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Abstract

The stable periodic patterns present in the time series data serve as the foundation
for long-term forecasting. However, existing models suffer from limitations such
as continuous and chaotic input partitioning, as well as weak inductive biases,
which restrict their ability to capture such recurring structures. In this paper,
we propose MoFo, which interprets periodicity as both the correlation of period-
aligned time steps and the trend of period-offset time steps. We first design period-
structured patches—2D tensors generated through discrete sampling—where each
row contains only period-aligned time steps, enabling direct modeling of periodic
correlations. Period-offset time steps within a period are aligned in columns. To
capture trends across these offset time steps, we introduce a period-aware modulator.
This modulator introduces an adaptive strong inductive bias through a regulated
relaxation function, encouraging the model to generate attention coefficients that
align with periodic trends. This function is end-to-end trainable, enabling the
model to adaptively capture the distinct periodic patterns across diverse datasets.
Extensive empirical results on widely used benchmark datasets demonstrate that
MoFo achieves competitive performance while maintaining high memory efficiency
and fast training speed. Our code is available at official repository .

1 Introduction

Long-term time series forecasting (LTSF) has found widespread applications across various domains
[10, 12, 13, 36, 62, 78, 79], with its core challenge lying in understanding and modeling the inherent
periodic patterns present within data [20]. To address this, various cutting-edge models have been
proposed, among which Transformer [43] has emerged as the de facto backbone for capturing long-
range dependencies in LTSF tasks [6, 24, 62, 72]. Despite the promising results achieved, we identify
two underexplored potentials that remain to be fully harnessed.

❶ Continuous but Chaotic Time Steps of Input. Existing models often input consecutive time steps,
and popular patch-based methods are no exception. Specifically, the patching method partitions the
input sequence in a continuous manner using either convolutional down sampling [22] or sliding
window strategies [5, 32, 75], which we refer to as the continuous patch. Taking the Electricity
dataset as an example, as shown in the red box in Figure 1(a), a consecutive patch may contain both
time steps that are phase-aligned across each period (referred to as period-aligned) and those that are
misaligned within each period (period-offset). We further visualize the pairwise correlations between
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Figure 1: Case visualization and analysis on real-world datasets. (a) Continuous patching strategy. (b)
Correlation coefficients within patches. The orange region represents the 95% confidence interval for
the null hypothesis from Bartlett’s Test [2]. Correlation coefficients that fall within this interval are
not statistically significant and cannot be rejected as noise [4]. (c) Attention weights exhibit remote
attenuation due to sinuous positional encoding. (d) Absolute and relative position distance in the
period perspective. (e) Performance of Transformer-based models for LTSF with 720 horizon.

the first time step in the patch and subsequent ones in Figure 1(b). It is evident that period-aligned
time steps, such as 8 AM every day, exhibit strong correlations. In contrast, period-offset time steps
rapidly decaying correlations and may even introduce noise. Therefore, the internal correlations
within a continuous patch are chaotic, which hampers the model’s ability to learn periodic patterns.

❷ Weak Inductive Bias for Periodicity. Due to the permutation invariance of the self-attention mech-
anism, sinusoidal positional encodings [16, 32] or timestamp position embeddings [62, 77, 79] are
commonly used to inject temporal position information. However, as shown in Figure 1(c), sinusoidal
encodings may cause attention weights to decay gradually with increasing position distance [50],
which conflicts with the repetitive nature of periodic signals. In contrast, timestamp position em-
beddings encode absolute time intervals, leading to large distances between strongly correlated and
phase-aligned time steps. For example, in a daily-period electricity dataset, 8 AM on Monday and 7
AM on Tuesday may exhibit high correlation due to their similar daily phases. However, as shown in
Figure 1(d), their absolute time difference is encoded as 23, whereas a more reasonable alternative —
their relative cyclical distance — is only 1. Large temporal distances may mislead the model into
assigning diminished attention weights. Such weak inductive bias toward periodicity in Transformer
further hampers the ability to capture periodic patterns from consecutive and chaotic input.

To address these limitations, we propose MoFo, a novel TransFormer architecture with Modulator
that explicitly models periodic patterns by capturing both the correlations among period-aligned
time steps and the trends across period-offset ones. Our approach introduces two key components:
Period-structured Patching and the Period-Aware Modulator. The former discretely samples time
steps to arrange the input into a 2D tensor where each row represents a patch comprising only
period-aligned time steps. Period-offset time steps within the period are realigned across columns
(i.e., across patches). By modeling the features within each patch, the model can directly learn
the underlying periodic correlations. To capture cross-patch periodic trends, we introduce the
Period-Aware Modulator, which generates an attention modulation term through a regulated regulated
relaxation function. This function assigns attention coefficients based on the periodic relative distances
between time steps, encouraging the resulting attention scores to align with the underlying periodic
patterns. As a result, the attention mechanism is infused with strong inductive biases that favor
periodic dependencies. Crucially, this function is end-to-end trainable, enabling it to dynamically
adapt the modulation behavior to the specific periodic characteristics of the input data.

Our contributions are fourfold: ❶ We propose a novel perspective for periodic pattern modeling,
termed MoFo, which integrates two innovative strategies for explicit periodicity-aware time series
modeling. ❷ We design a Period-Structured Patching strategy that separately manages period-
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aligned and period-offset time steps, enabling the model to directly capture both periodic correlations
and trends. ❸ We introduce a Period-Aware Modulator, which encourages the Transformer to
generate attention coefficients that align with underlying periodic trends through a learnable regulated
relaxation function. ❹ Extensive experiments demonstrate that our model achieves competitive
forecasting performance while significantly improving computational efficiency — offering up to
14× memory savings and 10× faster training speed compared to state-of-the-art methods.

2 Related Work

In recent years, deep learning methods have achieved remarkable success across a broad spectrum of
time series tasks, such as forecasting [17, 26, 31, 54, 64, 65, 67, 71], imputation [52], classification [25,
58], and anomaly detection [35, 66, 70]. Among these, Long-Term Series Forecasting (LTSF) has
attracted especially intense interest owing to its foundational role in both academic research and
practical applications [30, 51, 55]. Existing deep learning approaches for LTSF can be broadly
grouped into four categories according to how they handle the temporal dimension: RNN-based,
TCN-based, MLP-based (discussed in Appendix B), and Transformer-based models. The Transformer
architecture has emerged as the prevailing choice for LTSF, primarily because of its strong ability to
capture long-range temporal dependencies. Recent studies have largely concentrated on enhancing
both its computational efficiency and modeling power [28, 29], with significant advances driven by
two core elements: the self-attention mechanism and patch-based modeling strategies.

Variants of Self-Attention Mechanism for Time Series Forecasting. One of the most interesting
aspects of Transformer in LTSF is its self-attention mechanism. LogTrans [16] introducing a
convolutional LogSparse attention that ensured long-distance interactions while reducing the number
of interactions, is an early and influential attempt to apply Transformer. Informer [77] proposes
ProbSparse attention while combining with a distillation mechanism to select the most representative
query vectors to compute the attention scores. Autoformer [62] utilizes a decomposition architecture
to discover dependencies for building sequence-level connections based on their aggregation of
similar subsequences. FEDformer [79] leverages the attention mechanism in the frequency domain,
providing the capture of the underlying oscillatory modes and their intensities. Despite the efficacy of
these methodologies in reducing computational expense, they often encounter information bottlenecks
in long sequence input [33].

Patch-based Time Series Forecasting Method. Patch-based approaches are widely adopted for
efficient time series representation, where the input sequence is divided into consecutive segments
(patches). This strategy not only enhances the computational efficiency of the Transformer backbone
but also promotes more effective modeling of localized temporal dynamics within each patch [11, 60].
PatchTST [32] explicitly reduces the length of input sequence and preserves the local semantic
information by dividing the time series into smaller subsequences. Pyraformer [22] employs a pyra-
midal attention mechanism, wherein the input sequence is downsampled into patches by multilayer
convolution, allowing attention to be applied at coarse scales. Crossformer [75] proposes two-stage
attention with a dynamic routing mechanism that performs the patch operation from the sequence
dimensionality and the channel dimensionality. Pathformer [5] selects multiple patch volumes at
the same time and uses a multi-scale router to determine the interactions between different patches
to weaken the impact of the selection of patch volume. All existing patch strategies are sequential
along the temporal dimensionality, which does not facilitate effective capture and learning of periodic
patterns [11, 60].

3 MoFo

Given X = [x1,x2, . . . ,xT ]
⊤ ∈ RT with the look-back window T where xt ∈ R represents

the time series data on time step t, the objective of LTSF is to forecast the next L values Y =

[xT+1,xT+2, . . . ,xT+L]
⊤ ∈ RL. Effective long-term forecasting hinges on the ability to model the

intrinsic periodic patterns underlying the data. In this work, as shown in Figure 2, we propose MoFo
which integrates two key components: Period-structured Patch and the Period-Aware Modulator,
which jointly enhance the model’s capacity to capture and exploit periodic patterns.
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Figure 2: The details of MoFo which contains two core contributions for accurate modeling of
periodic patterns: Period-structured Patch and Period-Aware Modulator.

3.1 Period-structured Patch in MoFo

Patch-based input representation method has become a popular approach to improve the efficiency of
long-time-series modeling of Transformer. However, as discussed in the introduction section, the
pairwise correlations between time steps within a continuously partitioned patch can be weak or
even negative, which may undermine the model’s ability to capture periodic patterns. To address
this challenge, we propose a Period-structured Patching strategy. This approach discretely samples
period-aligned time steps from the input sequence to form patches. Specifically, given a period length
P , which is typically much smaller than the input sequence length T (i.e., P ≪ T ) in LTSF settings,
we compute NP = ⌈T/P ⌉ as the number of period-length segments required to cover the input
time series X. Since the length T of the input time series may not be an integer multiple of the
period length P , it becomes necessary to apply padding so that all time segments have uniform length
without discarding the trailing portion of the input.

Input Padding. Our proposed padding strategy fills incomplete periodic segments with data from
adjacent periods. Specifically, we start from the current time step and move backward to delineate
periods of length P , and if necessary, we prepend the input time series with the first P − (T mod P )
time steps of the first complete period, as shown in Figure 2. This ensures a seamless continuation of
the sequence while retaining its underlying periodic structure. As a result, the input series is extended
to Xpad ∈ RT ′

with T ′=P ∗ ⌈T/P ⌉, and the padded series can be formally expressed as:

Xpad =

{
Concat

(
X(T mod P ):P ,X

)
, if T mod P > 0,

X, if T mod P = 0.
(1)

Sampling Patch and Unflatten. We sample time steps at periodic intervals (i.e., period-aligned time
steps) from Xpad and group them into the same patch. For example, for i-th patch, it can be denoted
as X

i
= [xi, xi+P , · · · , xi+P∗⌈T/P⌉] ∈ R⌈T/P⌉, where xi+P means the data point at the time step

(i+ P ) in Xpad. Then we unflatten X to generate the patch-structure input Xin,

Xin = Unflatten
(
X
)
∈ RP×⌈T/P⌉. (2)

where P is the number of patches (also equal to the period length). As illustrated in Figure 2, the
structured input Xin possesses two key properties: ❶ Each row (within a patch) contains ⌈T/P ⌉
time steps, with all steps period-aligned within their respective periods. This alignment establishes
structured temporal dependencies across periods, enabling the explicit modeling of long-range
periodic dependencies. ❷ Each column (across patches) contains P time steps from a complete
period. By capturing correlations among these patches, the model can effectively learn the underlying
periodic trends across period-offset time steps.

Periodic Dependency Modeling. Due to this desirable property, even a simple neural architec-
ture—such as a single-layer MLP—can suffice for capturing the underlying periodic dependency.
The design is formally described as follows:

Z = XinWin + bin ∈ RP×d, (3)

where Win ∈ R⌈T/P⌉×d and bin ∈ Rd are learnable parameters. And Z is the corresponding output.

4



3.2 Period-Aware Modulator for Periodic Trend Modeling

MoFo further incorporates an enhanced Transformer to model the periodic trends across period-offset
time steps within a periods. To further strengthen the model’s representational capability, we first
modify the standard Transformer architecture (details in Appendix C). Moreover, we introduce
a Period-Aware Modulator, which integrates strong inductive biases to address the permutation
invariance of self-attention, thereby enhancing the model’s ability to capture period trends.

3.2.1 Period-Aware Modulator

When computing the attention scores, we explicitly introduce a strong inductive bias: the attention
generated by the Transformer is encouraged to align with periodic trends. We achieve this by
incorporating a modulation term into the attention computation. First, we design periodic positional
encodings that effectively capture the relative distances within a period — a key distinction from
existing approaches such as sinusoidal or timestamp-based positional encodings. Specifically, the
relative distance between the i-th period and the j-th period is computed as follows,

γij = min{(i− j) mod P, (j − i) mod P} ∈ [0, ⌊P/2⌋] , (4)

this strategy ensures that time steps that are periodically close remain proximal. For example, in a
traffic dataset with an hourly sampling frequency and a daily period (i.e., 24 time steps), the relative
period distance between 8:00 AM on Monday and 7:00 AM on Tuesday is 1, while their absolute
distance is 23. This allows the model to better perceive and learn periodic trends. and we can get a
relative periodic distance matrix, which is denoted as Γ = {γij}Pi,j=1 ∈ RP×P .

We proceed by introducing a modulation term within the attention computation, designed to encourage
the model to prioritize temporal dependencies that align with the underlying cyclical trend of the data.
Specifically, we initially define a modulation matrix M ∈ {0, 1}P×P , where each entry Mij is an
indicator that reveals whether time steps i and j are close in terms of cyclical distance. A natural way
to construct this matrix is by using the Heaviside Step function H : R → {0, 1}: Mij = H (β − γij),
and its logarithmic value can be defined as:

Mij =

{
1, if γij ≤ β,

0, if γij > β,
⇐⇒ logMij =

{
0, if γij ≤ β,

−∞, if γij > β.
(5)

where γij is the periodic distance between i-th period and j-th period calculated above. And β ≥ 0
is a distance penalty threshold controlling the penalization distance. Hence, the attention coefficient
between the i-th patch and the j-th patch is satisfying,

exp (
QiK

⊤
j√

dh
+ logMij) =

{
exp (

QiK
⊤
j√

dh
), if γij ≤ β,

0, if γij > β.
(6)

The attention score is considered valid only if the cyclical distance between time step j and i is no
more than β. Otherwise, the attention coefficient is penalized due to the distance and set to zero.
Finally, our attention mechanism can be written as,

Attention (Q,K,V) = Softmax(
QK⊤
√
dh

+ logM)V, (7)

where Q = ZWj
Q ∈RP×dh ,K = ZWj

K ∈ RP×dh ,V = ZWj
V ∈ RP×dh , (8)

where Wj
Q,W

j
K , and Wj

V ∈ Rd×dh are learnable parameters.

3.2.2 Regulated Relaxation Function for Smooth Approximation

There are still two points with the potential for improvement: ❶ Due to the non-differentiability of
the discrete truncation operation in the step function, β cannot be optimized through backpropagation,
which limits the flexibility and adaptability of the method. ❷ Although the modulated attention mech-
anism implicitly incorporates temporal positional information by preserving attention coefficients
only between time steps with small periodic distances, it imposes uniform inductive biases on nearby
steps. As a result, the model still faces challenges related to permutation invariance [15].
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To address these limitations, we proposed a regulated relaxation function to approximate the Heaviside
Step function to generate the modulator. In contrast to the sharp Heaviside Step function, our function
S exhibits a smooth attenuation trend, as shown in Figure 2, which is defined as follows:

Theorem 1. Regulated Relaxation Function

Define a continuous differentiable function S (·;α, β) : R+ ∪ {0} → [0, 1] as follows,

S (γ;α, β) =
1

1 + exp (α (γ − β))
+

exp (−γ)

1 + exp (αβ)
∈ [0, 1] . (9)

where the regulated parameter α > 0 control the gradient of attenuation and β > 0 is the
distance penalty threshold. This function has following properties:
(1) S (γ;α, β) is the smooth approximation of H (β − γij) for arbitrary γ ≥ 0 satisfies,

S (0;α, β) = 1, S (+∞;α, β) = 0, ∀α, β > 0. (10)

(2) The cumulative error upper bound of this smooth approximation satisfies,∫ +∞

0

|H (β − γ)− S (γ;α, β)|dγ <
2 log 2

α
+

1

1 + expα
→ 0+ (α → +∞). (11)

where the proof of Theorem 1 is provided in Appendix A.1. Regulated relaxation function takes
relative periodic distance matrix Γ = {γij}Pi,j=1 ∈ RP×P to generate the attention modulation term.
Finally, the formula of our attention with Regulated Relaxation Function (RRF) is as follows,

RRF (Q,K,V) = Softmax(
QK⊤
√
dh

+ logS(Γ;α, β))V ∈ RP×dh , (12)

where Q = ZWj
Q ∈RP×dh ,K = ZWj

K ∈ RP×dh ,V = ZWj
V ∈ RP×dh , (13)

where α and β are learnable parameters, and Q,K, and V are the linear projections of Z.

Advantages for Periodic Modeling. ❶ The key distance penalty threshold β is defined as a learnable
parameter, which can be adaptively learned from the data. This enables more accurate and dynamic
modeling of periodic trend. ❷ The modulation term varies smoothly with the periodic relative
distance, implicitly encoding discriminative positional information of time steps. This effectively
addresses the permutation-invariant limitation inherent in the standard attention mechanism. ❸ The
function exhibits a smoother trend and can be flexibly controlled through the learnable parameter
α. This adaptability allows our Transformer architecture to customize personalized modulation
behaviors for time series with diverse periodic characteristics, thereby refining the attention process
to better capture periodic dependencies.

3.3 Forecasting and Optimization

The Final time series prediction values is obtained by summing the flattened and linearly transformed
outputs of the Transformer backbone Z⃗ ∈ RP×d as follows:

Ŷ = Flatten(Z⃗)Wout + bout ∈ RL, (14)

where Wout ∈ R(P∗d)×L and bout ∈ RL are learnable parameters. When the time series involves
multiple variables (i.e., C > 1), we adopt channel-independent learning and compute the relative loss
weights based on the maximum loss across channels, dynamically adjusting the loss weights during
training to promote equal learning with stable convergence. This process is formulated as follows:

L∗ = ω

C∑
c=1

L(Yc, Ŷc)

∥L(Yc, Ŷc)∥
, ω = max

{
∥L(Yc, Ŷc)∥; c ∈ {1, 2, . . . , C}

}
, (15)

where Yc, Ŷc are the ground-truth values and prediction values of the channel c.

Complexity Analysis. MoFo’s computational complexity has a quadratic dependence on period
length but is independent of the input sequence length, making its efficiency highly favorable.
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For example, in daily-period datasets with hourly sampling (e.g., 24 time steps per period), the
computational cost is minimal relative to the total sequence length in long-term forecasting tasks,
such as 720 time steps.

4 Experiment

4.1 Experimental Setup

Datasets. We conduct our experiments on widely used real-world time series datasets with periodic
pattern from 4 different domains, including ETTh1, ETTh2, ETTm1, ETTm2, Weather, Solar Energy,
Electricity, and Traffic. A summary of all datasets is provided in Table 1.

Table 1: Statistics of used datasets.

Dataset ETTh1 ETTh2 ETTm1 ETTm2 Weather Solar Energy Electricity Traffic
# Channels 7 7 7 7 21 137 321 862
# Samples 14,400 14,400 57,600 57,600 52,696 52,560 26,304 17,544
Frequency 1 hour 1 hour 15 mins 15 mins 10 mins 10 mins 1 hour 1 hour
Split ratio 6:2:2 6:2:2 6:2:2 6:2:2 7:1:2 6:2:2 7:1:2 7:1:2

Settings. Our experiments are conducted on an NVIDIA A100 GPU with 40GB memory, us-
ing PyTorch under Python 3.11.5. We implement our method within the TFB platform [34] to
ensure a fair comparison. Following the evaluation protocol in TFB [34], we report the best per-
formance achieved over look-back window lengths T ∈ {96, 336, 512} and forecasting horizons
L ∈ {96, 192, 336, 720}. Model performance is evaluated using two standard metrics: mean squared
error (MSE) and mean absolute error (MAE). To maintain fairness in evaluation, we disable the
“Drop Last” batch-sampling trick[18]. We use the Adam optimizer [14] with the L1 loss function
from the FreDF strategy [53].

Table 2: Performance comparisons for LTSF. The best and second best are marked in corresponding
colors. All experimental results are selected from the best performance under the look-back window
length T ∈ {96, 336, 512}.

Method
MoFo DUET PDF iTransformer Pathformer CycleNet TimeMixer PatchTST Crossformer DLinear
(Ours) (2025) (2024) (2024) (2024) (2024) (2024) (2023) (2023) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.360 0.389 0.352 0.384 0.360 0.391 0.386 0.405 0.372 0.392 0.372 0.394 0.372 0.401 0.377 0.397 0.411 0.435 0.379 0.403
192 0.397 0.413 0.398 0.409 0.392 0.414 0.424 0.440 0.408 0.415 0.404 0.417 0.413 0.430 0.409 0.425 0.409 0.438 0.408 0.419
336 0.407 0.424 0.414 0.426 0.418 0.435 0.449 0.460 0.438 0.434 0.430 0.429 0.438 0.450 0.431 0.444 0.433 0.457 0.440 0.440
720 0.447 0.454 0.429 0.455 0.456 0.462 0.495 0.487 0.450 0.463 0.448 0.464 0.486 0.484 0.457 0.477 0.501 0.514 0.471 0.493

E
T

T
h2

96 0.273 0.334 0.270 0.336 0.276 0.341 0.297 0.348 0.279 0.336 0.277 0.341 0.281 0.351 0.274 0.337 0.728 0.603 0.300 0.364
192 0.327 0.373 0.332 0.374 0.339 0.382 0.372 0.403 0.345 0.380 0.341 0.385 0.349 0.387 0.348 0.384 0.723 0.607 0.387 0.423
336 0.361 0.405 0.353 0.397 0.374 0.406 0.388 0.417 0.378 0.408 0.370 0.411 0.366 0.413 0.377 0.416 0.740 0.628 0.490 0.487
720 0.379 0.425 0.382 0.425 0.398 0.433 0.424 0.444 0.437 0.455 0.424 0.451 0.401 0.436 0.406 0.441 1.386 0.882 0.704 0.597

E
T

T
m

1 96 0.286 0.335 0.279 0.333 0.286 0.340 0.300 0.353 0.290 0.335 0.297 0.344 0.293 0.345 0.289 0.343 0.314 0.367 0.300 0.345
192 0.320 0.363 0.320 0.358 0.321 0.364 0.341 0.380 0.337 0.363 0.332 0.365 0.335 0.372 0.329 0.368 0.374 0.410 0.336 0.366
336 0.347 0.382 0.348 0.377 0.354 0.383 0.374 0.396 0.374 0.384 0.366 0.386 0.365 0.386 0.362 0.390 0.413 0.432 0.367 0.386
720 0.388 0.411 0.405 0.408 0.408 0.415 0.429 0.430 0.428 0.416 0.417 0.414 0.426 0.412 0.413 0.423 0.753 0.613 0.419 0.416

E
T

T
m

2 96 0.155 0.240 0.161 0.248 0.163 0.251 0.175 0.266 0.164 0.250 0.157 0.247 0.165 0.256 0.165 0.255 0.296 0.391 0.164 0.255
192 0.211 0.283 0.214 0.287 0.219 0.290 0.242 0.312 0.219 0.288 0.214 0.286 0.225 0.298 0.221 0.293 0.369 0.416 0.224 0.304
336 0.258 0.314 0.267 0.320 0.269 0.330 0.282 0.337 0.267 0.319 0.269 0.322 0.277 0.332 0.276 0.327 0.588 0.600 0.277 0.337
720 0.342 0.368 0.348 0.374 0.349 0.382 0.375 0.394 0.361 0.377 0.363 0.382 0.360 0.387 0.362 0.381 0.750 0.612 0.371 0.401

W
ea

th
er

96 0.141 0.186 0.146 0.191 0.147 0.196 0.157 0.207 0.148 0.195 0.166 0.222 0.147 0.198 0.150 0.200 0.143 0.210 0.170 0.230
192 0.186 0.230 0.188 0.231 0.193 0.240 0.200 0.248 0.191 0.235 0.213 0.259 0.192 0.243 0.191 0.239 0.195 0.261 0.216 0.273
336 0.233 0.272 0.234 0.268 0.245 0.280 0.252 0.287 0.243 0.274 0.262 0.291 0.247 0.284 0.242 0.279 0.254 0.319 0.258 0.307
720 0.312 0.331 0.305 0.319 0.323 0.334 0.320 0.336 0.318 0.326 0.329 0.338 0.318 0.330 0.312 0.330 0.335 0.385 0.323 0.362

So
la

r

96 0.169 0.214 0.169 0.195 0.181 0.247 0.190 0.244 0.218 0.235 0.201 0.252 0.179 0.232 0.170 0.234 0.183 0.208 0.199 0.265
192 0.177 0.231 0.187 0.207 0.199 0.257 0.193 0.257 0.196 0.220 0.221 0.261 0.201 0.259 0.204 0.302 0.208 0.226 0.220 0.282
336 0.186 0.238 0.199 0.213 0.208 0.269 0.203 0.266 0.195 0.220 0.233 0.269 0.190 0.256 0.212 0.293 0.212 0.239 0.234 0.295
720 0.193 0.248 0.202 0.216 0.212 0.275 0.223 0.281 0.208 0.237 0.236 0.271 0.203 0.261 0.215 0.307 0.215 0.256 0.243 0.301

E
le

ct
ri

ci
ty 96 0.122 0.215 0.128 0.219 0.128 0.222 0.134 0.230 0.135 0.222 0.126 0.221 0.153 0.256 0.143 0.247 0.134 0.231 0.140 0.237

192 0.140 0.234 0.145 0.235 0.147 0.242 0.154 0.250 0.157 0.253 0.144 0.239 0.168 0.269 0.158 0.260 0.146 0.243 0.154 0.251
336 0.157 0.252 0.163 0.255 0.165 0.260 0.169 0.265 0.170 0.267 0.161 0.253 0.189 0.291 0.168 0.267 0.165 0.264 0.169 0.268
720 0.191 0.284 0.193 0.281 0.199 0.289 0.194 0.288 0.211 0.302 0.199 0.286 0.228 0.320 0.214 0.307 0.237 0.314 0.204 0.301

Tr
af

fic

96 0.362 0.247 0.360 0.238 0.368 0.252 0.363 0.265 0.384 0.250 0.389 0.276 0.369 0.257 0.370 0.262 0.526 0.288 0.395 0.275
192 0.379 0.254 0.383 0.249 0.382 0.261 0.384 0.273 0.405 0.257 0.406 0.280 0.400 0.272 0.386 0.269 0.503 0.263 0.407 0.280
336 0.390 0.258 0.395 0.259 0.393 0.268 0.396 0.277 0.424 0.265 0.425 0.291 0.407 0.272 0.396 0.275 0.505 0.276 0.417 0.286
720 0.424 0.281 0.435 0.278 0.438 0.297 0.445 0.308 0.452 0.283 0.450 0.303 0.461 0.316 0.435 0.295 0.552 0.301 0.454 0.308
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Baselines. We compare MoFo with 17 advanced baselines in long-term time series forecasting
comprising DUET [37], PDF [7], iTransformer [24], Pathformer [5], CycleNet [20], TimeMixer [59],
PatchTST [32], Crossformer [75], DLinear [73], NLinear [73], FITS [68], FiLM [78], MICN [57],
FEDformer [79], Triformer [6], Non-stationary Transformer [23], and Informer [77].

4.2 Forecasting Performance of MoFo

Experimental results are summarized in Table 2. Due to space constraints, we compare against a
larger set of baselines in Appendix D.3. CycleNet explicitly models periodic patterns, yet achieves
lower forecasting performance compared to DLinear, which merely employs simple fully connected
layers. TimeMixer, on the other hand, utilizes multi-scale modeling techniques to comprehensively
capture complex temporal dynamics. Compared to methods such as PatchTST, Pathformer, and
other approaches that rely on continuous patching strategies, our model achieves superior forecasting
performance. This improvement is attributed to the proposed Periodicity-based Discrete Patching,
which enables the model to better capture temporal dependencies across time steps. PDF introduces a
multi-scale decomposition framework that models temporal dependencies from both long-term and
short-term perspectives. DUET employs bidirectional clustering over both temporal and channel
dimensions to adaptively capture spatio-temporal dependencies, achieving the best performance
among existing baselines. However, it does not explicitly model periodic patterns and suffers from
high computational complexity. Benefiting from the Period-Aware Modulator, our model focuses
explicitly on periodic pattern learning, leading to the overall best forecasting accuracy. These results
demonstrate the effectiveness of our design choices in capturing long-range periodic dependencies.

4.3 Efficiency Analysis of MoFo

We compare the computational efficiency with Transformer-based baselines on the Traffic dataset. As
shown in Table 3 and Table 11, MoFo achieves the best forecasting accuracy among all Transformer-
based models, while demonstrating the lowest computational complexity and highest efficiency.
Similarly, PatchTST, which also adopts a patching strategy, employs an independent channel learning
approach that significantly increases model complexity. Its parameter count grows by more than 10×,
FLOPs increase by 25×, and training speed slows down by 17×. Pathformer enhances prediction
accuracy through dynamic path adaptation and a patching strategy, albeit at the cost of increased
learning overhead. Compared to DUET, one of the top-performing baseline models, MoFo reduces the
number of parameters by more than 3×, the computational cost by more than 10×, and significantly
lowers both memory consumption and training time. This is because our model’s complexity grows
quadratically with the period length, which is significantly shorter than the input sequence length.
Moreover, we show that only a single Transformer layer is sufficient for effective learning.

Table 3: Efficiency comparison of MoFo and SOTA baselines with L = 720 in Traffic dataset. All
results of each model are under the optimal hyperparameters for fair comparison. Parameters: All
learnable parameters requiring gradient descent. MACs: multiply–accumulate operations. FLOPs:
floating point operations. M: Million (106). B: Billion (109). T: Trillion (1012). MB: Megabyte. s:
Second. ↑ indicates the relative percentage increasing regarding MoFo.

Models MSE # Parameters # MACs # FLOPs Memory Usage Epoch Time

Tr
af

fic
[L

=
72

0]

Crossformer 0.552↑30.18% 3.23 M↑34.58% 85.03 B↑13.43% 92.41 B↑20.94% 13,556 MB↑171.77% 368 s↑682.97%
PatchTST 0.435↑2.59% 27.8 M↑1058.75% 2.02 T↑2594.77% 2.08 T↑2622.16% 44,782 MB↑797.79% 876 s↑1763.83%
Pathformer 0.452↑6.60% 9.61 M↑300.42% 110.46 B↑47.36% 117.76 B↑54.12% 36,602 MB↑633.80% 1,081 s↑2200.0%
iTransformer 0.445↑4.95% 5.37 M↑123.75% 297.96 B↑297.49% 446.30 B↑484.09% 19,608 MB↑293.10% 52 s↑10.64%
PDF 0.438↑3.30% 2.45 M↑2.08% 637.05 B↑749.85% 662.47 B↑766.99% 38,014 MB↑662.11% 76 s↑61.70%
DUET 0.435↑2.59% 11.2 M↑367.08% 137.33 B↑83.20% 975.96 B↑1177.27% 75,616 MB↑1415.96% 516 s↑997.87%
MoFo 0.424 2.40 M 74.96 B 76.74 B 4,988 MB 47 s

4.4 Hyperparameters Sensitivity Experiments

We investigate the sensitivity of MoFo to its two core hyperparameters—the number of Transformer
layers and model dimensionality—on the ETTh2 and Electricity datasets. For each forecasting
horizon L ∈ {96, 192, 336, 720}, we use the best-performing hyperparameter configuration and vary
only the target hyperparameter, as shown in Figure 4.4. We report both MSE and MAE for evaluation.
The number of Transformer layers is varied from 1 to 6, and the model dimensionality is tested in
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Figure 3: Hyperparameter sensitivity experiments.
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Figure 4: Ablation study on all datasets with forecasting horizons L = 712.

the range of 4 ∼ 64 (ETTh2) and 64 ∼ 304 (Electricity), with the number of attention heads fixed at
H = 4. Results show that MoFo achieves strong performance even with a single Transformer layer,
while additional layers yield marginal gains. This suggests that the model efficiently captures inter-
patch dependencies without requiring deep architectures. Furthermore, increasing the dimensionality
generally improves performance; however, the gains plateau beyond a certain threshold, indicating
diminishing returns from further capacity expansion.

4.5 Ablation Study

We design ablation experiments to validate the soundness of the each component of MoFo: ‘+ Cpatch’
which used continuous patch technology; ‘+Sinuous Pos’ and ‘+ Learnable Pos’ which use Sinuous
and Learnable position instead of our periodic relative position, respectively; ‘- Modulator’ which
removes the period-aware modulator; ‘+ Mean Loss’ which only use L1 loss function. As shown in
Figure 3, the ablation study reveals that ‘-Modulator’ variant achieves the worst performance. This is
because the Period-Aware Modulator plays a crucial role in guiding the model to focus on extracting
periodic patterns. ‘+cpatch’ variant also suffers from higher prediction errors, which can be attributed
to the fact that our proposed discrete patching strategy enables direct modeling of dependencies
among periodically aligned time steps. In summary, all variants perform worse than MoFo model
to varying degrees, demonstrating the effectiveness and necessity of each component in capturing
long-range periodic dependencies.

4.6 Scalability for Look-back Window of MoFo

We evaluate the scalability of MoFo under varying look-back window lengths. Specifically, we
construct an ultra-long look-back setting on the ETTm2 dataset, where the input sequence length
reaches up to 10K, one hundred times of the forecasting horizon: L = 96, T = 96 ∗ (5k), k =
{1, 2, . . . , 20}. We report the maximum memory consumption during training, per-epoch training
time, and FLOPs. As shown in Figure 5, as the look-back window increases, both DUET and
PatchTST exhibit a sharp rise in memory usage and training time, indicating that their computational
complexity scales closely with the input length. In contrast, even when the input sequence length
grows by 100×, MoFo sees less than a 10% increase in peak memory usage and less than a 2%
increase in training time. Its computational cost depends primarily on the period length rather than
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Figure 5: Scalability for look-back window of models on ETTm2 dataset.

the full sequence length. These results highlight the strong scalability of MoFo and demonstrate its
great potential for modeling ultra-long sequences with minimal overhead.

4.7 Attention Visualization

We extract and visualize the attention coefficient matrices from models trained on four datasets with
periodic lengths (P ) of 24, 96, 144, and 24, respectively, all spanning a time window of one day. As
shown in Figure 6, the coefficients in each attention head exhibit distinct periodic patterns. Notably,
when the cyclical distance between two time steps is the largest (i.e., equal to P/2), the attention
scores reach their minimum values. These attention coefficients that align with the underlying
periodic trends significantly enhance the model’s performance in long-term time series forecasting.

ETTh1 ETTm1 Weather Traffic

Figure 6: Visualization of attention scores.

5 Conclusion

In this paper, we propose MoFo, a novel framework for time series forecasting that leverages the
inherent periodic structure of temporal data to explicitly model both periodic correlations and tem-
poral trends. Through our proposed Period-structured patches, the model is able to directly capture
correlations among time steps that share the same phase across periods. We further introduce a
period-aware modulator, which enhances the attention mechanism with an adaptive inductive bias
guided by underlying periodic trends. Experimental results demonstrate that MoFo achieves competi-
tive forecasting performance compared to state-of-the-art methods, while significantly improving
computational efficiency and scalability, especially for long input sequences.
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A Mathematics Justification

A.1 The Proof of Theorem 1

Proof of (1): For arbitrary α, β > 0, there are S (0;α, β) = 1,S (+∞;α, β) = 0.

In fact,

S (0;α, β) =
1

1 + exp (α (0− β))
+

exp (−0)

1 + exp (αβ)
=

1

1 + exp (−αβ)
+

1

1 + exp (αβ)

=
exp (αβ)

1 + exp (αβ)
+

1

1 + exp (αβ)
= 1.

(16)

and

S (+∞;α, β) =
1

1 + exp (α (+∞− β))
+

exp (−∞)

1 + exp (αβ)
=

1

1 +∞
+

0

1 + exp (αβ)
= 0. (17)

Proof of (2): The upper error bound of the smooth approximation satisfies,∫ +∞

0

|H (β − γ)− S (γ;α, β)|dγ ≤ log 2

α
− 1

1 + exp (α)
→ 0 (α → +∞). (18)

In fact, the Heaviside step function H(β − γ) can be viewed as the differentiation of the maximum
value function max{0, β − γ} as follows,

H(β − γ) =
d

d(β − γ)
max{0, β − γ} = − d

dγ
max{0, β − γ}. (19)

Our sigmoidal attenuation function can be seen as follows,

S (γ;α, β) = − d

dγ

1

α
log (1 + exp (α(β − γ)))− d

dγ

exp (−γ)

1 + exp (αβ)
. (20)

Hence, the cumulative error
∫ +∞
0

|H (β − γ)− S (γ;α, β)|dγ satisfies,∫ +∞

0

|H (β − γ)− S (γ;α, β)|dγ

=

∫ β

0

|H (β − γ)− S (γ;α, β)|dγ +

∫ +∞

β

|H (β − γ)− S (γ;α, β)|dγ

=

∫ β

0

H (β − γ)− S (γ;α, β) dγ +

∫ +∞

β

−H (β − γ) + S (γ;α, β) dγ

=

∫ β

0

− d

dγ
max{0, β − γ}+ d

dγ

1

α
log (1 + exp (α(β − γ))) +

d

dγ

exp (−γ)

1 + exp (αβ)
dγ

+

∫ +∞

β

d

dγ
max{0, β − γ} − d

dγ

1

α
log (1 + exp (α(β − γ)))− d

dγ

exp (−γ)

1 + exp (αβ)
dγ

=

(
−max{0, β − γ}+ 1

α
log (1 + exp (α(β − γ))) +

exp (−γ)

1 + exp (αβ)

) ∣∣∣∣β
0

+

(
max{0, β − γ} − 1

α
log (1 + exp (α(β − γ)))− exp (−γ)

1 + exp (αβ)

) ∣∣∣∣+∞

β

=

(
−0 +

log 2

α
+

exp (−β)

1 + exp (αβ)
+ β − 1

α
log (1 + exp (αβ))− 1

1 + exp (αβ)

)
+

(
0− 0− 0− 0 +

log 2

α
+

exp (−β)

1 + exp (αβ)

)
=
2 log 2

α
+

2 exp (−β)− 1

1 + exp (αβ)
+ β − 1

α
log (1 + exp (αβ)).

(21)
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Since,

β − 1

α
log (1 + exp (αβ)) < β − 1

α
log (exp (αβ)) = β − αβ

α
= β − β = 0, (22)

and
2 log 2

α
+

2 exp (−β)− 1

1 + exp (αβ)
≤ 2 log 2

α
+

1

1 + exp (αβ)
≤ 2 log 2

α
+

1

1 + exp (α)
, (23)

then the the cumulative error has upper bound satisfies∫ +∞

0

|H (β − γ)− S (γ;α, β)|dγ <
2 log 2

α
+

1

1 + exp (α)
→ 0+ (α → +∞). (24)

A.2 Autocorrelation Function and Bartlett’s Test with Null Hypothesis

Autocorrelation Function (ACF). The Autocorrelation Function [3] measures the linear correlation
between a time series and a lagged version of itself. For the complete observable time series values
X ∈ RNt with total observable time steps Nt, the autocorrelation function Ak of X at lag k ≥ 0 is
the ratio of the estimator of the covariance between the time series and the series lagged by k to the
estimator of the variance of the time series as follows:

Ak =

∑Nt−k
t=1 (Xt − µ)(Xt+k − µ)∑Nt

t=1 (Xt − µ)
2

∈ [−1, 1] , (25)

where µ = 1
Nt

∑Nt

t=1 Xt ∈ R is the expected value of X.

Bartlett’s Test with Null Hypothesis. The autocorrelation coefficients Ak can be viewed as random
variables. However, even in the time series consisting of pure random noise, there may exist non-zero
autocorrelation coefficients at some lags [39]. Hence, we require a method to ascertain whether an
observed autocorrelation Ak represents a truly non-zero population or is merely due to this inherent
randomness. This is typically achieved by performing confidence intervals derived from Bartlett’s
test [2] on a null hypothesis [38]. The null hypothesis denoted as H0 is a fundamental concept in
statistical inference [1]. Its primary purpose is to serve as a base assumption for hypothesis testing. In
the context of ACF, the relevant null hypothesis is H0 : Ak = 0 that the ground-true autocorrelation
coefficient Ak at a specific lag k is zero. The Bartlett’s test constructs confidence intervals to test
this null hypothesis for individual lags. These intervals are based on an estimate of the standard
deviation of Ak under the assumption that H0 is true. Specifically, the 1− α confidence interval2 for
the autocorrelation Ak under the null hypothesis H0 : Ak = 0 is centered at 0, with boundaries given
by ±Zα/2 · SE(Ak). Using Bartlett’s formula for the variance of Ak, the standard error SE(Ak) is
approximated by:

SE(Ak) ≈

√√√√ 1

Nt
(1 + 2

k−1∑
j=1

A2
j ), (26)

where Aj are the autocorrelations for lags j = 1, 2, . . . , k − 1 and Zα/2 is the 1− α/2 quantile of
the standard normal distribution (e.g., Z0.025 ≈ 1.96 for a 95% confidence interval, corresponding to
α = 0.05) [61]. Thus, the approximate 1−α confidence interval boundaries for testing H0 : Ak = 0
are: −Zα/2

√√√√ 1

Nt
(1 + 2

k−1∑
j=1

A2
j ),+Zα/2

√√√√ 1

Nt
(1 + 2

k−1∑
j=1

A2
j )

 . (27)

Any autocorrelation value Ak that falls within this confidence interval is considered consistent with
the null hypothesis (H0 : Ak = 0). In such cases, we do not have sufficient statistical evidence to

2It is important to note that the alpha α here is different from the learnable parameter alpha mentioned in
the RRF in the MoFo. The alpha α here is a specific parameter notation used in statistics [41]. We maintain
consistency here to reduce potential confusion with specialized terminology.
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conclude that the true autocorrelation at lag k is different from zero; the observed Ak is likely due to
random variation inherent in a noise process. Conversely, if Ak exceeds these boundaries, we reject
the null hypothesis and conclude that the autocorrelation at lag k is statistically significant.

We present in the Fig 7 the average ACF values and from some selective channel for all datasets
used in this study, calculated across each channel with a maximum lag of 512, and report the null
hypothesis region with 95% confidence interval. We observe that at the same positions within each
period of the time series, the ACF values exhibit significant peaks. Therefore, it is highly rational to
apply patching based on periodic positions for the time steps. The orange region represents the 95%
confidence interval for the null hypothesis from Bartlett’s Test [2]. Correlation coefficients that fall
within this interval are not statistically significant and cannot be rejected as noise [4]

B Related Work

Time series modeling serves as a core task in numerous domains, such as transportation and atmo-
spheric science [21, 29, 44, 45, 46, 47, 48, 49, 69]. Early approaches primarily relied on recurrent
neural networks (RNNs) and temporal convolutional networks (TCNs). In recent years, models based
on multilayer perceptrons (MLPs) have garnered significant attention due to their lightweight and
efficient performance.

RNN-based Models. RNNs, among the earliest deep learning architectures for sequential data, have
been widely adopted for long-term time series forecasting, with notable variants such as LSTM [76]
and GRU [8]. To mitigate the problem of too many recurrent steps, SegRNN [19] introduces a
segmented recurrence mechanism combined with parallel multi-step prediction, substantially cutting
down the number of iterations.

TCN-Based Model. TCNs employ convolutional operations to effectively model local contextual
patterns in time series, offering a good trade-off between computational efficiency and forecasting
accuracy. Recent advances have extended TCNs to better capture long-range temporal dependencies.
For instance, ModernTCN [27] adopts large convolutional kernels to greatly expand the receptive
field, allowing the model to capture broader temporal structures. Likewise, Pyraformer [22] integrates
TCN layers with a Transformer framework; it uses stacked TCN layers for downsampling to obtain
coarse-grained time series representations, which are then processed by the Transformer to enhance
both scalability and performance.

MLP-Based Model. MLP-based models, when thoughtfully designed, have shown strong perfor-
mance in time series forecasting. DLinear [73] illustrates this by using a moving average kernel
to decompose the input series into trend and seasonal parts, each modeled separately by dedicated
linear layers. PatchMLP [42] adopts a patching strategy that incorporates channel mixing to improve
cross-variable information exchange. Extending this idea, HDMixer [11] employs adaptive patch
lengths to capture both intra-patch short-term dynamics and inter-patch long-term dependencies
while modeling intricate variable interactions. Meanwhile, FITS [68] operates MLPs in the frequency
domain, leveraging spectral analysis to emphasize dominant signal components and better capture
global temporal relationships.

C The Transformer Layer in MoFo

We use the pre-norm Transformer Layer [43, 56] of multi-head attention with Regulated Relaxation
Function (Eq. 12).

Vanilla Transformer Layer. Transformer [43] consists of the self-attention function MultiHead(·)
with feedforward networks FFN(·), and two distinct normalization layers Normi(·). Assuming the
input hidden representation is Z ∈ RP×d with period length P and model dimensionality d, the
output hidden representation Z⃗ ∈ Rn×d of one Transformer layer is as follows,

Z⃗ =Multi-Head(Norm2(Z̄)) + Z̄,

Z̄ =FFN(Norm1(Z)) + Z.
(28)

Here we depict the pre-norm structure [56]. The multi-head attention mechanism is used in Trans-
former to improve the representation performance. Let Z̃ = Norm(Z̄), the multi-head attention
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function is a weighted combination of outputs from different head as follows,
Multi-Head(Z̃) = Concat(head1,head2, . . . ,headH)WO ∈ RP×d,

headj = Attention(Z̃Wj
Q, Z̃W

j
K , Z̃Wj

V ) ∈ RP×dh ,
(29)

where H is the number of heads. Wj
Q,W

j
K ,Wj

V ∈ Rd×dh and WO ∈ Rd×d are learnable
projections parameters with head dimensionality dh = d/H . And self-attention function in vanilla
Transformer is defined as follows,

Attention (Q,K,V) = Softmax(
QK⊤
√
dh

)V ∈ RP×P , (30)

where Softmax is an exponential activation with l1 normalization [9] in the last dimensionality. And
the attention scores between the i-th token and all other tokens after softmax operation are as follows,

Softmax(
QiK

⊤
√
dh

) =
exp (QiK

⊤
√
dh

)∑n
j=1 exp (

QiK⊤
j√

dh
)
∈ RP . (31)

Modification in MoFo. However, we leverage Regulated Relaxation Function to instead the attention
function in MoFo introduced in Section 3.2.2 as follows,

Attention (Q,K,V) =RRF (Q,K,V) = Softmax(
QK⊤
√
dh

+ logS(Γ;α, β))V ∈ RP×dh ,

where Q = ZWj
Q ∈RP×dh ,K = ZWj

K ∈ RP×dh ,V = ZWj
V ∈ RP×dh ,

(32)

The feedforward networks in MoFo are gated linear units [40] with Swish activation.Let Ż =
Norm1(Z), the FFN(·) is defined as follows,

FFN(Ż) =
(
SwiGLU(ŻW1 + b1)⊙ (ŻW2 + b2)

)
W3 + b3 ∈ RP×d, (33)

where weight matrices W1,W2 ∈ Rd×4d,W3 ∈ R4d×d and bias parameters W1,W2 ∈
R4d,W3 ∈ Rd are learnable. The normalization layer is root mean square normalization [74]
as follows,

Norm1(Z) =
Z⊙ g1√

1
d

∑d
k=1 Z:,k

∈ RP×d, Norm2(Z̄) =
Z̄⊙ g2√

1
d

∑d
k=1 Z̄:,k

∈ RP×d, (34)

where g1,g2 ∈ Rd are learnable scale parameters of normalization.

D Experiments

D.1 Dataset Analysis

We further visualize the temporal correlations across multiple datasets. As shown in Figure 7, most
datasets exhibit clear periodic patterns, with relatively high correlations between time steps separated
by fixed intervals. This suggests that commonly adopted sequential input strategies—such as those
used in patch-based methods—tend to group temporally adjacent but semantically unrelated time
steps, thereby hindering the model’s ability to capture intrinsic periodic structures.

D.2 Settings

Our experiment is based on the TFB platform [34] for a fair comparison. Following the set-
tings in TFB [34], we report the best performance within the optional historical sequence length
T ∈ {96, 336, 512} of the multiple forecasting length L ∈ {96, 192, 336, 720} with two common
generic metrics including the mean square error (MSE) and mean absolute error (MAE) to judge the
performance of our model. Our experiments are executed on an NVIDIA A100 with 40GB memory.
Our code environment is based on the PyTorch framework using Python 3.11.5. The ‘Drop Last’
trick is closed to ensure a fair comparison [18]. We adopt Adam [14] optimizer. The training process
is guided by the L1 loss function of the FreDF strategy [53]. The penalization distance parameter
β > 0 is restricted in (0, P ). We utilize only one layer of Transformer with attention head H = 4 for
each setting in all datasets. LTSF datasets often have multiple channels (or variates), and we adopt
the channel independence approach [32] to simultaneous independent learning of all channels.
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Figure 7: The autocorrelation visualization of all datasets.
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Table 4: Performance comparisons for LTSF. The best results are marked in corresponding colors.
All experimental results are selected from the best performance under the historical sequence length
T ∈ {96, 336, 512}.

Method
MoFo FITS Nlinear TimesNet FEDformer Triformer MICN FiLM Stationary Informer
(Ours) (2023) (2023) (2023) (2022) (2022) (2022) (2022) (2022) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.360 0.389 0.376 0.396 0.385 0.403 0.389 0.412 0.379 0.419 0.399 0.425 0.378 0.412 0.370 0.394 0.591 0.524 0.571 0.399
192 0.397 0.413 0.400 0.418 0.422 0.426 0.440 0.443 0.420 0.444 0.444 0.449 0.400 0.430 0.405 0.416 0.615 0.540 0.574 0.444
336 0.407 0.424 0.419 0.435 0.431 0.429 0.523 0.487 0.458 0.466 0.492 0.479 0.428 0.447 0.434 0.435 0.632 0.551 0.588 0.492
720 0.447 0.454 0.435 0.458 0.439 0.452 0.521 0.495 0.474 0.488 0.549 0.529 0.474 0.499 0.463 0.474 0.828 0.658 0.623 0.549

E
T

T
h2

96 0.273 0.334 0.277 0.345 0.276 0.338 0.334 0.370 0.337 0.380 0.936 0.660 0.313 0.372 0.282 0.346 0.347 0.387 0.394 0.936
192 0.327 0.373 0.331 0.379 0.345 0.382 0.404 0.413 0.415 0.428 1.290 0.768 0.419 0.439 0.358 0.401 0.379 0.418 0.448 1.290
336 0.361 0.405 0.350 0.396 0.368 0.408 0.389 0.435 0.389 0.457 1.325 0.781 0.474 0.475 0.372 0.425 0.358 0.413 0.464 1.325
720 0.379 0.425 0.382 0.425 0.406 0.441 0.434 0.448 0.483 0.488 1.500 0.850 0.723 0.600 0.425 0.455 0.422 0.457 0.454 1.500

E
T

T
m

1 96 0.286 0.335 0.303 0.345 0.301 0.343 0.340 0.378 0.463 0.463 0.349 0.388 0.303 0.349 0.301 0.343 0.415 0.410 0.422 0.349
192 0.320 0.363 0.337 0.365 0.355 0.379 0.392 0.404 0.575 0.516 0.387 0.410 0.336 0.369 0.339 0.365 0.494 0.451 0.480 0.387
336 0.347 0.382 0.368 0.384 0.372 0.385 0.423 0.426 0.618 0.544 0.426 0.446 0.370 0.391 0.374 0.385 0.577 0.490 0.531 0.426
720 0.388 0.411 0.420 0.413 0.430 0.418 0.475 0.453 0.612 0.551 0.482 0.476 0.410 0.421 0.423 0.414 0.636 0.535 0.578 0.482

E
T

T
m

2 96 0.155 0.240 0.165 0.254 0.163 0.252 0.189 0.265 0.216 0.309 0.276 0.344 0.173 0.271 0.165 0.254 0.210 0.294 0.302 0.276
192 0.211 0.283 0.219 0.291 0.218 0.290 0.254 0.310 0.297 0.360 0.473 0.453 0.232 0.313 0.220 0.291 0.338 0.373 0.365 0.473
336 0.258 0.314 0.272 0.326 0.273 0.326 0.313 0.345 0.366 0.400 0.692 0.549 0.303 0.367 0.277 0.329 0.432 0.416 0.414 0.692
720 0.342 0.368 0.359 0.381 0.361 0.382 0.413 0.402 0.459 0.450 1.936 0.856 0.467 0.477 0.363 0.386 0.554 0.476 0.468 1.936

W
ea

th
er

96 0.141 0.186 0.172 0.225 0.180 0.226 0.168 0.214 0.229 0.298 0.170 0.236 0.172 0.232 0.178 0.229 0.188 0.242 0.256 0.170
192 0.186 0.230 0.215 0.261 0.218 0.261 0.219 0.262 0.265 0.334 0.216 0.277 0.214 0.271 0.218 0.263 0.240 0.290 0.300 0.216
336 0.233 0.272 0.261 0.295 0.266 0.296 0.278 0.302 0.330 0.372 0.272 0.324 0.259 0.309 0.266 0.295 0.322 0.328 0.332 0.272
720 0.312 0.331 0.326 0.341 0.334 0.345 0.353 0.351 0.423 0.418 0.350 0.379 0.309 0.343 0.332 0.341 0.396 0.378 0.388 0.350

So
la

r

96 0.169 0.214 0.208 0.255 0.202 0.245 0.198 0.270 0.485 0.570 0.225 0.279 0.190 0.25 0.214 0.259 0.365 0.390 0.368 0.225
192 0.177 0.231 0.229 0.267 0.223 0.258 0.206 0.276 0.415 0.477 0.250 0.295 0.226 0.284 0.226 0.257 0.400 0.386 0.388 0.250
336 0.186 0.238 0.241 0.273 0.238 0.265 0.208 0.284 1.008 0.839 0.261 0.297 0.259 0.308 0.241 0.265 0.414 0.394 0.420 0.261
720 0.193 0.248 0.248 0.277 0.246 0.268 0.232 0.294 0.655 0.627 0.259 0.292 0.341 0.365 0.247 0.268 0.379 0.377 0.405 0.259

E
le

ct
ri

ci
ty 96 0.122 0.215 0.139 0.237 0.140 0.236 0.169 0.271 0.191 0.305 0.201 0.298 0.158 0.266 0.154 0.246 0.171 0.274 0.321 0.201

192 0.140 0.234 0.154 0.250 0.155 0.248 0.180 0.280 0.203 0.316 0.209 0.307 0.175 0.287 0.168 0.261 0.180 0.283 0.362 0.209
336 0.157 0.252 0.170 0.268 0.171 0.264 0.204 0.304 0.221 0.333 0.225 0.323 0.184 0.296 0.189 0.284 0.204 0.305 0.416 0.225
720 0.191 0.284 0.212 0.304 0.210 0.297 0.205 0.304 0.259 0.364 0.264 0.353 0.200 0.310 0.249 0.340 0.221 0.319 0.525 0.264

Tr
af

fic

96 0.362 0.247 0.407 0.290 0.395 0.272 0.595 0.312 0.593 0.365 0.589 0.323 0.517 0.313 0.412 0.284 0.603 0.330 0.392 0.589
192 0.379 0.254 0.418 0.294 0.407 0.277 0.613 0.322 0.614 0.381 0.597 0.325 0.526 0.302 0.415 0.285 0.611 0.338 1.280 0.597
336 0.390 0.258 0.433 0.308 0.417 0.282 0.626 0.332 0.627 0.389 0.617 0.332 0.545 0.307 0.430 0.299 0.628 0.342 0.477 0.617
720 0.424 0.281 0.486 0.347 0.453 0.302 0.635 0.340 0.646 0.394 0.650 0.350 0.569 0.328 0.525 0.371 0.646 0.350 1.294 0.650

D.3 Performance Comparison with More Baselines

Considering readability, we only compared our approach with some representative SOTA baselines in
Section 4.2. Here, we include more additional LTSF baselines to provide a more comprehensive eval-
uation of the performance of MoFo. Specifically, we add the following baselines: MLP-based models
including FITS [68] NLinear [73] and FiLM [78]; TCN-based Models including TimesNet [63] and
MICN [57]; Transformer-based models including FEDformer [79], Triformer [6], Non-stationary
Transformer (Stationary) [23] and Informer [77]. As shown in Table 4, NLinear remains a powerful
baseline as a linear model. FITS and FiLM extract time series representation in the frequency domain
and in combining Legendre memory models, respectively. MICN utilizes convolutional networks
to capture local and global contexts, while FEDformer enhances the Transformer in the frequency
domain. Triformer introduces efficient triangular attention with convolutional down-sampling on
coarse-time series, and Non-stationary Transformer (Stationary) focuses on addressing the non-
stationarity of time series. Finally, Informer effectively tackles the computational challenges of
long sequence prediction through its ProbSparse attention and distillation techniques. However,
MoFo demonstrates superiority across almost all metrics comparing to all the baselines by reasonable
Period-based Discrete Patching strategy. The Modulator in MoFo not only dynamically models the
periodicity of time series data but also addresses permutation invariance, enhancing the representation
capabilities of the Transformer in MoFo.

D.4 Performance on None Periodicity Datasets

To further evaluate the generalization ability of MoFo beyond strictly periodic signals, we investigate
its performance on datasets that lack explicit periodicity of a publicly available Influenza-Like
Illness (ILI) dataset released by the U.S. Centers for Disease Control and Prevention (CDC), which
contains weekly reports of the proportion of ILI-related visits from 2002 to 2021. The ILI dataset
exhibits weak or no clear seasonality, making it an appropriate dataset for testing models under
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non-periodic temporal conditions. We forecast future prediction using four prediction horizons:
L ∈ {24, 36, 48, 60} with optional look-back window T ∈ {36, 104}.

To emphasize the modeling of non-periodic time series, we follow the preprocessing strategy of
TimesNet [63] by identifying the main pseudo-period as the reciprocal of the dominant frequency
derived via Fast Fourier Transform (FFT) for each input sequence. As shown in Table 5, although
MoFo was originally designed to leverage explicit periodic structures, its superior results on ILI
demonstrate strong adaptability and robustness in capturing complex temporal dependencies even
in the absence of clear periodic patterns. This highlights that MoFo not only excels in periodic
forecasting but also generalizes effectively to irregular, non-stationary time series domains.

Table 5: Performance comparison on non-periodicity dataset ILI.

Methods MoFo FITS TimesNet
Metrics MSE MAE MSE MAE MSE MAE

24 2.113 0.927 2.176 0.928 2.255 0.936
36 1.952 0.924 2.166 0.993 2.132 0.940
48 1.714 0.824 2.011 0.928 2.182 0.944
60 1.800 0.906 2.010 0.967 2.169 0.940

D.5 Ablation Study on Padding Strategy

Our padding strategy, detailed in Section 3.1 formalized in Eq. 1, is designed to preserve temporal
continuity when the sequence length T is not an integer multiple of the detected period length P .
Specifically, we start from the current time step and move backward to delineate periods of length
P . Any prefix that does not form a complete period is left-padded with the leftmost elements of
the nearest full period on its right. This scheme ensures that all time steps participate in subsequent
computations without discarding boundary information. To evaluate the effect of this design, we
introduce a variant termed ‘+ Zero Padding’, where incomplete periods are instead filled with zeros.
We conduct a comparative analysis on the ETTm1 and ETTm2 datasets under identical settings. The
results are summarized in Table 6, where the best-performing metrics are highlighted in bold.

Table 6: Ablation Study on Padding Strategy

Methods MoFo + zeros padding
Metric MSE MAE MSE MAE

E
T

T
m

1 96 0.286 0.335 0.292 0.345
192 0.320 0.363 0.328 0.372
336 0.347 0.382 0.348 0.386
720 0.388 0.411 0.401 0.435

E
T

T
m

2 96 0.155 0.240 0.156 0.247
192 0.211 0.283 0.215 0.293
336 0.258 0.314 0.261 0.318
720 0.342 0.368 0.345 0.372

Empirically, our proposed period-aware padding consistently outperforms zero padding across both
benchmarks. We attribute this improvement to its ability to re-use the immediately preceding historical
patterns, thereby maintaining local temporal coherence and facilitating smoother periodic transitions.
In contrast, zero padding introduces abrupt discontinuities that disrupt the temporal rhythm, leading
to inferior generalization. These findings confirm that our padding mechanism not only preserves
data integrity but also serves as an implicit temporal regularizer that enhances long-term forecasting
stability.

D.6 Look-back Window Sensitivity Experiments

In time series forecasting, the look-back window length—i.e., the number of historical steps fed into
the model—is a critical hyperparameter that directly affects performance. Different architectures
exhibit varying sensitivities to the length of historical context: models emphasizing long-term
dependencies may benefit from longer input sequences, while those designed for short-term dynamics
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might suffer from redundant or noisy inputs when the window is excessively long. Therefore, treating
the look-back length as a tunable hyperparameter rather than a fixed setting is essential for a fair and
comprehensive evaluation.

We perform experiments under multiple look-back window configurations to systematically assess
this sensitivity. In the original setup, look-back lengths are predefined for each dataset, and models are
trained and tested under all candidate configurations. The best-performing results are then reported,
reflecting each model’s optimal temporal receptive field. This protocol ensures a fair comparison
among models with heterogeneous design principles and differing dependency ranges.

In line with this methodology, we examine the performance of our model and baselines under varying
look-back window lengths. For the forecasting horizon of 720, we adopt {96, 336, 512} as candidate
look-back windows, corresponding to commonly used temporal spans in long-term forecasting. The
experimental results, summarized in Table 7, reveal that our model maintains consistently strong
performance across different window lengths, demonstrating both its robustness and its capacity to
adaptively leverage available historical information. These findings justify our choice of treating the
look-back window length as a tunable hyperparameter in the main experiments and highlight the
stability of MoFo under diverse temporal contexts.

Table 7: Look-back window sensitivity experiments of all optional look-back window length T ∈
{96, 336, 512} on the forecasting length setting L = 720.

Method MoFo FITS DLinear TimesNet
Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1 T = 96 0.447 0.454 0.547 0.518 0.515 0.511 0.521 0.495

T = 336 0.459 0.469 0.475 0.487 0.471 0.493 0.542 0.519
T = 512 0.443 0.463 0.435 0.458 0.464 0.488 0.560 0.531

E
T

T
h2 T = 96 0.416 0.442 0.439 0.452 0.650 0.571 0.434 0.448

T = 336 0.393 0.428 0.397 0.431 0.704 0.597 0.472 0.480
T = 512 0.379 0.425 0.382 0.425 0.786 0.623 0.480 0.468

D.7 Period Sensitivity Experiments

The accurate identification of periodic structures plays a crucial role in MoFo’s ability to capture
long-term dependencies and recurrent temporal dynamics. However, in real-world time series, period
selection is often uncertain due to noise, seasonal drift, or data heterogeneity. To comprehensively
examine MoFo’s robustness to such variations, we conduct three complementary sensitivity analyses:
❶ adjusting the given period length to test the impact of under- and over-estimation of period length,
❷ introducing multiple coexisting periodicities to evaluate the model’s adaptability to mixed-period
settings, and ❸ comparing robustness under complex dynamic period settings. The other experimental
settings are kept consistent with the main experiments in Section 4.

❶ Sensitivity to period length P . To assess the importance of accurate period calibration in MoFo,
we conduct a series of sensitivity experiments on the given period length P . We first design two vari-
ants—“+ Half” and “+ Double”—in which the detected period is halved or doubled, respectively. As
summarized in Table 8, results on three representative datasets with distinct periodicities demonstrate
that a well-calibrated period is crucial for forecasting accuracy. When P is substantially under- or
over-estimated, the model’s ability to capture intrinsic temporal regularities degrades significantly,
while the original configuration preserves the correct periodic structure and yields optimal perfor-
mance. To further verify the robustness of this observation, we introduce four additional fine-grained
perturbations: “+5%” and “+15%”, where P is increased by 5% and 15%, and “–5%” and “–15%”,
where P is decreased by 5% and 15%. As shown in Table 8, even minor deviations from the detected
period lead to measurable performance drops across datasets with different dominant periods. These
results collectively highlight that the accuracy of period estimation plays a pivotal role in MoFo’s
ability to effectively model periodic dependencies in time series data.

❷ Sensitivity to multiple coexisting periods. In addition to single-period sensitivity, we further
investigate MoFo’s behavior under multiple periodic structures. We adopt the Traffic dataset, which
exhibits possible two major periods—daily (P = 24) and weekly (P = 168) patterns. In practical
multi-period scenarios, we typically use the shorter period as the baseline configuration. Our
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Table 8: Sensitivity experiments of period length P .

Method MoFo +5% +15% -5% -15% + Half + Double

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

m
1 96 0.286 0.335 0.292 0.335 0.297 0.338 0.291 0.337 0.297 0.341 0.302 0.346 0.295 0.359

192 0.320 0.363 0.329 0.368 0.336 0.370 0.333 0.369 0.344 0.386 0.335 0.379 0.339 0.388
336 0.347 0.382 0.357 0.388 0.372 0.391 0.354 0.385 0.376 0.402 0.374 0.404 0.372 0.408
720 0.388 0.411 0.406 0.420 0.403 0.416 0.402 0.415 0.411 0.420 0.414 0.425 0.419 0.429

W
ea

th
er

96 0.141 0.186 0.143 0.192 0.155 0.206 0.157 0.221 0.146 0.188 0.152 0.199 0.157 0.206
192 0.186 0.230 0.196 0.236 0.202 0.252 0.199 0.240 0.201 0.242 0.193 0.239 0.194 0.234
336 0.233 0.272 0.238 0.277 0.245 0.286 0.235 0.280 0.243 0.286 0.241 0.279 0.244 0.284
720 0.312 0.331 0.335 0.358 0.323 0.358 0.332 0.352 0.335 0.355 0.348 0.363 0.342 0.355

Tr
af

fic

96 0.362 0.247 0.388 0.266 0.395 0.265 0.383 0.255 0.382 0.265 0.376 0.258 0.370 0.252
192 0.379 0.254 0.397 0.275 0.408 0.287 0.398 0.284 0.409 0.288 0.380 0.262 0.388 0.275
336 0.390 0.258 0.395 0.260 0.405 0.275 0.395 0.266 0.417 0.294 0.406 0.286 0.395 0.283
720 0.424 0.281 0.424 0.281 0.443 0.298 0.437 0.283 0.443 0.303 0.434 0.297 0.438 0.302

experiments show that this choice enables MoFo to capture fine-grained temporal variations while
retaining stable performance across longer periods, as shown in Table 9. To explore whether
integrating multiple MoFo models could further improve prediction, we introduce three variants: (1)
MoFo-1, trained with a 24-hour (daily) period (default setting of MoFo); (2) MoFo-7, trained with a
7-day (weekly) period; and (3) Mix-MoFo, which ensembles both models and combines their outputs
through a learnable fusion layer. The results indicate that using the shorter period configuration
provides the most precise periodic alignment, while the ensemble model further stabilizes performance
under complex multi-period signals. These findings confirm MoFo’s robustness and adaptability
when modeling time series with heterogeneous or nested periodic patterns.

Table 9: Sensitivity experiments of multiple coexisting periods.

Method MoFo-1 Mix-MoFo MoFo-7
Metric MSE MAE MSE MAE MSE MAE

Tr
af

fic

96 0.362 0.247 0.365 0.254 0.381 0.257
192 0.379 0.254 0.380 0.255 0.394 0.262
336 0.390 0.258 0.395 0.263 0.409 0.272
720 0.424 0.281 0.430 0.285 0.451 0.289

❸ Sensitivity to dynamic periods. To further evaluate robustness of MoFo under complex temporal
settings, we conduct experiments on datasets with mixed and time-varying periodicities. To sys-
tematically investigate this issue, we construct a synthetic dataset named Mixed-ETT by combining
two standard datasets, ETTh1 (period = 24) and ETTm1 (period = 96). Specifically, each dataset is
evenly divided into four temporal segments, and these segments are alternately concatenated along
the time axis to form the new sequence as Mixed-ETT = {ETTh1[: 1

4 ],ETTm1[ 14 : 1
2 ],ETTh1[ 12 :

3
4 ],ETTm1[ 34 : 1]}. This design produces a dataset with alternating periodic structures of 24, 96,
24, 96, mimicking the temporal heterogeneity commonly observed in real applications. The other
experimental settings are kept consistent with the main experiments in Section 4. We compare MoFo
against two representative baselines, DUET and DLinear. As shown in Table 10, experimental results
demonstrate that our straightforward MoFo implementation achieved strong performance. When
dealing with multi-period time series, we set the smallest period length as our baseline configuration.
The “Mix-MoFo” variant added assumptions regarding additional periods, which increased the risk
of overfitting and consequently led to a decline in performance. These results confirm that MoFo
can effectively handle dynamic and mixed periodic behaviors without explicit retraining or manual
period adjustment.

D.8 Efficiency Analysis

We compare the computational efficiency of Transformer-based baseline models on the Solar dataset
with L = 96. As shown in Table 11, MoFo achieves the least MSE among all Transformer-based
models, while demonstrating the least parameters number with fastest training speed. All the
benefits of MoFo arise from its effective Period-based Discrete Patching strategy, which reduces
the complexity of the Transformer to quadratic in relation to the period length, while utilizing only

24



Table 10: Sensitivity experiments of period-varying synthetic dataset.

Method MoFo DUET DLinear

Metric MSE MAE MSE MAE MSE MAE

M
ix

ed
-E

T
T 96 0.178 0.223 0.186 0.229 0.194 0.232

192 0.185 0.232 0.184 0.241 0.190 0.247
336 0.180 0.237 0.187 0.247 0.196 0.256
720 0.191 0.253 0.218 0.278 0.219 0.282

a single layer of the Transformer, which is sufficient. Similarity, the competitive baseline DUET
with dual clusting strategy on both temporal dimension and channel dimension exhibits over 14×
increase in parameters number, 4× higher FLOPs, and slower training speed. Compared to PatchTST,
a classic Transformer-based model that employs a successive patching strategy on the time series,
MoFo reduces the number of MACs by more than 80×, accelerates the training speed by over 10×,
and significantly decreases both the parameter requirements and memory usage. This is primarily
because PatchTST stacks multiple layers of the Transformer, which is necessary for its architecture,
yet lacks a reasonable positional encoding for time series data. Although iTransformer, FEDformer,
and Informer have fewer computations than MoFo, they require longer training times as well as
larger parameters, and their performance lags behind MoFo by up to 1.8× since their complexity
architectures.

Table 11: Efficiency comparison of MoFo and SOTA baselines with L = 720 in Traffic dataset. All
results of each model are under the optimal hyperparameters for fair comparison. Parameters: All
learnable parameters requiring gradient descent. MACs: multiply–accumulate operations. FLOPs:
floating point operations. M: Million (106). B: Billion (109). T: Trillion (1012). MB: Megabyte. s:
Second. ↑ indicates the relative percentage increasing regarding MoFo and ↓ indicates the relative
percentage decreasing.

Models MSE # Parameters # MACs # FLOPs Memory Usage Epoch Time

So
la

r[
L
=

96
]

Informer 0.368↑117.75% 2.26 M↑527.78% 7.13 B↓2.72% 7.18 B↓38.58% 852 MB↓75.36% 58 s↑222.22%
Stationary 0.365↑115.97% 11.2 M↑3011.11% 39.56 B↑439.70% 41.32 B↑253.46% 1,710 MB↓50.54% 24 s↑33.33%
Triformer 0.225↑33.14% 1.62 M↑350.00% 33.56 B↑357.84% 38.45 B↑228.91% 11,714 MB↑238.75% 147 s↑716.67%
FEDformer 0.485↑186.98% 3.63 M↑908.33% 1.86 B↓74.62% 1.52 B↓86.99% 858 MB↓75.19% 204 s↑1033.33%
Crossformer 0.183↑8.28% 3.82 M↑961.11% 159.3 B↑2073.26% 166.1 B↑1320.87% 10,698 MB↑209.37% 101 s↑461.11%
PatchTST 0.170↑0.59% 2.62 M↑627.78% 607.4 B↑8186.49% 644.9 B↑5416.68% 29,726 MB↑759.63% 215 s↑1094.44%
Pathformer 0.218↑28.99% 5.72 M↑1488.89% 24.84 B↑238.88% 27.99 B↑139.44% 12,754 MB↑268.83% 614 s↑3311.11%
iTransformer 0.190↑12.42% 0.51 M↑41.67% 2.32 B↓68.34% 2.66 B↓77.24% 788 MB↓77.21% 18 s↑0.00%
PDF 0.181↑7.10% 5.82 M↑1516.67% 204.1 B↑2684.45% 208.0 B↑16790.30% 5,616 MB↑62.41% 25 s↑38.89%
DUET 0.169↑0.00% 5.64 M↑1466.67% 19.23 B↑162.35% 60.88 B↑420.79% 4,422 MB↑27.88% 35 s↑94.44%
MoFo 0.169 0.36 M 7.33 B 11.69 B 3,458 MB 18 s

E Discussion and Future Work

MoFo performs discrete patching based on periodic position, grouping the most correlevant time
steps within the same patch for prioritized interaction. However, our periodic positional embedding
provided by the Regulated Relaxation Function is currently only applicable to vanilla self-attention
mechanisms, which exhibit quadratic complexity (although our specific implementation’s complexity
is quadratic with respect to the period length P rather than the sequence length T with P ≪ T ).
Exploring how to adapt this method to attention mechanisms with linear complexity is a direction
worthy of future investigation. Simultaneously, applying the core ideas of MoFo within time series
LLM foundational models to empower their development in time series learning is another promising
avenue for subsequent research.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a novel transformer-based model in long-term time series forecast-
ing.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We conducted a discussion about the limitation as future works at the end of
the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We theoretical prove the the effectiveness of the regulater relaxation function
in our model. The proofs are fully demonstrated in the first section in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have open-sourced our code via an anonymous link for reproducibility, and
provide detailed experimental settings in the corresponding section.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have open-sourced our code via an anonymous link for reproducibility in
the corresponding section.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We report the detailed settings and dataset processing details in the experiments
section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We only report the mean results from multiple experiments for all experiments
for ensuring readability.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We implement our proposed model on an 40GB NVIDIA A100 GPU with
Pytorch.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The datasets involved in the paper are all open source and widely used datasets.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The proposed model significantly enhances performance in long-term time
seires forecasting scenarios, offering positive implications for a wide range of downstream
applications. No notable negative side effects are observed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not refer to high risk for misuse (e.g., pretrained language
models, image generators, or scraped datasets).
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets and code used in this study are publicly available.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, our assets (code and data) are accessible via an anonymous link during
the review process. Upon acceptance, they will be made publicly available for open access.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing nor research with human subjects are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is only used for language polishing of papers to improve readability.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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