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Abstract

Diffusion models have achieved remarkable progress in the field of image genera-
tion due to their outstanding capabilities. However, these models require substantial
computing resources because of the multi-step denoising process during inference.
While traditional pruning methods have been employed to optimize these models,
the retraining process necessitates large-scale training datasets and extensive com-
putational costs to maintain generalization ability, making it neither convenient
nor efficient. Recent studies attempt to utilize the similarity of features across
adjacent denoising stages to reduce computational costs through simple and static
strategies. However, these strategies cannot fully harness the potential of the similar
feature patterns across adjacent timesteps. In this work, we propose a novel pruning
method that derives an efficient diffusion model via a more intelligent and differ-
entiable pruner. At the core of our approach is casting the model pruning process
into a SubNet search process. Specifically, we first introduce a SuperNet based
on standard diffusion via adding some backup connections built upon the similar
features. We then construct a plugin pruner network and design optimization losses
to identify redundant computation. Finally, our method can identify an optimal
SubNet through few-step gradient optimization and a simple post-processing pro-
cedure. We conduct extensive experiments on various diffusion models including
Stable Diffusion series and DiTs. Our DiP-GO approach achieves 4.4× speedup
for SD-1.5 without any loss of accuracy, significantly outperforming the previous
state-of-the-art methods.

1 Introduction

Diffusion models have undergone significant advancements over the past years due to the outstanding
capabilities of diffusion probabilistic models (DPMs) [1]. DPMs typically consist of two processes:
the noise diffusion process and the reverse denoising process. Given their remarkable superiority
in content generation, diffusion models have made significant progress in various fields of general
image generation, including text-to-image generation [2, 3], layout-to-image generation [4, 5], image
editing [6, 7], and image personalization [8, 9]. Furthermore, diffusion models have contributed to
advancements in autonomous driving, ranging from driving dataset generation [10–12] to perception
model enhancement [13, 14] through diffusion strategies. However, DPMs often incur considerable
computational overhead during both the training and inference phases. The high cost of inference, due
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to the multi-step denoising computation during the sampling process, can significantly impact their
practical application. Many efforts [15–17] have been made to improve the efficiency of diffusion
models, which can be broadly divided into two types of optimization: inference sampling optimization
and model structural optimization.

Sampling optimization methods reduce the number of sampling steps for generation without compro-
mising image quality. For instance, DDIM [15] reduces these steps by exploring a non-Markovian
process without requiring model retraining. LCM [18, 19] enable image generation in fewer steps
with retraining requirements. Structural optimization methods [16, 17, 20, 21] aim to reduce com-
putational overhead through efficient model design and model pruning. These methods require
retraining the diffusion model, which entails significant computational overhead and large-scale
datasets, making them neither convenient nor efficient. DeepCache [22] proposes a novel training-free
paradigm based on the U-Net architecture in diffusion models, caching and retrieving features across
adjacent denoising stages to reduce redundant computation costs. However, DeepCache only reuses
the output feature of a U-Net block in a denoising step via a simple and static strategy. We believe
many intermediate features remain untapped, and the simple static strategy cannot fully exploit the
potential of similar feature patterns across adjacent timesteps during inference, as observed in recent
studies [15, 18, 22].

To address these challenges, we introduce Diffusion Pruning via Few-step Gradient Optimization
(DiP-GO), a method designed to achieve efficient model pruning with enhanced dynamism and
intelligence. Our approach rethinks the diffusion model during inference by proposing a SuperNet
based on standard diffusion via adding some backup connections built upon the similar features,
conceptualizing the inference process as a specific SubNet derived from our proposed SuperNet.
We reformulate the diffusion model pruning into a SubNet search process. By addressing the out-
of-memory issue inherent in the backward process during expanded denoising timesteps using the
gradient checkpoint [23] method, we introduce a plugin pruner that discovers an optimal SubNet
surpassing existing methods through carefully designed optimization losses. Extensive experiments
validate the effectiveness of our approach, demonstrating a 4.4× speedup on Stable Diffusion 1.5.
Moreover, our method efficiently prunes the DiT model [3] without requiring retraining the diffusion
model, achieving significant inference speedup. Our contribution can be summarized as follows:
(1) We define a SuperNet based on standard diffusion and show how to obtain a SubNet. This
transforms the diffusion optimization problem into an efficient SubNet search process without the
need for retraining pretrained diffusion models. (2) We design a plugin pruner tailored specifically for
diffusion models. This pruner optimizes pruning constraints while maximizing synthesis capability.
Additionally, we introduce a post-processing method for the pruner to ensure that the SubNet meets
specified pruning requirements. (3) We conduct extensive pruning experiments across various
diffusion models, including Stable Diffusion 1.5, Stable Diffusion 2.1, Stable Diffusion XL, and DiT.
Extensive experiments demonstrate the superiority of our method, achieving a notable 4.4 × speedup
during inference on Stable Diffusion 1.5 without the need for retraining the diffusion model.

2 Related Work

2.1 Efficient Diffusion Models

The diffusion models, celebrated for their iterative denoising process during inference, play a pivotal
role in content generation but are often hindered by time-consuming operations. To mitigate this
challenge, extensive research has focused on accelerating diffusion models. Acceleration efforts
typically approach the problem from two primary perspectives:

Efficient Sampling Methods. Recent works focus on reducing the number of denoising steps
required for content generation. DDIM [15] achieves this by exploring a non-Markovian process
related to neural ODEs. Fast high-order solvers [24, 25] for diffusion ordinary differential equations
also enhance sampling speed. LCMs [18, 19] treat the reverse diffusion process as an augmented
probability flow ODE (PF-ODE) problem, inspired by Consistency Models (CMs) [26], enabling
generation in fewer steps. PNDM [27] emphasizes efficient sampling without retraining diffusion
model. Additionally, ADD [28] combines adversarial training and score distillation to transform
pretrained diffusion models into high-fidelity image generators using only single sampling steps.

Efficient Structural Methods. Other efforts concentrate on reducing the computational overhead
associated with each denoising step. Previous methods [16, 17, 22] have typically conducted extensive
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empirical studies to identify and remove non-critical layers from U-Net architectures to achieve faster
networks. BK-SDM [16] customizes three efficient U-Nets by strategically removing residual and
attention blocks. Derived from BK-SDM, KOALA [17] develops two efficient U-Nets of varying sizes
tailored for SD-XL applications. Diff-pruning [20] employs Taylor expansion over pruned timesteps
to pinpoint essential layer weights, optimizing model efficiency without sacrificing performance.
DeepCache [22] enhances inference efficiency by reusing predictions from blocks in previous
timesteps within the U-Net architecture. LAPTOP-Diff [21] tackles optimization problems with a
one-shot pruning approach, incorporating normalized feature distillation to streamline retraining
processes. T-GATE [29] not only reduces computation overhead but also marginally lowers FID
scores by omitting text conditions during fidelity-improvement stages.

In addition to the two primary acceleration methods, other strategies such as distillation [28, 30, 31],
early stopping [32], and quantization [33] are commonly employed to enhance performance and
efficiency. However, most of these strategies necessitate retraining pretrained models. Our method
falls under the category of efficient structural methods by focusing on reducing inference time at each
timestep. Importantly, these efficiency gains are achieved without retraining the diffusion model.

2.2 Model Optimization

Network Pruning. The taxonomy of pruning methodologies typically divides into two main cate-
gories: unstructured pruning methods [34–36] and structural pruning methods [37–40]. Unstructured
pruning methods involve masking parameters without structural constraints by zeroing them out,
often requiring specialized software or hardware accelerators. In contrast, structured pruning methods
generally remove regular parameters or substructures from networks. Recent works have been inter-
ested in accelerating transformers. Dynamic skipping blocks, which involve selectively removing
layers while maintaining the overall structure, have emerged as a paradigm for transformer compres-
sion [41–44]. However, applying structural pruning techniques to diffusion modeling poses unique
challenges that necessitate reevaluating conventional pruning methods.

3 Methodology

In this study, we introduce the Diffusion Pruner via Few-step Gradient Optimization (DiP-GO),
which utilizes a neural network to predict whether to skip or keep each computational block during
inference. Our primary objective is to identify the optimal subset of computational blocks that
facilitate denoising with minimal computational overhead. As illustrated in Figure 2, our method
comprises three main components: a neural network pruner, optimization losses, and a post-process
algorithm to derive the pruned model based on the predictions of pruner. The neural network pruner
is designed with learnable queries inspired by DETR [45] to predict the state of each block. Our
proposed optimization losses include sparsity and consistency constraints for generation quality,
guiding the pruner to accurately assess the importance of each block. In this Section, we first revisit
the framework of diffusion models in Section 3.1, emphasizing their potential for exploring pruned
networks. In Section 3.2, we introduce a SuperNet based on diffusion models and demonstrate how
to derive a SubNet or pruned network from it for inference acceleration, highlighting the challenges
in achieving an optimal SubNet. Section 3.3 details our method, including the neural network
pruner, optimization losses, and post-process algorithm for obtaining a SubNet that meets pruning
requirements. Finally, we provide insights into the training and inference processes of our method.

3.1 Preliminary

We begin with a brief introduction to diffusion models. Diffusion models are structured to learn a
series of sequential state transitions with the goal of iteratively refining random noise sampled from a
known prior distribution towards a target distribution x0 that matches the data distribution. During
the forward diffusion process, the transition from xt−1 to xt is initially determined by a forward
transition function, which can be described as follows:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

where the hyperparameter {βt ∈ (0, 1)}Tt=1 increases with each successive time step t.
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To generate samples from a learned diffusion model, it involves a series of reverse state transitions
from xT → · · · → x0 to denoise random noise xT ∼ N (0, I) into the clean data point x0. At
each timestep, the denoised output xt−1 is predicted by approximating the noise prediction network,
which is conditioned on the time embedding t and the previous data point xt:

pθ(xt−1|xt) = N (xt−1;
1
√
at

(xt −
βt√
1− at

zθ(xt, t)), βI) (2)

where the covariance constant βt = 1 − αt, at =
∏T

i=1 αi, and zθ(xt, t) are the parameterized
deep neural networks. With the reverse Markov chain, we can iteratively sample from the learnable
transition kernel xt−1 ∼ pθ(xt−1|xt) until t = 1.

Diffusion modes typically require multi-step conditional sampling to gradually obtain the target
sample point x0. However, recent studies [15, 18, 22] have highlighted that multi-step inference pro-
cesses involve substantial redundant feature computations, particularly in noise prediction networks
like UNet and Transformer. For example, in Stable Diffusion 1.4 models with 25 steps, Multiply-
Accumulate Operations (MACs) of UNet can comprise up to 87.2% of the total computational load
[16]. This underscores significant potential for accelerating inference by effectively eliminating
these redundancies. In this work, we propose accelerating the diffusion model by integrating a
differentiable pruning network designed to identify and remove these redundant computations.

3.2 SuperNet and SubNet of Diffusion Model

Our goal is to identify and remove unimportant blocks during inference to accelerate the process.
To achieve this, we introduce a SuperNet based on the diffusion model. This SuperNet is designed
to facilitate block removal while ensuring the pruned model maintains inference capability through
additional connections. Our approach effectively eliminates unimportant blocks during inference,
essentially deriving a SubNet from the SuperNet by skipping these unnecessary components. Thus,
the pruning process can be conceptualized as a SubNet search within the SuperNet framework.

How to Construct a SuperNet. Recent studies [15, 18, 22] have observed that diffusion models often
exhibit similar feature patterns across adjacent timesteps during inference. Building on this insight,
we enhance the standard diffusion model’s inference phase by introducing additional connections
from the current timestep to the previous one. These connections serve as backups for blocks that
may be removed, ensuring each block retains valid inputs even if its dependent blocks are eliminated
for acceleration. Specifically, for all inputs of each block across all timesteps except the inital step
during inference, we establish a backup input connection to the corresponding block in the previous
timestep, as illustrated in Figure 1.

c) SubNeta) Standard Diffusion Model

𝒙𝒕

b) SuperNet

Removed DependencesPruned Blocks Original Connections Potential Backup Connections

𝒙𝒕−𝟏 𝒙𝒕−𝟐 𝒙𝒕 𝒙𝒕−𝟏 𝒙𝒕−𝟐 𝒙𝒕 𝒙𝒕−𝟏 𝒙𝒕−𝟐

Searched Backup Connections

Figure 1: Overview of the SuperNet and SubNet. Standard diffusion models execute the full inference
path step by step. In our framework, we propose a SuperNet based on the original flow and integrate
backup connections to facilitate block removal. This allows the partial inference SubNet to efficiently
eliminate redundant computational costs.

How to Obtain a SubNet. To construct the SuperNet for the standard diffusion model, we introduce
additional connections that ensure a valid SubNet selects either the original input connection or
the backup input connection, but not both simultaneously. This design principle mandates that if
a dependent block is pruned, its original input connection is also eliminated to reflect the block’s
removal. Conversely, if the dependent block is retained, the backup input connection is removed to
maintain efficient inference, as depicted in Figure 1.
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Figure 2: Overview of our diffusion pruner. a) DiP-GO employs a pruner network to learn the
importance scores of blocks in the diffusion sampling process. It takes N × T queries as input
and passes them through stacked self-attention (SA) and fully connected (FC) layers to capture the
structural information in existing diffusion models. The network predicts the partial inference paths
based on the N × T importance scores and is optimized by consistent and sparse loss. b) Once
trained, the pruner network is discarded. We can infer the optimal partial inference path with expected
computational costs via post-processing based on the predicted importance scores.

We draw inspiration from the Lottery Ticket Hypothesis (LTH) [46], which posits the existence
of a sub-network capable of achieving comparable performance to the original over-parameterized
network for a given task, but with fewer unnecessary weights. Moreover, prior work [22] has explored
manually removing redundant computations by caching features across adjacent steps. Thus, our
approach seeks to identify an optimal SubNet from the SuperNet, maximizing diffusion model
acceleration while minimizing any loss in generation quality.

Hard to Obtain an Optimal SubNet. The challenge of obtaining an optimal SubNet is compounded
by the large number of blocks expanded during inference. In a diffusion pipeline with N × T blocks
(where N is the number of blocks per timestep and T is the number of timesteps), each block’s
decision to be kept or removed results in 2N×T possible configurations. For instance, a 50-step
PLMS setup [27], considering 9 blocks in the U-Net, yields 2450 choices (> 10135). Traditional search
methods like random search and genetic algorithms [47] often struggle in such vast search spaces.
Gradient-based optimization offers a promising approach to tackle this challenge. However, there are
significant hurdles to overcome. First, effectively modeling discrete block states (kept or removed)
with parametric methods poses difficulties. Second, training the entire model, comprising both the
parametric model and the expanded diffusion model with denoising timesteps, risks encountering
out-of-memory (OOM) issues.

3.3 Our DiP-GO Approach

In this study, we introduce a diffusion pruner network designed to predict importance scores for all
blocks during reverse sampling as depicted in Figure 2. To optimize the pruner network effectively,
we employ two key optimization losses: consistency and sparsity losses, leveraging few-step gradient
optimization. Addressing the OOM issue inherent in such computations, we implement gradient
checkpointing and half-precision floating-point representation techniques, enabling efficient search
processes on a single GPU. Once the pruner network trained, we extract predicted importance scores
for all blocks. Subsequently, we devise a post-processing algorithm to utilize these scores, generating
pruned SubNets of diffusion models that satisfy specific pruning criteria.

Pruner Network. Our pruner network comprises three main components: N × T learnable queries,
a query encoder, and a prediction head. We design the learnable queries to match the number of all
blocks during inference. These queries are optimized with sparsity and consistency loss constraints to
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learn the contextual information necessary for predicting the importance score of each block. For the
query encoder, we provide two options: a simple version with several stacked linear layers, and a more
complex version with several stacked self-attention layers to facilitate interaction among the learnable
queries. Our experiments demonstrate that both versions can effectively obtain optimal SubNets
in various diffusion models under different pruning requirements. The prediction head consists of
N × T simple branches, each containing two stacked linear layers followed by a softmax operation.
The final linear layer has a dimension of 2, and the softmax output represents the importance scores of
a block. During training or inference, the query embeddings are transformed into output embeddings
via the query encoder. These embeddings are then independently decoded into binary vectors by the
multi-layer prediction head, resulting in N × T importance scores for all blocks.

Optimization Losses. The k-th predicted binary vector of importance score, denoted as sk, represents
the likelihood of its corresponding block being removed or kept in the denoising process. A gate
g ∈ {0, 1}TN is derived based on s, where gk = 0 or gk = 1 indicate removing or keeping the k-th
computation block, respectively. Only the blocks that are kept according to g will be calculated in the
denoising process. However, directly converting predicted probabilities s into discrete gates g with
argmax is non-differentiable. To address this issue, we utilize the Straight-Through (ST) Estimator
[48] to approximate the real gradient∇θg with the gradient of the soft prediction∇θs. To encourage
both high-fidelity predictions and minimal computation block usage, we design our training objective
function as a combination of consistent loss Lc and sparse loss Ls, formulated as follows:

L(xT ; θ,W ) = Lc + αsLs =

{
f(xp

0,x
gt
0 ) + αs

NT

∑NT
k γkgk if sparsity < τ

f(xp
0,x

gt
0 ) if sparsity ≥ τ

(3)

Here, αs represents a hyperparameter used to balance the consistent and sparse losses. θ and W denote
the pruner network and pretrained diffusion model, respectively. f(·) denotes a distance function
that evaluates the consistency between the generated clean data point xp

0 from partial inference of the
pruned SubNet and the xgt

0 from full inference. This function can be any distance measure, and in
this work, we utilize a negative SSIM loss [49]. The sparse loss encourages minimal computational
usage and is weighted by the computational flops proportion γk of the k-th block, thereby imposing a
greater penalty on heavier blocks. The calculation of γ takes into account the cascading relationships
between blocks. Specifically, when a block is pruned, the associated dependent blocks will also
pruned. Therefore, the flops reduction from pruning a block includes the block itself and its dependent
blocks. We denote the flops reduction ratio after pruning the k-th block as γk. The flops ratio γ is
in the range [0, 1]. The sparse loss is only introduced when the sparsity (pruning ratio) is below a
certain threshold τ . This compound loss controls the trade-off between efficiency (block usage) and
accuracy (generation quality).

Post-Processing Algorithm. After training the pruner network, our diffusion pruner is able to
predict which computation blocks during inference contribute less to generation quality based on the
importance scores for all the blocks. As the importance scores are continuous values in inference
phase, they can not be utilized directly to identify which blocks should be removed to meet given
pruning requirements. Therefore, we present a post-process algorithm to obtain an appropriate
threshold for these importance score to meet the pruning requirements as shown in Algorithm 1
in Appendix B. Considering the required pruning sparsity, we use bisection lookup to select the
appropriate threshold value to identify which blocks should be removed to meet the pruning ratio.
Specifically, the blocks whose important scores below the threshold should be removed and the kept
blocks should update their input connections as mentioned in Section 3.2 to maintain the pruned
model inference. Thus a pruned model met the pruning ratio has been obtained.

Training and Inference Details. In the training phase, the prompt inputs are fed into the diffusion
model to obtain two kinds of outputs, one is generated by the baseline diffusion model and the other
is generated by the pruned model obtained via the current predictions of the pruner network. Then
our proposed losses are utilized to optimize the pruner network to enable distinguishing the less
important blocks. In the pruner’s network, we initialize the weight of the last linear layer’s output
channel to 0 and its bias to 1. This setup ensures that at the beginning of training, the consistency loss
is 0 and the sparsity loss is 1, facilitating smooth training. As training progresses, the sparsity loss
gradually decreases while the number of pruned blocks increases, causing the consistency loss to rise.
To maintain network fidelity after pruning, we switch to training only with the consistency loss once
the sparsity loss reaches 0.2, continuing until training is complete. Once the pruner is well trained,
we can obtain pruned models to meet the pruning requirements via our post-process algorithm.
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4 Experiments
4.1 Experimental Setup
Pre-trained Model and Datasets. We select four official pretrained Diffusion Models (i.e., SD-1.5
[2], SD-2.1 [2], SD-XL [50] and DiT [3]) to evaluate our approach. The SD series models are
constructed on the U-Net [51] and the DiT is constructed on the transformer [52]. We utilize a subset
of the DiffusionDB [53] dataset comprising 1000 samples to train our pruner network, utilizing only
textual prompts. Following previous works [29, 22], we evaluate the DiP-GO on three public datasets,
i.e., PartiPrompts [54], MS-COCO 2017 [55] and ImageNet [56].

Evaluation Metrics. We employ the Fréchet Inception Distance (FID) [57] metrics to assess the
quality of images created by the generative models. FID quantifies the dissimilarity between the
Gaussian distributions of synthetic and real images. A lower FID score indicates a closer resemblance
to real images in the generative model. Additionally, we utilize the CLIP Score [58] (ViT-g/14) to
evaluate the relational compatibility between images and text.

Implementation Details. For Stable Diffusion models, we utilize the SGD optimizer with a cosine
learning schedule for 1000 steps of training. The batch size, learning rate, and weight decay are set to
1, 0.1, and 1× 10−4, respectively. The hyperparameters αs, τ , and the query embedding dimension
D, along with the encoder layer number L, are set to 1, 0.2, 512, and 1, respectively. For the Diffusion
Transformer model, we use the same experimental configuration as for the stable diffusion model,
except that the learning rate set to 10. To evaluate the inference efficiency, we evaluate the Multiply
Accumulate Calculation (MACs), Parameters (Params), and Speedup for all models with batch size
of 1 in the PyTorch 2.1 environment on the AMD MI250 platform. Besides, we report MACs in those
tables, which refer to the totals MACs for all steps.

Table 1: Comparison with PLMS, BK-SDM and DeepCache on SD-1.5. We utilize prompts in
PartiPrompt and COCO2017 validation set.

PartiPrompts COCO2017
Method Pruning Type MACs ↓ Speedup ↑ CLIP Score ↑ MACs ↓ Speedup ↑ CLIP Score ↑
PLMS - 50 steps Baseline 16.94T 1.00× 29.51 16.94T 1.00× 30.30

BK-SDM - Base Structured 11.19T 1.49× 28.88 11.19T 1.45× 29.47
PLMS - 25 steps Fast Sampler 8.47T 2.04× 29.33 8.47T 1.91× 29.99
PLMS - Skip - Interval=2 Structured 8.47T 2.04× 19.74 8.47T 1.91× 16.78
DeepCache Structured 6.52T 2.15× 29.46 6.52T 2.11× 30.23
Ours (w/ Pruned-0.80) Structured 3.38T 4.43× 29.51 3.38T 4.40× 30.29

BK-SDM - Small Structured 10.88T 1.75× 27.94 10.88T 1.68× 27.96
PLMS - 15 steps Fast Sampler 5.08T 2.89× 28.58 5.08T 2.59× 29.39
Ours (w/ Pruned-0.85) Structured 2.54T 5.52× 29.07 2.54T 5.46× 29.84

Table 2: Comparison of computational complexity, inference speed, CLIP Score and FID on the
MS-COCO 2017 validation set on SD-2.1.

Inference Method MACs↓ Speedup↑ CLIP Score ↑ FID-5K ↓
SD-2.1-50 steps [2] 38.04T 1.00× 31.55 27.29

SD-2.1-20 steps [2] 15.21T 2.49× 31.53 27.83
Ours (w/ Pruned-0.7) 11.42T 3.02× 31.50 25.98
Ours (w/ Pruned-0.8) 7.61T 3.81× 30.92 27.69

4.2 Comparison with State-of-the-Art Methods on Different Base Models

Stable Diffusion on PartiPrompt and COCO2017. We compare our method with the state-of-the-
art (SOTA) compression methods on Stable Diffusion 1.5 (SD-1.5), and the results are summarized in
Table 1. Compared to the SOTA DeepCache [22], our approach demonstrates significant performance
improvements, achieving nearly 2× fewer MACs while maintaining better CLIP Scores. Our method
can achieve 4.4× speedup compared to the baseline model. Furthermore, our method does not require
training the diffusion model, which preserves the pre-trained knowledge of the diffusion model. Also,
we apply our method on the SD-2.1 model to verify the effectiveness, as shown in Table 2 , our
method achieves significant acceleration while maintaining generation quality, demonstrating its
superiority.

Diffusion Transformers on ImageNet. To the best of our knowledge, we are the first to apply pruning
to DiT [3] model. Therefore, we have replicated a training-free acceleration method, DeepCache
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Table 3: Comparison of pruning type, computational complexity, FID and inference speed on the
ImageNet validation datasets on DiT. * denotes the results reproduced with diffusers [59].

Method Pruning Type MACs ↓ FID-50K ↓ Speedup ↑
DiT-XL/2-250 steps - 29.66T 2.27 1.00×
DiT-XL/2*-250 steps Baseline 29.66T 2.97 1.00×
DiT-XL/2*-110 steps Fast Sampler 13.05T 3.06 2.13×
DiT-XL/2*-100 steps Fast Sampler 11.86T 3.17 2.46×

DeepCache(DiT-XL/2*)-N=2 Structured Pruning 15.88T 3.07 1.76×
Ours (DiT-XL/2* w/ Pruned-0.6) Structured Pruning 11.86T 3.01 2.43×

DiT-XL/2*-70 steps Fast Sampler 8.30T 3.35 3.49×
DeepCache(DiT-XL/2*)-N=5 Structured Pruning 6.77T 3.20 3.44×

Ours (DiT-XL/2* w/ Pruned-0.75) Structured Pruning 7.40T 3.14 3.60×

with intervals = 2 and 5, on DiT for comparison. The results in Table 3 show that our method can
speed up the original DiT model by a factor of 2.4 with minimal performance loss, while DeepCache
has a lower speedup ratio when applied to the DiT model. This can be attributed to DeepCache’s
overreliance on pre-defined structures, whereas our method can automatically learn the optimal
pruning strategy for the given model, thereby achieving superior performance.

4.3 Compatibility with Fast Sampler

We investigate the compatibility of DiP-GO with methods that prioritize reducing sampling steps
using faster samplers: DDIM [15], DPM-Solver [25], and LCM [18]. As shown in Table 4, it indicates
that our method further improves computational efficiency on existing fast samplers. Specifically,
we reduce MACs by a factor of 5 on the SD-1.5 with DDIM sampler and by 3.36× on the SD-2.1
with DPM-Solver. Our method achieves nearly unchanged performance with significant acceleration.
Additionally, our method benefits from information redundancy in multi-step optimization processes,
showing relatively limited acceleration performance on fewer-step LCM due to its low redundancy in
features across adjacent timesteps.

Table 4: Comparison with PLMS, SSIM, and LCM samplers. We evaluate the effectiveness of our
methods on COCO2017 validation set.

Sampler Base Model Ours
MACs ↓ CLIP Score ↑ MACs ↓ CLIP Score ↑

DDIM (SD-1.5 w/ 50 steps) 16.94T 30.30 3.38T 30.29
DPM (SD-2.1 w/ 50 steps) 38.04T 31.55 11.42T 31.50
DPM (SD-2.1 w/ 25 steps) 19.02 T 31.59 9.51T 31.52
LCM (SD-XL w/ 4 steps) 11.95T 31.92 11.58T 31.30

4.4 Ablation Study

Compared with Different Consistent Constraints. We further compare other alternatives explored
for our consistent loss designs, we further scrutinize additional options, including L1, L2, SSIM,
and L1+SSIM losses, as depicted in Table 5. The results demonstrate that SSIM emerges as the
most effective choice, boasting the highest CLIP-Score. In contrast, the L1 loss function often
results in image blurring or distortion due to its sensitivity to pixel-level differences, the L2 loss may
yield overly smoothed images by penalizing squared differences between pixels. Conversely, the
combination of L1+SSIM loss attempts to address these limitations but can complicate the training
process and suffer from trade-offs. Therefore, SSIM emerges as the preferred choice in our consistent
loss designs, offering superior accuracy and stability while preserving image quality.

Table 5: Comparison with different consistent loss types. Here we conduct pruning experiments with
80% sparsity on COCO2017 validation using SD-1.5.

Loss Type L1 L2 SSIM L1 + SSIM
CLIP Score↑ 29.94 29.71 30.29 29.77

Effect of Gradient Optimization. As the traditional search algorithm can also obtain SubNets from
our proposed SuperNet. It is crucial to validate whether traditional search-based algorithms yield
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positive effectiveness. We assess two search algorithms: random search and genetic algorithm-based
search [47] in Table 6. We have iterated the search 1000 times using the first 500 images of the test set
as a calibration dataset. Remarkably, we observe that the search time of traditional search algorithms
is significantly longer than the training time of our method due to a large number of evaluations.
Moreover, due to the vast search space, traditional search algorithms struggle to achieve satisfactory
results. Additionally, traditional search algorithms lack the “once-for-all” characteristic, requiring
re-execution when faced with deployment scenarios demanding different computational resources. In
contrast, leveraging the parametric pruner network, our method achieves superior performance with
reduced running time and is more adaptable to diverse development scenarios.

Table 6: Comparison of cost time, computational complexity and CLIP-Score between Random
Search and GA search strategies on Stable Diffusion 1.5.

Method Cost GPU Hours ↓ Pruning Ratio MACs ↓ CLIP Score ↑
PLMS-50 steps - - 16.94T 30.30

Random Search 25 0.80 2.96T 28.73
GA Search 25 0.80 3.34T 29.37

Ours 2.3 0.80 3.38T 30.29
Random Search 24 0.85 2.90T 27.22

GA Search 24 0.85 2.73T 28.61
Ours 2.2 0.85 2.54T 29.84

Random Search 23 0.90 1.94T 24.07
GA Search 23 0.90 2.04T 25.14

Ours 2.2 0.90 1.69T 28.72

Qualitative Analysis of Increased Prune Ratio. In Figure 3, we visualize the generated images
as we increase the pruning ratio. With the increase in pruning ratio, the model’s inference speed
significantly improves, allowing us to achieve up to a fourfold increase in inference speed. However,
as the pruning ratio increases, some patterns in the image content deviate from those in the original
images. Nevertheless, our main objects in the figures consistently adhere to the textual conditions.
Subtle changes in background details typically do not compromise image quality, as quantitatively
analyzed in Table 1.

a castle and the big 

ben clocktower next 

to a river

Prune 0.3Original Prune 0.4 Prune 0.5 Prune 0.6 Prune 0.7 Prune 0.8

Time: 5.01s Time: 3.59s Time: 3.13s Time: 2.65s Time: 2.18s Time: 1.70s Time: 1.23s 

A train traveling 

down tracks next to 

lights

A old television set is 

displaying an old 

computer game in 

front of two 

bookshelves

Figure 3: Visualization of generated images. It shows evolving patterns as pruning ratios increase.
Despite these changes, main objects in the images remain consistent with the textual conditions.

5 Conclusion
This work explores resolving diffusion accelerating tasks by reducing redundant feature calculations
across adjacent timesteps. We present a novel diffusion pruning framework and cast the model pruning
process as a SubNet search problem. Our approach introduces a plugin pruner network that identifies
an optimal SubNet through few-step gradient optimization. Results on a wide range of Stable
Diffusion (SD) and DiT series models verify the effectiveness of our method. We achieve a 4.4×
speedup on Stable Diffusion 1.5 and effectively prune the DiT model with few step optimizations.
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A Memory Optimization Details

Gradient Checkpointing. Due to the multi-step Markovian nature of sampling in diffusion models,
updating the entire sampling process using gradient accumulation incurs significant memory costs,
even with a batch size of 1. To mitigate this issue, we employ gradient checkpointing and half-
precision floating-point training to reduce memory consumption. The core idea behind gradient
checkpointing is to selectively preserve a portion of activation values during forward propagation,
discarding the rest. During backpropagation, the gradients of the discarded activation values are
computed using the saved gradients of the preserved nodes, effectively reducing memory usage.
Additionally, we use gradient accumulation, wherein gradients computed over multiple iterations
are accumulated and then backpropagated in a single batch for parameter updates, thus allowing for
larger batch sizes under limited memory usage.

B Pseudo Code

Here, we show the details of our proposed post-process algorithm via pseudo code as followings.

Algorithm 1 Diffusion Pruner
Input: A pretrained diffusion model M , importance scores S, a pruning ratio p
Output: The pruned diffusion model M∗

1: left← 0.0
2: right← 1.0
3: while True do
4: current← (left + right)/2
5: S∗ ← S
6: for t in [0, 1, 2, ..., T ] do
7: for each block score s in S∗ do
8: if s < current then
9: s← 0

10: end if
11: end for
12: end for
13: update_scores_of_blocks (S∗) // remove dependent blocks to set them zeros.
14: p∗,M∗ ← prune_diffusion_model(S∗,M) // obtain the pruned ratio and the pruned model.
15: if abs(p∗ − p) < 0.0125 then
16: break
17: else if p∗ < p then
18: left← current
19: else
20: right← current
21: end if
22: T ← T /2
23: end while
24: return M∗
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C Additional Experiment Results

Original

Ours (Pruned-0.6)

Original

Ours (Pruned-0.6)

Figure 4: Visualization of DiT model generated images: samples using DDIM-250 steps (uplink) and
pruned 60% MACs (downlink). The speedup ratio here is 2.4× .

C.1 More Qualitative Results

Comparison with DiT Baselines. We provide the original unpruned DiT model and a version pruned
by 0.6 ratio to generate comparison images in Figure 4. It can be observed that the plots generated by
the pruned model are almost identical to those produced by the original model. Although there are
slight differences in details, such as the appearance of the dog’s eyes, these do not significantly affect
the overall image quality.

Comparison with SD Baselines. We provide qualitative comparisons with the SD baseline and
DeepCache, as shown in Figure 5. Our method demonstrates superior image-text consistency and
image quality compared to existing methods.

Pruning Gate Visualization. Our method exhibits a specific pattern of pruning ratios with respect
to the timesteps. As shown in Figure 6, fewer blocks are pruned during the middle denoising
stage (approximately between steps 65 and 150), as this is when the image content is rapidly being
generated. Conversely, the pruning ratio in the latter stage is higher since the content has already
taken shape.

Feature Similarity Analysis. Recent studies have confirmed feature similarity across adjacent time
steps [22, 29]. We also conducted an analysis of feature similarity between adjacent steps in fast
samplers. Specifically, we sampled 200 images from the COCO2017 validation set and calculated
the average cosine similarity between the features of the penultimate upsampling block across all
steps for two typical fast samplers, resulting in a similarity matrix, shown in Figure 7. The heatmap
in Figure 7 highlights the high degree of similarity between features at consecutive time steps.

C.2 More Quantitative Results

More Ablations. We conducted an ablation study on α and present the results in Table 7. Our method
achieves the best performance when α = 1.0. we also conducted an ablation study on γ. Without γ,
pruning 80% on SD1.5 resulted in a CLIP score of 29.50 (w/ γ: 30.29).

More Baseline Comparison. We also evaluated our method on PixArt-α [60], achieving excellent
pruning results, as shown in Table 8 below. Our method exhibits minimal performance loss on
PixArt-α with a 0.4 pruning ratio.
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Figure 5: A qualitative comparison with existing methods is provided. We compare our method
(prune 0.75) with DeepCache (N=4).

Figure 6: The visualization results of the pruning gates for DiT-XL/2 at 250 steps with a pruning
ratio of 0.75.

D Limitations

A limitation of our method arises from its training process of the pruner network. Our method
necessitates tuning an additional pruner network for the pre-trained diffusion model. This may entail
users investing additional time when adapting our method to specific diffusion models. For example,
we train DiP-GO for SD-1.5 on a single AMD Instinct MI250 GPU for ∼ 2.5 hours. However, we
note that the introduced time is small compared to training a lightweight diffusion model. Besides,
same as existing work, our method struggles to maintain performance with extremely high pruning
ratios, presenting a challenge for deploying diffusion models in scenarios with severely limited
computational resources.

E Social Impact

Generative models have demonstrated promising results in content generation [50, 60, 2]. However,
due to the high inference costs, current methods struggle to achieve rapid application and deployment.
Our approach introduces an efficient acceleration method for diffusion models, enabling nearly
lossless speedup. Moreover, our method does not require retraining of the pretrained models and is
compatible with various diffusion models, making it highly generalizable. This makes it suitable for
rapid deployment of generative models on mobile and edge devices.
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Figure 7: Feature similarity across adjacent time steps in fast samplers.

Table 7: Comparison of different α values. Pruning experiments with 80% pruning ratio were
conducted on COCO2017 validation using SD-1.5.

α 0.1 0.5 1.0 2.0

CLIP Score↑ 29.77 29.93 30.29 30.17

Table 8: Comparison with a 20-step DPM-Solver sampler for diffusion transformer model. We
evaluate the effectiveness of our methods on COCO2017 validation set.

Method ↓ MACs ↓ Speedup ↑ CLIP Score ↑
PixArt-α w/ 20-step DPM 85.65 T 1.0 × 30.43
Pruned-0.4 (Ours) 51.39 T 1.6 × 30.41

Nevertheless, since generative models are pretrained on large-scale internet datasets, the data they
generate may contain inherent social biases and stereotypes [61–63]. Additionally, there is a risk
of misuse, such as in the creation of DeepFakes [64], which could pose significant social harm.
While reducing the usage cost, it is crucial to prevent the low-cost generative models from being
misused, leading to negative societal impacts. Therefore, it is necessary to establish relevant laws
and regulations, create a well-regulated community environment, and provide guidelines to ensure
responsible dissemination and use of generative models.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract provides a concise summary of the main findings and contributions
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objectives, thereby clarifying the contributions.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Limitation Section in Appendix D, we expound upon the limitations of the
work conducted and provide a brief discussion thereof.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [No]

Justification: None.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section 4.1, we introduced the details of experimental setup and model
training to ensure reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code will be released after it successfully passes our company’s internal
review.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 4.1, we introduced the details of experimental setup and model
training and testing.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experiments conducted in our paper do not involve the use of error bars or
statistical significance analysis, thus this aspect is not applicable to our study.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For our experiments, we furnished detailed specifications of the GPU models
used along with their corresponding tasks. Furthermore, we included specific information
regarding the model training batch size and the number of training iterations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and adhere to its
principles.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work performed in Appendix.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets, such as code, data, or models, used
in the paper, are properly credited. Additionally, the license and terms of use associated
with these assets are explicitly mentioned and respected in accordance with ethical and legal
standards.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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