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ABSTRACT

Graph neural networks (GNNs) have attracted increasing interests. With broad
deployments of GNNs in real-world applications, there is an urgent need for un-
derstanding the robustness of GNNs under adversarial attacks, especially in real-
istic setups. In this work, we study the problem of attacking GNNs in a restricted
near-black-box setup, by perturbing the features of a small set of nodes, with no
access to model parameters and model predictions. Our formal analysis draws a
connection between this type of attacks and an influence maximization problem
on the graph. This connection not only enhances our understanding on the prob-
lem of adversarial attack on GNNs, but also allows us to propose a group of ef-
fective near-black-box attack strategies. Our experiments verify that the proposed
strategies significantly degrade the performance of three popular GNN models and
outperform baseline adversarial attack strategies.

1 INTRODUCTION

There has been a surge of research interest recently in graph neural networks (GNNs) (Wu et al.,
2020), a family of deep learning models on graphs, as they have achieved superior performance on
various tasks such as traffic forecasting (Yu et al., 2017), social network analysis (Li et al., 2017),
and recommender systems (Ying et al., 2018; Fan et al., 2019). Given the successful applications
of GNNs in online Web services, there are increasing concerns regarding the robustness of GNNs
under adversarial attacks, especially in realistic scenarios. In addition, the research about adver-
sarial attacks on GNNs in turns helps us better understand the intrinsic properties of existing GNN
models. Indeed, there have been a line of research investigating various adversarial attack sce-
narios for GNNs (Zügner et al., 2018; Zügner & Günnemann, 2019; Dai et al., 2018; Bojchevski
& Günnemann, 2018; Ma et al., 2020), and many of them have been shown to be, unfortunately,
vulnerable in these scenarios. In particular, Ma et al. (2020) examine an extremely restricted near-
black-box attack scenario where the attacker has access to neither model parameters nor model
predictions, yet they demonstrate that a greedy adversarial attack strategy can significantly degrade
GNN performance due to the natural inductive biases of GNN binding to the graph structure. This
scenario is motivated by real-world GNN applications on social networks, where attackers are only
able to manipulate a limited number of user accounts, and they have no access to the GNN model
parameters or predictions for the majority of users.

In this work, we study adversarial attacks on GNNs under the aforementioned near-black-box sce-
nario. Specifically, an attack in this scenario is decomposed into two steps: 1) select a small set
of nodes to be perturbed; 2) alter the node features according to domain knowledge up to a per-
node budget. The focus of the study lies on the node selection step, so as in Ma et al. (2020). The
existing attack strategies, although empirically effective, are largely based on heuristics (Ma et al.,
2020). We instead formulate the adversarial attack as an optimization problem to maximize the
mis-classification rate over the selected set of nodes, and we carry out formal analysis regarding
this optimization problem. The proposed optimization problem is combinatorial and seems hard to
solve in its original form. In addition, the mis-classification rate objective involves model parame-
ters which are unknown in the near-black-box setup. We mitigate these difficulties by rewriting the
problem and connecting it with influence maximization on a special linear threshold model related
to the original graph structure. Inspired by this connection, we show that, under certain distribu-
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tional assumptions about the GNN, the expected mis-classification rate is submodular with respect
to the selected set of nodes to perturb. The expected mis-classification rate is independent of the
model parameters and can be efficiently optimized by a greedy algorithm thanks to its submodular-
ity. Therefore, by specifying concrete distributions, we are able to derive a group of near-black-box
attack strategies maximizing the expected mis-classification rate. The connection with influence
maximization also provides us nice interpretations regarding the problem of adversarial attack on
GNNs.

To empirically verify the effectiveness of the theory, we implement two near-black-box adver-
sarial attack strategies and test them on three popular GNN models, Graph Convoluntioal Net-
work (GCN) (Kipf & Welling, 2016), Graph Attention Network (GAT) (Veličković et al., 2018), and
Jumping Knowledge Network (JKNet) (Xu et al., 2018) with common benchmark datasets. Both
attack strategies significantly outperform baseline attack strategies in terms of decreasing model
accuracy. Finally, we summarize the contributions of our study as follows.

1. We formulate the problem of adversarial attack on GNNs as an optimization problem to
maximize the mis-classification rate.

2. We draw a novel connection between the problem of adversarial attacks on GNNs and in-
fluence maximization based on a linear threshold model. This connection helps us develop
effective and efficient near-black-box adversarial attack strategies and provides interpreta-
tions regarding the adversarial attack problem.

3. We implement two variants of the proposed near-black-box attack strategies and empiri-
cally demonstrate their effectiveness.

2 RELATED WORK

There has been increasing research interest in adversarial attacks on GNNs recently. Detailed ex-
positions of existing literature are made available in a couple of survey papers (Jin et al., 2020;
Sun et al., 2018). Given the heterogeneous nature of diverse graph structured data, there are nu-
merous adversarial attack setups for GNN models. Following the taxonomy provided by Jin et al.
(2020), the adversarial attack setup can be categorized based on (but not limited to) the machine
learning task, the goal of the attack, the phase of the attack, the form of the attack, and the model
knowledge that attacker has access to. First, there are two common types of tasks, node-level classi-
fication (Zügner et al., 2018; Dai et al., 2018; Wu et al., 2019; Entezari et al., 2020) and graph-level
classification (Tang et al., 2020; Dai et al., 2018). The goal of the attack can be changing the pre-
dictions of a small and specific set of nodes (targeted attack) (Zügner et al., 2018; Dai et al., 2018)
or degrading the overall GNN performance (untargeted attack) (Zügner & Günnemann, 2019; Sun
et al., 2019). The attack can happen at the model training phases (poisoning attack) (Zügner &
Günnemann, 2019; Sun et al., 2019) or after training completes (evasion attack) (Dai et al., 2018;
Chang et al., 2020). The form of the attack could be perturbing the node features (Zügner et al.,
2018; Ma et al., 2020) or altering the graph topology (Dai et al., 2018; Sun et al., 2019). Finally,
depending on the knowledge (e.g. model parameters, model predictions, features, and labels, etc.)
the attacker has access to, the attacks can be roughly categorized into white-box attacks (Xu et al.,
2019), grey-box attacks (Zügner et al., 2018; Sun et al., 2019), black-box attacks (Dai et al., 2018;
Chang et al., 2020) or near-black-box (Ma et al., 2020). However, it is worth noting that the borders
of these three categories are blurry in literature.

The setup of interest in this paper can be categorized as node-level, untargeted, evasional, and near-
black-box attacks by perturbing the node features. While each setup configuration might find its
suitable application scenarios, we believe that near-black-box setups are particularly important as
they are associated with many realistic scenarios. Among the existing studies on node-level black-
box attacks, most of them (Bojchevski & Günnemann, 2018; Chang et al., 2020; Dai et al., 2018)
still allow access to model predictions or some internal representations such as node embeddings.
In this paper, we follow the most strict near-black-box setup (Ma et al., 2020) to our knowledge,
which prohibits any probing of the model. Compared to Ma et al. (2020), we develop attack strate-
gies by directly analyzing the problem of maximizing mis-classification rate, rather than relying on
heuristics.
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We remark that there are also plenty of existing works investigating adversarial attacks on non-GNN
models (Wang & Gong, 2019; Zhang et al., 2019), which we consider less relevant to this work, and
refer the readers to the survey papers (Jin et al., 2020; Sun et al., 2018) for more details.

3 PRELIMINARIES

3.1 NOTATIONS

We start by introducing notations that will be used across this paper. Suppose we have an attributed
graph G = (V,E,X, y), where V = {1, 2, · · · , N} is the set of N nodes, E ⊆ V × V is the set of
edges,X ∈ RN×D is the node feature matrix withD-dimensional features, and y ∈ {1, 2, · · · ,K}N
is the node label vector withK classes. We also denote a random walk transition matrix on the graph
asM ∈ RN×N . For any 1 ≤ i, j ≤ N ,Mij = 1/|Ni| if (i, j) ∈ E or i = j, andMij = 0 otherwise.
To ease the notation, for any matrix A ∈ RD1×D2 in this paper, we refer Aj to the transpose of the
j-th row of the matrix, i.e., Aj ∈ RD2 .

We consider a GNN model f : RN×D → RN×K that maps from the node feature matrix X to the
output logits of all nodes (denoted as H , f(X) ∈ RN×K). Let Ni = {j ∈ V | (i, j) ∈ E} ∪ {i}
be the set of neighbors of node i, including itself. We assume the GNN f has L layers, with the
l-th layer (0 < l < L) at node i taking the form H

(l)
i = ReLU

(∑
j∈Ni

αijW
(l)H

(l−1)
j

)
. W (l)

is the learnable weight matrix, ReLU(·) is an element-wise ReLU activation function, and different
GNNs have different normalization terms αij . We also define H(0) = X and H = H(L) =∑
j∈Ni

αijW
(L)H

(L−1)
j . Later in Section 4, we carry out our analysis on a GCN model with αij =

1/|Ni| (Hamilton et al., 2017).

3.2 THE NEAR-BLACK-BOX ADVERSARIAL ATTACK SETUP

Next we briefly introduce the near-black-box adversarial attack setup proposed by Ma et al. (2020).
The goal of the attack is to perturb the node features of a few carefully selected nodes such that
the model performance is maximally degraded. The attack is decomposed into two steps. In the
first step, the attacker selects a set of nodes S ⊆ V to be perturbed, under two constraints |S| ≤ r
and |Ni| ≤ m,∀i ∈ S for some 0 < r � N and 0 < m � maxi |Ni|. These two constraints
prevent the attacker from manipulating a lot of nodes or very important nodes as measured by the
node degree, which makes the setup more realistic. In the second step, the attacker is allowed
to add a small constant perturbation ε ∈ RD to each node in S, i.e., let the perturbed feature be
X ′i , Xi + ε for i ∈ S. The perturbation vector ε is constructed based on the domain knowledge
about the task but without access to the GNN model. For example, if the GNN model facilitates a
recommender system for social media, an attacker may hack a handful of carefully selected users
and manipulate their demographic features, posts, or browsing trajectories to get more users exposed
to certain political content the attacker desires. In practice, the perturbation vector ε can be tailored
for different nodes given personalized knowledge about each node. But following Ma et al. (2020),
we consider the worst case where no personalization is available.

3.3 INFLUENCE MAXIMIZATION ON A LINEAR THRESHOLD MODEL

Given an information/influence diffusion model on a social network, influence maximization is the
problem of finding a small seed set of users such that they spread the maximum amount of influence
over the network. In a linear threshold model (Kempe et al., 2003), the influence among nodes
is characterized by a weighted directed adjacency matrix I ∈ RN×N where Iij ≥ 0 for each
(i, j) ∈ E and Iij = 0 for each (i, j) /∈ E. Given a seed set of nodes being activated at initial state,
the influence passes through the graph to activate other nodes. There is a threshold vector η ∈ RN
associated with the nodes, indicating the threshold of influence each node must have received from
its active neighbors before it becomes activated. In particular, when the influence propagation comes
to a stationary point, a node i outside the seed set will be activated if and only if∑

j∈Ni,j is activated

Iij ≥ ηi. (1)
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Figure 1: An illustrative example of the linear threshold model on the derived directed bipartite
graph. To simplify the visualization, the GNN is assumed to have 1 layer, and therefore the derived
directed bipartite graph have links from its zero-th (itself) and first order neighbors in the original
graph. For a GNN with k layers, the derived directed bipartite graph will have links from all its l-th
order neighbors in the original graph, for any 0 ≤ l ≤ k. Each target node i has its own threshold θi
to be influenced (mis-classified). The edge weight depends on the random walk transition from the
seed node to the target node.

4 ANALYSIS OF THE ADVERSARIAL ATTACK PROBLEM

In this section, we investigate how to develop adversarial attack strategies under the near-black-box
setup stated in Section 3.2 in a principled way.

4.1 NODE SELECTION FOR MIS-CLASSIFICATION RATE MAXIMIZATION

Suppose an attacker wants to attack a well-trained L-layer GCN model f . Following the two-
step attack procedure, the attacker first selects a valid node set S ∈ Cr,m , {T ⊆ V | |T | ≤
r, |Ni| ≤ m,∀i ∈ T} for some given constraints r and m. Then the constant perturbation ε is
added to the feature of each node in S, which leads to a perturbed feature matrix X(S, ε). Since our
primary interest is the design of the node selection step, we shall omit ε and just write the perturbed
feature as X(S) for simplicity. We denote the output logits of the model after perturbation as
H(S) = f(X(S)). Clearly, H(∅) equals to the matrix of output logits without attack.

In an untargeted attack, the attacker wants the model to make as many mistakes as possible, which
is best measured by the mis-classification rate. Therefore we formulate the problem of selecting the
node set as as an optimization problem maximizing the mis-classification rate over S, with the two
constraints quantified by r,m:

max
S∈Cr,m

N∑
j=1

1

[
max

k=1,··· ,K
Hjk(S) 6= Hjyj (S)

]
, (2)

where 1 [·] is the indicator function. We drop normalizing constant 1/N in mis-classification rate.

At the first glance, the optimization problem (2) is a combinatorial optimization problem with a
complicated objective function involving neural networks. In the following section, we demonstrate
that, under a simplifying assumption, it can be connected to the influence maximization problem.

4.2 CONNECTION TO THE INFLUENCE MAXIMIZATION ON LINEAR THRESHOLD MODEL

We first introduce a simplifying assumption of ReLU that has been widely used to ease the analysis
of neural networks (Choromanska et al., 2015; Kawaguchi, 2016), including GCN (Xu et al., 2018).
Assumption 1 (Xu et al. (2018)). All the ReLU activations activate independently with the same
probability, which implies that all paths in the computation graph of the GCN model are indepen-
dently activated with the same probability of success ρ.
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Under Assumption 1, we are able to define H̄(S) , Epath [H(S)] for any S ⊆ V , where Epath [H(S)]
indicates the expectation of H(S) over the random activations of ReLU functions in the model.
Then we can rewrite problem (2) in a form that is similar to the influence maximization objective
on a linear threshold model. The influence weight matrix is defined by the L-step random walk
transition matrix B , ML. And the threshold for each node is related to the original output logits
H̄(∅), the perturbation vector ε, and the product of the GCN weights W , ρ ·

∏1
l=LW

(l) ∈ RK×D.
Formally, we have the following Proposition 1.
Proposition 1. If we replace H(·) by H̄(·) in problem (2), then we can rewrite the optimization
problem as follows,

max
S∈Cr,m

N∑
j=1

1

[∑
i∈S

Bji > θj

]
, (3)

where, for k̂j = argmaxk=1,··· ,K H̄jk(S),

θj ,
H̄jyj (∅)− H̄jk̂j

(∅)
(Wk̂j

−Wyj )T ε
. (4)

In particular, if k̂j = yj , we define θj =∞.

Interpretations of the new objective (3). The new optimization objective (3) has nice interpreta-
tions. The L-step random walk transition matrix measures the pairwise influence from input nodes
to target nodes in the GCN model and

∑
i∈S Bji can be viewed as measuring the influence of nodes

in S on a target nodes j. In each θj , the numerator H̄jyj (∅) − H̄jk̂j
(∅) can be viewed as the logit

margin between the correct class and those wrong classes, which measures the robustness of the
prediction on node j. The denominator (Wk̂j

−Wyj )T ε measures how effective the perturbation is.
In combination, θj measures how difficult it is to mis-classify the node j with perturbation ε. This
new objective nicely separates the influence between nodes and the node-specific robustness.

Note the form of each term inside the summation over N in Eq. (3), 1
[∑

i∈S Bji > θj
]
, is very

similar to that of Eq. (1). In fact, the objective (3) can be viewed as the influence maximization
objective on a directed bipartite graph derived from the original graph, as shown in Figure 1. The
derived bipartite graph has N nodes on both sides (assuming we call them the seed candidate side
S and target node side T ), and there are edges pointing from side S to side T but not the converse
way. The edge weight from the node i on the side S to the node j on the side T (1 ≤ i, j ≤ N ) is
defined asBji. Then it is easy to see that the problem (3) is equivalent to the influence maximization
problem on the bipartite graph with the node-specific thresholds being θj , j = 1, · · · , N .

Two difficulties for solving the problem (3). While we now have got better interpretations of
the original mis-classification rate maximization problem in terms of influence maximization, we
still face two major difficulties before we can develop an algorithm to solve the problem. The first
difficulty is that we do not known the value of θ in a near-black-box attack setup as it involves the
model parameters. The second difficulty is that, even if θ is given, influence maximization on the
seemingly simple bipartite graph is still NP-hard, as we show in Lemma 1.
Lemma 1. The influence maximization problem on a directed bipartite graph with linear threshold
model is NP-hard.

4.3 ASSUMPTIONS ON THE THRESHOLDS

In this section, we mitigate the aforementioned two difficulties by making distribution assumptions
on the thresholds θ.

It is well-known that if the threshold θj of each node j is drawn uniformly at random from the inter-
val [0, 1], the expected objective of a general linear threshold model is submodular, which leads to
an efficient greedy algorithm that solves the expected influence maximization problem with a per-
formance guarantee (Kempe et al., 2003). In light of this fact regarding the general linear threshold
model, we show (in Proposition 2) that a mild assumption on the distribution of θ will guarantee the
expectation of the objective (3) to be submodular, thanks to the simple bipartite structure.
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Proposition 2. Suppose the individual thresholds are random variables drawn from some distri-
butions, and the marginal cumulative distribution function of the threshold θj for node j is Fj ,
j = 1, · · · , N . If F1, · · · , FN are individually concave in the domain [0,+∞), then the expectation
of the objective (3),

h(S) , Eθ1,··· ,θN
N∑
j=1

1

[∑
i∈S

Bji > θj

]
, (5)

is submodular.

Note that here we do not need the thresholds θ to be independent from each other, and we only
require the marginal probability density function of each θj to be non-increasing on the positive
region.

Proposition 2 partially addresses the second difficulty. While we still do not have a solution to the
original problem (3), we now know that for a wide range of distributions of θ, the expected mis-
classification rate is submodular and can be approximated efficiently through a greedy algorithm.

For the first difficulty, we propose to explicitly specify a simple distribution for θ and optimize the
expected mis-classification rate h(S), which no longer involves any model parameters and gives
us a near-black-box attack strategy. While this seems to radically deviate from the original opti-
mization objective (3), in the following Section 5, we empirically show that we only need a crude
characterization of the distribution of θ to obtain effective attack strategies.

Concrete near-black-box attack strategies. Below we derive two concrete near-black-box attack
strategies by specifying the distribution of θ to be uniform distributions and normal distributions
respectively.

Corollary 1. If a, b > 0 and θj
i.i.d.∼ uniform (−b, a), then

h(S) =
1

a+ b

N∑
j=1

(
min(

∑
i∈S

Bji, a) + b

)
, (6)

and h(S) is submodular.

Corollary 2. If σ > 0 and θj
i.i.d.∼N (0, σ2), then

h(S) =
1

2

N∑
j=1

(
1 + erf

(∑
i∈S Bji

σ
√

2

))
, (7)

where erf(·) is the Gauss error function. And h(S) is submodular.

Corollary 1 and 2 follow directly from Proposition 2 given the cumulative distribution functions of
the uniform distribution and the normal distribution as well as the fact that they are concave at the
positive region. In particular, Eq. (6) belongs to a well-known submodular function family named
the saturated coverage function (Lin & Bilmes, 2011; Iyer & Bilmes, 2015). Under assumptions in
Corollary 1, the adversarial attack problem reduces to the classic influence maximization problem
under the linear threshold model where the thresholds follow uniform distributions.

We name the attack strategies obtained by greedily maximizing the objectives (6) and (7) as InfMax-
Unif and InfMax-Norm respectively. Specifically, each strategy iteratively selects nodes into the
set to be perturbed up to a given size. At each iteration, the node, combining with the existing set,
that maximizes Eq. (6) or Eq. (7) will be selected.

4.4 DISCUSSIONS ON THE APPROXIMATIONS

From problem (3) to our final attack strategies, we have made two major approximations to address
the two difficulties that we raised at the end of Section 4.2.

The first approximation is we go from the original optimization problem to its expected version.
Note that θ depends on both the model parameters and the data, which we do not have full access to.
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Table 1: Summary of the attack performance in terms of test accuracy (%), the lower the better
attack. Bold denotes the best performing strategy in each setup. Underline indicates our strategy
outperforms all the baseline strategies. Asterisk (*) means the difference between our strategy and
the best baseline strategy is statistically significant by a pairwise t-test at significance level 0.05.
The error bar (±) denotes the standard error of the mean by 40 independent trials. The thresholds
correspond to the node degree constraint m.

Cora Citeseer Pubmed
Method JKNet GCN GAT JKNet GCN GAT JKNet GCN GAT

None 85.9± 0.1 85.5± 0.2 87.7± 0.2 73.0± 0.2 75.0± 0.2 74.8± 0.2 85.7± 0.1 85.7± 0.1 85.2± 0.1

Threshold 10%

Random 69.9± 1.1 81.7± 0.3 72.6± 0.6 61.5± 0.9 71.6± 0.2 70.2± 0.5 76.1± 0.6 82.0± 0.3 73.5± 0.3
Degree 63.0± 1.4 78.7± 0.4 66.6± 0.7 53.7± 0.9 68.2± 0.3 63.9± 0.5 63.5± 0.9 78.9± 0.5 65.8± 0.7
Pagerank 71.7± 0.9 80.1± 0.3 74.2± 0.5 62.3± 0.6 70.0± 0.3 69.7± 0.3 71.8± 0.8 80.2± 0.3 71.2± 0.3
Betweenness 63.6± 1.4 80.2± 0.4 64.9± 0.5 54.9± 1.0 70.0± 0.3 65.5± 0.5 67.0± 1.0 78.4± 0.5 62.6± 0.6
RWCS 71.8± 0.8 80.3± 0.4 70.8± 0.5 61.9± 0.6 69.9± 0.3 69.4± 0.3 70.8± 0.8 79.7± 0.3 68.9± 0.4
GC-RWCS 55.2± 1.5 78.3± 0.5 57.1± 0.6 47.5± 1.0 66.3± 0.5 58.5± 0.6 61.7± 1.1 77.4± 0.6 57.8± 0.8
InfMax-Unif 54.3 ± 1.5* 77.9 ± 0.5∗ 55.6 ± 0.6∗ 47.1 ± 1.0∗ 66.2± 0.5 58.4± 0.6 60.0± 1.2* 77.1± 0.7* 57.0± 0.9*
InfMax-Norm 54.6± 1.5* 78.1± 0.5 56.9± 0.6 47.1 ± 1.0∗ 65.6 ± 0.5∗ 58.1 ± 0.6∗ 58.8 ± 1.1∗ 76.2 ± 0.7∗ 55.9 ± 1.0∗

Threshold 30%

Random 71.5± 1.1 82.1± 0.3 74.1± 0.6 64.0± 0.8 72.4± 0.2 71.7± 0.3 78.0± 0.4 82.4± 0.3 76.0± 0.3
Degree 67.5± 1.2 81.0± 0.4 70.4± 0.6 58.4± 1.0 70.5± 0.3 67.7± 0.4 73.2± 0.8 81.1± 0.4 71.0± 0.4
Pagerank 79.4± 0.5 82.5± 0.3 82.3± 0.3 70.2± 0.3 72.7± 0.2 73.8± 0.2 79.9± 0.3 82.6± 0.2 79.0± 0.2
Betweenness 66.9± 1.3 81.4± 0.3 67.5± 0.5 57.7± 1.0 70.8± 0.3 67.8± 0.5 75.3± 0.5 80.9± 0.4 71.7± 0.4
RWCS 79.2± 0.5 82.5± 0.3 82.3± 0.3 69.9± 0.3 72.7± 0.2 73.7± 0.2 78.2± 0.3 81.7± 0.3 77.8± 0.2
GC-RWCS 61.9± 1.5 80.2± 0.4 63.2± 0.5 50.6± 1.1 67.8± 0.4 62.1± 0.6 71.1± 0.8 79.9± 0.5 68.8± 0.4
InfMax-Unif 58.2± 1.5* 79.9 ± 0.4 59.6 ± 0.5∗ 49.6± 1.0∗ 67.3 ± 0.5∗ 61.2 ± 0.6∗ 69.4 ± 1.0∗ 80.1± 0.5 65.4± 0.5*
InfMax-Norm 58.0 ± 1.5∗ 79.9± 0.5 60.0± 0.5∗ 49.5 ± 1.0∗ 67.6± 0.5 61.6± 0.6∗ 69.6± 1.0∗ 79.7 ± 0.5 65.2 ± 0.5*

The first approximation treats them as random, and takes expectation over θ, which integrates out
the randomness in data and the model training process. And the resulted expected objective func-
tion h(S) is submodular under the conditions in Proposition 2. A natural question regarding this
approximation is how does the mis-classification rate (3) concentrate around its expectation (5)? If
θ are independent, the indicator variables in (5) are also independent, and it is easy to show the
mis-classification rate is well-concentrated for a large graph size N through Hoeffding’s inequality.
However, the independence assumption is unrealistic in the case of GNN as the predictions of adja-
cent nodes should be correlated. Further note that θ can be written in terms of linear combinations
of node features. With extra assumptions on the node features and the graph structure, one may be
able to carry out finer analysis on the covariance of θ, and thus how well the mis-classification rate
concentrates. We leave this analysis for future work.

The second approximation is that we further specify simple distributions of θ, which highly likely
deviate much from the real distribution. On one hand, our superior empirical results shown in Sec-
tion 5 suggest that these simple strategies are practical enough for some applications. On the other
hand, this leaves room for further improvement in real-world scenarios if we have more knowledge
regarding the distribution of θ. For example, if an attacker has a very limited number of API calls to
access the model predictions, these calls are probably not enough to train a reinforcement-learning-
based attack strategies but they can be effectively used to better estimate the distribution of θ.

5 EXPERIMENTS

In this section, we first empirically evaluate the performance of the proposed attack strategies,
InfMax-Unif and InfMax-Norm, against several baseline attack strategies. We also visualize the
distributions of θ to gain a better understanding of the approximations we made.

5.1 ATTACK STRATEGIES FOR COMPARISON

Implementation of InfMax-Unif and InfMax-Norm. For the proposed InfMax-Unif and InfMax-
Norm, there are two hyper-parameters respectively to be specified. Recall B = ML, the first hyper-
parameter for both method is L. We set L = 4 following RWCS and GC-RWCS. We note that,
for the attack strategies to be effective in practice, the hyper-parameter L does not have to be the
same as the number of layers of the GNN being attacked, as we will show in the experiments.
For InfMax-Unif, there are two additional distribution hyper-parameters a, b. However, b does not
influence the selection of nodes so we only need to specify a. For InfMax-Norm, we need to specify
the distribution parameter σ. We fix a = 0.01 and σ = 0.01 across all the experiment setups.
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Theoretically, the optimal choice of a or σ should depend on the perturbation vector ε as well as the
dataset. However, we find the proposed InfMax-Unif and InfMax-Norm strategies are fairly robust
with respect to the choice of a or σ (see the sensitivity analysis in Appendix A.3).

Baseline strategies. We compare with five baseline strategies, Degree, Betweenness, PageRank,
Random Walk Column Sum (RWCS), and Greedily-Corrected RWCS (GC-RWCS).

The first three strategies, as suggested by their names, correspond to three node centrality scores.
These strategies select nodes with the highest node centrality scores subject to the constraint Cr,m.

RWCS and GC-RWCS are two near-black-box attack strategies proposed by Ma et al. (2020).
RWCS is derived by maximizing the cross-entropy classification loss but with certain approxima-
tions. In practice, RWCS has a simple form: selects nodes with highest importance scores defined
as I(i) =

∑N
j=1[ML]ji (recall that M is the random walk transition matrix). We set the hyper-

parameter L = 4 following Ma et al. (2020). GC-RWCS further applies a few heuristics on top
of RWCS to achieve better mis-classification rate. Specifically, it dynamically updates the RWCS
importantce score based on a heuristic. It also removes a local neighborhood of the selected node
after selecting each node. In the experiment, we set the hyper-parameters of GC-RWCS L = 4,
l = 30, and k = 1 as suggested in their original paper. Interestingly, RWCS can be viewed as a
special case of InfMax-Unif if we set a =∞ (or large enough). And GC-RWCS without removing
the local neighborhood step can also be viewed a modified version of InfMax-Unif.

5.2 THE ATTACK EXPERIMENT

Experiment setup. We follow exactly the same experiment setup in Ma et al. (2020) except for
that we further include the GAT model (Veličković et al., 2018). So we only briefly introduce the
setup here due to the page limit, and refer to Appendix A.2 and Ma et al. (2020) for more details.
We test attack strategies on 3 popular GNN models, (2-layer) GCN (Kipf & Welling, 2016), (2-
layer) GAT (Veličković et al., 2018), and (7-layer) JK-Net (Xu et al., 2018), for 3 public benchmark
datasets, Cora, Citeseer and Pubmed (Sen et al., 2008). We apply the attack strategies following the
two-step procedure stated in Section 3.2. For the node selection step, we limit the number of nodes
to be attacked, r, as 1% of the graph size for each dataset. We test on two setups of the node degree
threshold, m, by setting it equal to the lowest degree of the top 10% and 30% nodes respectively.
For the feature perturbation step, we follow the same way as in Ma et al. (2020) to construct the
constant perturbation vector ε.

Experiment results. We provide the attack experiment results in Table 1. We show the model
accuracy after applying each attack strategy in each dataset and model combination, the lower the
better. We also include the model accuracy without attack (None) and with an attack under random
node selection (Random) for reference.

As can be seen in Table 1, both the proposed attack strategies achieve better attack performance
than all baselines on all but one setups, out of the 18 setups in total. And most of the differences
are statistically significant. We highlight that, compared to the strongest baseline, GC-RWCS, our
methods have fewer hyper-parameters and better interpretation. In addition, the neighbor-removal
heuristic also contributes to the performance of GC-RWCS method, while our methods outperform
GC-RWCS without such additional heuristics.

5.3 VISUALIZING THE DISTRIBUTIONS OF θ

We also empirically investigate the distributions of θ to see how likely their PDFs are non-increasing
on the positive domain. In particular, given the parameters of a well-trained GCN, we are able
to approximately calculate θ with Eq. (4)1. We train a GCN on Cora and get one set of θ. We
repeat this process with 1000 independent model initializations and get 1000 sets of θ. Then we
can visualize a histogram over the 1000 values of θj for each node j. In Figure 2, we show the
histograms of 3 randomly selected nodes. We show the histograms of more randomly selected
nodes in Appendix A.4. As can be seen from the histograms, in most cases the empirical probability

1We can only do it approximately because we do not know ρ. For the visualization, we just set ρ = 1.
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Figure 2: Each figure shows a histogram of θj for a fixed node j over 1000 independent trials of
GCN on Cora. The 3 nodes are randomly selected from the union of the validation set and test set.

density decreases when θj > 0, which is the assumption required for the expected mis-classification
rate to be submodular in Proposition 2.

6 CONCLUSION

We present a formal analysis of near-black-box attacks on Graph Neural Networks, formulated as
the problem of mis-classification rate maximization. By establishing a novel connection between the
original optimization problem to an influence maximization problem upon a linear threshold model,
we develop a group of efficient and effective near-black-box attack strategies with nice interpreta-
tions. Extensive empirical results demonstrate the effectiveness of the proposed strategies, which
outperform state-of-the-art attacking strategies on multiple types of GNNs. In future work, we plan
to explore how to perturb the graph structure under this near-black-box setup, as well as how to
perturb node features under extra constraints (e.g. binary or nonnegative).
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A APPENDIX

A.1 PROOFS

We first give a more precise and restated version (Assumption 2) of Assumption 1, and introduce
Lemma 2 about GCN, which is proved by Xu et al. (2018).

Assumption 2 (Xu et al. (2018) Restated.). Recall that a ReLU function can be written as

ReLU(x) = x · 1 [x > 0] .

Suppose there are R ReLU functions in the GCN model and we index them with i = 1, 2, · · · , R.
This assumption assumes that the i-th ReLU functions, for i = 1, 2, · · · , R, is replaced by the
following function,

ReLUi(x) = x · zi,

where z1, z2, · · · , zR
i.i.d.∼ Bernoulli(γ).

This assumption implies that all paths in the computation graph of an L-layer GCN model are
independently activated with the same probability ρ = γL.

Lemma 2 (Xu et al. (2018).). Given an L-layer GCN, under Assumption 1, for any node i, j ∈ V ,

Epath

[
∂Hj

∂Xi

]
= ρ[ML]ji ·

(
1∏
l=L

W (l)

)
, (8)

where M ∈ RN×N is the random walk transition matrix, i.e., for any 1 ≤ i, j ≤ N , Mij = 1/|Ni|
if (i, j) ∈ E or i = j, and Mij = 0 otherwise.

Proof for Proposition 1.

Proof. Recall that H̄(S) = Epath[H(S)] = Epath[f(X(S))]. We first show H̄(S) is a linear function
of X(S), which suffices to show that, for any i ∈ V and 1 ≤ l ≤ L, Epath[H

(l)
i (S)] is a linear

function of Epath[H(l−1)(S)]. When l = L,

Epath[H
(L)
i (S)] =

∑
j∈Ni

αijW
(L)Epath[H

(L−1)
j (S)],

so the statement holds. When 1 ≤ l < L, under Assumption 1, suppose each ReLU activates
independently with probability p.

EpathH
(l)
i = Epath

σ
∑
j∈Ni

αijW
(l)H

(l−1)
j


= p

∑
j∈Ni

αijW
(L)Epath[H

(l−1)
j (S)],

so the statement also holds. Therefore H̄(S) is a linear function of X(S). In particular, Epath[H] =
H̄(∅) is a linear function of X .

We know that Xi(S) = Xi + ε for i ∈ S and Xi(S) = Xi for i /∈ S. And by Lemma 2, we can
rewrite H̄(S) in terms of H̄(∅) and ε. For any j ∈ V ,

H̄j(S) = H̄j(∅) +
∑
i∈S

ρ[ML]ji ·

(
1∏
l=L

W (l)

)T
ε.

In Section 4.2, we have defined B = ML and W = ρ
∏1
l=LW

(l), so

H̄j(S) = H̄j(∅) +WT ε
∑
i∈S

Bji. (9)
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Now we look at the objective (2). If we replace H(S) with H̄(S) in this objective and plug Eq. (9)
into it, then for each j ∈ V , we have

1

[
max

k∈{1,··· ,K}
H̄jk(S) 6= H̄jyj (S)

]
=1
[
H̄jk̂j

(S) > H̄jyj (S)
]

=1

[
H̄jk̂j

(∅) +WT
k̂j
ε ·
∑
i∈S

Bji > H̄jyj (∅) +WT
yj ε ·

∑
i∈S

Bji

]

=1

[∑
i∈S

Bji >
H̄jyj (∅)− H̄jk̂j

(∅)
(Wk̂j

−Wyj )T ε

]

=1

[∑
i∈S

Bji > θj

]
,

where we have defined k̂j = argmaxk=1,··· ,K H̄jk(S) and recall the definition of θj in Eq. (4).

Therefore we get the optimization problem (3)

max
S∈Cr,m

N∑
j=1

1

[∑
i∈S

Bji > θj

]
.

Proof for Lemma 1. The proof follows similarly as the proof of Theorem 2.4 in Kempe et al.
(2003).

Proof. We prove by reducing the NP-complete Set Cover problem to the influence maximization
problem on directed biparatite graph with a linear threshold model. The Set Cover problem is
defined as following. Suppose we have a ground set U = {u1, u2, · · · , un} and a group of m
subsets of U , S1, S2, · · · , Sm. The goal is to determine whether there exists r ( r < n and r < m)
of the subsets whose union equals to U .

For any instance of the Set Cover problem, we can construct a bipartite graph with the first side
having m nodes (each one corresponding to a given subset of U ), and the second side having n
nodes (each one corresponding to an element of U ). There are only links going from the the first
side to the second side. There will be a link with constant influence score α > 0 from a node on
the first side to the second side if and only if the corresponding subset contains that element in U .
Finally the node-specific thresholds of each node on the second side is set as α/2. And the influence
maximization problem asks to select r nodes on the graph to maximize the number of activated
nodes. The Set Cover problem is then solved by deciding if the maximized number of activated
nodes on the bipartite graph is greater than n+ r.

Proof for Proposition 2.

Proof. We first show that the expected mis-classifcation rate h(S) can be written in terms of the
marginal CDFs of θ.
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h(S) = Eθ1,··· ,θN
N∑
j=1

1

[∑
i∈S

Bji > θj

]

=

N∑
j=1

Eθ1,··· ,θN1

[∑
i∈S

Bji > θj

]

=

N∑
j=1

Eθj1

[∑
i∈S

Bji > θj

]

=

N∑
j=1

Pj

(∑
i∈S

Bji > θj

)

=

N∑
j=1

Fj

(∑
i∈S

Bji

)
,

where Pj is the marginal probability of θj .

Since Bji ≥ 0, so
∑
i∈S Bji is a non-decreasing submodular function of S with a lower bound

0. Each CDF Fj is non-decreasing by definition, if it is also individually concave at the domain
[0,+∞), we know Fj

(∑
i∈S Bji

)
is submodular w.r.t. S and hence h(S) is submodular.

A.2 MORE EXPERIMENT DETAILS

Definitions of the node centralities. For each node i, the Degree centrality score is defined as
CD(i) , |Ni|

N ; the Betweenness centrality score is defined as CB(i) ,
∑
j 6=i,k 6=i,j<k

gjk(i)
gjk

, where
gjk is the number of shortest paths connecting node j and k and gjk(i) is the number of shortest
paths that node i is on; the PageRank centrality score is defined as the stationary scores achieved by
iteratively updating PR(i) = 1−α

N + α
∑
j∈Ni

PR(j)
|Nj | and we set the hyper-parameter α = 0.85.

Detailed descriptions of GC-RWCS. GC-RWCS further applies a few heuristics on top of RWCS
to achieve better mis-classification rate. Specifically, it iteratively selects nodes one by one up to
r nodes, based on a dynamic importance score, i.e., It(i) =

∑N
j=1[Qt]ji for the t-th iteration.

Qt ∈ {0, 1}N×N is a binary matrix that is dynamically updated over t. At the initial iteration, Q1

is obtained by binarizing ML, assigning 1 to the top l nonzero entries in each row of ML and 0 to
other entries. For t > 1, suppose the node i is selected at the t − 1 iteration, then Qt is obtained
from Qt−1 by setting to zero for all the rows where the elements of the i-th column is 1 in Qt−1.
GC-RWCS also applies another heuristic that, after each iteration, remove the k-hop neighbors of
the selected node from the candidate set in the subsequent iterations. In the experiment, we set the
hyper-parameters of GC-RWCS L = 4, l = 30, and k = 1 as suggested in their original paper. The
iterative-selection process in GC-RWCS (without removing the k-hop neighbors) gives equivalent
results as InfMax-Unif if we replace the matrix B in InfMax-Unif by Q1 and set a = 1.

More details for the experiment setup. We randomly split each dataset by 60%, 20% and 20%
as the training, validation, and test sets and run 40 independent trials for each model and dataset
combination. We apply the attack strategies following the two-step procedure stated in Section 3.2.
For the node selection step, we limit the number of nodes to be attacked, r, as 1% of the graph size
for each dataset. We test on two setups of the node degree threshold, m, by setting it equal to the
lowest degree of the top 10% and 30% nodes respectively. For the feature perturbation step, we
follow the same way as in Ma et al. (2020) to construct the constant perturbation vector ε. Ideally,
the perturbation vector should be designed according to domain knowledge about the task in real-
world scenario. For the experiments on benchmark datasets where we do not know the semantic
meaning of the features, we simulate the domain knowledge by extremely limited information of the
gradients due to the lack of semantic meaning of each features in benchmark datasets. The gradients
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are only used to select important features and the sign of perturbation rather than the magnitude. We
construct the εj ∈ RD

εj =

{
λ · sign(

∑N
i=1

∂L(H,y)
∂Xi,j

), if j ∈ arg top−J([|
∑N
i=1

∂L(H,y)
∂Xi,j

|]l=1,2,..,D),

0, otherwise,
(10)

where λ is the perturbation strength and is set to 1; and J is set to 2% of the number of features. The
same perturbation vector is added to all selected nodes in S.

A.3 ADDITIONAL EXPERIMENTS

Attack performance with varying perturbation strengths. In Figure 3, we demonstrate the attack
performances of different attack strategies with varying perturbation strengths. We first observe
that the proposed attack strategies with the fixed hyper-parameters (a = 0.01 for InfMax-Unif and
σ = 0.01 for InfMax-Norm) outperform all baselines in more cases. It is also worth noting that, as
suggested by Eq. (4), the distribution of θ is dependent on the perturbation ε and hence λ. In the
approximated uniform and normal distributions for InfMax-Unif and InfMax-Norm respectively, the
optimal choice of a and σ should be dependent on λ. Intuitively, smaller λ makes the θ have larger
variance, so the choice of a and σ should also be larger. This is indeed suggested by the results in
Figure 3. Recall that, in Section 5.1, we discussed that RWCS can be viewed as a special case of
InfMax-Unif with a = ∞. And in Figure 3, we observe that RWCS (equivalent to InfMax-Unif
with a = ∞) sometimes (e.g., for GCN) outperforms InfMax-Unif (with a = 0.01) when λ is very
small. However, we leave further optimization of the hyper-parameters of the proposed strategies to
future work.

Sensitivity analysis of a for InfMax-Unif and σ for InfMax-Norm. In Figure 4, we carry out
a sensitivity analysis with resepct to a and σ for InfMax-Unif and InfMax-Norm respectively. In
Section 5.2, we have fixed a = 0.01 and σ = 0.01 for all experiment settings. Here we vary
them from 0.005 to 0.02 and show that the results of the proposed strategies, especially those of the
InfMax-Norm, stay relatively stable with varying choices of the hyper-parameters.

Targeting on the test set. In the experiments in Section 5.2, we use the objectives Eq. (6) and
Eq. (7) that sum over the whole graph of N nodes, for an untargeted attack assuming the attacker
does not know the test set to be evaluated on. If the targeted test set is known, we can adapt Eq. (6)
and Eq. (7) to sum on the test set only. In Table 2, we compare the performance of untargeted attacks
and the performance of attacks targeting on the test set. As can be seen, when targeting on the test
set, the proposed strategies are further improved compared to their untargeted versions.

Synthetic data experiments. We further carry out experiments on synthetic datasets to demonstrate
that the proposed attack strategies are effective in a pure black-box setting when sufficient domain
knowledge regarding the node features is given. Following Ma et al. (2020), we generate the syn-
thetic datasets as follows. First, we generate a Barabási-Albert random graph (Barabási & Albert,
1999) with N nodes and adjacency matrix A. Then we generate node features X ∈ RN×D ran-
domly from a multivariate normal distribution with zero mean and covariance (Lsym + I)−1 (Lsym
is the symmetric normalized graph Laplacian and I is identity matrix; this covariance introduces
smoothness over the graph (Li et al., 2019)), and take the absolute values elementwisely. Finally,
node labels are generated by Y = 1 [ Sigmoid((A+ I)XW ) > 0.5], where W ∈ RD is a given
weight matrix. During the attack process, we assume that the attacker knows a few (0.2D) impor-
tant features with the largest corresponding weights in W but has no access to the trained model.
In Tabel 3, we experiment on 5 synthetic graphs generated by different seeds with N = 3000 and
D = 10, and the proposed InfMax-Unif and InfMax-Norm outperform baseline attack strategies.

Constructing ε based on the training partition only. To verify the coarse gradient information
we use to construct the perturbation vector ε is not sensitive to the set of nodes, we further repeat
the experiments in Table 1 with the only difference that, when constructing ε following Eq. (10), we
use the average gradients on the training partition only rather than all nodes. The results are shown
in Table 4, which are very similar to those in Table 1. This additional study verifies our belief.
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Figure 3: The attack performances with varying perturbation strengths (from 0 to 1). Each figure
corresponds to a dataset-model combination. The x-axis indicates the value of λ and the y-axis
indicates the classification accuracy after attack. The threshold is set as 10% and all other experiment
setups are the same as those in Section 5.2.

Table 2: The test accuracy (%) of models after untargeted attacks (U) vs attacks targeting on the test
set (T). The experiment setups are the same as those in the Section 5.2.

Dataset Cora Citeseer Pubmed
Method JKNet GCN GAT JKNet GCN GAT JKNet GCN GAT

Threshold 10%
InfMax-Unif (U) 54.3±1.5 77.9±0.5 55.6±0.6 47.1±1.0 66.2±0.5 58.4±0.6 60.0±1.2 77.1±0.7 57.0±0.9
InfMax-Norm (U) 54.6±1.5 78.1±0.5 56.9±0.6 47.1±1.0 65.6±0.5 58.1±0.6 58.8±1.1 76.2±0.7 55.9±1.0
InfMax-Unif (T) 53.2±1.5 77.1±0.7 54.2±0.6 46.3±1.0 65.4±0.5 57.7±0.6 59.5±1.3 77.0±0.7 56.0±0.9
InfMax-Norm (T) 52.4±1.4 77.2±0.7 53.6±0.6 46.1±0.9 64.1±0.5 56.4±0.7 57.9±1.2 75.9±0.7 54.4±1.0

Threshold 30%
InfMax-Unif (U) 58.2±1.5 79.9±0.4 59.6±0.5 49.6±1.0 67.3±0.5 61.2±0.6 69.4±1.0 80.1±0.5 65.4±0.5
InfMax-Norm (U) 58.0±1.5 79.9±0.5 60.0±0.5 49.5±1.0 67.6±0.5 61.6±0.6 69.6±1.0 79.7±0.5 65.2±0.5
InfMax-Unif (T) 55.8±1.4 78.9±0.5 57.5±0.6 48.6±1.0 66.6±0.4 60.2±0.5 67.5±1.0 78.5±0.6 62.9±0.6
InfMax-Norm (T) 55.3±1.4 78.8±0.5 57.0±0.6 48.6±0.9 65.8±0.5 59.2±0.6 67.4±0.9 77.9±0.6 62.7±0.6
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Figure 4: Sensitivity analysis of the hyper-parameters a and σ. The experiment setups are the
same as those in Section 5.2. Each figure corresponds to a dataset-model combination. The x-axis
indicates the value of a or σ while the y-axis indicates the classification accuracy after attack. The
results under the threshold 10% are plotted in green while the results under the threshold 30% are
plotted in blue. In addition to the proposed InfMax-Unif and InfMax-Norm, we also plot the results
of GC-RWCS as the constant dashed lines for references. The plots are made in log-scale for the
x-axis.

Table 3: The test accuracy (%) of GCN model after attacks with 10% threshold on synthetic data.
synthetic 0 to synthetic 4 are five synthetic graph generated by different seeds. Other setups are the
same as those in the Section 5.2. The notations are the same as those in Table 1.

Dataset synthetic 0 synthetic 1 synthetic 2 synthetic 3 synthetic 4
None 83.9±0.3 82.5±0.2 82.5±0.2 82.0±0.2 80.8±0.2
Random 79.6±0.3 78.8±0.2 78.3±0.2 77.2±0.2 77.3±0.2
Degree 78.2±0.2 76.9±0.2 75.3±0.3 75.5±0.3 74.4±0.2
Pagerank 77.3±0.2 77.3±0.3 77.2±0.2 76.4±0.3 75.3±0.2
Betweenness 78.3±0.2 76.6±0.2 76.5±0.2 76.1±0.2 75.3±0.3
RWCS 78.3±0.2 76.6±0.2 76.9±0.2 76.9±0.2 75.1±0.2
GC-RWCS 77.0±0.2 75.6±0.2 75.6±0.2 75.7±0.2 74.6±0.2
InfMax-Unif 77.4±0.2 75.4±0.3 74.9±0.3* 74.6±0.2* 75.1±0.3
InfMax-Norm 76.7±0.2* 75.4±0.3 75.3±0.3 74.5±0.2* 74.3±0.3
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Table 4: The test accuracy (%) of models when ε is constructed based on the training partition only.
The experiment setups are the same as those in the Section 5.2.

Cora Citeseer Pubmed
Method JKNetMaxpool GCN GAT JKNetMaxpool GCN GAT JKNetMaxpool GCN GAT
None 85.9±0.1 85.5±0.2 87.7±0.2 73.0±0.2 75.0±0.2 74.8±0.2 85.7±0.1 85.7±0.1 85.2±0.1

Threshold 10%
Random 70.2±1.1 81.0±0.3 72.4±0.5 61.6±0.9 71.5±0.3 70.6±0.5 76.2±0.6 82.0±0.3 73.8±0.3
Degree 63.3±1.4 78.6±0.4 66.7±0.7 53.8±1.0 68.1±0.3 64.7±0.5 63.5±1.0 78.8±0.5 66.2±0.6
Pagerank 71.9±0.9 78.2±0.3 74.1±0.5 62.4±0.5 69.8±0.3 70.1±0.3 72.0±0.8 80.2±0.3 71.3±0.3
Betweenness 63.9±1.4 78.6±0.4 64.5±0.5 55.0±1.0 69.7±0.3 66.3±0.5 67.2±1.0 78.4±0.6 62.9±0.6
RWCS 71.9±0.8 79.4±0.2 70.6±0.5 62.0±0.6 69.7±0.3 69.9±0.3 71.0±0.8 79.7±0.4 69.1±0.4
GC-RWCS 55.9±1.5 77.4±0.6 56.9±0.6 47.7±1.0 66.1±0.5 60.1±0.7 61.7±1.2 77.3±0.7 58.3±0.8
InfMax-Unif 54.8±1.5* 77.3±0.6 55.5±0.6* 47.3±1.1* 66.0±0.5 59.9±0.8 60.0±1.3* 77.0±0.7* 57.5±0.8*
InfMax-Norm 55.2±1.6* 77.5±0.6 56.8±0.6 47.3±1.0* 65.4±0.6* 59.8±0.7* 58.7±1.2* 76.2±0.8* 56.5±0.9*

Threshold 30%
Random 71.8±1.1 81.5±0.3 74.0±0.6 64.2±0.8 72.4±0.2 72.2±0.4 78.0±0.4 82.4±0.3 76.2±0.3
Degree 67.8±1.2 80.2±0.3 70.1±0.6 58.9±1.1 70.5±0.2 68.5±0.5 73.2±0.8 81.0±0.4 71.2±0.4
Pagerank 79.4±0.5 82.3±0.1 82.4±0.3 70.3±0.3 72.8±0.2 74.0±0.2 79.9±0.3 82.6±0.2 79.0±0.2
Betweenness 67.2±1.3 80.1±0.3 67.2±0.5 58.1±1.0 70.7±0.3 68.7±0.4 75.4±0.5 80.8±0.4 71.9±0.4
RWCS 79.2±0.5 82.4±0.2 82.4±0.3 70.1±0.3 72.8±0.2 74.0±0.2 78.2±0.3 81.7±0.3 77.9±0.2
GC-RWCS 62.2±1.5 79.8±0.4 62.9±0.6 51.1±1.1 67.9±0.4 63.6±0.7 71.1±0.8 79.8±0.5 69.0±0.4
InfMax-Unif 58.8±1.5* 78.9±0.4* 59.4±0.6* 50.2±1.1* 67.2±0.5* 62.8±0.7* 69.4±1.0* 80.0±0.5 65.9±0.5*
InfMax-Norm 58.6±1.5* 79.2±0.5* 59.8±0.6* 50.1±1.1* 67.5±0.5 63.1±0.7* 69.7±1.0* 79.6±0.6 65.7±0.5*

A.4 DISTRIBUTIONS OF θ ON MORE NODES

Distributions of θ on more randomly selected nodes are provided in Figure 5. Many examples of the
distributions present bell shapes that are close to normal distributions. And it is approximately true
that the probability density function is non-increasing at the positive region.
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Figure 5: Each figure shows a histogram of θj for a fixed node j over 1000 independent trials of
GCN on Cora. The 15 nodes are randomly selected from the union of the validation set and test set.
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