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Abstract

Subgraph GNNs are a recent class of expressive Graph Neural Networks (GNNs)
which model graphs as collections of subgraphs. So far, the design space of
possible Subgraph GNN architectures as well as their basic theoretical properties
are still largely unexplored. In this paper, we study the most prominent form of
subgraph methods, which employs node-based subgraph selection policies such as
ego-networks or node marking and deletion. We address two central questions: (1)
What is the upper-bound of the expressive power of these methods? and (2) What
is the family of equivariant message passing layers on these sets of subgraphs?.
Our first step in answering these questions is a novel symmetry analysis which
shows that modelling the symmetries of node-based subgraph collections requires
a significantly smaller symmetry group than the one adopted in previous works.
This analysis is then used to establish a link between Subgraph GNNs and Invariant
Graph Networks (IGNs). We answer the questions above by first bounding the
expressive power of subgraph methods by 3-WL, and then proposing a general
family of message-passing layers for subgraph methods that generalises all previous
node-based Subgraph GNNs. Finally, we design a novel Subgraph GNN dubbed
SUN, which theoretically unifies previous architectures while providing better
empirical performance on multiple benchmarks.

1 Introduction

Message Passing Neural Networks (MPNNs) are arguably the most commonly used version of
Graph Neural Networks (GNNs). The limited expressive power of MPNNs [36, 55] has led to
a plethora of works aimed at designing expressive GNNs while maintaining the simplicity and
scalability of MPNNs [11, 39, 49, 30]. Several recent studies have proposed a new class of such
architectures [14, 59, 7, 61, 43, 42], dubbed Subgraph GNNs, which apply MPNNs to collections
(‘bags’) of subgraphs extracted from the original input graph and then aggregate the resulting
representations. Subgraphs are selected according to a predefined policy; in the most popular ones,
each subgraph is tied to a specific node in the original graph, for example by deleting it or extracting
its local ego-network. Subgraph GNNs have demonstrated outstanding empirical performance, with
state-of-the-art results on popular benchmarks like the ZINC molecular property prediction [61, 7].

While offering great promise, it is fair to say that we still lack a full understanding of Subgraph
GNNs. Firstly, on the theoretical side, it is known that subgraph methods are strictly stronger than
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the Weisfeiler-Leman (WL) test [54, 39], but an upper-bound on their expressive power is generally
unknown. Secondly, on a more practical level, Subgraph GNN architectures differ considerably in
the way information is aggregated and shared across the subgraphs, and an understanding of the
possible aggregation and sharing rules is missing. Both aspects are important: an understanding of
the former can highlight the limitations of emerging architectures, a study of the latter paves the way
for improved Subgraph GNNs.

Main contributions. The goal of this paper is to provide a deeper understanding of node-based
Subgraph GNNs in light of the two aforementioned aspects. The main theoretical tool underpinning
our contributions is a novel analysis of the symmetry group that acts on the sets of subgraphs. While
several previous approaches [43, 14, 7] have (often implicitly) assumed that a subgraph architecture
should be equivariant to independent node and subgraph permutations, we leverage the fact that node-
based policies induce an inherent bijection between the subgraphs and the nodes. This observation
allows us to align the two groups and model the symmetry with a single (smaller) permutation group
that acts on nodes and subgraphs jointly. Other works [61, 56, 59] have (again, implicitly) recognised
such node-subgraph correspondence but without studying the implications on the symmetry group,
and resorting, as a result, to a partial and heuristic choice of equivariant operations.

The use of this stricter symmetry group raises a fruitful connection with k-order Invariant Graph Net-
works (k-IGNs) [33, 32], a well studied family of architectures for processing graphs and hypergraphs
designed to be equivariant to the same symmetry group. This connection allows us to transfer and
reinterpret previous results on IGNs to our Subgraph GNN setup. As our first contribution we show
that the expressive power of Subgraph GNNs with node-based policies is bounded by that of the 3-WL
test. This is shown by proving that all previous Subgraph GNNs can be implemented by a 3-IGN and
by leveraging the fact that the expressive power of these models is bounded by 3-WL [21, 5].

Our second contribution is the proposal of a general layer formulation for Subgraph GNNs, based
on the observation that these methods maintain an n × n representation of n subgraphs with n
nodes, following the same symmetry structure of 2-IGNs (same permutation applied to both rows
and columns of this representation). We propose a novel extension of 2-IGNs capturing both local
(message-passing-like) and global operations. This extension easily recovers previous methods
facilitating their comparison. Also, we present a number of new operations that previous methods
did not implement. We build upon these observations to devise a new Subgraph GNN dubbed SUN,
(Subgraph Union Network). We prove that SUN generalises all previous node-based Subgraph GNNs
and we empirically compare it to these methods, showing it can outperform them.

2 Previous and related work

Expressive power of GNNs. The expressive power of GNNs is a central research focus since it was
realised that message-passing type GNNs are constrained by the expressivity of the WL isomorphism
test [36, 55]. Other than the aforementioned subgraph-based methods, numerous approaches for more
powerful GNNs have been proposed, including positional and structural encodings [1, 45, 11, 17, 28,
31], higher-order message-passing schemes [36, 38, 10, 9], equivariant models [24, 33, 32, 53, 15,
51, 40]. We refer readers to the recent survey by Morris et al. [39] for additional details. Finally we
note that, in a related and concurrent work, Qian et al. [46] propose a theoretical framework to study
the expressive power of subgraph-based GNNs by relating them to the k-WL hierarchy, and explore
how to sample subgraphs in a data-driven fashion.

Invariant graph networks. IGNs were recently introduced in a series of works by Maron et al.
[33, 32, 34] as an alternative to MPNNs for processing graph and hyper-graph data. For k ≥ 2, k-IGNs
represent hyper-graphs with hyper-edges up to size k with k-order tensor Y ∈ Rnk

, where each entry
holds information about a specific hyper-edge. On these they apply linear Sn-equivariant layers
interspersed with pointwise nonlinearities. These models have been thoroughly studied in terms of:
(i) their expressive power; (ii) the space of their equivariant linear layers. As for (i), IGNs were shown
to have exactly the same graph separation power as the k-WL graph isomorphism test [32, 5, 21] and,
for sufficiently large k, to have a universal approximation property w.r.t. Sn-invariant and equivariant
functions [34, 26, 47]. Concerning (ii), the work in [33] completely characterised the space of linear
layers equivariant to Sn from Rnk

to Rnk′

: the authors derived a basis of bell(k+k′) linear operators
consisting of indicator tensors of equality patterns over the multi-index set {1, . . . , n}k+k′

= [n]k+k′
.

Albooyeh et al. [2] showed these layers can be (re-)written as sums of pooling-broadcasting operations
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between elements of Y indexed by the orbits 2 of the action of Sn on [n]k and [n]k
′
. Take, e.g.,

k = k′ = 2. In this case there are only two orbits: {i, i}, i ∈ [n] corresponding to on-diagonal terms,
and {i, j}, i ̸= j ∈ [n], off-diagonal terms. According to Albooyeh et al. [2] any equivariant linear
layer L : Rn2 → Rn2

can be represented as a composition of pooling and broadcasting operations
on the elements indexed by these orbits. One example is the linear map that sums the on-diagonal
elements and broadcasts the result to the off-diagonal ones: L(Y)ij =

∑
k Ykk for i ̸= j, 0 otherwise.

See Appendix B, for additional details. These results particularly important as they underpin most of
our theoretical derivations. Lastly, a more comprehensive coverage of IGNs can be found in [39].

Subgraph GNNs. Despite motivated by diverse premises, a collection of concurrent methods share
the overarching design whereby graphs are modelled through the application of a GNN to their
subgraphs. Bevilacqua et al. [7] first explicitly formulated the concept of bags of subgraphs generated
by a predefined policy and studied layers to process them in an equivariant manner: the same GNN
can encode each subgraph independently (DS-GNN), or information can be shared between these
computations in view of the alignment of nodes across the bag [35] (DSS-GNN). Building upon
the Reconstruction Conjecture [25, 52], Reconstruction GNNs [14] obtain node-deleted subgraphs,
process them with a GNN and then aggregate the resulting representations by means of a set model.
Nested GNNs [59] and GNN-As-Kernel models (GNN-AK) [61] shift their computation from rooted
subtrees to rooted subgraphs, effectively representing nodes by means of GNNs applied to their
enclosing ego-networks. Similarly to DSS-GNNs [7], GNN-AK models may feature information
sharing modules aggregating node representations across subgraphs. ID-GNNs [56] also process
ego-network subgraphs, but their roots are ‘marked’ so to specifically alter the exchange of messages
involving them. Intuitively, the use of subgraphs implicitly breaks those local symmetries which
determine the notorious expressiveness bottleneck of MPNNs. We note that other works can be
interpreted as Subgraph GNNs, including those by Papp et al. [43], Papp and Wattenhofer [42].

3 Node-based Subgraph GNNs

Notation. Let G = (A,X) be a member of the family G of node-attributed, undirected, finite, simple
graphs3. The adjacency matrix A ∈ Rn×n represents G’s edge set E over its set of n nodes V . The
feature matrix X ∈ Rn×d gathers the node features; we denote by xj ∈ Rd×1 the features of node
j corresponding to the j-th row of X . BG is used to denote a multiset (bag) of m subgraphs of
G. Adjacency and feature matrices for subgraphs in BG are arranged in tensors A ∈ Rm×n×n and
X ∈ Rm×n×d. Superscript i,(t) refers to representations on subgraph i at the t-th layer of a stacking,
as in xi,(t)j . Finally, we denote [n] = {1, . . . , n}. All proofs are deferred to Appendices B and D.

Formalising Subgraph GNNs. Subgraph GNNs compute a representation of G ∈ G as

(A,X) 7→
(
µ ◦ ρ ◦ S ◦ π

)
(A,X). (1)

Here, π : G 7→ {G1, ..., Gm} = {(A1, X1), ..., (Am, Xm)} = B
(0)
G is a selection policy generating

a bag of subgraphs from G; S = LT ◦ . . . ◦ L1 : B
(0)
G 7→ B

(T )
G is a stacking of T (node- and

subgraph-) permutation equivariant layers; ρ : (G,B
(T )
G ) 7→ xG is a permutation invariant pooling

function, µ is an MLP. The layers in S comprise a base-encoder in the form of a GNN applied to
subgraphs; throughout this paper, we assume it to be a 1-WL maximally expressive MPNN such as
the one in Morris et al. [36]. Subgraph GNNs differ in the implementation of π, S and, in some cases,
ρ. For example, in (n-1)-Reconstruction GNNs [14], π selects node-deleted subgraphs and S applies
a Siamese MPNN to each subgraph independently. To exemplify the variability in S , DSS-GNN [7]
extends this method with cross-subgraph node and connectivity aggregation. More details are on how
currently known Subgraph GNNs are captured by Equation (1) can be found in Appendix A.

Node-based selection policies. In this work, we focus on a specific family of node-based subgraph
selection policies, wherein every subgraph is associated with a unique node in the graph. Formally,
we call a subgraph selection policy node-based if it is of the form π(G) = {f(G, v)}v∈V , for some
selection function f(G, v) that takes a graph G and a node v as inputs and outputs a subgraph Gv.
In the following, we refer to v as the root of subgraph Gv. We require f to be a bijection and we

2For group G acting on set X , the orbits of the action of G on X are defined as {G · x |x ∈ X}. These
partition X into subsets whose elements can (only) reach all other elements in the subset via the group action.

3We do not consider edge features, although an extension to such a setting would be possible.
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Figure 1: Symmetries of bags of subgraphs (left) and corresponding function space diagrams (right).
In ESAN [7] symmetries are modelled as a direct product of node and subgraph permutation groups;
however, node-based policies enable the use of one single permutation group, the same as in 3-IGNs.
3-IGNs are less constrained, thus more expressive than ESAN and other Subgraph GNNs. See
diagram on the right and formal statement in Section 5.

note that such policies produce m = n different subgraphs. Amongst the most common examples
are node-deletion (ND), node-marking (NM), and ego-networks (EGO) policies. For input graph G,
fND(G, v) removes node v and the associated connectivity; fNM(G, v) adds a special ‘mark’ attribute
to v’s features (with no connectivity alterations), and fEGO(h)(G, v) returns the subgraph induced by
the h-hop-neighbourhood around the root v. EGO policies can be ‘marked’: fEGO+(h)(G, v) extracts
the h-hop ego-net around v and marks this node as done by fNM. For convenience, we denote the
class of such node-based selection policies by Π:
Definition 1 (Known node-based selection policies Π). Let Σ be the set of all node-based subgraph
selection policies operating on G. Class Π ⊂ Σ collects the node-based policies node-deletion
(ND), node-marking (NM), ego-nets (EGO) and marked ego-nets (EGO+) of any depth: Π =
{πND, πNM, πEGO(h), πEGO+(h) |h > 0}.

Node-based Subgraph GNNs are those Subgraph GNNs which, implicitly or explicitly, process
bags generated by node-based policies. We group known formulations in the following family:
Definition 2 (Known node-based Subgraph GNNs Υ). Let Ξ be the set of all node-based Subgraph
GNNs. Class Υ ⊂ Ξ collects known Subgraph GNNs when equipped with 1-WL base-encoders:
Υ = {(n-1)-Reconstr.GNN, GNN-AK, GNN-AK-ctx, NGNN, ID-GNN, DS-GNNΠ, DSS-GNNΠ}.
DS-GNNΠ, DSS-GNNΠ refer to DS- and DSS-GNN models equipped with any π ∈ Π.

Importantly, all these methods apply MPNNs to subgraphs of the original graph, but differ in the way
information is shared between subgraphs/nodes. In all cases, their expressive power is strictly larger
than 1-WL, but an upper-bound is currently unknown.

4 Symmetries of node-based subgraph selection policies

In an effort to characterise the representational power of node-based Subgraph GNNs, we first study
the symmetry group of the objects they process: ‘bags of subgraphs’ represented as tensors (A,X ) ∈
Rm×n×n × Rm×n×d, assuming n nodes across m subgraphs. Previous approaches [14, 7, 43] used
two permutation groups: one copy of the symmetric group Sn models node permutations, while
another copy Sm models subgraph permutations in the bag. These two were combined by a group
product4 acting independently on the nodes and subgraphs in (A,X ). For example, Bevilacqua et al.
[7] model the symmetry as:

((τ , σ) ·A)ijk = Aτ−1(i)σ−1(j)σ−1(k), ((τ , σ) ·X )ijl = Xτ−1(i)σ−1(j)l, (τ , σ) ∈ Sm×Sn (2)

Our contributions stem from the following crucial observation: When using node-based policies,
the subgraphs in (A,X ) can be ordered consistently with the nodes by leveraging the bijection
f : v 7→ Gv characterising this policy class. In other words, f suggests a node-subgraph alignment
inducing a new structure on (A,X ), whereby the subgraph order is not independent of that of nodes

4Bevilacqua et al. [7] use a direct-product, assuming nodes in subgraphs are consistently ordered. Cotta et al.
[14] use the larger wreath-product assuming node ordering in the subgraph is unknown.
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edges to / from root nodes

edges between non-root nodes

representations of root nodes

representations of non-root nodes

Figure 2: Depiction of cubed tensor Y , its orbit-induced partitioning and the related semantics when
Y is interpreted as a bag of node-based subgraphs, n = 5. Elements in the same partition are depicted
with the same colour. Left: the whole tensor. Middle and right: sections; elements in purple and
green constitute sub-tensor X , the remaining ones sub-tensor A.

anymore. Importantly, this new structure is preserved only by those permutations operating identically
on both nodes and subgraphs. Following this observation, the symmetry of a node-based bag of
subgraphs is modelled more accurately using only one single permutation group Sn jointly acting on
both nodes and subgraphs:

(σ · A)ijk = Aσ−1(i)σ−1(j)σ−1(k), (σ · X )ijl = Xσ−1(i)σ−1(j)l, σ ∈ Sn (3)

It should be noted that Sn is significantly smaller than Sn×Sn
5. Informally, the latter group contains

many permutations which are not in the former: those acting differently on nodes and subgraphs
and, thus, not preserving the new structure of (A,X ). Since they are restricted by a smaller set of
equivariance constraints, we expect GNNs designed to be equivariant to Sn to be be more expressive
than those equivariant to the larger groups considered by previous works [34] (see Figure 1).

The insight we obtain from Equation (3) is profound: it reveals that the symmetry structure of
A exactly matches the symmetries of third-order tensors used by 3-IGNs, and similarly, that the
symmetry structure for X matches the symmetries of second-order tensors used by 2-IGNs. In the
following, we will make use of this insight and the fact that IGNs are well-studied objects to prove
an upper-bound on the expressive power of Subgraph GNNs and to design principled extensions
to these models. We remark that bags of node-based subgraphs can also be represented as tensors
Y ∈ Rn3×d, the same objects on which 3-IGNs operate. Here, X is embedded in the main diagonal
plane of Y , A in its remaining entries. Within this context, it is informative to study the semantics of
the 5 orbits induced by the action of Sn on Y’s multi-index set [n]3: each of these uniquely identify
root nodes, non-root nodes, edges to and from root nodes as well as edges between non-root nodes
(see Figure 2 and additional details in Appendix B.1.1). We build upon this observation, along with
the layer construction by Albooyeh et al. [2], to prove many of the results presented in the following.

5 A representational bound for Subgraph GNNs

In this section we prove that the expressive power of known node-based Subgraph GNNs is bounded
by 3-WL by showing that they can be implemented by 3-IGNs, which have the same expressive power
as 3-WL. Underpinning the possibility of IGNs to upper-bound a certain Subgraph GNN N in its
expressive power is the ability of IGNs to (i) implement N ’s subgraph selection policy (π) and (ii)
implement N ’s (generalised) message-passing and pooling equations (µ ◦ ρ ◦ S). This would ensure
that whenever N assigns distinct representations to two non-isomorphic graphs, an IGN implementing
N would do the same. We start by introducing a recurring, useful concept.

Definition 3 (“implements”). Let f : Df → Cf , g : Dg → Cg be two functions and such that
Dg ⊆ Df , Cg ⊆ Cf . We say f implements g (and write f ∼= g) when ∀x ∈ Dg, f(x) = g(x).

5More formally, Sn’s orbits on the indices in (3) refine the orbits of the product group in (2).
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Our first result shows that 3-IGNs can implement the selection policies in class Π (Definition 1),
which, to the best of our knowledge, represent all known node-based policies utilised by previously
proposed Subgraph GNNs.
Lemma 4 (3-IGNs implement known node-based selection policies). For any π ∈ Π there exists a
stacking of 3-IGN layers Mπ s.t. Mπ

∼= π.

Intuitively, 3-IGNs start from a Rn2

representation of G and, first, move to a Rn3

tensor ‘copying’
this latter along its first (subgraph) dimension. This is realised via an appropriate broadcast operation.
Then, they proceed by adding a ‘mark’ to the features of some nodes and/or by nullifying elements
corresponding to some edges. We refer readers to Figure 2 and Appendix B.1.2 for additional details
on how nodes in each subgraph are represented in 3-IGNs. Next, we show 3-IGNs can implement
layers of any model ∈ Υ.
Lemma 5 (3-IGNs implement Subgraph GNN layers). Let G1, G2 be two graphs in G and N a
model in family Υ equipped with Morris et al. [36] message-passing base-encoders. Let B(t)

1 , B
(t)
2

be bags of subgraphs in the input of some intermediate layer L in N . Then there exists a stacking of
3-IGN layers ML for which ML(B

(t)
i ) = B

(t+1)
i = L(B

(t)
i ) for i = 1, 2.

Lemmas 4 and 5 allow us to upper-bound the expressive power of all known instances of node-based
Subgraph GNNs by that of 3-IGNs:
Theorem 6 (3-IGNs upper-bound node-based Subgraph GNNs). For any pair of non-isomorphic
graphs G1, G2 in family G and Subgraph GNN model N ∈ Υ equipped with Morris et al. [36]
message-passing base-encoders, if there exists weights Θ such that G1, G2 are distinguished by
instance NΘ, then there exist weights Ω for a 3-IGN instance MΩ such that G1, G2 are distinguished
by MΩ as well.

Theorem 6 has profound consequences in the characterisation of the expressive power of node-based
Subgraph GNNs, as we show in the following
Corollary 7 (3-WL upper-bounds node-based Subgraph GNNs). Let G1, G2 ∈ G be two non-
isomorphic graphs and NΘ ∈ Υ one instance of model N with weights Θ. If NΘ distinguishes
G1, G2, then the 3-WL algorithm does so as well.

Proof idea: If there is a pair of graphs undistinguishable by 3-WL, but for which there exists a
Subgraph GNN separating them, there must exists a 3-IGN separating these (Theorem 6). This is in
contradiction with the result by Geerts [21], Azizian and Lelarge [5]6.

6 A design space for Subgraph GNNs

As discussed, different formulations of Subgraph GNNs differ primarily in the specific rules for updat-
ing node representations across subgraphs. However, until now it is not clear whether existing rules
exhaust all the possible equivariant options. We devote this section to a systematic characterisation of
the ‘layer space’ of Subgraph GNNs.

In the spirit of the previous Section 5, where we “embedded” Subgraph GNNs in 3-IGNs, one option
would be to consider all bell(6) = 203 linear equivariant operations prescribed by this formalism.
However, this choice would be problematic for three main reasons: (i) This layer space is too vast to
be conveniently explored; (ii) It includes operations involving O(n3) space complexity, impractical
in most applications; (iii) The linear IGN basis does not directly support local message passing, a
key operation in subgraph methods. Following previous Subgraph GNN variants, which use O(n2)
storage for the representation of n nodes in n subgraphs, we set the desideratum of O(n2) memory
complexity as our main constraint, and use this restriction to reduce the design space. Precisely, we
are interested in modelling Sn-equivariant transformations on the subgraph-node tensor X .

6.1 Extended 2-IGNs

As we have already observed in Equation 3 in Section 4, such a second order tensor X abides by the
same symmetry structure of 2-IGNs. We therefore gain intuition from the characterisation of linear
equivariant mappings as introduced by Maron et al. [33], and propose an extension of this formalism.

6k-WL is equivalent to (k-1)-FWL, i.e. the “Folklore” WL test, see Morris et al. [36].
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Figure 3: Comparison of aggregation and update rules in Subgraph GNNs, illustrated on an n× n
matrix (n subgraphs with n nodes). Top row: off-diagonal updates; bottom row: diagonal (root node)
updates. Each colour represents a different parameter. Full squares: global sum pooling; triangles:
local pooling; two triangles: both local and global pooling. See Appendix C for more details.

2-IGN layer space. A 2-IGN layer LΘ updates X ∈ Rn×n×d as X (t+1) = LΘ

(
X (t)

)
by applying a

specific transformation to on- (xii) and off-diagonal terms (xij , i ̸= j):

x
i,(t+1)
i =υθ1

(
x
i,(t)
i ,□

j
x
j,(t)
j , □

j ̸=i
x
i,(t)
j , □

h̸=i
x
h,(t)
i , □

h̸=j
x
h,(t)
j

)
(4)

x
k,(t+1)
i =υθ2

(
x
k,(t)
i , x

i,(t)
k , □

h̸=j
x
h,(t)
j , □

h ̸=i
x
h,(t)
i , □
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x
k,(t)
j , □

j ̸=i
x
i,(t)
j , □

h ̸=k
x
h,(t)
k , x

k,(t)
k , x

i,(t)
i ,□

j
x
j,(t)
j

)
Here, □ indicates a permutation invariant aggregation function, υθ1 , υθ2 apply a specific d× d′ linear
transformation to each input term and sum the outputs including bias terms.

ReIGN(2) layer space. As 2-IGN layers are linear, the authors advocate setting □ ≡
∑

, per-
forming pooling as global summation. Here, we extend this formulation to additionally include
different local aggregation schemes. In this new extended formalism, entry xki represents node
i in subgraph k; accordingly, each aggregation in Equation 4 can be also performed locally, i.e.
extending only over i’s neighbours, as prescribed by the connectivity of subgraph k or of the orig-
inal input graph. As an example, when updating entry xk,(t)i , term □j ̸=k x

k,(t)
j is expanded as(

□j ̸=k x
k,(t)
j ,□j∼ki x

k,(t)
j ,□j∼i x

k,(t)
j

)
, with ∼k denoting adjacency in subgraph k, and ∼ that in

the original graph connectivity. Each term in the expansion is associated with a specific learnable
linear transformation. We report a full list of pooling operations in Appendix D, Table 3. These
local pooling operations allow to readily recover sparse message passing, which constitutes the
main computational primitive of all popular (Subgraph) GNNs. Other characteristic Subgraph GNN
operations are also recovered by this formalism: for example, □h ̸=i x

h,(t)
i operates global pooling of

node i’s representations across subgraphs, as previously introduced in Bevilacqua et al. [7], Zhao
et al. [61]. We also note that additional, novel, operations are supported, e.g. the transpose xi,(t)k . We
generally refer to this framework as ReIGN(2) (“Rethought 2-IGN”).

ReIGN(2) architectures. ReIGN(2) induces (linear) layers in the same form of Equation 4, but
where □ terms are expanded to both local and global operations, as explained. These layers can
operate on any bag generated by a node-based selection policy π̄, and can be combined together in
ReIGN(2) stacks of the form SR = L(T ) ◦ σ ◦ L(T−1) ◦ σ ◦ . . . ◦ σ ◦ L(1), where σ’s are pointwise
nonlinearities and L’s are ReIGN(2) layers. This allows us to define ReIGN(2) models as Subgraph
GNNs in the form of Equation 1, where S is a ReIGN(2) layer stacking and π is node-based:
Rπ̄ = µ ◦ ρ ◦ SR ◦ π̄.

More generally, ReIGN(2) induces a ‘layer space’ for node-based Subgraph GNNs: the expanded
terms in its update equations represent a pool of atomic operations that can be selected and combined
to define new equivariant layers. Compared to that of 3-IGNs, this space is of tractable size, yet it
recovers previously proposed Subgraph GNNs and allows to define novel interesting variants.

Recovering previous Subgraph GNNs. The following result states that the ReIGN(2) generalises
all known subgraph methods in Υ, as their layers are captured by a ReIGN(2) stacking.
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Theorem 8 (ReIGN(2) implements node-based Subgraph GNNs). Let N be a model in family Υ
equipped with Morris et al. [36] message-passing base-encoders. For any instance NΘ, there exists
ReIGN(2) instance RΩ such that RΩ

∼= NΘ.

This shows that known methods are generalised without resorting to the O(n3) computational
complexity of 3-IGNs. Figure 3 illustrates the aggregation and sharing rules used by previous
Subgraph GNNs to update root and non-root nodes, and compare them with those of ReIGN(2) and
2-IGNs. We visualise these on the subgraph-node sub-tensor gathering node representations across
subgraphs; here, root nodes occupy the main diagonal, non-root nodes all the remaining off-diagonal
entries. As for to the 2-IGN Equations 4, the elements in these two partitions may be updated
differently, so we depict them separately in, respectively, the bottom and top rows. In each depiction
we colour elements depending on the set of weights parameterising their contribution in the update
process, with two main specifications: (i) Elements sharing the same colour are pooled together;
(ii) Triangles indicate such pooling is performed locally based on the subgraph connectivity at hand
(two triangles indicate both local and global pooling ops are performed). E.g., note how DS-GNN
equivalently updates the representations of root and non-root nodes via the same (local) message-
passing layer (triangles, yellow, leftmost picture). By illustrating how ReIGN(2) generalises previous
node-based methods, this figure is to be interpreted as visual support for the Proof of Theorem 8 (see
Appendix D). Additional details and discussions on Figure 3 are found in Appendix C.

Notably, as methods in Υ have been shown to be strictly stronger than 2-WL [7, 14, 61, 59, 56],
Theorem 8 implies the same lower bound for ReIGN(2). Nevertheless, when employing policies in
Π and 3-IGN-computable invariant pooling functions ρ (as those used by models in Υ), ReIGN(2)s
are upper-bounded by 3-IGNs:
Proposition 9 (3-IGNs implement ReIGN(2)). For any pair of non-isomorphic graphs G1, G2 in
family G, if there exist policy π̄ ∈ Π, parameters Θ and 3-IGN-computable invariant pooling function
ρ such that the ReIGN(2) instance Rρ,Θ,π̄ distinguishes G1, G2, then there exist weights Ω for a
3-IGN instance MΩ such that G1, G2 are distinguished by MΩ as well.

This proposition entails an upper-bound on the expressive power of ReIGN(2).
Corollary 10 (3-WL upper-bounds ReIGN(2)). The expressive power of a ReIGN(2) model with
policy π ∈ Π and 3-IGN-computable invariant pooling function ρ is upper-bounded by 3-WL.

We note that there may be layers equivariant to Sn over Rn2

not captured by ReIGN(2). Yet,
previously proposed Subgraph GNN layers do not exhaust the ReIGN(2) design space, which
remains largely unexplored. One, amongst possible novel constructions, is introduced next.

6.2 A unifying architecture: Subgraph Union Networks

We now show how the ReIGN(2) layer space can guide the design of novel, expressive, Subgraph
GNNs. Our present endeavour is to conceive a computationally tractable architecture subsuming
known node-based models: in virtue of this latter desideratum, we will dub this architecture “Subgraph
Union Network” (SUN). To design the base equivariant layer for SUN, we select and combine specific
aggregation terms suggested by the ReIGN(2) framework:

x
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∑
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where υ’s sum their inputs after applying a specific linear transformations to each term. One of
the novel features of SUN is that roots are transformed by a different set of parameters (θ1) than the
other nodes 7 (θ2, see Figure 2). In practice, the first and last two terms in each one of Equations (5)
and (6) can be processed by maximally expressive MPNNs [36, 55], the remaining terms by MLPs.
We test these variants in our experiments, with their formulations in Appendix G. SUN remains an
instantiation of the ReIGN(2) framework:
Proposition 11 (A ReIGN(2) stacking implements SUN layers). For any SUN layer L defined accord-
ing to Equations 5 and 6, there exists a ReIGN(2) layer stacking SL, such that SL

∼= L.
7As a result, the architecture can mark root nodes, for example.
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Table 1: Test mean MAE on the Counting Substructures and ZINC-12k datasets. All Subgraph GNNs
employ a GIN base-encoder. †This version of GNN-AK+ does not follow the standard evaluation
procedure.

Method Counting Substructures (MAE ↓)

Triangle Tailed Tri. Star 4-Cycle

GCN [27] 0.4186 0.3248 0.1798 0.2822
GIN [55] 0.3569 0.2373 0.0224 0.2185
PNA [13] 0.3532 0.2648 0.1278 0.2430
PPGN [32] 0.0089 0.0096 0.0148 0.0090

GNN-AK [61] 0.0934 0.0751 0.0168 0.0726
GNN-AK-CTX [61] 0.0885 0.0696 0.0162 0.0668
GNN-AK+ [61] 0.0123 0.0112 0.0150 0.0126

SUN (EGO) 0.0092 0.0105 0.0064 0.0140
SUN (EGO+) 0.0079 0.0080 0.0064 0.0105

Method ZINC (MAE ↓)

GCN [27] 0.321 ± 0.009
GIN [55] 0.163 ± 0.004
PNA [13] 0.133 ± 0.011
GSN [11] 0.101 ± 0.010
CIN [9] 0.079 ± 0.006

NGNN [59] 0.111 ± 0.003
DS-GNN (EGO) [7] 0.115 ± 0.004
DS-GNN (EGO+) [7] 0.105 ± 0.003
DSS-GNN (EGO) [7] 0.099 ± 0.003
DSS-GNN (EGO+) [7] 0.097 ± 0.006
GNN-AK [61] 0.105 ± 0.010
GNN-AK-CTX [61] 0.093 ± 0.002
GNN-AK+ [61]† 0.086 ± ???
GNN-AK+ [61] 0.091 ± 0.011

SUN (EGO) 0.083 ± 0.003
SUN (EGO+) 0.084 ± 0.002

Finally, we show that a stacking of SUN layers can implement any layer of known node-based
Subgraph Networks, making this model a principled generalisation thereof.

Proposition 12 (A SUN stacking implements known Subgraph GNN layers). Let N be a model in
family Υ employing Morris et al. [36] as a message-passing base-encoder. Then, for any layer L in
N , there exists a stacking of SUN layers SL such that SL

∼= L.

Beyond SUN. As it can be seen in Figure 3, SUN does not use all possible operations in the ReIGN(2)
framework. Notably, two interesting operations that are not a part of SUN are: (i) The ‘transpose’:
xki = υθ(x

i
k), which shares information between the i-th node in the k-th subgraph and the k-th node

in the i-th subgraph; (ii) Local vertical pooling xki = υθ(
∑

h∼i x
h
i ). The exploration of these and

other operations is left to future work.

7 Experiments

We experimentally validate the effectiveness of one ReIGN(2) instantiation, comparing SUN to
previously proposed Subgraph GNNs8. We seek to verify whether its theoretical representational
power practically enables superior accuracy in expressiveness tasks and real-world benchmarks.
Concurrently, we pay attention to the generalisation ability of models in comparison. SUN layers
are less constrained in their weight sharing pattern, resulting in a more complex model. As this is
traditionally associated with inferior generalisation abilities in low data regimes, we deem it important
to additionally assess this aspect. Our code is also available.9

Synthetic. Counting substructures and regressing graph topological features are notoriously hard
tasks for GNNs [12, 17, 13]. We test the representational ability of SUN on common benchmarks of
this kind [12, 13]. Table 1 reports results on the substructure counting suite, on which SUN attains
state-of-the-art results in 3 out of 4 tasks. Additional results on the regression of global, structural
properties are reported in Appendix G.

Real-world. On the molecular ZINC-12k benchmark (constrained solubility regression) [50, 22, 16],
SUN exhibits best performance amongst all domain-agnostic GNNs under the 500k parameter budget,
including other Subgraph GNNs (see Table 1). A similar trend is observed on the large-scale Molhiv
dataset from the OGB [23] (inhibition of HIV replication). Results are in Table 2. Remarkably, on
both datasets, SUN either outperforms or approaches HIMP [19], GSN [11] and CIN [9], GNNs which
explicitly model rings. We experiment on smaller-scale TUDatasets [37] in Appendix G, where we
also compare selection policies.

8For GNN-AK variants [61], we run the code provided by the authors, for which the ‘context’ and ‘subgraph’
embeddings sum only over ego-network nodes.

9https://github.com/beabevi/SUN
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Figure 4: Generalisation capabilities of Subgraph GNNs in the counting prediction task (Figures 4a
and 4b) and in the ZINC-12k dataset (Figure 4c).

Table 2: Test results for OGB
dataset. GIN base-encoder for each
Subgraph GNN.

OGBG-MOLHIV
Method ROC-AUC (%)

GCN [27] 76.06±0.97
GIN [55] 75.58±1.40
PNA [13] 79.05±1.32
DGN [6] 79.70±0.97
HIMP [19] 78.80±0.82
GSN [11] 80.39±0.90
CIN [9] 80.94±0.57

RECONSTR.GNN [14] 76.32±1.40
DS-GNN (EGO+) [7] 77.40±2.19
DSS-GNN (EGO+) [7] 76.78±1.66
GNN-AK+ [61] 79.61±1.19

SUN (EGO+) 80.03±0.55

Generalisation from limited data. In this set of experiments
we compare the test performance of Subgraph GNNs when
trained on increasing fractions of the available training data.
Each architecture is selected by tuning the hyperparameters
with the entire training and validation sets. We run this experi-
ment on the 4-cycle counting task and the real-world ZINC-12k.
We illustrate results in Figures 4a to 4c. Except for a short ini-
tial phase in the EGO policy, SUN generalises better than other
Subgraph GNNs on cycle-counting. On ZINC-12k, SUN out-
runs DSS-, DS-GNN and GNN-AK variants from, respectively,
20, 30 and 40% of the samples. These results demonstrate that
SUN’s expressiveness is not at the expense of sample efficiency,
suggesting that its modelled symmetries guarantee strong rep-
resentational power while retaining important inductive biases
for learning on graphs.

8 Conclusions

Our work unifies, extends, and analyses the emerging class of Subgraph GNNs. Notably, we
demonstrated that the expressive power of these methods is bounded by 3-WL. Towards a systematic
study of models whose expressivity lies between 1- and 3-WL, we proposed a new family of layers
for the class of Subgraph GNNs and, unlike most previous works on the expressive power of GNNs,
we also investigated the generalisation abilities of these models, for which SUN shows considerable
improvement. Appendix E lists several directions for future work, including an extension of our work
to higher-order node-based policies.

Societal impact. We do not envision any negative, immediate societal impact originating from our
theoretical results, which represent most of our contribution. Experimentally, our model has shown
promising results on molecular property prediction tasks and strong generalisation ability in low-data
regimes. This leads us to believe our work may contribute to positively impactful pharmaceutical
research, such as drug discovery [20, 3].
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