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Abstract

Estimating the location of contact is a primary function of artificial tactile sens-
ing apparatuses that perceive the environment through touch. Existing contact
localization methods use flat geometry and uniform sensor distributions as a sim-
plifying assumption, limiting their ability to be used on 3D surfaces with variable
density sensing arrays. This paper studies contact localization on an artificial skin
embedded with mutual capacitance tactile sensors, arranged non-uniformly in an
unknown distribution along a semi-conical 3D geometry. A fully connected neural
network is trained to localize the touching points on the embedded tactile sensors.
The studied online model achieves a localization error of 5.7 ± 3.0 mm. This
research contributes a versatile tool and robust solution for contact localization that
is ambiguous in shape and internal sensor distribution.

1 Introduction
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Figure 1: Contact localization model takes in a sensor
image from any configuration of artificial tactile skin and
determines the location of touch through a feedforward
neural network.

Artificial skin sensors are a direct way to mea-
sure external contact and have a wide range of
applications in healthcare [2, 11], prosthetics,
and robotics [25, 4]. As robots are increasingly
deployed in close proximity to humans, the abil-
ity to localize where touch occurs allows actu-
ating bodies to react appropriately to detected
contact, interactable objects, and obstacles.

Artificial skin that is capable of localizing con-
tact to a greater number of points on its sensor
array than the number of sensors present is cur-
rently limited to flat surfaces [6, 11, 24, 26].
The localization methods used are typically con-
strained by assuming either a flat plate array or a
uniform density of sensors. This paper presents
a method of localizing contact on 3D artificial
skin with non-uniform sensor distribution.

We present a curved, variable-density artificial skin equipped with mutual capacitance sensors that
detect touch on the surface of the artificial skin. A neural network infers a relationship between the
sensor readings and the geometry of the tactile skin. We evaluate this model by comparing known
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touch locations to those returned by the model to characterize the accuracy and uncertainty. Our
model robustly localizes the touching region on the 3D skin with variable sensor distribution. The
code is available at https://github.com/HIRO-group/TactileContactLocalization

2 Related Work

Artificial skin sensors have a range of sensing methods such as acoustics [23, 21], computer vision
[3, 8–10, 1], capacitive sensing [22, 7, 12–14, 18, 24, 16], electrical resistance tomography (ERT)
[20, 19], and fiber Bragg grating (FBG) optical sensing [17]. Artificial skins composed of sensor
arrays have increased scalability and conformity to non-flat geometries compared to computer vision
tactile sensors. Our artificial skin uses a low-cost mutual capacitance sensing array method that is
highly flexible to shape and size during fabrication.

Explicit contact localization methods can achieve high accuracies with capacitive sensor arrays and
are standard in touchscreens and artificial skins with known sensor distributions [22, 19]. These
explicit methods utilize the known positions of sensors to interpret locations of contact. Machine
learning has been used in previous artificial skins to enhance contact localization accuracy with known
sensor locations due to its ability to learn complex patterns [17, 15]. Our method treats capacitive
sensor readings as images and uses a neural network to bypass the embedded spatial distribution of
sensors by directly learning touch localization patterns.

3 Method

3.1 Fabrication

(a) (b) (c)

Figure 2: (a) CAD model for the curved geometry. (b)
General wiring scheme. Sensors are located at each in-
tersection of transmitter (TX) and receiver (RX) wires.
(c) Fabricated skin sensor array where the sensing cir-
cuits are embedded within a layer of silicone.

A challenge in implementing an artificial sens-
ing skin array on a 3D object is conforming the
sensing array to a curved surface. This is ad-
dressed by fabricating a two-dimensional sheet
embedded with sensors, and then overlaying the
artificial skin onto a semi-conical surface.

As shown in Fig. 2, the curved surface is outfit-
ted with a total of 16 wires, divided evenly into
8 transmit and 8 receive elements, forming a
network of 64 intersections. These intersections
serve as the loci for capacitance measurements,
effectively creating 64 sensors distributed across the surface. A mutual capacitance board (Muca)
attached to the wires measures the capacitance values at each intersection [22]. A layer of 6mm
thick silicone rubber is then molded on top of the wiring to provide a dielectric layer between wire
intersections to ensure effective capacitive sensing. A thin copper sheet affixed to the underside of the
3D-printed structure functions as the grounding plate, mitigating electromagnetic noise from beneath
the artificial skin. The result is a flush, 14.2× 16.4× 8.1 cm semi-conical surface capable of contact
localization through mutual capacitive sensing.

3.2 Calibration

The calibration process includes collecting a small dataset in a given operational environment to
establish a correlation between raw capacitance readings and specific touch locations in 3D space.
Each pair of raw sensor readings corresponding to a touch location are referred to as a "point
log". Data is gathered by touching the artificial skin with an index finger at known locations. Two
methodologies are employed for collecting point logs: random sampling and even spacing. For
random sampling, the location is chosen as a point on a randomly selected edge from the CAD model
of the skin. For even spacing, the surface of the CAD model is discretized into evenly spaced points
depending on the selected number of point logs. When the skin sensor array is touched, 50 samples
of the capacitance readings for each sensor are stored and correlated to the prompted touch position.
This process is repeated until the desired number of point logs has been processed.
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3.3 Sensing

Mutual capacitance coupling occurs at the intersection of transmitter and receiver nodes. The intensity
of the coupled capacitance can be measured by sending a known signal to the transmitter wire and
measuring the signal of the receiver wire. The coupled capacitance is affected by grounded conductive
objects entering the electromagnetic field near the intersection, such as a human finger. Grounded
conductive objects reduce the measured capacitance at the receiver electrodes which correlates to
higher contact outputs for a particular sensor.

The accuracy of the sensor measurements is determined by their noise levels through a signal-to-noise
ratio. Fifty sensor measurements are taken for every point log and calibration measurement. Using
these measurement samples, the average sensor values for each point log (S̄), the average initial
sensor values without contact (S0), and the standard deviation from the average sensor value without
contact (σ0) are used to calculate the signal-to-noise ratio (SNR) of each sensor, i, within the sensor
array using Eq. 1.

SNRi = 20 log10

(
max(S̄i)− Si,0

σi,0

)
(1)

3.4 Contact Localization Model
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Figure 3: (a) Fully-connected neural network takes in sensor
input of size 64 and outputs a 3D coordinate. (b) Artificial
tactile skin sends mutual capacitance measurements to an
Arduino microcontroller that formats the readings and passes
into the neural network.

We use a supervised fully-connected neu-
ral network to localize the touching point
based on raw sensor readings. This type
of model is a low computation method of
translation from raw sensor inputs to spatial
predictions due to the nature of the artifi-
cial skin sensor data, as explained in Sec-
tion 3.3. In the ideal scenario with zero sen-
sor noise, a sensor image exists for every
possible touch position along the surface of
the skin. A sensor image is the full set of
sensor values for a single touch and shown
in Fig 1. Although this sensor image is
also dependent on the probing finger and
background electromagnetic field capacitance, we will assume these variables remain constant for
this experiment by testing with the same finger and without changing locations for the duration of
collecting data. A newly recorded sensor image can therefore be linked to a unique location along the
surface of the skin once the relationship between the sensor image and position is established through
our trained model.

The advantage of this method as opposed to algorithmic statistical estimation approaches is that it
does not require the locations of the sensors within the skin to be known. The neural network uses a
mean square error loss to compare the predicted touch locations from the sensor images collected
during the calibration process against the associated given probe locations. A single hidden layer
with 32 hidden nodes is trained to minimize the loss using gradient descent. To constrain the output
to the surface of the skin, the predicted output from the model is compared to a set of discrete points
on the surface of the skin. The point on the surface with the shortest distance to the predicted location
of the model is used as the final prediction. This process effectively constrains the model to strictly
output points on the surface of the skin.

4 Results

Multiple sets of training data were collected with a varied number of point logs to analyze the
accuracy of the contact localization model. Fig. 4(b) shows the prediction error for a validation set
of 20 random point logs tested for accuracy using contact localization models trained with 20, 50,
80, and 100 point logs, respectively. Data collection took approximately 1-2 minutes for every 20
point logs. The results show a trend of increasing the number of point logs used to train the model
decreases the overall error in touch detection. However, on our skin array, this decrease in error levels
off at about 80 point logs. Our best model has an accuracy of 5.7± 3.0mm.
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Figure 4: (a) The linear relationship between SNR and point logs dataset size suggests correlation. (b) Prediction
error for contact localization models trained with varying sets of point logs.

The average SNR of all 64 sensors in the skin array is < 30 dB. Fig. 4(a) shows the resulting SNR
values for each trained model that we have tested. There exists a linear relationship between the
quantity of point logs used in training the model and SNR values. The proportional increase in SNR
with calibration dataset size may be due to a wider range of activation throughout the embedded
sensors during calibration.

5 Discussion

Sensor Type Known Acuity
Locations (mm)

Human Calf [5] No ≈ 50.0
ERT [19] Yes 6.6 ± 3.3

Curved Cap. (Ours) No 5.7 ± 3.0
Human Fingertip [5] No ≈ 4.0

FBG [17] Yes 3.2± 2.3
Flat Cap. [22] Yes 0.5 ± 0.2

Figure 5: Our mutual capacitance sensor achieves spatial
acuity consistent with sensing arrays of known distributions
and human skin.

This paper studies a machine learning ap-
proach to contact localization on an ar-
tificial skin embedded with mutual ca-
pacitance tactile sensors, arranged non-
uniformly in a semi-conical geometry. This
model only requires a CAD model and
touch data to distinguish the relationships
between a sensor image and touch loca-
tion. We demonstrate this using a com-
plex and unmeasured internal sensor dis-
tribution. This paper demonstrates that it
is unnecessary to locate the placement of
internal sensors in artificial skin to acquire
accurate touch predictions. Changes in sensor location due to skin deformation that is incurred
through conformation to various surface geometries may be navigated through neural network adapt-
ability rather than altering the fabrication and calibration design. Our method achieved a better
average localization accuracy than human skin and comparable results to artificial sensors with
non-uniform sensor distribution methods.

One of the biggest limitations of our current implementation is the lack of precise visual cues during
the data collection process, resulting in probing inaccuracies apart from the model inaccuracies. To
improve this, we propose the application of a grid pattern to the surface of the skin with discrete
touch locations. This grid can be loaded into the contact localization model and integrated into
the data collection process reducing the error between the intended and actual touch locations. In
addition, this research has only been conducted using single-touch interactions. Future work aims at
identifying multi-touch accuracy and gesture identification, such as swiping up or down, which will
drive its application toward robot-human communication through touch.
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