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Abstract

Multilingual Machine Translation (MMT) ben-001
efits from knowledge transfer across different002
language pairs. However, improvements in003
one-to-many translation are only marginal com-004
pared to many-to-one translation. A widely005
held assumption is that knowledge transfer006
barely plays a role in the target-side of MMT.007
The observed improvements in one-to-many008
MT are instead attributed to two possible rea-009
sons: increasing the amounts of source lan-010
guage data and target language regularization.011
In this paper, we conduct a large-scale study012
that varies the target-side languages along two013
dimensions, i.e., linguistic similarity and cor-014
pus size, to show the interplay between dif-015
ferent factors (knowledge transfer, source data016
size, language regularization) for improving017
one-to-many translation. First, we find that018
positive knowledge transfer does occur on the019
target-side, which greatly benefits low- and020
medium-resource language pairs. Moreover,021
the performance discrepancy across different022
target languages also shows that increasing the023
source-side data cannot be the main reason for024
improving one-to-many MT. Furthermore, we025
show language regularization plays a crucial026
role in benefiting translation performance by027
enhancing the generalization ability and model028
inference calibration. We find a simple but ef-029
fective way to utilize distant target data with the030
aim of regularizing the model, which surpris-031
ingly leads to translation performance gains.032

1 Introduction033

Multilingual Machine Translation (MMT) enables034

a single model to translate among multiple lan-035

guage pairs by joint training (Dong et al., 2015;036

Johnson et al., 2017). The improvements in transla-037

tion quality, especially for low-resource languages,038

are generally attributed to transfer learning (Zoph039

et al., 2016; Lakew et al., 2018; Kocmi and Bo-040

jar, 2018; Stap et al., 2023). However, MMT suf-041

fers from a performance gap where the gains in042

one-to-many translation are not as substantial as in 043

many-to-one translation (Dabre et al., 2020; Tang 044

et al., 2020; Yang et al., 2021; Chiang et al., 2021; 045

Chowdhery et al., 2022). Empirical studies (John- 046

son et al., 2017; Aharoni et al., 2019) also show 047

little or even no benefit in one-to-many translation 048

compared to their bilingual baselines, leading to 049

the hypothesis that positive transfer does not occur 050

on the target-side (Arivazhagan et al., 2019). 051

The challenge of knowledge transfer in one-to- 052

many translation is attributed to the inherent charac- 053

teristics of translating into distinct target languages. 054

The necessity of the target language-specific repre- 055

sentations in the translation process hinders knowl- 056

edge transfer as transfer learning prefers language- 057

invariant representations (Kudugunta et al., 2019). 058

On the other hand, Arivazhagan et al. (2019) and 059

Aharoni et al. (2019) indicate that the increasing 060

amounts of source language data and regulariza- 061

tion induced by multiple target languages are pos- 062

sible reasons for the observed benefits in massively 063

MMT scenarios. 064

Nevertheless, the extent to which positive knowl- 065

edge transfer occurs on the target-side still remains 066

unclear. Furthermore, a comprehensive analysis of 067

the interplay between different factors, i.e., knowl- 068

edge transfer, source data size, and regularization, 069

in one-to-many translation is lacking. This hinders 070

the optimization of MMT performance. 071

To understand the impact of knowledge transfer, 072

we conduct comprehensive controlled experiments 073

with varying target languages along two dimen- 074

sions, i.e., linguistic similarity and corpus size. We 075

select a set of bilingual out-of-English translation 076

tasks, e.g., English to German, as main language 077

pairs. Subsequently, we add different auxiliary tar- 078

get language pairs to the main language pairs, con- 079

sidering variations in auxiliary language families, 080

written scripts, data sizes, and target language num- 081

bers. Our experimental results show a consistent 082

positive correlation between the improvements and 083
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their translation task relatedness, i.e., increasing the084

amounts of similar target languages enhances posi-085

tive knowledge transfer for the main language pair.086

These findings confirm the existence of knowledge087

transfer on the target-side and also clearly show fac-088

tors that influence target-side transfer, i.e., target089

data size, number of translation tasks, and linguistic090

similarity. Meanwhile, the performance differences091

induced by various target languages also indicate092

that increasing source data is not the main reason093

for improving one-to-many MT.094

Apart from knowledge transfer, we find that095

small amounts of distant auxiliary target data can096

act as an effective regularizer to yield improve-097

ments in translation quality. To understand why098

language regularization plays a role, we show it099

benefits translation performance by reducing gen-100

eralization errors and improving inference calibra-101

tion. With introducing small auxiliary target data,102

the translation model is implicitly calibrated so103

that the confidences of their predictions are more104

aligned with the accuracies of their predictions.105

To summarize, we show how different factors106

i.e., knowledge transfer, source data size, and reg-107

ularization, play roles in one-to-many translation.108

We first confirm the existence of positive knowl-109

edge transfer on the target-side, and show how lin-110

guistic similarity and data size mutually influence111

the extent of transfer learning in one-to-many trans-112

lation. Meanwhile, we find that increasing source113

data plays a smaller role in improving one-to-many114

MT. Finally, our investigation of language regular-115

ization provides a simple yet effective way to boost116

machine translation performance by leveraging dis-117

tant auxiliary data.118

2 Background119

In this section, we introduce the study of transfer120

learning, source data, and regularization in MMT.121

2.1 Transfer Learning122

Transfer learning is defined as improving a learner123

from one task by leveraging information from a124

related task (Weiss et al., 2016). An example is125

seen in MMT, where training models on multiple126

language pairs benefits resource-poor languages127

by leveraging shared linguistic information and128

parameters from other languages (Zoph et al., 2016;129

Murthy et al., 2019).130

However, in the case of one-to-many machine131

translation, it leads to much more marginal gains132

than many-to-one translation. This performance 133

discrepancy is caused by the challenges of target- 134

side transfer. Aharoni et al. (2019) empirically 135

emphasizes such difficulty of transfer on the target- 136

side by showing the marginal benefits, even for low- 137

resource language pairs, in a large-scale one-to- 138

many translation. Dabre et al. (2020) indicate that 139

the reason behind this challenge is mainly due to 140

its characteristics of representations on the decoder 141

side, where each target data has an independent out- 142

put distribution and the decoder representations are 143

more sensitive to the target languages (Kudugunta 144

et al., 2019). Wang et al. (2018) further supports 145

this claim by keeping target language-specific pa- 146

rameters to improve the one-to-many translation. 147

This increases uncertainties on the effectiveness of 148

transfer learning on the target-side, which oppo- 149

sitely prefers language-invariant representations. 150

Despite previous works (Gao et al., 2020; Sha- 151

ham et al., 2022) indicating that linguistic similar- 152

ity matters to encourage positive target-side trans- 153

fer, their findings are limited to scenarios where 154

knowledge is transferred from high-resource to low- 155

resource. Fernandes et al. (2023) conversely shows 156

that no impact of linguistic similarity on the trans- 157

lation performance for translating into two high- 158

resource target languages, with an example of trans- 159

lating English into {French, Chinese} and English 160

into {French, German}. 161

Overall, these studies show an inconsistent view 162

towards the target-side transfer, particularly about 163

whether this transfer exists and what factors influ- 164

ence it. This inconsistency indicates the importance 165

of exploring target-side transfer in one-to-many MT 166

and the impact of different factors on it. 167

2.2 Source Data Size 168

In English-centric one-to-many translation, the 169

improvements in translation performance are at- 170

tributed to the increasing source-side data instead 171

of the target-side (Arivazhagan et al., 2019). The in- 172

creasing source of English data results in better en- 173

coder representations to further benefit translation 174

performance. However, it is still unclear whether 175

the source data can be an entire reason to explain 176

all the improvements. 177

2.3 Regularization 178

The multilingual training regime is known as a 179

source of regularization, which improves the gen- 180

eralization ability of the models (Neubig and Hu, 181

2018; Aharoni et al., 2019; Dabre et al., 2020). 182
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However, the effects of language regulariza-183

tion induced by multiple target tasks are under-184

explored, compared to other regularization tech-185

niques, such as dropout (Srivastava et al., 2014) and186

label smoothing (Szegedy et al., 2015). Dropout187

randomly selects activations to be “dropped out”188

during training. This randomness introduced by189

dropout encourages the network to learn robust and190

generalized representations (Liang et al., 2021).191

Another common regularization technique, label192

smoothing, regularizes the model by penalizing193

the output confidence. It has also been shown that194

these changes in output confidence introduced by195

label smoothing could implicitly enhance machine196

translation model calibration (Müller et al., 2019),197

thereby improving translation performance. In line198

with this, we aim to investigate language regular-199

ization in one-to-many translation to understand200

when and why it is effective.201

3 Experimental setting202

Model. We follow the setup of the Transformer203

base model (Vaswani et al., 2017). More details204

on model hyperparameters can be found in Ap-205

pendix B.206

Data. We choose three main language pairs207

in different language families and written208

scripts: English-into-German (En→De), English-209

into-Russian (En→Ru), and English-into-Spanish210

(En→Es). The training data for the main lan-211

guage pairs En→De, En→Ru, and En→Es are212

from WMT13, WMT14, and WMT22 respectively.213

To mimic low- and medium-resource settings, we214

randomly sample 100K and 1M translation pairs215

from each language pair respectively. To observe216

the impact on high-resource settings, we use the217

full training corpus for En→De (4.5M examples).218

For different controlled experiments, we cover 20219

auxiliary target language pairs to train with the220

main translation tasks. We randomly sample the221

auxiliary covered language pairs from WMT and222

CCMatrix1. The detailed statistics of the main and223

auxiliary language pairs are shown in Appendix C.224

Training and Evaluation. We use the225

Fairseq (Ott et al., 2019) toolkit to train226

transformer models. All models are trained with227

the Adam optimizer (Kingma and Ba, 2017) for up228

to 100K steps, with a learning rate of 5e-4 with an229

inverse square root scheduler. Dropout rate of 0.3230

1https://opus.nlpl.eu/CCMatrix.php

and label smoothing of 0.2 are used. Each model 231

is trained on one A6000 GPU with a batch size 232

of 25K tokens. We choose the best checkpoint 233

according to the average validation loss of all 234

language pairs. The data is tokenized with the 235

SentencePiece tool (Kudo and Richardson, 2018) 236

and we build a shared vocabulary of 32K tokens. 237

We add language ID tokens to the vocabulary 238

and prepend the language ID token to each 239

source and target sequence to indicate the target 240

language (Johnson et al., 2017). For evaluation, we 241

employ beam search decoding with a beam size of 242

5. BLEU scores are computed used detokenized 243

case-sensitive SacreBLEU2 (Post, 2018). 244

4 Target-side Transfer 245

In this section, we aim to empirically reveal 246

whether target-side transfer occurs in one-to-many 247

machine translation. To achieve this, we se- 248

lect three main language pairs: En→De, En→Es, 249

En→Ru, and train each main language pair with 250

different auxiliary target languages to investigate 251

the target-side transfer in multilingual machine 252

translation for influencing main language pairs. 253

4.1 Changes in Target Language 254

Here, we introduce different auxiliary target lan- 255

guages with variations in linguistic similarity and 256

data size. The varying auxiliary target data size 257

represents the true distribution of varied data in 258

multilingual machine translation. 259

4.1.1 Setup 260

For each main language pair (En→X), we train it 261

with an auxiliary language pair (En→Y) that differs 262

in language family and written script. In Appendix 263

A, Table 4 presents the linguistic information about 264

the main and auxiliary target languages. For the 265

auxiliary target data training with the main low- 266

resource language pair, we vary its data size with 267

the proportion from 10% to 1000% of the main 268

low-resource language pair. For the auxiliary target 269

data training with the medium- and high-resource 270

setting, we vary its data size with the proportion 271

from 1% to 200% of the main language pair. To 272

mitigate the variance in the quality of sampled aux- 273

iliary target language pairs, we run the experiment 274

with three different randomly sampled sets.3 Ta- 275

bles 1 and 2 show the averaged results of three 276

2nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
3We use one random sample set for high-resource auxiliary

data due to computational constraints.
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En→De (Baseline: 7.4)
α% en→de en→nl en→et en→ru en→zh

10% 8.50.4 7.90.7 8.20.6 8.60.5 8.90.8

50% 10.20.3 10.30.6 10.50.6 10.90.3 11.50.4

100% 11.60.4 11.30.4 10.90.2 11.00.4 12.10.2

500% 15.90.3 14.00.2 13.70.3 13.40.2 13.50.3

1000% 19.90.1 16.20.2 15.30.1 14.10.2 14.20.1

En→De (Baseline: 20.0)
α% en→de en→nl en→et en→ru en→zh

1% 20.00.4 20.20.4 20.50.2 20.70.3 20.80.5

10% 20.30.2 21.00.3 20.70.4 21.20.6 21.80.6

50% 22.10.4 21.60.5 21.30.1 21.20.2 21.60.2

100% 23.40.2 22.20.2 21.20.2 21.00.2 21.20.2

200% 24.50.1 22.20.0 20.20.0 20.00.0 20.70.0

En→Ru (Baseline: 11.9)
α% en→ru en→uk en→cs en→de en→zh

10% 12.00.4 11.80.6 11.60.6 11.70.2 12.00.4

50% 12.80.3 13.00.5 12.20.2 12.40.3 12.60.1

100% 14.00.2 13.30.3 12.60.1 12.70.2 12.80.4

500% 15.70.2 14.70.2 14.20.1 14.40.2 14.60.1

1000% 18.60.3 15.40.1 14.70.2 14.60.2 14.30.2

En→Ru (Baseline: 18.4)
α% en→ru en→uk en→cs en→de en→zh

1% 18.10.3 18.60.5 18.70.8 18.70.5 18.90.2

10% 18.60.5 18.90.2 19.10.1 18.90.2 19.10.3

50% 19.50.2 19.30.3 18.80.1 18.40.2 18.70.1

100% 20.10.1 19.50.2 19.10.1 18.60.2 18.20.1

200% 22.40.1 20.50.0 18.50.0 17.20.0 17.10.0

En→Es (Baseline: 16.9)
α% en→es en→pt en→nl en→ru en→zh

10% 17.10.2 17.00.4 17.30.6 17.20.3 17.60.8

50% 19.00.2 18.10.3 18.50.6 19.00.2 19.50.3

100% 20.90.4 19.10.3 19.40.3 19.10.3 21.00.2

500% 27.10.3 23.20.2 21.50.3 22.80.3 23.00.2

1000% 29.40.2 25.20.4 23.20.1 22.40.3 22.20.1

En→Es (Baseline: 28.6)
α% en→es en→pt en→nl en→ru en→zh

1% 28.60.3 28.60.1 28.70.2 28.80.2 28.70.5

10% 29.40.2 29.00.3 29.10.2 29.30.4 29.20.3

50% 29.90.4 29.20.5 29.40.2 29.40.2 29.40.1

100% 30.50.3 29.50.3 29.20.1 29.00.3 29.20.4

200% 31.80.2 29.60.0 28.90.0 28.30.0 28.00.0

Table 1: BLEU scores (including variance) for three main tasks: En→De, En→Es, and En→Ru in low-resource 100K (left)
and medium-resource 1M (right) settings when training with different auxiliary language pairs. α% represents the auxiliary
training data size. For low-resource setting, α% ranges from 10% to 1000% of the proportion of the low-resource setting size.
For medium-resource setting, α% ranges from 1% to 200% of the proportion of the medium-resource setting size. The color
block represents the extent of positive transfer, with the darker shades indicating a stronger positive transfer effect.

main translation tasks in low-, medium-and high-277

resource settings when training with different target278

languages, along with the corresponding variance.279

4.1.2 Discussion280

First, we show positive knowledge transfer oc-281

curs on the target-side, which benefits low-282

/medium-resource language pairs. This target-side283

positive transfer is highly correlated with trans-284

lation task relatedness, i.e. linguistic similarity.285

Specifically, for low- and medium-resource set-286

tings (Table 1), increasing the amounts of similar287

target languages improves the positive knowledge288

transfer for the main language pairs, i.e. 9 BLEU289

points improvements for the low-resource En→De290

task when training with 1000% En→Nl. However,291

training with the same amounts of a distant target292

task cannot achieve similar improvements, such as293

En→Zh. The varying performance for the main294

tasks when training with different target-side lan-295

guages shows that the increasing source English296

data (Arivazhagan et al., 2019) cannot be entirely297

confirmed as the sole reason for the improvements.298

Second, we demonstrate that negative transfer299

also exists with increasing amounts of target300

data. For medium-resource settings, increasing 301

the size of distant auxiliary languages gradually 302

shows the negative transfer for main language pairs. 303

For the high-resource setting (Table 2), negative 304

transfer almost occurs in training with every auxil- 305

iary language pair. It still correlates with linguistic 306

similarity where distant data results in more per- 307

formance drops than similar ones. This is in line 308

with (Wang et al., 2019) where they show that di- 309

vergence between the joint distributions of tasks is 310

the root of the negative transfer. 311

Third, we find that the gains for low- or 312

medium-resource tasks in one-to-many transla- 313

tion cannot be fully attributed to transfer learn- 314

ing. The small amount of data can also improve 315

the translation performance of main language pairs 316

and do so without any correlation with linguistic 317

similarity. In Table 1 (right), joint training with 318

10% distant language pairs can even lead to better 319

translation performance for all main language tasks 320

than using 10% similar data. 10% of En→Zh data 321

can even lead to around 2 BLEU points improve- 322

ment for the En→De task in a medium-resource 323

setting. The gains resulting from the small size 324
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En→De (Baseline: 26.1)
α% en→nl en→et en→ru en→zh

1% 26.6 26.3 26.0 26.0
10% 25.9 25.9 25.7 25.8
50% 25.9 25.0 25.2 24.8

100% 25.7 25.4 24.4 24.4
200% 25.2 24.8 23.4 23.1

Table 2: BLEU scores for the main language pair En→De
in high-resource setting 4.5M. α% ranges from 1% to 200%
of the proportion of the high-resource setting size. The color
block represents the extent of negative transfer, with the darker
shades indicating a stronger negative transfer effect.

of distant auxiliary data show the role of language325

regularization. By joint training with auxiliary low-326

resource target tasks, uncertainties are increased327

for the model to prevent over-fitting on the main328

tasks. Further discussion is shown in Section 5.329

4.2 Changes in Task Number330

To further validate the previous findings, we expand331

the scenario from training with a single target task332

to incorporating multiple tasks. We control the333

total amount of auxiliary training data to ensure a334

fair comparison.335

4.2.1 Setup336

We train the main translation task En→De in dif-337

ferent resource levels with an increasing number338

of auxiliary target language pairs from two groups339

(Table 5 in Appendix A): (1) Similar Group: the340

Germanic4 language family with Latin scripts; (2)341

Distant group: the Slavic language family with342

Cyrillic scripts. The number of target language343

pairs is set as 1, 4, 8. The auxiliary target data size344

is evenly distributed among all target languages345

and controlled at 50% and 1000% for low-resource,346

and 10% and 200% for medium- and high-resource.347

Figure 1 shows the impact of task number when348

training with auxiliary tasks from different linguis-349

tic groups.350

4.2.2 Discussion351

We show that increasing the task number has352

little impact on the target-side knowledge trans-353

fer, since our findings are similar for two tasks354

(Section 4.1): (1) Positive transfer highly corre-355

lates with linguistic similarity when the auxiliary356

data size is large; (2) Small distant auxiliary target357

4Due to data scarcity, we pick two target languages from
the Romance language family, Galician, and Spanish. Ro-
mance and Germanic language families are close.

(a) Data size: 50% (b) Data size: 1000%

(c) Data size: 10% (d) Data size: 200%

(e) Data size: 10% (f) Data size: 200%

Figure 1: Translation quality for En→De for a low-resource
100K (above), medium-resource 1M (middle) and high-
resource 4.5M (below) when training with different auxiliary
task numbers and different linguistic groups. Data size repre-
sents the total amount of auxiliary target training data.

data can also benefit the low- and medium-resource 358

main tasks, which is attributed to regularization. 359

Interestingly, for the medium- and high-resource 360

settings, increasing the auxiliary target task number 361

from the large-size distant linguistic group (200%) 362

can mitigate the negative transfer to some extent. 363

One possible explanation for this is that the nega- 364

tive training signal from one distant language pair 365

becomes weaker when increasing the task number 366

in controlled data size. This result also corrobo- 367

rates similar findings (Shaham et al., 2022) where 368

they find more than one unrelated language helps 369

for the translation task with less data. 370

In summary, Section 4 shows the target-side 371

transfer in one-to-many translation. Based on the 372

empirical findings on main language pairs, we show 373

that target-side transfer transfers positive knowl- 374

edge. Linguistic similarity and target data size 375

mutually play a role in it. Meanwhile, we show 376
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that the source data cannot be the sole reason for377

improving one-to-many translation due to the close378

correlation between translation performance and379

target data. Furthermore, we find that the small size380

of distant auxiliary target languages can also im-381

prove translation performance. These gains cannot382

be fully attributed to target-side transfer, and we in-383

dicate another important factor, i.e., regularization,384

which is discussed in the next section.385

5 Language Regularization386

The previous section shows low- and medium-387

resource translation tasks benefit from language388

regularization. In this section, we aim to further389

investigate the effectiveness of language regulariza-390

tion in one-to-many MT from two angles: general-391

ization ability (Section 5.1) and model calibration392

(Section 5.2). In the end, we provide a simple but393

effective way to enhance the machine translation394

performance with the help of language regulariza-395

tion (Section 5.3).396

5.1 Reducing Generalization Error397

Reducing generalization errors is one of the ben-398

efits of regularization, which can be reflected by399

measuring the inconsistency between training and400

validation performance. Here, we show the reg-401

ularization effects in one-to-many translation by402

comparing their learning curves for the training403

and valid losses.404

5.1.1 Setup405

Different target languages have various levels of406

regularization effects. As we shown in Section 4.1,407

low- and medium-resource main language pairs408

benefit from regularization. Thus, we choose the409

multilingual models trained on low- and medium-410

resource En→De tasks with two linguistic groups411

shown in Section 4.2. For the low-resource En→De412

setting (100K), we select the auxiliary target data413

size to be 50% and 1000% of the low-resource size.414

For the medium-resource En→De setting (1M), we415

select the target data size to be 10% and 200%416

of the medium-resource size. Figure 2 shows the417

learning curves En→De under different multilin-418

gual training settings.419

5.1.2 Discussion420

First, regularization induced by the small size of421

auxiliary target tasks can reduce the generaliza-422

tion errors in one-to-many translation. Figure 2a423

shows that the baseline bilingual low-resource424

(a) En→De in Low-resource (100K)

(b) En→De in Medium-resource (1M)

Figure 2: Loss curves for En→De translation tasks under
low-resource 100K (a) and medium-resource 1M settings (b),
with varying target linguistic groups (similar and distant) and
varying auxiliary target data sizes.

En→De model has a large gap between training 425

and validation loss during training. This indicates 426

that low-resource models can easily overfit and can- 427

not generalize well to unseen data. Surprisingly, 428

50% of distant auxiliary data can reduce the vali- 429

dation loss for the main low-resource En→De task. 430

This observation aligns with previous finding in 431

Section 4.2 that distant auxiliary target languages 432

benefit the main task performance. It confirms our 433

hypothesis that regularization plays a crucial role 434

in the gains via improving generalization ability. 435

Second, regularization effects from the large size 436

of auxiliary target tasks can only reduce generaliza- 437

tion errors for low-resource language pairs. Increas- 438

ing the auxiliary target data size (+1000%) leads 439

to better generalization ability for low-resource 440

En→De, and the linguistically similar group shows 441

slightly better effectiveness than the distant ones. 442

This difference shows that positive target-side trans- 443

fer also helps for better generalization ability since 444

they exhibit a strong and transferrable training sig- 445

nal for the main low-resource task. The same 446

holds for the medium-resource En→De setting 447

(Figure 2b). However, when training with a large 448

target data size (+200%), a distant linguistic group 449

cannot further reduce the generalization errors. 450
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(a) En→De in Low-resource (100K)

(b) En→De in Medium-resource (1M)

Figure 3: Confidence histograms for En→De translation tasks
under low-resource (100K) (a) and mid-resource (1M) settings
(b), with varying target linguistic groups (similar and distant)
and total target data sizes.

This reflects that the role of regularization is not451

always positive, heavily depending on the target452

linguistic similarity level and the data size.453

5.2 Improving Inference Calibration454

Another benefit of regularization is to increase the455

model’s uncertainty by penalizing output confi-456

dence, e.g., label smoothing. This regularization457

technique improves model calibration by making458

the confidence of its predictions more accurate for459

true accuracy (Müller et al., 2019). Wang et al.460

(2020) emphasizes the importance of calibrating461

confidence during inference for MT and regulariza-462

tion is a key factor. Motivated by these findings, we463

aim to investigate whether regularization induced464

by different target tasks has a similar impact on465

both output confidence and inference calibration.466

In general, model calibration is measured by the467

expected calibration error (ECE) which calculates468

the difference in expectation between confidence469

and accuracy. As shown in Equation 5.2, ECE di-470

vides predictions into M bins {B1, ..., BM} based471

on their confidence and calculates a weighted aver-472

age of the bin’s accuracy/confidence difference.5473

5N is the number of prediction samples and |Bm| is the
number of samples in the m-th bin

ECE =
M∑

m=1

|Bm|
N

|acc(Bm)− conf(Bm)| (1) 474

475

In MT, the prediction target token is ŷ = 476

argmaxy∈V P (y) and the confidence is P (ŷ). The 477

accuracy denotes whether the prediction ŷ is cor- 478

rect. However, calculating the prediction accu- 479

racy during inference is challenging because it re- 480

quires building complex alignments between gen- 481

erated tokens and the ground truth. Wang et al. 482

(2020) propose using the Translation Error Rate 483

metric (Snover et al., 2006) to determine the accu- 484

racy by measuring the number of edits to change 485

a model output into the ground truth. We use their 486

method to analyze the inference calibration. 487

5.2.1 Setup 488

We examine the impact of regularization effects in- 489

duced by different target data on the model’s output 490

confidence and inference calibration for the main 491

En→De tasks. We calculate the output confidence 492

histograms and inference calibration errors for the 493

En→De test set with the same settings of the multi- 494

lingual models in Section 5.1.1. We plot the output 495

confidence histograms (Figure 3) where the x-axis 496

represents the output confidence scores and the y- 497

axis represents the percentage of the number of 498

tokens with those scores. In addition, we plot the 499

reliability diagrams (Figure 4) to visualize the rep- 500

resentations of model calibration where the x-axis 501

is the average weighted confidence and the y-axis 502

is the average weighted accuracy. 503

5.2.2 Discussion 504

First, regularization from the small size of aux- 505

iliary target tasks improves inference calibra- 506

tion by penalizing output confidence. For exam- 507

ple, the main low-resource En→De translation task 508

shows an over-confidence issue for its bilingual 509

baseline model, see Figure 4a. The model seriously 510

suffers from miscalibration, where the average gaps 511

between confidence and accuracy are large (con- 512

fidence > accuracy). The small size of distant 513

auxiliary target tasks can lead to better inference 514

calibration. This regularization effect is achieved 515

by penalizing over-confidence output (> 0.9) to en- 516

hance the model inference calibration, as shown in 517

Figure 3a. These findings also align well with the 518

medium-resource setting (1M). The relatively small 519

7



(a) InfECE=22.6 (b) InfECE=19.7 (c) InfECE=19.4 (d) InfECE=18.1 (e) InfECE=16.5

(f) InfECE=15.6 (g) InfECE=14.5 (h) InfECE=14.3 (i) InfECE=17.0 (j) InfECE=14.7

Figure 4: Reliability diagrams with inference calibration errors (InfECE) on the En→De test set in the low-resource (above) and
medium-resource setting (below).

Main Task Auxiliary Data BLEU △

En→De (4.5M)
En→De 28.4 -0.2
En→Nl 28.3 -0.3
En→Zh 29.0 +0.4

Table 3: The Main Task of En→De (4.5M) results with using
Transformer-Big Model by adding 10% auxiliary tasks; △
represents the BLEU changes with the En→De baseline.

size of auxiliary target tasks (10%) benefits infer-520

ence calibration from the penalizing over-confident521

output, shown in Figure 3b.522

Second, regularization from the large size of523

auxiliary target tasks improves inference cali-524

bration by improving translation accuracy. Un-525

like in the small data (50%) scenario, which penal-526

izes over-confident output probabilities to benefit527

the task, training with a large size of auxiliary tar-528

get language pairs mainly helps the low-resource529

En→De task to improve translation accuracy to530

benefit inference calibration. Since similar lan-531

guage pairs share similar lexical and word order532

knowledge with the low-resource En→De task,533

they improve the accuracy more effectively.534

5.3 Regularization in Larger Models535

Section 5.1 and 5.2 show that utilizing small dis-536

tant auxiliary data can benefit overfitting transla-537

tion models from regularization, particularly for538

low- and medium-resource language pairs. For539

high-resource language pairs, Table 2 shows small540

distant data cannot help due to the “close-fitting”541

of the model parameters and training data. To fur-542

ther verify the impact of language regularization543

on high-resource language pairs, we increase the544

model size from Transformer-Base (93M) to Big 545

(274M)6 and utilize 10% of different auxiliary data 546

to train with high-resource En→De translation task. 547

Table 3 shows that 10% of distant auxiliary data 548

En→Zh can help to improve around 0.6 BLEU 549

points compared to the bilingual baseline while 550

adding the same target languages or similar ones 551

cannot. This finding further shows the effectiveness 552

of language regularization for optimizing machine 553

translation performance. 554

6 Conclusion 555

In this work, we disentangle the roles of knowledge 556

transfer, source data size, and language regulariza- 557

tion in one-to-many MT. In contrast with previous 558

assumptions, we show that target-side knowledge 559

transfer does play an important role in one-to-many 560

MMT, which indicates that the increased amount 561

of source data is not explain all the transfer. Future 562

work can leverage this information to encourage 563

different language pairs to have similar word repre- 564

sentations to achieve the maximum positive trans- 565

fer. Surprisingly, we find that using a small amount 566

of linguistically distant auxiliary target data acts as 567

an effective regularizer which results in translation 568

performance gains. Such language regularization 569

shows effectiveness in benefiting generalization 570

ability and inference calibration. Our findings on 571

language regularization shed new light on optimiz- 572

ing multilingual training by leveraging distant aux- 573

iliary data. 574

6For Transformer-Big, model details are shown in Ap-
pendix B, and the regular regularization techniques, e.g.,
dropout, we follow the same setup as (Vaswani et al., 2017).
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7 Limitations575

We acknowledge several limitations in our work.576

To directly understand the impact of knowledge577

transfer, source data, and regularization in one-578

to-many translation, we only observe the perfor-579

mance changes for one selected main language pair.580

Though translation results for auxiliary language581

pairs are provided in the Appendix D, further anal-582

ysis of the dynamic performance trade-off between583

main and auxiliary language pairs is worthwhile to584

explore. Another limitation of our work is about585

the MMT setting, where we only work in one-to-586

many MT, while future work should extend it to587

many-to-many settings and explore the impact of588

adding multiple source languages.589
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A Language Choices781

Table 4 shows the linguistic information about the782

main and auxiliary target languages. Table 5 shows783

two linguistic groups trained with the main lan-784

guage pair.785

ISO Lang. Family Script

De German Germanic Latin
Nl Dutch Germanic Latin
Et Estonia Uralic Latin
Ru Russian Slavic Cyrillic
Zh Mandarin Chinese Chinese
Es Spanish Romance Latin
Pt Portuguese Romance Latin
Nl Dutch Germanic Latin
Ru Russian Slavic Cyrillic
Zh Mandarin Chinese Chinese
Ru Russian Slavic Cyrillic
Uk Ukrainian Slavic Cyrillic
Cs Czech Slavic Latin
De German Germanic Latin
Zh Mandarin Chinese Chinese

Table 4: The linguistic information for the main and auxiliary
target languages. Bold designates the main target languages:
De, Es, Ru.

ISO Lang. Family Script

Af Afrikaans Germanic Latin
Da Danish Germanic Latin
Nl Dutch Germanic Latin
Is Icelandic Germanic Latin
No Norwegian Germanic Latin
Sv Swedish Germanic Latin
Gl Galician Romance Latin
Es Spanish Romance Latin

ISO Lang. Family Script

Bg Bulgarian Slavic Cyrillic
Cs Czech Slavic Cyrillic
Mk Macedonian Slavic Cyrillic
Pl Polish Slavic Cyrillic
Sr Serbian Slavic Cyrillic
Sk Slovak Slavic Cyrillic
Sl Slovenian Slavic Cyrillic
Uk Ukrainia Slavic Cyrillic

Table 5: Two groups of auxiliary target languages.

B Model Parameters786

We follow the setup of the Transformer-base and787

Transformer-big models (Vaswani et al., 2017). For788

each model, the number of layers in the encoder789

and in the decoder is N = 6. For Transformer-790

base, we employ h = 8 parallel attention layers791

or heads. The dimensionality of input and out-792

put is dmodel = 512, and the inner layer of feed-793

forward networks has dimensionality dff = 2048.794

For Transformer-big, we employ h = 16 parallel795

attention layers or heads. The dimensionality of796

input and output is dmodel = 1024, and the inner797

layer of feed-forward networks has dimensionality798

dff = 4096.799

C Dataset Statistics800

The data statistics of main language pairs are shown801

in Table 6. The data statistics of joint training target802

language pairs are shown in Table 7. 803

Language ISO Dataset Source Validation Set Test Set

German De WMT14 WMT14 WMT14
Spanish Es WMT13 WMT13 WMT13
Russian Ru WMT22 WMT22 WMT22

Table 6: The data statistics of main low- and medium-resource
language pairs. For each language, we display the ISO code,
language name, sampled training dataset source, validation
set, and test set. Sampled training low-resource dataset size:
100K, sampled training medium-resource dataset size: 1M.

Language ISO Dataset Source Validation/Test Set

Estonia Et WMT18 WMT18
Chinese Zh WMT19 WMT19

Portuguese Pt WMT16 WMT16
Ukrainian Uk WMT22 WMT22

Czech Cs WMT22 WMT22
Dutch Nl CCMatrix CCMatrix

Afrikaans Af CCMatrix CCMatrix
Danish Da CCMatrix CCMatrix

Icelandic Is CCMatrix CCMatrix
Norwegian No CCMatrix CCMatrix

Swedish Sw CCMatrix CCMatrix
Galician Gl CCMatrix CCMatrix

Bulgarian Bg CCMatrix CCMatrix
Macedonian Mk CCMatrix CCMatrix

Polish Pl CCMatrix CCMatrix
Serbian Sr CCMatrix CCMatrix
Slovak Sk CCMatrix CCMatrix

Slovenian Sl CCMatrix CCMatrix

Table 7: The data statistics of auxiliary training target lan-
guage pairs. For each language, we display the ISO code,
language name, sampled training dataset source, and valida-
tion set. The validation and test sets from CCMatrix, are
randomly sampled from the CCMatrix corpus, each contain-
ing 2000 samples.

D Additional Results 804

Here, we show all auxiliary language BLEU scores 805

in Table 8, 9 and 10. 806

11



En→De
α% en→nl en→et en→ru en→zh

10% 8.90.2 6.20.7 6.00.6 5.50.5
50% 11.90.2 11.20.3 10.20.3 9.80.3

100% 20.30.2 11.90.4 13.70.2 12.30.4
500% 23.70.3 14.30.1 17.60.3 15.60.2

1000% 26.40.2 15.30.5 18.50.1 16.70.3

En→Ru
α% en→uk en→cs en→de en→zh

10% 8.80.6 7.60.6 7.80.2 5.00.2
50% 15.00.5 12.20.2 10.20.3 9.30.1

100% 18.30.3 12.60.1 11.00.2 12.50.4
500% 22.70.2 14.20.1 16.80.2 15.10.1

1000% 23.40.1 14.70.2 18.90.2 16.20.2

En→Es
α% en→pt en→nl en→ru en→zh

10% 9.20.4 8.60.6 6.20.3 5.10.8
50% 12.30.3 11.30.6 10.00.2 9.20.3

100% 20.50.3 15.20.3 11.50.3 12.50.2
500% 23.20.2 18.20.3 16.50.3 15.60.2

1000% 26.20.4 19.60.1 18.60.3 16.40.1

Table 8: BLEU scores for the auxiliary language pairs
in a low-resource setting (100K) when training with main
language pairs: En→De, En→Es, and En→Ru. α% =
10, 50, 100, 500, 1000 represents the proportion of the low-
resource setting size.

En→De
α% en→nl en→et en→ru en→zh

1% 12.60.2 7.00.7 7.00.6 6.70.5
10% 22.70.2 12.30.3 12.70.3 13.50.3
50% 25.50.2 16.00.4 17.80.2 16.70.4

100% 28.40.3 16.50.1 18.20.3 16.50.2
200% 29.40.0 15.00.0 18.10.0 16.40.0

En→Ru
α% en→uk en→cs en→de en→zh

1% 13.80.6 8.20.6 7.00.2 5.80.2
10% 18.00.5 11.20.2 12.50.3 12.30.1
50% 20.30.3 12.60.1 16.00.2 16.50.4

100% 23.70.2 15.20.1 17.80.2 16.10.1
200% 26.40.0 16.70.0 19.90.0 16.20.0

En→Es
α% en→pt en→nl en→ru en→zh

1% 12.20.4 10.60.6 7.20.3 6.10.8
10% 19.30.3 12.30.6 13.00.2 14.20.3
50% 22.50.3 19.20.3 17.50.3 16.50.2

100% 27.20.2 20.20.3 18.50.3 16.60.2
200% 28.20.0 20.20.0 18.60.0 16.00.0

Table 9: BLEU scores for the auxiliary language pairs
in a mid-resource setting (1M) when training with main
language pairs: En→De, En→Es, and En→Ru. α% =
1, 10, 50, 100, 200 represents the proportion of the medium-
resource setting size.

En→De
α% en→nl en→et en→ru en→zh

1% 14.0 9.3 7.6 8.9
10% 24.1 14.5 15.8 16.5
50% 24.4 17.0 16.2 17.0

100% 25.0 19.5 15.7 16.5
200% 25.6 20.1 14.1 15.0

Table 10: BLEU scores for the auxiliary language pairs in
a high-resource setting (4.5M) when training with main lan-
guage pairs: En→De. α% = 1, 10, 50, 100, 200 represents
the proportion of the high-resource setting size.
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