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Abstract

Text-to-SQL benchmarks play a crucial role in
evaluating the progress made in the field and
the ranking of different models. However, accu-
rately matching a model-generated SQL query
to a reference SQL query in a benchmark fails
for various reasons, such as underspecified nat-
ural language queries, inherent assumptions in
both model-generated and reference queries,
and the non-deterministic nature of SQL output
under certain conditions. In this paper, we con-
duct an extensive study of several prominent
cross-domain text-to-SQL benchmarks and re-
evaluate some of the top-performing models
within these benchmarks, by both manually
evaluating the SQL queries and rewriting them
in equivalent expressions. Our evaluation re-
veals that attaining a perfect performance on
these benchmarks is unfeasible due to the multi-
ple interpretations that can be derived from the
provided samples. Furthermore, we find that
the true performance of the models is underes-
timated and their relative performance changes
after a re-evaluation. Most notably, our evalu-
ation reveals a surprising discovery: a recent
GPT4-based model surpasses the gold standard
reference queries in the Spider benchmark in
our human evaluation. This finding highlights
the importance of interpreting benchmark eval-
uations cautiously, while also acknowledging
the critical role of additional independent eval-
uations in driving advancements in the field.

1 Introduction

Significant progress has been made in translat-
ing natural language text to SQL statements over
the past few years. The execution accuracy on
the hold-out test of Spider (Yu et al., 2018b)-a
large-scale cross-domain text-to-SQL benchmark—
has improved from 53.5 in May, 2020 (Zhong
et al., 2020b) to 85.3 in March, 2023 (Pourreza
and Rafiei, 2023). The exact set match accuracy,
without considering database cell values, on the
same benchmark and over the same period has im-
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proved from 65.6 (Wang et al., 2019) to 74.0 (Li
et al., 2023a). Measuring such progress is hinged
on reliable benchmarks and evaluation metrics.

Two standard metrics for evaluating the perfor-
mance in this domain have been exact set match
accuracy and execution accuracy. The former mea-
sures if a model-generated SQL query lexically
matches a reference SQL query, whereas the lat-
ter measures if a model-generated SQL query pro-
duces the same output as a reference query (§ 4).

What are the names and
i ids of all makers with more |
than 3 models?

................

i SELECT T1.FullName, T1.ld ::SELECT T1.ld, T1.Maker FROM
. FROM CAR_MAKERSAST1 || car_makers AS T1 JOIN

i JOIN MODEL LISTAST20N :: model list AST2ONT1.ld = :
i T1.Id = T2.Maker GROUP BY ! T2.Maker GROUP BY T1.ld, !
¢ Tid HAVING count(*) > 3; : T1.Maker HAVING count(*) > 3 :

- -

S ——— =

[(‘General Motors', 4), E . [@4, ‘gm’),
(‘Chrysler', 6)] : (6, ‘chrysler')]

Figure 1: An example question with two correct SQL
queries, each corresponding to a different interpretation.
There is an ambiguity in schema mapping, with two
different database columns describing the name.

Consider the example in Figure 1, which con-
sists of a model-generated query (shown on the
left) and a reference query (shown on the right).
Both SQL queries return the id and name of mak-
ers that have more than 3 models. However, the
model-generated query returns the column Full-
Name, which gives the full name of a maker (e.g.,
“Ford Motor Company”), whereas the reference
query given in the benchmark returns the column
Maker, which gives the short common name of a
maker (e.g., “Ford”). The model-generated query



fails an exact set match since the column names in
the select clause are different. The query outputs
are also different and the model-generated query
fails the execution accuracy as well. The natural
language utterance is not specific about the type of
name to be returned, and a human evaluator tags
both queries correct.

As the models improve, these types of failures
make up most of the errors, and the performance
metrics become less relevant, as shown in our
evaluation. In particular, we re-evaluated all de-
velopment set queries of Spider on which two
top-performing models, one using a fine-tuned
model (Scholak et al., 2021) and another using a
large language model (Pourreza and Rafiei, 2023),
failed. We found out that 25% of the queries gen-
erated by one model and 87% of the queries gen-
erated by the other model were indeed correct but
were wrongly evaluated by the benchmark. For the
same set of queries, our re-evaluation of the ground
truth queries found 33% of the SQL queries incor-
rect, which was more than the number of incorrect
queries generated by one of the models. This eval-
uation places one of the models above the ground
truth queries in this re-evaluation.

We further re-evaluated two well-known bench-
marks, Spider (Yu et al., 2018b) and Spider-
DK (Gan et al., 2021b), and a newly released bench-
mark, BIRD (Li et al., 2023b), and found similar
problems in all three benchmarks that affect the
evaluation. Our evaluation reveals that 18% of the
queries in the train sets and 20%-23% of the queries
in the dev sets of these benchmarks are subject to
ties in the dataset and which one of the tied rows
are returned. This means a model-generated query
will be deemed incorrect if it does not return the
same row, among tied rows, as the ground truth
query. This can severely impact the evaluation, es-
pecially when there is a tight race among models.
Considering these observations, it is crucial to em-
phasize the significance of additional independent
evaluations when utilizing these benchmarks. To
enhance the evaluation process further, a poten-
tial solution is to incorporate multiple SQL queries
as the ground truth, each representing a different
interpretation that may be valid.

Our objective in this paper is to provide a
comprehensive evaluation of existing Text-to-SQL
benchmarks, underscoring the inherent issues they
possess. We refrain from introducing a new dataset
due to several considerations. First, addressing

the identified issues by updating these benchmarks
requires considerable human effort. Additionally,
benchmarks in the Text-to-SQL domain, like Spi-
der and BIRD, have holdout test sets used for offi-
cial leaderboards and comparisons of text-to-SQL
methodologies. We only have access to the de-
velopment and training sets of these benchmarks,
which limits our capability to alter the test sets. As
a result, making changes only to the development
and training sets would not completely address the
benchmark’s inherent problems, given that final
performance is gauged using the problematic test
sets.

2 Related Work

Limited research has been dedicated to assessing
the reliability and effectiveness of Text-to-SQL
benchmarks. The authors of SQL-PalLM (Sun
et al., 2023) note in their qualitative analysis of
their model that some queries, labelled as incorrect
by execution accuracy, were considered correct
by human annotators. Similarly, Lei et al. (2020)
conduct an analysis highlighting the discrepancy
between automatic evaluations and human anno-
tations. They emphasize that certain queries pro-
duced by the models were labeled as incorrect SQL
queries but human annotators labelled them as cor-
rect queries. Generally, a query that is equivalent
(but not identical) to ground truth may be mistak-
enly classified as incorrect by automated evaluation
metrics. Another study by Zhong et al. (2022) iden-
tifies limitations within the Spider benchmark, such
as issues with ties and certain syntactic problems.
Their analysis is primarily focused on a subset of
Spider, without quantifying the extent or impact of
these limitations or conducting an assessment of
other benchmarks.

3 Text-to-SQL Benchmarks

Benchmarks have played a crucial role in advanc-
ing the field and providing a platform for evalua-
tion. WikiSQL (Zhong et al., 2017) consists of over
24,000 tables from Wikipedia with SQL queries
generated based on some predefined rules and tem-
plates. The queries in this dataset are considered
easy since they are all single-table queries. Spi-
der, introduced by Yu et al. (2018b), consists of
200 database schemas of which 160 schemas are
published as train and dev sets and 40 schemas are
kept hidden for testing. The queries are written
on those schemas by Computer Science students



without using templates. This is considered a chal-
lenging dataset. Some other benchmarks are devel-
oped based on Spider, including Spider-Syn (Gan
etal., 2021a), which replaces schema-related words
with synonyms and eliminates explicit mentions be-
tween NLQ and schema, and Spider-DK (Gan et al.,
2021b), which introduces rarely observed domain
knowledge into the Spider development set. Other
benchmarks include FIBEN (Sen et al., 2020), cre-
ated for the financial domain and BIRD (Li et al.,
2023b), which comprises 12,751 queries over 95
databases spanning 37 professional domains.

Our study in this paper focuses on cross-domain
large-scale benchmark Spider, its variants Spider-
DK and Spider-SYN, and a more recent cross-
domain large-scale benchmark BIRD. The selec-
tion of these benchmarks stems from their resem-
blance to real-world datasets, which is a crucial fac-
tor in conducting comprehensive research and anal-
ysis. One notable advantage of these benchmarks is
the availability of a large training set, which plays
a pivotal role in training and fine-tuning large-scale
models. The inclusion of a substantial amount of
training data enables the development of more ro-
bust and powerful models that can better handle
the complexities and nuances present in real-world
databases.

4 Evaluation Metrics

The performance evaluation of text-to-SQL sys-
tems involves comparing them to a reference sys-
tem, typically a gold standard set of known correct
SQL queries. Generating a reference can be chal-
lenging due to multiple interpretations of natural
language questions, while SQL queries are based
on logic and tend to cover only one interpretation.
Even if an interpretation is fixed, detecting if a
model-generated query is equivalent to a reference
query is challenging, due to the halting problem
which is undecidable (Davis, 2004). Nonetheless,
to assess progress, proxy measures of performance
have been developed in the literature. As two such
metrics, we review exact set match accuracy and
execution accuracy in this paper.

Under exact set match accuracy, SQL queries
are evaluated by matching the query clauses
and components independently, such as the se-
lect, where, having, group by, and order by
clauses. The matching is based on compar-
ing columns and predicates, disregarding the or-
dering of columns and predicates. An exact

matching of literals can be challenging since
predicates such as nationality=“Canada” and
nationality=“Canadian” will not match. How-
ever, accurately generating those literals without
accessing database content may not be possible.
Under exact set matching without values, which is
used in Spider (Yu et al., 2018b), a matching of
literals is not required.

Two equivalent SQL queries can have different
expressions and may not match under an exact set
match. An alternative metric that can reduce the
number of false negatives is the execution accu-
racy. Under execution accuracy, the equivalence
between a model-generated query and a reference
query is established if they both produce the same
results on all possible databases instances (Yu et al.,
2018a). While testing all instances is impractical,
running queries on a subset of instances can help
identify candidates that are not equivalent to the
reference query. Although execution accuracy can
detect queries that are equivalent but not identical,
it may mistakenly identify queries as equivalent if
they produce the same result on tested instances.
Therefore, an effective execution-based evaluation
requires finding instances that cover various edge
cases and can detect queries that are not equivalent
to the reference. Test suite accuracy (Zhong et al.,
2020a), which is simply referred to as execution ac-
curacy in Spider benchmark and in our work, aims
to minimize false positives by evaluating queries
on a carefully selected collection of database in-
stances, known as a test suite. Nevertheless, an
execution-based accuracy cannot capture all cor-
rect SQL queries, highlighting the limitations and
the continued importance of human evaluation for
reliable assessment.

5 Execution Accuracy Failures

A model-generated query can be correct but still
fail the execution accuracy. We classify these fail-
ures into three categories: (1) failures due to ties
in output, (2) ambiguity in schema matching, (3)
wrong assumptions made about database content.

5.1 Failures Due to Ties in Output

SQL queries can lead to ties and a subset of the tied
rows may be returned. The selection of tied rows
can vary between queries and this can affect the
execution accuracy. We identify a few sources for
such ties, as discussed next, and study their impact
on benchmark evaluations in Section 6. Table 1



provides a detailed breakdown of the number of
queries that can potentially yield tied rows in both
train and development set of Spider, Spider-DK,
and BIRD benchmarks.

5.1.1 Top with Ties

Sometimes the query asks for top rows that satisfy
some conditions (e.g., the student with the highest
GPA, or the youngest student). When there is a
tie for the top position, and the query in natural
language is not specific on how the ties should be
handled, the corresponding SQL query may return
all ties or only one. This becomes a problem in eval-
uation if a model-generated query and the reference
query treat the ties differently. Figure 2 provides a
concrete example from the Spider dataset, illustrat-
ing this issue, where the reference SQL query in
the benchmark fails to account for ties and returns
only one of them using the LIMIT keyword.

5.1.2 LIMITN

The problems associated with using the LIMIT n
clause in SQL queries is not limited to the top posi-
tion, as discussed above. The use of this clause is
problematic for evaluation in general. Firstly, with-
out an explicit ordering, the result of a SQL query
is expected to be a set. Two equivalent (but not
identical) queries can return the same set of results,
each listed in different orders, but selecting the
first n rows from one ordering will not necessarily
match the same selection from a different ordering.
Secondly, with query results sorted, there can be a
tie on row n with multiple rows having the same
values. The ordering among tied rows can vary
between two queries, and so is the first n rows that
are returned. All benchmarks studied in this paper
(Spider, Spider-DK, Spider-SYN, BIRD) use the
limit keyword and suffer from the aforementioned
problems associated with ties.

5.1.3 GROUP BY

Many text-to-SQL benchmarks encounter a differ-
ent type of issue associated with ties, particularly
arising due to incorrect usage of non-aggregated
columns in both the SELECT clause and the
GROUP BY clause. Within the benchmarks, these
ties manifest in two scenarios: 1) a column appears
in the SELECT clause without being inside an ag-
gregation function and without being included in
the GROUP BY clause; 2) the SELECT clause
contains a mix of aggregated and non-aggregated
columns without utilizing a GROUP BY clause. In

What are the name,
independence year, and
surface area of the country |
with the smallest :

population?

........
........

..................
..............................

IndepYear FROM country  : | SELECT Name , SurfaceArea, :

H . ++  IndepYear FROM country
: WHERE Population = (SELECT ! ; q H
‘min(Population) FROM country): : ORDERIBYBoputation|LIMITR .

______________________________ o4 ------------..;........_._._.—'
‘ o
N — N—
— ——
? %

f [(‘Antarctica’, 13120000.0, None), .

i (‘French Southern territories', . . oy :
! 7780.0, None), (‘Bouvet Island, |} [ Antaretica’, 13120000.0,None]];

59.0, None)]

Figure 2: An example question that can have two correct
SQL queries, each corresponding to a different interpre-
tation. The SQL query on the left returns all tied values,
while the SQL query on the right returns only one of the
tied values.

both cases, multiple records can be associated with
the same grouping column or aggregation value,
whereas each group can only return one record.
Some database systems including Oracle and DB2
prevent these cases by treating them as syntax er-
rors. However, other database systems such as
SQLite and MySQL take a more lazy approach
(sometimes for efficiency reasons) and allow these
cases to happen. Many text-to-SQL benchmarks
follow SQLite syntax and suffer from this issue.
The affected queries in our benchmarks were iden-
tified after migrating from SQLite to PostgreSQL,
as detailed in Section 6.4, and checking for queries
that failed during PostgreSQL execution. Figure 3,
illustrates one example of such a problem from the
Spider dataset.

5.14 ORDER BY

Another subtle ambiguity with tied values arises
in queries where the SELECT clause incorporates
the "distinct" keyword, paired with an ORDER BY
clause referencing a column absent in the SELECT
clause. Consider the exemplary query from Spi-
der train set: SELECT DISTINCT district_name
FROM district ORDER BY city_area DESC. The
ordering of the output, as well as the result of a com-
parison with a reference query, becomes uncertain
if a single ’district_name’ value maps to multiple
“city_area’ values. Similar to GROUP BY, the af-
fected queries in the benchmarks were identified
through a SQLite to PostgreSQL migration(§ 6.4).



Dev set
BIRD 255(16%) 42(2%) 20(1%) 4(0.2%) 321(20.86%)
Spider 171(16%) 10(0.9%) 51(4.5%) 2(0.2%) 234(22.63%)
Spider-DK 94(17%) 2(0.3%) 30(4.5%) 2(0.3%) 128(23.85%)
Train set
BIRD 1558(16%) 211 (2%) 23 (0.2%) 4(0.04%) 1792 (18.22%)
Spider 989(14%) 106(1%) 254(3%) 10(0.1%) 1359(18.1%)

Table 1: The number of SQL queries having a specific type of limitation together with the percentage on both
development set and train set. The Spider-DK dataset does not have any training set.

What is the language
spoken by the largest
percentage of people in
each country?

................

SELECT LANGUAGE ,
CountryCode ,
! max(Percentage) FROM '
i countrylanguage GROUP BY : |

SELECT LANGUAGE ,
CountryCode ,
max(Percentage) FROM g
countrylanguage GROUP BY :

{__LANGUAGE, CountryCode ;i CountryCode :
gl vl
R—" —
S —— S —

[(‘Pashto’, 'AFG!, 52.4),
(‘Dutch’, 'BEL', 59.2),
(‘Dutch’, 'NLD', 95.6), ... ]

[(‘Pashto', 'AFG!, 52.4),
(‘Pashto’, 'PAK, 13.1),
(‘Dutch', 'ABW!, 5.3),
(‘Dutch', 'ANT", 0.0), :
(‘Dutch', 'BEL', 59.2), ...] !

Figure 3: An example question that can have two correct
SQL queries, each corresponding to a different interpre-
tation. The SQL query on the left returns all languages
of each country, each pair of country and language in
a separate row, whereas the SQL query on the right re-
turns one of tied values for the column LANGUAGE.

5.2 Ambiguity in Schema Matching

Schema matching refers to the task of establishing
the correspondence between a natural language
question and the tables, columns, and cell values
in the database ((Cao et al., 2021; Pourreza and
Rafiei, 2023; Wang et al., 2019; Li et al., 2023b).
Ambiguities arise when there are multiple columns
in the database that can represent the same semantic
meaning, and the information needs of a query
may be satisfied using any of those columns. As
a result, there exist multiple SQL queries that can
produce the correct answer, yet most benchmarks
only provide one query among the many possible
correct answers. Figure 1 illustrates an example
question that can be satisfied by two different SQL
queries, both of which are valid responses to the
question at hand.

5.3 Wrong Assumptions on DB Content

Lastly, one type of limitation in text-to-SQL bench-
marks stems from incorrect assumptions regarding
cell values. It is common to make assumptions
about database content and constraints when writ-
ing SQL queries, but those assumptions may not be
supported by the database schema or content. This
issue arises when the database content is created
under assumptions that do not align with those in
queries, leading to potential failures in the evalua-
tion process. Text-to-SQL models often lack access
to full database content due to limitations such as
the context window problem and the inability to
pass all cell values to the models for reasons such
as privacy and cost. These models typically rely
on the provided database schema and a selected
sample of database rows to represent potential val-
ues (Pourreza and Rafiei, 2023; Liu et al., 2023;
Rajkumar et al., 2022; Sun et al., 2023; Li et al.,
2023a; Lin et al., 2020). Consequently, the assump-
tions made by these models may not align with the
actual ground truth, resulting in SQL queries that
are correct under the assumption made but do not
match the reference query in the benchmark.

One observed case is when certain condi-
tions (e.g., PetType=‘dog’) are omitted from SQL
queries due to the erroneous assumption that the
condition holds for all rows in the database. Figure
4 exemplifies this issue using an example from the
Spider dataset, where both queries yield the same
answer on a specific database instance. However,
changing the database values could result in failure,
especially when evaluating performance using test-
suite accuracy, which involves querying different
database instances. Another case observed in the
benchmarks is when the ground truth SQL queries
assume a specific column has unique values, but in
reality, that column does not possess that unique
constraint. Figure 5 depicts an example of this



problem from the Spider dataset.

Find the weight of the
youngest dog.

________

! SELECT weight FROM Pets ;| :
e nae r(eeLar |\ i SELECT weight FROM pets |
MIN(p;t_age) FROM Pets : ORDER BY pet_age LIMIT 1 :

WHERE PetType = 'dog’)

-
N— —
— —
== ==

Figure 4: An example of a question and SQL pair with
a wrong assumption on the cell values. The SQL query
on the left does not make the same assumption.

What are the names of
students who have no
friends?

________________

Model l l Ref
e T N —— R A ——
: SELECT name FROM p
! Highschooler WHERE ID NOT IN : | SELECT name FROM

(SELECT T1.ID FROM 1 +Highschooler EXCEPT SELECTE

! Highschooler AS T1 JOIN Friend ;i T2:name FROM Friend AST1 !
{ AST20N T1.ID = T2.student_id ;| JOIN Highschooler AST2 ON :

ORT1.ID = T2.friend_id) T1.student_id = T2.id

— —
1 ¥
No student . [fl(B‘;i::r:";;)

Figure 5: An example of a question and SQL pair with
a uniqueness assumption on the “name” column, which
is not supported by the schema. The SQL query on the
left does not make the same assumption.

6 Experiments

To understand the extent at which the aforemen-
tioned problems affect the benchmarks, our evalua-
tion and the ranking of the models, we conducted
three types of evaluations on three benchmarks:
Spider, Spider-DK, BIRD. Our findings here apply
to the Spider-SYN dataset as well, which employs
the same SQL queries as in the Spider dataset. For
the same reason, we did not conduct a separate
analysis of that benchmark.

6.1 Evaluation Through Query Rewriting

In this experiment, our focus is on ties and how a
tie breaking strategy affects the benchmarks and
our evaluation. This is done through query rewrit-
ing. Automating query rewriting faces inherent
challenges, particularly when dealing with failures
stemming from schema ambiguity, erroneous as-
sumptions about the database content, and the am-
biguity of natural language utterances. These chal-
lenges arise because there is no specific structure
to address the failures systematically. Successful
query rewriting in these cases necessitates a deeper
understanding of table and column semantics to
identify ambiguities and erroneous assumptions.
In cases of ambiguity, human expertise is essen-
tial to disambiguate the context, as these situations
often lack clear guidelines. Detecting erroneous
assumptions often involves introducing new data
to the database and meticulously reviewing and
correcting failed queries on a case-by-case basis.
Therefore, our efforts have been channeled towards
rewriting queries concerning tied values, which ad-
here to a specific syntax structure, and the problems
associated with the ambiguity in schema matching
and wrong assumptions on database content are
studied in the next section.

Many benchmark queries use “LIMIT 1” to find
top rows that satisfy some conditions. If there are
ties on top, one arbitrary row among ties is returned.
An alternative is to return all ties. We rewrote all
queries that used “LIMIT 1” to return all ties. This
was done by introducing min() and max() aggrega-
tion functions within nested queries to accurately
identify extreme values. An example of such rewrit-
ing is shown in Figure 2. Breaking ties for queries
that used “LIMIT n” for n > 1 was not straightfor-
ward, and those queries were left unchanged.

For resolving ties introduced by an incorrect us-
age of GROUP BY in benchmark queries, we in-
cluded all non-aggregated columns from the SE-
LECT clause in the GROUP BY clause. For exam-
ple, if the SELECT clauses included id and name,
but the GROUP BY clause only included name, we
added id to the GROUP BY clause. This change
will not affect queries where there is a one-to-one
mapping between id and name, but it will resolve
the ambiguity when such mapping does not hold.

With these two changes, 16% to 20% of the ref-
erence queries in our benchmarks were affected.
Under a perfect evaluation scheme, the accuracy
should not be affected with these changes that sim-



Spider 206 (19%) 923 81.6
Spider-DK 112 (20%) 95 83.9
BIRD 252 (16%) 96.87

Table 2: Performance of the revised SQL queries on the
development set of the benchmarks.

ply resolve the uncertainty. Table 2 displays both
the execution accuracy and the exact set match ac-
curacy for the reference queries from the BIRD,
Spider, and Spider-DK benchmarks after our modi-
fications. It’s important to highlight that the perfor-
mance metrics provided in this table encompass the
entire development set of these benchmarks, com-
bining both modified and unaltered queries. For
clarity, in the Spider dataset, out of 1034 queries,
206 were modified. The performance assessment
took into account a mixed set of predicted queries:
206 that were adjusted and 828 that remained as
originally presented. This culminated in an execu-
tion accuracy of 92.3 percent.

It can be noted that the execution accuracy is
not as adversely affected as the exact set match
accuracy. We hypothesize that this could be at-
tributed to the absence of ties in the test data used
for these benchmarks. An evidence of this is
the following two queries, (Q1) SELECT name,
capacity FROM stadium WHERE average =
(SELECT max(average) FROM stadium), and
(Q2) SELECT name, capacity FROM stadium
ORDER BY average DESC LIMIT 1, labelled as a
correct match by the test scripts of Spider.

6.2 Human Evaluation

To gain a deeper understanding of the limita-
tions within the benchmarks, we conducted an
experiment focused on the widely-used text-to-
SQL benchmark, the Spider dataset. Specifically,
we evaluated two top-performing methods from
the Spider leaderboard: DIN-SQL (Pourreza and
Rafiei, 2023) and T5-large + PICARD (Scholak
et al., 2021). This experiment involved running
these methods on the development set of Spider,
which comprised 1034 question-query pairs. From
the results obtained, we extracted the questions for
which both methods failed to produce a correct an-
swer, based on the execution accuracy, resulting
in 102 pairs. We then presented these questions,
along with the SQL queries generated by the meth-
ods as well as the ground truth SQL queries (treat-
ing them the same as model-generated queries), to

two annotators ! for labelling. The annotators had
access to the database schemas and were tasked
with identifying the queries they deemed correct
for each question, without knowing which model
generated which query or if the query was from the
ground truth queries. Annotators could also create
databases and validate queries, ensuring a thorough
evaluation.

Following our initial labelling process, we
wanted to minimize the potential impact of human
errors in our evaluation. For this, we identified
queries with inconsistent labels among the anno-
tators and presented them to the annotators. Each
annotator was asked to provide an explanation for
their assigned labels. In the final stage of evalua-
tion, each annotator was presented the inconsistent
queries and the explanations provided by the other
annotator. They were then asked if they would
revise their labels based on this additional informa-
tion. The results of this experiment are presented
in Table 3. This table presents the outcome of hu-
man evaluation on a sample of 102 queries that
both DIN-SQL and T5+PICARD methods were
deemed incorrect in terms of execution accuracy.
SQL experts conducted this evaluation, with 81.6%
of these queries judged as correct for DIN-SQL,
and only 25.5% for TS+PICARD. Notably, among
the reference queries, only 67.3% were deemed cor-
rect. Even after the second round of annotation, a
few queries (more specifically, four question-query
pairs) still exhibit inconsistent labeling by the an-
notators. The main challenge with these particular
pairs is the inherent ambiguity in the questions or
the subjectivity of interpretations, which leads to a
lack of a definitive answer. Figure 6 demonstrates
one example of such a question with two possible
SQL query as answers.

An intriguing observation emerged from this ex-
periment: the DIN-SQL method, powered by GPT-
4, produced the highest number of correct answers,
surpassing even the ground truth SQL queries. This
finding sheds light on the limitations of the current
benchmarks and raises doubts about the reliability
of current leaderboards and performance metrics.

6.3 Error Analysis of Human Evaluation

We performed an error analysis of the SQL queries
that were labelled as incorrect in our human evalua-
tion to better understand the error types and causes
and to provide insights into areas for improving the

'"The human annotators are the authors of this paper.



! What are the countries that :
have greater surface area !
than any country in
Europe?

----------------

...............................

! SELECT Name FROM country | SELECT Name FROM country :
WHERE SurfaceArea > WHERE SurfaceArea >

! (SELECT max(SurfaceArea) ! (SELECT min(SurfaceArea) !
FROM country WHERE FROM country WHERE
Continent = 'Europe') Continent = "Europe")
—— ~——
— =
—— S ——
[(‘Aruba’),
(‘Afghanistan’),
No country (‘Angola’),
(‘Anguilla’),
(‘Albania'}), ...]

Figure 6: An example of a question with two possible
SQL queries as the answers. Both of these SQL queries
are correct under different interpretations.

DIN-SQL 81.6 4
(Pourreza and Rafiei, 2023)
TS-large + Picard 25.5 4
(Scholak et al., 2021)
Ground Truth 67.3 4

Table 3: Accuracy of the SQL queries generated by two
methods and the ground truth SQL queries based on
human evaluation. In four cases, the two annotators did
not agree on a label even after a second round.

ground truth SQL queries. Additionally, we com-
pared the errors in ground truth queries with those
of fine-tuning and prompting approaches. The iden-
tified errors, categorized into five groups, are briefly
discussed next. The distribution of SQL queries
across these groups is depicted in Figure 7.

Schema The primary issue responsible for the
majority of errors, affecting both the reference SQL
queries and the two methods, is the incorrect us-
age of schemas, which arises when the SQL query
utilizes incorrect tables or columns to answer the
given question. These errors indicate ambiguities
in the database schema and/or questions, as dis-
cussed in Section 5. Notably, the reference set
shows the least number of errors, which is closely
followed by DIN-SQL.

Condition The second-largest group of errors
observed pertains to the usage of incorrect condi-
tions within the SQL queries. Unlike the schema
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Figure 7: Distribution of SQL queries across error
groups for the two models being evaluated and the
ground truth. MO refers to SQL queries in the reference
(ground truth) set, M1 refers to the DIN-SQL method,
and M2 refers to T5S+PICARD.

group, where the tables and columns were incor-
rect, in this group, the correct tables and columns
are used, but the conditions in the WHERE clause
are erroneous. This error primarily manifested in
the queries generated by the T5-PICARD method,
but was also present in the reference set. The TS
model’s tendency to introduce additional columns
or omit necessary conditions could be attributed to
its smaller size relative to larger models like GPT-4,
limiting its grasp of intricate SQL syntax.

Nested The source of this problem is using a non-
unique column for the nested SQL query, as also
discussed in Section 5. Figure 5 shows an example
of such an error in a SQL query. This error was
more common in the SQL queries provided in the
reference set as well as those of T5-PICARD.

GROUP BY This category includes queries that
incorrectly used GROUP BY, resulting in ambi-
guity or uncertainty in the result as discussed in
Section 5. Notably, the reference set showed the
largest number of errors, closely followed by the
fine-tuned T5-PICARD. DIN-SQL exhibited the
least number of errors.

LIMIT As highlighted in Section 5, one of the
error scenarios involves not properly handling ties
when using the LIMIT keyword. The DIN-SQL
method demonstrates a lower incidence of this
type of error, attributed to its prompting nature.
Conversely, T5-PICARD exhibits identical perfor-
mance to the ground truth in this particular case.



Spider 4 69
Spider-DK 134 62
BIRD 5 103

211 2 51
80 2 30
1 4 20

Table 4: Breakdown of SQL errors observed in Spider, BIRD, and Spider-DK, following migration to PostgreSQL.

6.4 Standard SQL validation

We undertook an extensive review of the develop-
ment set of Spider, BIRD, and Spider-DK bench-
marks through the lens of standard SQL validation.
The objective was to identify some of the problem-
atic queries discussed in Section 5 and assess the
portability of the benchmarks. As part of this analy-
sis, we migrated the databases and queries of these
three benchmarks from Sqlite to PostgreSQL. Our
decision to use PostgreSQL, a widely recognized
RDBMS, stemmed from its rigorous adherence to
SQL standards. Following the migration, we ex-
ecuted every query from the development set on
these PostgreSQL databases, with a keen focus on
identifying queries that failed during PostgreSQL
execution. Table 4 provides a breakdown of queries
by error type across all three benchmarks. Notably,
errors such as UndefinedColumn, SyntaxError, and
UndefinedFunction emerge due to the different
SQL formats supported by Sqlite and PostgreSQL.
These variances necessitate adjustments to make
the queries compatible with PostgreSQL standards.
For instance, the Spider dataset frequently show-
cases errors stemming from PostgreSQL’s strict
typing conventions. While SQLite allows for com-
parisons of int with text, PostgreSQL does not.
Also, some queries run into problems because of
SQLite-exclusive functions, such as strftime and iff,
or because PostgreSQL interprets literals in double
quotations as column names.

The two other types of failures, group by and
Order by, included queries that introduced ambigu-
ities to the benchmarks, as discussed in Section 5.
It should be noted that these benchmarks present a
range of issues that are not solely confined to syn-
tax. Challenges related to wrong assumptions on
DB content and ambiguities in schema matching
are notably pervasive.

7 Discussion

Our analysis (§ 6.1) reveals the limitations of ma-
jor text-to-SQL benchmarks, highlighting the fact
that even with a perfect model, achieving a perfect
accuracy on these benchmarks is not possible. The

accuracies presented in Table 2 serve as a lose up-
per bound for the achievable accuracy by models.
It is lose because our rewritings were unable to
address cases that required manual intervention to
reconstruct a correct query. Thus, the upper bound
is expected to be lower considering other issues
such as wrong assumptions on the database content
and ambiguity in schema matching.

Our human evaluation (§ 6.2) further supports
our claim and provides more insight into the limi-
tations within one of the benchmarks studied. The
results in Table 3 demonstrate that prompting meth-
ods, such as DIN-SQL, are less affected by the
inherent limitations of the training set in the bench-
marks. However, they are not fully immune be-
cause of the few-shot input-output demonstrations
that are taken from the train set. On the other hand,
fine-tuned approaches, such as TS+PICARD, per-
fectly mirror the distribution of errors seen in the
ground truth queries for types nested, LIMIT, and
GROUP BY. The largest number of wrong queries
in schema and condition classes belong to our fine-
tuned model, due to inability of the model to gen-
erate correct SQL queries.

8 Conclusions

The reliance on standard text-to-SQL evaluation
metrics, namely exact set match accuracy and ex-
ecution accuracy, has become less reliable as the
model performance approaches human-level per-
formance. Our work is the first to systematically
study the limitations of these metrics and bench-
marks through both human evaluation and query
rewriting. Our re-evaluation of well-known bench-
marks (Spider, Spider-DK, and BIRD) uncovers
common systematic issues that affect the evalua-
tion process and performance estimates, revealing
that a significant portion of queries in the train and
dev sets are impacted by these issues. Incorporat-
ing multiple SQL queries as the ground truth and
representing different interpretations of queries of-
fer a promising solution to enhance the evaluation
process and achieve a more comprehensive and
accurate assessment of Text-to-SQL models.



Limitations

In this study, our focus was primarily on cross-
domain text-to-SQL benchmarks and models. The
failure cases identified in this domain are likely
to be present in other domain-specific text-to-SQL
benchmarks and models as well. It is essential to
conduct further analysis to identify specific fail-
ure cases within domain-specific benchmarks and
models.

Furthermore, it is worth mentioning that our
work has a limitation regarding the analysis of
failure cases that lack a specific structure and re-
quire manual effort for detection. Identifying and
addressing such problems necessitates extensive
work. The purpose of our study was to highlight
these failure cases; a more in-depth analysis of
their prevalence can provide a clearer understand-
ing of their impact on the overall performance of
text-to-SQL systems.
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