellent
designs but sometimes with poor controllers, weakening the case of co-designing.

We argue that effective co-design demands not just better exploration of the design space, but also
mechanisms for knowledge transfer. Specifically, the ability to transfer control policy components
across morphologically distinct robots could significantly accelerate learning and improve sample effi-
ciency. However, this remains a challenging open problem, as it requires identifying and disentangling
morphology-invariant and morphology-specific aspects of control.

To address the robot co-design prob- TE-RoboNet
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cies can similarly benefit from an B
adapter network to capture input and
output mappings while a core net-
work captures behavioral primitives.
Our Transfer-Enhanced RoboNet (TE-
RoboNet) is a novel framework that Figure 1: An illustration of the policy transfer across robots
builds on RoboNet’s GFlowNet-based of various morphologies. The adapters (red) handle input-
design generation pipeline and intro- output observations, while the core (blue) captures locomo-
duces a Core_adapter po]icy architec- tion primitives which are then aggregated into the shared
ture. Specifically, the control policy —core (green) for warm starting subsequent (blue) cores.

for each robot is decomposed into a

core (blue blocks in Fig. [T), which captures transferable behavioral priors, and robot-specific adapters
(red blocks in Fig. [I)), which encode morphology-dependent nuances. The shared core (in green)
represents aggregated knowledge across each individual core after reward-weighted averaging across
a population of diverse robots morphologies. To ensure smooth learning, regularization is applied
during each update. Through such novel and controlled transfer, our TE-RoboNet framework allows
the shared core to propagate useful behaviors between morphologically diverse agents.

@ % Sampled
T T Robots

Contributions Our contributions are as follows: (C1) We propose TE-RoboNet, a GFlowNet-
augmented co-design framework that uses a novel core-adapter policy architecture to generate
more effective robot morphology-policy pairs. (C2) We demonstrate, across four diverse physics
environments, that TE-RoboNet significantly improves sample efficiency—achieving up to 40%
higher performance than strong baselines under the same computational budget.

2 Background

Sims| [[1994] is the first work that identified the need for co-evolving designs with control in virtual
robots. Whilst initial focus was more on developing evolutionary approaches due to their closeness to
how animal kingdom evolved, more recent approaches took a more pragmatic approach in treating



them as graphs that needs to be optimized with a policy/behavior learning framework. These work
are presented in more detail below:

2.1 Evolutionary Approaches

Evolutionary Algorithms (EAs) apply principles like selection and mutation to explore the design
space. Pioneering works demonstrated the co-evolution of morphology and control (e.g., Lipson and
Pollack! [2000]). Neural Graph Evolution (NGE) modeled robots as graphs and used Graph Neural
Networks (GNNs) for control policies, enabling some policy transfer. Deep Evolutionary Reinforce-
ment Learning (DERL) co-evolved morphologies and learned complex controllers using deep RL,
studying environmental complexity’s impact. EAs excel at exploring large, non-differentiable spaces
but are sample-inefficient, as controller learning for each candidate is costly. They also generally lack
explicit mechanisms for structured knowledge transfer across diverse morphologies.

2.2 Reinforcement Learning for Co-adaptation

Reinforcement Learning (RL) learns optimal control policies by maximizing rewards. In co-design,
RL has been used to learn controllers for evolving morphologies or to jointly optimize morphology
and control. [Luck et al.|[2020] used deep RL (Soft Actor-Critic) to co-adapt morphology and
behavior, leveraging information from prior evaluations to improve data efficiency. [Yuan et al.|[2021]
proposed Transform2Act, where an RL agent learns transform actions to modify its morphology
and then control actions using the adapted body, employing Graph Neural Networks to handle
variable joint numbers. RL can learn complex policies but is sample-intensive, especially when
morphology changes, often requiring policy retraining. Transferring policies effectively across
different morphologies remains a key challenge.

2.3 Generative Models and the Need for Knowledge Transfer

Recently, Generative Flow Networks (GFlowNets) [Bengio et al., 202 1]] have emerged as a potent
method to sample from a distribution in the space of discrete structures. GFlowNets learn to
sample discrete objects (like robot morphologies) with probability proportional to a reward function,
constructing them step-by-step. RoboNet [Nagiredla et al., [2024a]] applied GFlowNets to robot
co-design, sampling promising graph-based morphologies based on anticipated task performance, and
introduced innovations like rate-based prioritization and cost-aware sampling. However, RoboNet
treats each robot-control pair independently, lacking mechanisms to transfer behavioral knowledge
across morphologies. This knowledge silo issue motivates the need for explicit knowledge transfer to
reduce redundant learning efforts. The morphological modularity hypothesis [Cappelle et al., 2016}
Bongard, 201 1] suggests optimal policies might share common behavioral foundations adaptable to
specific morphologies.

2.4 Policy Transfer for Heterogeneous Robots

Transfer learning in robotics fundamentally seeks to enable knowledge reuse across diverse em-
bodiments, tasks, and environments. A prominent baseline in this domain is MetaMorph [Gupta
et al., |2022]], which introduced a Transformer-based architecture for learning universal controllers
transferable across varying robot morphologies. Subsequent methods, build on this foundation
by improving parameter efficiency and specialization [Przystupa et al., [2025] [Hao et al., [2024].
However, these approaches largely remain constrained to morphologically similar agents, leaving
cross-morphological transfer across structurally heterogeneous robots an open problem.

TE-RoboNet addresses these gaps by integrating a core-adapter policy MLP architecture with
GFlowNet-based design generation. The shared ‘core’ captures transferable primitives, updated via
reward-weighted aggregation from evaluated designs, while robot-specific ‘adapters’ handle morpho-
logical nuances across heterogeneous topologies. This facilitates ongoing knowledge distillation and
propagation during co-design, to improve sample efficiency through a MLP-based policy transfer.



3 Preliminaries

3.1 Reinforcement Learning

We model Reinforcement Learning (RL) problems as a Markov Decision Process (MDP), formally
defined by the tuple (S, A, T, R). Here, S represents the state space, A denotes the action space,
and 7 : § x A — S is the transition function indicating the subsequent state upon executing action
a € A from state s € S. The function R : S x A — R provides a scalar reward for taking action a
in state s until a terminal state s is reached.

The core objective in RL is to discover an optimal policy that maximizes the expected cumulative
reward, often referred to as returns, E[r(7)]. A trajectory 7 is a sequence of states and actions
sampled according to policy 7, and r(7) = >_ ;. ..y, F(s,a)y" concisely represents the discounted
sum of rewards along trajectory 7, where v € [0, 1] is the discount factor.

3.2 Generative Flow Networks

Generative Flow Networks (GFlowNets) [Bengio et al.| |2021]] offer a unique approach to learning
a stochastic, step-wise construction policy. The fundamental principle of GFlowNets is to sample
terminal state 57 with a probability that is directly proportional to a given reward R(S7):

P(ET) X R(ET) (1)

This inherent design characteristic of GFlowNets, by explicitly distributing probability mass across
numerous high-reward states, naturally facilitates the generation of diverse candidates. This capability
has proven highly effective in domains demanding both high quality and variety, such as the discovery
of novel drug candidates [Jain et al.,|2022]] and advanced materials [Cipcigan et al.,[2024].

MDP Formulation for GFlowNets In the context of GFlowNets, the construction process is framed
as an MDP. Beginning from an initial (often empty) state 5y, a policy 7y(a|5) makes sequential
decisions: either to terminate the construction process or to attach a new component. This sequential
decision-making generates a trajectory 7 = (S, do, - - - , 7). Each state 5 within this construction
graph is associated with a non-negative value known as its flow F'(5), which adheres to a crucial
conservation rule:

F(s)=) P& |5a)F(s) 2

where P(§' | 3, @) represents the forward transition probability. When this flow conservation condition
is satisfied, the resulting distribution of terminal states effectively matches the target distribution
specified in Equation (I)). This mechanism ensures two key properties: a) trajectories leading to
high-reward terminal states are sampled with greater frequency, and b) the flow is systematically
distributed across various construction paths, promoting the discovery of diverse solutions rather than
converging on a single optimal one. Throughout training, the policy network iteratively adjusts the
flow values in each state, ensuring consistency with both the defined reward function and the flow
conservation property. Consequently, the model learns a probability distribution over trajectories that
inherently encourages the generation of diverse, high-reward graphs.

Learning Objective To ensure that the sampling model learns a policy capable of generating
samples according to a desired target distribution, GFlowNets utilize the Trajectory Balance (TB)
objective [Malkin et al.,[2022]. This objective is formally expressed as:

- 9
Lrg(T;0,9) = (log (Zw Hs—)s’e(;_ Pg, (5| s))> )

T)

Here, 0 and 1 denote the learnable parameters of the model, and Z; is the partition function that
maintains consistency across state transitions. The fundamental aim of the TB objective is to ensure
that the marginal likelihood of a given trajectory becomes directly proportional to the reward R(Sr)
through an efficient credit assignment mechanism.



3.3 Robot Co-Design using GFlowNets

RoboNet [Nagiredla et al., [ 2024al] leverages GFlowNets and approaches the robot co-design problem
as a bi-level optimization, aiming to maximize the expected cumulative reward E[R(m, 7)] for
morphology-policy pairs (m, 7) € M x II. Here, morphological configurations is represented as M
and control policies as IT and mathematically:

R(m, %), s.t. m* = R(m, 4
max (m,7*),s.t. arg max (m,7) )

where m (a robot morphology in graph form G € M) is optimized by an outer loop, and 7* is
the optimal control policy determined by an inner loop. The outer loop models robot morphology
design as a sequential graph construction process, represented as an MDP with a stochastic policy 7y
maximizing:

T

E Z’_th(gufli) |a~ 76(5:),5 = d(@i—1,5-1) | ,

t=0
Here, 5; is the graph G; at step i, a; are graph-modifying actions, and 5; = J(ai_l, 5;—1) are
deterministic dynamics. RoboNet utilizes GFlowNets to learn 7y, sampling terminal graphs G with
probability proportional to the non-negative terminal reward R(Gr), with 4 = 1. This R(Gr) is
defined by the inner loop’s policy optimization: R(Gr) = max, R(Gr, ), where R(:,-) is the
task-specific reward with a discount factor v < 1. While effective in diverse morphology sampling,
the high computational cost of re-training policies for each morphology presents a practical challenge.

The training mechanism of RoboNet can be divided into two phases:

Phase 1: Sampling Morphologies RoboNet’s samples a population of diverse morphologies {m; }Z ;
according to the current reward-proportional distribution i.e. m ~ P(M) « R(m,m(m)), ensuring
exploration of high-potential design regions while maintaining morphological diversity.

Phase 2: Policy Learning For each morphology m;, RoboNet initializes a task-specific policy 7},
optimized using reinforcement learning (e.g., PPO) to maximize the reward R(m;, 7;). To achieve
further sample efficiency, instead of only using the task reward R(m;), it computes an effective
measure of goodness (R(m;)) of a morphology from immature policies learned from only small
number of interactions. The resulting reward-morphology pairs (m;, R;) are added to a replay buffer

and used to update 7y via GFlowNet objectives.

This process repeats across generations, allowing RoboNet to progressively shift its sampling distribu-
tion toward high-performing morphologies. The replay buffer further stabilizes training by leveraging
informative samples from prior generations. While effective in diverse morphology sampling, the
high computational cost of re-training policies for each morphology presents a practical challenge.

4 Transfer-Enhanced RoboNet Framework

4.1 Problem Statement

Building upon the RoboNet framework (discussed in Sec. [3.3)), which addresses the robot co-design
problem as a bi-level optimization over morphological configurations M and control policies II,
our objective remains to maximize the expected cumulative reward E[R(m, )] for morphology-
policy pairs (m,7) € M x II. While RoboNet effectively samples diverse morphologies m ~
P(M) x R(m,m(m)), the challenge lies in the computational expense of training an optimal policy
7* from scratch for each newly sampled morphology. Thus, to sample efficienctly through better
initialization of subsequent robots training, we introduce a novel policy transfer mechanism that
allows for cross-morphology knowledge sharing. Formally, in our method, TE-RoboNet, we seek to
solve:

max R(m, 7)), s.t. 75 =arg max  R(m,my) Q)

m g €I start<—m5

where 7; is the warm start policy parameterized by 6 which facilitates knowledge transfer across
different morphologies. We derive 6 aggregating the optimal policy parameters learnt across mor-
phologies m. The following sections detail our approach to constructing and leveraging 6, which



is specifically designed to enhance inner policy optimization efficiency via shared knowledge, thus
significantly improving the overall sample efficiency of the co-design process.

4.2 Core-Adapter Policy Architecture

A key innovation in TE-RoboNet is the decomposition of the MLP into adapters and a core. Such MLP
design enables both accommodation of diverse morphology sizes and effective knowledge transfer
within a single, memory-efficient architecture, unlike Transformer-based alternatives (discussed in
Sec. [2.2]and[2.4). Specifically, the adapters constitute the MLP’s input and output layers, directly
interfacing with observations and actions, respectively, while the core comprises its intermediate
hidden layers. The decomposition into adapters and a core is predicated on the idea that adapters
capture morphology-specific attributes, while the core learns foundational behavioral primitives.
Hence, for any generated robot morphology m, we parameterize the control policy as:

mm(at|.) = Adapter(Core(m))

where, Core(m) represents shared behaviors capturing morphology-invariant control primitives and
Adapter(-) maps Core(m) representations to morphology-specific action spaces A,,,. Mathematically:

Adapter = [0 #9] and Core = [0<]

where 62, O contain the input-output adapter parameters to handle different morphology-dependent
input observations and output action dimensions, and 6¢ is the parameterized core for a given
morphology m.

4.3 Core Aggregation for Policy Transfer

Reward-Weighted Core Aggregation. To facilitate knowledge transfer across populations of
morphologically diverse robots, we propose a reward-weighted averaging mechanism to initialize
cores of next population robots based on cores learnt from previous robot populations. Given a
population B of robot-policy pairs {(m;, m;)}2 ; with corresponding performance scores {R;}2 ;.
We can, thus, compute the aggregated core parameters ¢ as:

B C
~ -4 Wy - em- . Rz @
6¢ = L, where the weights are defined as:  w; = (R:)

Y, wi S (Ry)e

The exponent parameter v modulates the concentration of the polynomial weighting distribution, with
higher values accentuating the influence of superior-performing morphologies in the core parameter
aggregation process. This polynomial formulation exhibits more stable gradient characteristics
particularly when reward magnitudes vary significantly across morphologies.

(6)

Stabilization of Core Aggregation. The reward-weighted aggregation of core parameters, as defined
in Eq. [6] can induce significant parameter shifts when used to update the previously aggregated
core. Such abrupt changes may destabilize the training process for subsequent robot generations.
To mitigate these disruptions and ensure a smoother learning trajectory, we introduce a blending
parameter, A € (0, 1), which governs the rate at which the newly aggregated information updates the
shared core parameters. Thus, the core aggregation including this scalar blending parameter A can be
formalized as,

g;inal = él?—l +A- ég )

where 51?_1 is the parameterized core used to warm start each core of the B robot-policy pairs
{(m;,m;)}B ,. After behavior training, B cores are produced which are then aggregated using Eq. E]
to form <. Thus, X acts on this 6 to smoothly update S, thereby ensuring stabilized training
across generations.

We maintain the same training workflow as RoboNet (presented in Alg. [I)), except that in each new
generation policies for a new batch B of robots are warm-started with the shared core, O;im I



Algorithm 1 TE-RoboNet Training

Require: Initial GFlowNet policy 7y, initial core parameters S, population size 13, reward exponent
a, regularization coefficient A, number of generations Ny,
1: Initialize GFlowNet policy 7y
2: Initialize shared core parameters 65
3: fort € (0, Nye,, — 1) do

>
4: Sample a population of diverse morphologies {m;}2 ; using 7y (GFlowNet sampler)
5: for each morphology m; in the population do
>
6: Initialize core parameters 6 from 6¢ (aggregated core based on Eq. EI)
7: Randomly initialize morphology-specific adapter parameters for m;
8: Train 7; for m; using RL (e.g., PPO) over T timesteps in a two-stage process:
9: Stage A: Freeze 6 and learn adapter parameters by minimizing:
10: L;=—E . |R(T)]
11: Stage B: Freeze adapter parameters and learn §¢ by minimizing:
12: L;=—FErr[R(7T)]
13: Evaluate final performance R; = E. ., [R(7)] for morphology m;
14: end for
>
15: Compute reward-weighted core for the next generation:
16 wi:%fmallie{l,...,B}
B C
17: 6¢ = 7253“17:}"

18: Update GFlowNet policy 7 based on the new rewards { R; }Z | (as in standard RoboNet)
19: Update shared core parameters using Eq. [7]
20: end for

3D Locomotion 2D Locomotion Gap Terrain Swimmer

Fams

Figure 2: Different MuJoCo environments we use to evaluate our method TE-RoboNet with a
randomly selected robot design in each.

4.4 Implementation Details

The core network employs a multi-layer perceptron (MLP) architecture with layer normalization
and residual connections, designed to capture general behavioral patterns through a Proximal Policy
Optimization technique [Schulman et al.,|2017]] independent of morphological specificities. Adapter
layers exhibit morphology-awareness by explicitly encoding robot kinematic and dynamic properties
through structured inductive biases.

The reward computation integrates task-specific performance rate of improvement
metric with morphological efficiency considerations and actuator effort. This multi-objective
formulation encourages the discovery of morphologies that achieve high task performance while
maintaining practical feasibility. This framework supports online learning scenarios where new
morphologies can leverage previously discovered behavioral knowledge without requiring complete
retraining, significantly reducing the computational overhead associated with traditional co-design
approaches while exploring the search space more exhaustively.
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Figure 3: Training Curves showing best robot training performances for TE-RoboNet (blue),
MetaMoprh-Mini (green) and MetaMorph-25x (orange) when trained for 2e6 timesteps over 5
independent seeds in 3D Locomotion, 2D Locomotion, Gaps Terrain and Swimmer environments
(left to right).

S Experiments and Results

In this section, we experimentally evaluate TE-RoboNet in 4 Gymnasium MuJoCo [Todorov et al.|
2012] environments (presented in Fig. [2)) where we retain all original physics settings. Specifically,
we use 3D Locomotion (based on Ant-v5 [Schulman et al., [2015]]), 2D Locomotion (based on Hopper-
v5 [Erez et al.,[2012]), Gap Environment (our modified terrain based on Hopper-v5) and Swimmer
(based on Swimmer-v5 [Coulom, 2002]) environments. Each environment imposes a maximum
limit on the number of links (or joints) per robot morphology as 10, 6, 8, and 6 respectively while
also allowing for the sampling of morphologies with fewer links. We choose the MuJoCo simulator
because it allows us to embed agents with different embodiments proposed by TE-RoboNet and
baseline methods. While our method can handle robot morphologies with any number of joints, the
maximum link limits are aimed at covering the search space exhaustively in reasonable runtime.

Experiment Setup Each TE-RoboNet robot morphology across these experiments is given a budget
of 1e4 timesteps per link and hence the maximum training budget allocated per robot is between 6e5
to 10e5 based on the environment (because of the enforced maximum link limits). We match this
to the maximum training budget to the our baselines MetaMorph-Mini (same model parameters as
TE-RoboNet i.e. 3.2e4) and MetaMorph-25x (25x more model parameters compared to TE-RoboNet
i.e., 3.2ed), based on the same model architecture as |Gupta et al.|[[2022]. Similar to |Gupta et al.
[2022], we use a dense morphology independent reward function across all environments instead
of a tailored one for each morphology. In all experiments, our reward function promotes forward
movement using small joint torques (the latter obtained via a small energy usage penalty).

5.1 Comparison of Best Performing Morphologies

We first evaluate how our core transfer mechanism

based on the MLP architecture compares to a sim- TE-RoboNet MetaMorph-Mini MetaMorph-25x
ilar sized Transformer (TF) model in MetaMorph- . B

Mini. We seek to answer if a smaller MLP model g 4000 Lo %
is more effective in learning behavior policy than a g %‘

same sized TF-model. To present this result, we se- < l‘

lect top-5 co-designs in TE-RoboNet and compare & 2000 e

to the output co-design from 5 different seeds of & e ﬁ é :15
MetaMorph-Mini. As shown in Fig. 3] TE-RoboNet 8 1

performs much better compared to a TF-based base- <

line model of same model size. We have observed 20 40 60 20 100
that MetaMorph-Mini produced co-designs that are Generations

typically smaller and exhibited more conservative )
behavior to amass rewards by staying alive without Figure 4: Average performance improve-
moving rather than by moving forward. However, the MEN(S across generations for TE-Roquet anq
larger model MetaMorph-25x was able to produce baseline methods in the 3D Locomotion envi-
co-designs akin to TE-RoboNet and hence could per- ronment.



form similarly. Fig. [5illustrates the quality of the best designs produced across these methods in
the 2D Locomotion environment through a comparison of their locomotion velocities. Additionally,
Fig. @ presents the average performance change across generations for TE-RoboNet and equivalent
number of design updates for the baseline methods.

TE-RoboNet 2.1 m/sec

RoboNet =——Avg.Cores —RW w/o reg. — Ours

o 1.01
=
"
MetaMorph-25x 1.8 m/sec I
> =)
g I o
= 0.51
£ I
o
p—r 4
MetaMorph-Mini
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—>
0.0-
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Figure 5: Visualization of co-designs pro-
duced by TE-RoboNet compared to baselines  Figure 6: Normalized performance per million steps
with forward velocity in m/sec in the 2D Lo- of top-performing designs by TE-RoboNet, its ab-

comotion environment. lated versions, and the RoboNet [Nagiredla et al.|
20244l baseline.

5.2 Ablations

We performed ablations to study the impact of the individual components of the overall method,
Fig. [6). We compare TE-RoboNet with and different variants of our method, Avg.Cores (which
implements a simple averaging across cores to update the previous core) and RW w/o reg. (reward
weighted knowledge transfer without regularization) along with RoboNet [Nagiredla et al.| [2024a

in various environments. From Fig. [f]it is evident that RoboNet with no policy transfer performs
poorly compared to other variants. While naive averaging of cores as in Avg. Cores, shows a slightly
better performance, performs quite poorly when compared to reward weighted variants across all
environments. Additionally, adding regularization to the aggregate core updates shows even higher
performance compared to TE-RoboNet’s variant without regularization of core parameter updates.

6 Discussion & Conclusion

We presented TE-RoboNet, a framework for generating diverse, top-performing robots with enhanced
sample efficiency through cross-morphological policy transfer. Our key contribution is a reward-
weighted core transfer mechanism with regularization. This framework, leveraging a novel adapter-
core MLP architecture and split training, effectively handles cross-morphological policy transfer. Our
experiments across different environments demonstrated up to a 40% increase in sample efficiency
compared to baseline methods with similar model sizes.

Despite these promising results, several limitations and areas for future work exist. TE-RoboNet’s
current evaluation is confined to simulated environments. Transitioning to real-world robotic systems
will require addressing challenges like the sim-to-real gap and unmodeled dynamics. Additionally, our
framework relies on GFlowNets, whose theoretical convergence properties are still an active research
area. While GFlowNets show empirical success, a complete understanding of their convergence
guarantees remains elusive. However, recent theoretical advancements suggest GFlowNets exhibit
more stable gradient updates with lower variance compared to traditional generative models
2022], contributing to observed training robustness.

Finally, the optimal division between the core and adapter components presents a practical challenge.
The ideal balance depends on the diversity of sampled morphologies and their movement patterns.



Highly dissimilar movement patterns may necessitate a thinner core to prevent poor generalization,
whereas significant behavioral commonality benefits from a thicker core to capture more transferable
primitives. Determining this optimal balance requires empirical tuning and will be an important area
for future investigation, potentially through adaptive core-adapter sizing mechanisms or through a
hierarchical core representation.
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