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Abstract

World foundation models, which simulate the physical001
world by predicting future states from current observations002
and inputs, have become central to many applications in003
physical intelligence, including autonomous driving and004
robotics. However, these models require substantial com-005
putational resources for pretraining and are further con-006
strained by available data during post-training. As such,007
scaling computation at test time emerges as both a critical008
and practical alternative to traditional model enlargement009
or re-training. In this work, we introduce SWIFT, a test-time010
scaling framework tailored for WFMs. SWIFT integrates011
our extensible WFM evaluation toolkit with process-level012
inference strategies, including fast tokenization, probability-013
based Top-K pruning, and efficient beam search. Empirical014
results on the COSMOS model demonstrate that test-time015
scaling exists even in a compute-optimal way. Our findings016
reveal that test-time scaling laws hold for WFMs and SWIFT017
provides a scalable and effective pathway for improving018
WFM inference without retraining or increasing model size.019

1. Introduction020

World foundation models (WFMs) aim to simulate physi-021
cal dynamics by predicting future states from current ob-022
servations and inputs. They underpin physical intelligence023
across domains such as autonomous driving, robotics, and024
embodied planning by generating synthetic data for scalable025
simulation, analysis, and agent training.026

Despite their potential, WFMs are expensive to train. Pre-027
training requires massive resources, especially due to video-028
based inputs. For example, COSMOS [1] was trained on tens029
of millions of video hours using thousands of GPUs over030
several months. Even post-training, performance gains from031
model scaling diminish due to data limits and scaling law032
plateaus. These constraints motivate test-time computation033
scaling—enhancing inference performance by increasing034
compute usage without retraining.035

Inspired by test-time scaling successes in language and036
vision-language models [8, 10], we explore this paradigm037

for WFMs—marking the first such effort. 038

However, key challenges arise: ① Lack of tailored 039
benchmarks. Existing video generation evaluations focus 040
on aesthetics or semantics, not the physical realism and 041
consistency needed for world modeling. A modular, extensi- 042
ble toolkit is needed to assess WFMs across diverse down- 043
stream tasks. ② Strategy design constraints. Unlike LLMs, 044
WFMs often use diffusion decoders—slow and ill-suited for 045
intermediate-step checking strategies like chain-of-thought 046
or tree-of-thought. 047

To address these, we propose SWIFT, a test-time scaling 048
framework designed for WFMs (Fig. 1). 049

Our contributions are threefold: 050

• WFM Evaluation Toolkit. We introduce the first evalua- 051
tion suite for WFMs—modular, rule-based, and extensible 052
to various tasks. 053

• SWIFT Framework. We present SWIFT, the first test- 054
time scaling framework for WFMs. It leverages fast tok- 055
enization, Top-K pruning to reduce overconfidence, and 056
beam search for efficient sample selection. 057

• Empirical Study. We provide the first empirical analysis 058
of test-time scaling in WFMs, using COSMOS as the base 059
model. Our findings show: 060
– A test-time scaling law exists—even under fixed com- 061

pute budgets—where smaller models with scaling out- 062
perform larger models. 063

– SWIFT further improves performance as sample count 064
increases, efficiently utilizing inference-time resources. 065

2. Motivation: Why Test-Time Scaling for 066

World Foundation Models 067

Test-time scaling—increasing compute at inference—has 068
proven effective in unlocking model potential, often outper- 069
forming naive model scaling [10]. 070

World Foundation Models (WFMs), which simulate real- 071
world dynamics to generate synthetic data for domains like 072
robotics and autonomous driving, are prime candidates for 073
this approach. We highlight two core motivations: 074

① Training large WFMs is prohibitively expensive. Un- 075
like LLMs trained on text, WFMs process vast video data, 076
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Figure 1. SWIFT enables test-time scaling (TTS) for world foundation models (WFMs). Using COSMOS as a base, we show how SWIFT
enhances initially unrealistic simulations (top) into more physically plausible ones (bottom).

demanding orders of magnitude more compute. Training077
COSMOS on 20M hours of video required 10K H100 GPUs078
for 3 months—just for a 13B model. Larger models also079
need more data, but high-quality video is scarce, creating a080
chicken-and-egg dilemma: strong WFMs require synthetic081
data to train, but good synthetic data only emerges after082
strong WFMs exist.083
② Inference for large WFMs is as costly as multiple runs084
of smaller ones. Due to autoregressive decoding, generating085
long, high-resolution videos is slow and memory-intensive.086
For instance, a 12B model costs 3× more FLOPs than a 4B087
model, meaning we could run the 4B model multiple times088
instead—enabling exploration strategies or sample selection089
at test time.090
Goal: Improve WFM performance at inference without091
retraining or enlarging the base model.092

3. WFM Evaluation Toolkit093

World Foundation Models (WFMs) increasingly rely on094
video generation to create digital twins—synthetic repre-095
sentations of physical environments—enabling simulation,096
analysis, and training in domains such as autonomous driv-097
ing and robotics.098

Yet, no standard evaluation toolkit exists for WFMs.099
① General video benchmarks (e.g., VBench [7],100
VideoScore [5]) prioritize aesthetic or semantic fidelity,101
misaligned with the physical realism and consistency WFMs102
demand. ② Task-specific benchmarks (e.g., ACT-Bench [2])103
focus on downstream control but overlook generative video104
quality and coherence.105

To bridge this gap, we propose the first general-purpose106
evaluation toolkit tailored for WFMs. Our toolkit is modu-107
lar and extensible, enabling domain-specific analysis while108
remaining broadly applicable. Included Metrics:109

• 3D Consistency: Assesses geometric coherence using110

CUT3R [11], which reconstructs 3D from videos feed- 111
forward. 112

• Temporal Consistency: Measures frame-to-frame 113
smoothness and object permanence using CLIP and DINO 114
similarity. 115

• Spatial Relationship Awareness: Evaluates whether 116
spatial layouts—especially human-environment interac- 117
tions—are physically plausible, e.g., left-right/top-bottom 118
relations in factory scenes. 119

• Perceptual Quality: Uses LAION’s aesthetic predictor 120
to evaluate visual fidelity. Natural noise or blur is not 121
penalized, as it may reflect real sensor outputs. 122

• Text-to-Video Alignment: Assesses prompt-video co- 123
herence via CLIPScore (frame-level) and X-CLIPScore 124
(video-level). 125

While WFM evaluation remains complex due to the mod- 126
els’ generality, our toolkit is designed to grow with the field. 127
It will be open-sourced to support reproducibility and com- 128
munity adoption. 129

We adopt autonomous driving as our primary testbed, 130
aligning with COSMOS’s application domain and reflecting 131
the high importance—and difficulty—of generating diverse, 132
high-fidelity videos in this space. 133

4. SWIFT 134

We propose SWIFT, the first test-time scaling framework 135
for WFMs, to address two core questions: 136

Q① Can test-time scaling improve WFM quality un- 137
der a fixed compute budget? Can a smaller model, aug- 138
mented with test-time search, rival or outperform a larger 139
one? 140

Q② What strategy best fits WFM’s unique video gen- 141
eration needs? Unlike LLMs, WFMs rely on autoregressive 142
decoding and diffusion-based video generation, which is ex- 143
pensive and poorly suited for intermediate-step verification. 144
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Figure 2. Generated videos without (top) and with (bottom) test-time scaling. TTS improves 3D (left) and temporal (right) consistency.

Figure 3. Rule-based vs. preference-based rewards.

4.1. Framework145

We cast autoregressive video generation as a Markov De-146
cision Process (MDP). A pretrained WFM pΘ generates a147
video sequence V = {v1, ..., vN} given prompt c and initial148
video chunk v0:149

vi = pΘ(vi | c, v0, v1, ..., vi−1)150

Each state s ∈ S is a partially generated video. The re-151
ward function R(s, a) (verifier) scores outputs; actions A152
correspond to sampling strategies.153

4.2. Verifier Design154

We compare rule-based and preference-based verifiers (Fig-155
ure 3). Rule-based rewards (e.g., aesthetic quality, object per-156
manence) are objective, robust, and extendable. Preference-157
based ones (e.g., VideoScore [5]) require fine-tuning and158
large-scale human feedback.159

Our experiments (best-of-N sampling under COSMOS-160
4B) show that rule-based rewards outperform preference-161
based ones in both alignment and stability—echoing findings162
in DeepSeek R1 [4]. Therefore, SWIFT adopts rule-based163
metrics for reliable and scalable test-time verification.164

4.3. Action Design165

Best-of-N Sampling. Our baseline strategy samples N166
candidate videos and selects the best via verifier scores. We167
observe:168

- Test-time scaling exists: More samples lead to better 169
quality (Table 1). 170

- Compute-optimality: 2–4 passes from a 4B model match 171
1 pass from 12B–a cost-efficient alternative to scaling. 172
Toward Efficient Search. While best-of-N improves output, 173
it wastes compute. We propose an efficient beam-style search 174
tailored for WFMs with three key designs (Figure 4): 175

• Fast Tokenizer Proxy: To avoid costly diffusion decod- 176
ing (137s), we use the model’s discrete-token decoder as a 177
proxy (0.015s) for verifier scoring. Figure 5 shows strong 178
correlation in scores, enabling cheap early pruning. 179

• Probabilistic Top-K Selection: At each step, we sample 180
N continuations and compute rewards {ri}. We apply 181
softmax selection with temperature τ to avoid overconfi- 182
dence and encourages diversity (Figure 6). 183

pi =
exp(ri/τ)∑
j exp(rj/τ)

184

• Beam Search with Pruning: We maintain K partial 185
trajectories. Each spawns M continuations; we score all 186
and retain top-K. This keeps growth linear in sequence 187
length and prevents compute explosion. 188

5. Experiments 189

Setup. We evaluate test-time scaling on WFMs using the 190
COSMOS family, focusing on the autonomous driving do- 191
main. Two input modalities are used: image-to-video and 192
image+text-to-video. Each model receives 9 input frames to 193
capture key motion priors (position, velocity, acceleration) 194
as motivated in [3, 6]. 195
Datasets. We use 900 videos sampled from the test splits of 196
nuScenes (150 scenes) and Waymo (750 scenes), ensuring 197
zero training-set leakage. Text prompts are generated using 198
a COSMOS-trained prompt model fine-tuned from [9]. 199
Metrics. Following convention, we report FVD and FID 200
per dataset, plus VBench and VideoScore dimensions. To 201
avoid overlap with our rule-based rewards, we exclude met- 202
rics like temporal consistency from VBench and use only 203

3



ICCV
#15

ICCV
#15

ICCV 2025 Submission #15. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 4. Our proposed beam-style search improves over ORM and PRM by addressing WFM-specific efficiency bottlenecks.

Figure 5. Fast tokenizer and diffusion decoder yield similar score
trends.

Figure 6. Beam search with probabilistic top-K outperforms others.

Figure 7. COSMOS-4B ablation on reward design.

motion smoothness (MS) and image quality (IQ) for cross-204
validation. We aggregate results via geometric mean of205
normalized scores for summary evaluation.206

Figure 8. Human preference: 4B+TTS vs. 12B.

5.1. Reward Ablation 207

We first identify effective reward functions by running best- 208
of-N selection with COSMOS-4B. As shown in Figure 7, 209
temporal consistency and perceptual quality are the most re- 210
liable for autonomous driving. In contrast, 3D consistency is 211
less helpful due to noisy point clouds, and spatial awareness 212
is trivial in road scenes. 213

5.2. Test-Time Scaling Results 214

Naive Best-of-N. Table 1 shows consistent improvements 215
across metrics with increasing N . Notably: - Best-of-2 216
already rivals COSMOS-12B, showcasing compute-efficient 217
scaling. - Performance improves monotonically with N , 218
verifying a test-time scaling law. - Smaller models benefit 219
more, reducing dependence on larger pretrained models. 220
Probabilistic Beam Search. Table 2 compares our strategy 221
with PRM. We observe: - PRM suffers from greedy trajec- 222
tory selection and instability. - Our approach maintains a 223
diverse candidate pool and uses soft top-K pruning, yielding 224
stronger performance with minimal extra cost. 225
Image+Text Modality. Table 3 shows similar gains using 226
our strategy on COSMOS-5B vs. 13B, confirming that test- 227
time scaling generalizes across modalities. 228

5.3. Human & Qualitative Evaluation 229

Human Study. We conduct a 2AFC human study with 3,685 230
responses from 24 participants. Test-time scaled outputs 231
from COSMOS-4B are often preferred over COSMOS-12B, 232
indicating perceptual gains not fully captured by automatic 233
metrics. 234
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Model N FVD FID IQ MS VQ TC DD FC

4B

1 637.1 / 120.3 67.8 / 10.6 63.5 0.982 3.86 3.56 3.86 3.68
2 622.8 / 120.2 58.9 / 10.3 64.0 0.983 3.86 3.56 3.86 3.68
4 613.8 / 117.4 52.0 / 10.2 64.3 0.983 3.87 3.57 3.86 3.68
8 599.1 / 116.1 49.3 / 10.1 64.7 0.984 3.88 3.58 3.87 3.70

16 599.1 / 120.0 45.8 / 10.1 64.8 0.984 3.90 3.59 3.89 3.73

12B 1 560.9 / 117.2 67.1 / 10.7 63.7 0.981 3.94 3.63 3.93 3.76

Table 1. COSMOS-4B vs. 12B under best-of-N . FVD/FID are split for nuScenes / Waymo.

Model N Alg. FVD FID IQ MS VQ TC DD FC

4B

1 - 637.08/120.30 67.75/10.58 63.48 0.9822 3.86 3.56 3.86 3.68

4
PRM 614.00/116.51 52.68/11.48 63.79 0.9836 3.68 3.38 3.68 3.48
Ours 612.68/114.27 50.39/10.35 64.39 0.9837 3.86 3.56 3.85 3.67

16
PRM 616.89/121.07 47.29/10.33 64.87 0.9844 3.89 3.58 3.88 3.71
Ours 590.34/120.48 43.69/10.27 64.98 0.9846 3.92 3.64 3.90 3.74

12B 1 - 560.86/117.23 67.10/10.67 63.73 0.9807 3.94 3.63 3.93 3.76

Table 2. COSMOS-4B and COSMOS-12B under different search algorithms. N is sample number. For Ours, M is set as sqrt(N ).

Model N Alg. FVD FID IQ MS VQ TC DD FC

5B

1 - 728.68/126.63 59.71/10.47 63.48 0.9822 3.80 3.44 3.81 3.63

2 ORM 659.79/111.96 59.45/10.01 63.90 0.9840 3.89 3.55 3.88 3.71

4
PRM 641.5/112.15 52.60/10.07 64.39 0.9843 3.89 3.55 3.88 3.71
Ours 628.01/110.02 50.16/9.98 64.77 0.9848 3.91 3.57 3.92 3.73

13B 1 - 616.92/109.77 59.71/11.48 63.79 0.9834 3.92 3.55 3.94 3.75

Table 3. COSMOS-5B and COSMOS-13B under different search algorithms. N is sample number. For Ours, M is set as sqrt(N ).

Figure 9. COSMOS-4B w/o (top), with ORM (middle), and with
our method (bottom).

Qualitative Samples. Figures 9–10 show visual improve-235
ments from TTS: smoother transitions, more stable objects,236
and reduced visual artifacts.237

6. Conclusion238

In this work, we presented SWIFT, the first test-time scal-239
ing framework specifically designed for world foundation240
models (WFMs). Addressing the high computational cost241
and data limitations of training and scaling WFMs, SWIFT242

Figure 10. COSMOS-5B w/o (top), with ORM (middle), and with
our method (bottom).

offers an efficient alternative by reallocating computation 243
during inference. Empirical results on the COSMOS model 244
demonstrate that test-time scaling not only improves output 245
quality, but does so in a compute-optimal manner—allowing 246
smaller models to match or even outperform larger ones un- 247
der the same compute budget. These findings establish that 248
test-time scaling laws hold for WFMs and open up a practi- 249
cal, scalable pathway for deploying WFMs more efficiently, 250
without retraining or model enlargement. 251
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