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Abstract

In this work, we present a general framework for continual learning of sequentially
arrived tasks with the use of pre-training, which has emerged as a promising direc-
tion for artificial intelligence systems to accommodate real-world dynamics. From
a theoretical perspective, we decompose its objective into three hierarchical compo-
nents, including within-task prediction, task-identity inference, and task-adaptive
prediction. Then we propose an innovative approach to explicitly optimize these
components with parameter-efficient fine-tuning (PEFT) techniques and represen-
tation statistics. We empirically demonstrate the superiority and generality of our
approach in downstream continual learning, and further explore the applicability
of PEFT techniques in upstream continual learning. We expect this to provide an
important technical foundation for intrinsically motivated open-ended learning.
Our code is available at https://github.com/thu-ml/HiDe-Prompt.

1 Introduction

To cope with real-world dynamics, continual learning has received widespread attention, especially
in the context of pre-training. Through adapting the pre-trained knowledge effectively to downstream
tasks, it provides not only positive knowledge transfer but also robustness to catastrophic forgetting
[10, 8, 16, 20]. An emerging direction is the implementation of parameter efficient fine-tuning
(PEFT) techniques (e.g., Prompt [3], Adapter [11], LoRA [2], FiLM [9], etc.), which usually freeze a
pre-trained transformer backbone and employ additionally a few parameters to steer representation
learning. In particular, recent prompt-based approaches [19, 18, 17, 12, 15] focus on construction
and inference of appropriate prompts for each task, and achieve outstanding performance under
strong supervised pre-training. However, existing methods usually degrade in performance with
challenges in upstream knowledge (e.g., different pre-training paradigms) and downstream tasks (e.g.,
out-of-distribution and fine granularity), with generality left to be desired [15].

In this work, we provide an in-depth theoretical analysis of the continual learning objective in the
context of pre-training, which can be decomposed into hierarchical components such as within-task
prediction, task-identity inference and task-adaptive prediction. By leveraging the well-distributed
pre-trained representations, we then propose an innovative approach applicable to various PEFT
techniques to optimize explicitly the hierarchical components. We perform extensive experiments on
downstream continual learning to demonstrate the superiority and generality of our approach, and
further explore the applicability of PEFT techniques in upstream continual learning. We also provide
neuroscience insights into the proposed framework for acquisition of open-world knowledge.
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2 Hierarchical Decomposition of Continual Learning Objective

Continual learning aims to master a sequence of tasks represented by their respective training sets
D1, ...,DT and excel on their corresponding test sets. Each training set Dt = {(xt,n, yt,n)}Nt

n=1,
where |Dt| = Nt denotes the size of Dt. xt,n ∈ Xt and yt,n ∈ Yt indicate the sample and label
elements, respectively. Consider a neural network model with a backbone fθ parameterized by θ, and
an output layer hψ parameterized by ψ. This model seeks to learn the projection from X =

⋃T
t=1 Xt

to Y =
⋃T
t=1 Yt, aiming to predict the label y = hψ(fθ(x)) ∈ Y of an unseen test sample x drawn

from previous tasks. The backbone function fθ is assumed to be pre-trained with a substantial
quantity of additional training samples external to each Dt. There are commonly three distinct
settings for continual learning [13]: task-, domain-, and class-incremental learning (TIL, DIL, and
CIL). Specifically, Y1, ...,YT are identical for DIL while disjoint for TIL and CIL. The task identity
is provided for TIL at test time but is not available for DIL and CIL.

Here we take CIL as a typical scenario for theoretical analysis, where Yt ∩ Yt′ = ∅, ∀t ̸= t′ (see
Appendix A for DIL and TIL). Let Xt =

⋃
j Xt,j and Yt = {Yt,j}, where j ∈ {1, ..., |Yt|} indicates

the j-th class in task t. Now assume we have a ground event denoted as D = {D1, ...,Dt} and a
pre-trained model fθ. For any sample x ∈

⋃t
k=1 Xk, a general goal of the CIL problem is to learn

P (x ∈ Xi,j |D, θ), where i ∈ {1, ..., t} and j ∈ {1, ..., |Yi|}. This can be decomposed into two
probabilities, including task-identity inference (TII) and within-task prediction (WTP), denoted as
P (x ∈ Xi|D, θ) and P (x ∈ Xi,j |x ∈ Xi,D, θ), respectively. Based on Bayes’ theorem, we have

P (x ∈ Xi,j |D, θ) = P (x ∈ Xi,j |x ∈ Xi,D, θ)P (x ∈ Xi|D, θ). (1)

Let ī ∈ {1, ..., t} and j̄ ∈ {1, ..., |Yi|} be the ground truth of an x w.r.t. the task identity and
within-task index. Eq. (1) shows that if we can improve either the WTP performance P (x ∈ Xī,j̄ |x ∈
Xī,D, θ), the TII performance P (x ∈ Xī|D, θ), or both, then the CIL performance P (x ∈ Xī,j̄ |D, θ)
would be improved. However, such an improvement is limited since it is upper-bounded by WTP or
TII. To further improve the CIL performance, we propose a hierarchical decomposition of its objective.
That is, besides the improvement of P (x ∈ Xī,j̄ |D, θ), we also need to improve the performance of
task-adaptive prediction (TAP), denoted as P (x ∈ X y|D, θ), where X y represents the domain of
class y in all previous tasks, and y = Yī,j̄ is the ground truth label of x. Then the final goal of CIL is
formulated as a multi-objective optimization problem, i.e., max[P (x ∈ Xī,j̄ |D, θ), P (x ∈ X y|D, θ)].
Notice that the WTP probability is a categorical distribution over all observed tasks {1 : t}, while the
TAP probability is over all observed classes

⋃t
k=1 Yk.

To resolve the problems above, we derive the sufficient and necessary conditions in the context of the
widely-used cross-entropy loss.2 Specifically, we define

HWTP(x) = H(1j̄ , {P (x ∈ Xī,j |x ∈ Xī,D, θ)}j), (2)
HTII(x) = H(1ī, {P (x ∈ Xi|D, θ)}i), (3)
HTAP(x) = H(1c̄, {P (x ∈ X c|D, θ)}c), (4)

where HWTP, HTII, and HTAP are the cross-entropy values of WTP, TII, and TAP, respectively.
The operationH(p, q) ≜ −Ep[log q] = −

∑
i pi log qi. 1· is a one-hot encoding function.

We now present two important theorems under the CIL scenario (see Appendix A for a detailed proof,
as well as the counterpart of DIL and TIL), corresponding to the sufficient and necessary conditions
for improving continual learning. First, Theorem 1 suggests that the good performances of WTP, TII
and TAP are sufficient to guarantee a good performance of CIL:

Theorem 1 For continual learning with pre-training, if Ex[HWTP(x)] ≤ δ, Ex[HTII(x)] ≤ ϵ, and
Ex[HTAP(x)] ≤ η, we have the loss error L ∈ [0,max{δ + ϵ, η}], regardless whether WTP, TII and
TAP are trained together or separately.

Then, Theorem 2 suggests that if a continual learning model is well trained (i.e., with low loss), then
the WTP, TII and TAP for sequential tasks are always implied to be small:

Theorem 2 For continual learning with pre-training, if the loss error L ≤ ξ, then there always exist
(1) a WTP, s.t. HWTP ≤ ξ; (2) a TII, s.t. HTII ≤ ξ; and (3) a TAP, s.t. HTAP ≤ ξ.

2Note that our framework is applicable to TIL, DIL and CIL scenarios, detailed in Appendix A.
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3 Optimization of Hierarchical Components

Motivated by these theoretical insights, we propose to optimize explicitly the hierarchical components
(i.e., WTP, TII and TAP) for continual learning with pre-training. Our proposal stems from two
particular advantages of pre-training: (1) the representations can be effectively adapted to downstream
tasks through PEFT techniques, and (2) the distributions of unadapted and adapted representations
(denoted as Ĝc and Gc for each class c ∈ Yi, i = 1, ...t− 1, respectively) can be effectively preserved
through their statistical information. For efficiency and generality, here we employ multiple centroids
obtained from K-Nearest Neighbor (KNN) and add Gaussian noise as a specific implementation.

First, we improve WTP through effectively incorporating task-specific knowledge from each Dt.
Specifically, we construct task-specific parameters et with a PEFT technique (e.g., Prompt [3],
Adapter [11], LoRA [2], FiLM [9], etc.), and optimize HWTP with cross-entropy (CE). e1, ..., et−1
are frozen to avoid catastrophic forgetting, while et is initialized with et−1 to transfer knowledge.
Besides, the adapted representations of et, although allowing the new task to be performed well, may
overlap with that of the old tasks and thus affect TAP. To overcome this issue, we preserve statistics of
adapted representations collected by fθ and ei, i = 1, ..., t− 1, where for classification we calculate
the mean µc of Gc for each class c ∈ Yi, and design a contrastive regularization (CR):

LCR(et) =
∑

h∈Ht

1∑t−1
i=1 |Yi|

t−1∑
i=1

∑
c∈Yi

log
exp(h · µc/τ)∑

h′∈Ht
exp(h · h′/τ) +

∑t−1
i=1

∑
c∈Yi

exp(h · µc/τ)
, (5)

where Ht is the embedding transformation of Dt with fθ and et. τ is the temperature coefficient,
which is insensitive and set to 0.8 in practice. Then, the loss function of WTP can be defined as

LWTP(ψ, et) = LCE(ψ, et) + λLCR(et). (6)

Therefore, the adapted representations of new classes can be well distinguished for WTP while
avoiding overlap with the previous ones. λ is a hyperparamter to balance the impact of old classes.

Second, we improve TII and TAP through leveraging the approximated distributions of unadapted
and adapted representations, respectively. For HTII, we construct an auxiliary output layer ĥω :
RD → RT parameterized by ω, learning explicitly the projection from unadapted representations to
task identity via cross-entropy:

LTII(ω) =
1∑t

i=1 |Yi|

t∑
i=1

∑
c∈Yi

∑
ĥ∈Ĥi,c

− log
exp(ĥω(ĥ)[i])∑t
j=1 exp(ĥω(ĥ)[j])

, (7)

where Ĥi,c is constructed by sampling an equal number of pseudo representations from Ĝc for c ∈ Yi
and i = 1, ..., t. Similarly, the final output layer hψ : RD → R|Y| is further optimized for HTAP:

LTAP(ψ) =
1∑t

i=1 |Yi|

t∑
i=1

∑
c∈Yi

∑
h∈Hi,c

− log
exp(hψ(h)[c])∑t

j=1

∑
c′∈Yj

exp(hψ(h)[c′])
, (8)

where Hi,c is constructed by sampling an equal number of pseudo representations from Gc for
c ∈ Yi and i = 1, ..., t. As ω and ψ are usually light-weight, the optimization of TII and TAP is
computationally efficient. At test time, our approach predicts the task identity i = ĥω(fθ(x)) and
then the label y = hψ(fθ(x; ei)). Please refer to Appendix Algorithm 1 for more details.

4 Experiment

Experimental Setup: We consider two CIL benchmarks that are widely used for downstream
continual learning [19, 18, 12], such as Split ImageNet-R [5] of 200-class natural images and Split
CUB-200 [14] of 200-class bird images, randomly split into 10 incremental tasks. After learning
multiple incremental tasks, we further evaluate upstream continual learning with the ability of
few-shot learning, i.e., adapting the backbone to a N-way K-shot task [1] randomly sampled from
subsequent unseen classes. We consider supervised and self-supervised pre-training on ImageNet-
21K, denoted as Sup-21K and iBOT-21K, respectively. Our implementation is detailed in Appendix B.

Experimental Result: We implement two representative PEFT techniques as the task-specific
parameters in our approach, such as Prompt [3] (adjusting intermediate inputs through prepending
a short sequence of learnable prompt parameters) and LoRA [2] (adjusting backbone parameters
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Table 1: Performance of downstream continual learning. PTM: pre-trained model. FAA: final average
accuracy. CAA: cumulative average accuracy. FFM: final forgetting measure.

PTM Method
Split ImageNet-R Split CUB-200

FAA (↑) CAA (↑) FFM (↓) FAA (↑) CAA (↑) FFM (↓)

Sup-21K

L2P [19] 63.65 67.25 7.51 75.58 80.32 6.38
DualPrompt [18] 68.79 71.96 4.49 81.32 83.45 5.31
S-Prompt [17] 69.68 72.50 3.29 81.51 83.24 4.48
CODA-Prompt [12] 70.03 74.26 5.17 74.34 80.71 7.42
Ours-Prompt 73.55 75.93 0.95 84.60 83.87 0.21
Ours-LoRA 69.59 74.18 8.68 85.26 86.56 3.58

iBOT-21K

L2P [19] 55.35 58.62 3.73 45.93 56.02 9.20
DualPrompt [18] 54.55 58.69 5.38 41.46 54.57 14.03
S-Prompt [17] 55.16 58.48 4.07 39.88 53.71 13.15
CODA-Prompt [12] 61.22 66.76 9.66 47.79 59.24 11.81
Ours-Prompt 70.63 72.94 1.31 72.27 73.66 1.94
Ours-LoRA 70.94 74.92 5.61 71.75 76.57 5.33

Table 2: Performance of upstream continual learning. After learning 8 incremental tasks, we present
the accuracy of learning each N-way K-shot (NWKS) task sampled from subsequent classes.

PTM Method
Split ImageNet-R Split CUB-200 Split CUB & Cars

5W1S (↑) 5W5S (↑) 5W1S (↑) 5W5S (↑) 5W1S (↑) 5W5S (↑)

Sup-21K
Ours-Prompt 49.88 67.88 77.50 80.63 65.87 82.13
Ours-LoRA 67.00 82.88 79.50 92.88 71.87 86.93

iBOT-21K
Ours-Prompt 42.87 64.63 36.50 62.88 34.87 58.93
Ours-LoRA 58.38 78.87 53.63 79.75 40.60 68.40

through adding a learnable low-rank parameter matrix). We first evaluate the performance of
downstream continual learning with different pre-training paradigms and CIL benchmarks. As shown
in Table 1, the performance of state-of-the-art prompt-based approaches degrades remarkably under
self-supervised pre-training (e.g., iBOT-21K) and fine-grained classification (e.g., Split CUB-200),
while both versions of our approach outperform them significantly.

On the other hand, a potential limitation of prompt-based methodologies is that, the pre-trained
knowledge in backbone parameters cannot be updated and enriched from incremental tasks, which
has been rarely discussed in previous literature. Motivated by this, we then consider upstream
continual learning, i.e., the ability of accumulating knowledge in backbone parameters. Specifically,
after downstream continual learning of multiple incremental tasks, we evaluate the performance of
the backbone to perform few-shot learning of an additional task randomly sampled from subsequent
unseen classes. As shown in Table 2, the backbone adapted by the LoRA version of our approach
acquires strong improvements in few-shot learning, compared to the unadapted backbone of the
Prompt version. In addition to Split ImageNet-R and Split CUB-200 that split all tasks from the
same dataset, we further consider a mixture of tasks sampled from CUB-200 [14] and Cars-196 [4]
datasets, where the improvements remain significant. These results demonstrate the importance and
feasibility of synchronizing upstream and downstream continual learning.

5 Discussion

In this work, we propose a general framework for continual learning in the context of pre-training,
with decomposing the objective into three hierarchical components (i.e., WTP, TII and TAP) and
optimizing them explicitly with PEFT techniques and representation statistics. Through extensive
experiments, we demonstrate the superiority and generality of our approach in downstream continual
learning, and further elaborate on the importance of upstream continual learning, which requires
updating the backbone parameters rather than instructing only (intermediate) inputs. Interestingly,
the proposed framework requires sequential invocation of the unadapted and (task-specific) adapted
representations for inference, which is consistent with recent advances in biological learning and
memory [7, 6] that the activation of non-memory cells and memory cells (as well as their specific
sub-populations) is internally switched. This connection potentially bridges the intrinsic mechanisms
of biological and artificial intelligence in acquisition of open-world knowledge. Based on the above
discussion, we believe that the strong ability of continual learning would be a critical component in
realizing intrinsically motivated open-ended learning.
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Figure 1: The proposed framework for continual learning with pre-training.

Algorithm 1 Training Algorithm of Our Approach
Input: Pre-trained transformer backbone fθ, training sets D1, ...,DT , number of tasks T , number of
epochs E, hyperparameters τ and λ.
Output: Parameters e1, ..., eT , ω and ψ

1: Initialize e1, ω and ψ
2: for t = 1, ..., T do
3: for c ∈ Yt do
4: Obtain Ĝc from fθ and Dt ▷ Unadapted Representations
5: if t > 1 then
6: Initialize et ← et−1

7: for epoch = 1, ..., E do
8: Optimize et and ψ with LWTP in Eq. (6) ▷ Within-Task Prediction
9: Optimize ω with LTII in Eq. (7) ▷ Task-Identity Inference

10: Optimize ψ with LTAP in Eq. (8) ▷ Task-Adaptive Prediction
11: for c ∈ Yt do
12: Obtain Gc from fθ, et and Dt ▷ Adapted Representations
13: return (e1, ..., eT , ω, ψ)

A Theoretical Foundation

A.1 Class-Incremental Learning (CIL)

Proof of Theorem 1

Proof. For class-incremental learning (CIL) with pre-training, assume Ex[HWTP(x)] ≤ δ,
Ex[HTII(x)] ≤ ϵ, and Ex[HTAP(x)] ≤ η. Let y = Yī,j̄ be the ground truth of an x, where
ī ∈ {1, ..., t} and j̄ ∈ {1, ..., |Yi|} denote the task identity and within-task index, respectively.

As we defined,

HWTP(x) = H(1j̄ , {P (x ∈ Xī,j |x ∈ Xī,D, θ)}j)
= − logP (x ∈ Xī,j̄ |x ∈ Xī,D, θ),

(9)

HTII(x) = H(1ī, {P (x ∈ Xi|D, θ)}i)
= − logP (x ∈ Xī|D, θ),

(10)

HTAP(x) = H(1c̄, {P (x ∈ X c|D, θ)}c)
= − logP (x ∈ X c̄|D, θ)
= − logP (x ∈ X y|D, θ).

(11)
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Then, we have
H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)
= − logP (x ∈ Xī,j̄ |D, θ)
= − log(P (x ∈ Xī,j̄ |x ∈ Xī,D, θ)P (x ∈ Xī|D, θ))
= − logP (x ∈ Xī,j̄ |x ∈ Xī,D, θ)− logP (x ∈ Xī|D, θ)
= HWTP(x) +HTII(x).

(12)

Taking expectations on Eq. (11), we have

L1 = Ex[HTAP(x)] ≤ η. (13)

Taking expectations on both sides of Eq. (12), we have

L2 = Ex[H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)]
= Ex[HWTP(x)] + Ex[HTII(x)]

≤ δ + ϵ.

(14)

Since our objective of CIL with pre-training is max[P (x ∈ Xī,j̄ |D, θ), P (x ∈ X y|D, θ)], then we
have the loss error

L = max{Ex[H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)],Ex[HTAP(x)]}
= max{L2,L1}
= max{δ + ϵ, η}.

(15)

This finishes the proof.

Proof of Theorem 2
Proof. For CIL with pre-training, its loss error L ≤ ξ. Assume x ∈ Xī,j̄ ⊆ Xī. According to the
proof of Theorem 1, we have

HWTP(x) = − logP (x ∈ Xī,j̄ |x ∈ Xī,D, θ)

= − log
P (x ∈ Xī,j̄ |D, θ)
P (x ∈ Xī|D, θ)

≤ − logP (x ∈ Xī,j̄ |D, θ)
= H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)
= L2 ≤ ξ.

(16)

Likewise, we have
HTII(x) = − logP (x ∈ Xī|D, θ)

= − log
P (x ∈ Xī,j̄ |D, θ)

P (x ∈ Xī,j̄ |x ∈ Xī,D, θ)
≤ − logP (x ∈ Xī,j̄ |D, θ)
= H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)
= L2 ≤ ξ.

(17)

In addition, we have formulated the final goal of CIL as a multi-objective optimization problem, i.e.,
max[P (x ∈ Xī,j̄ |D, θ), P (x ∈ X y|D, θ)]. Then, each objective must guarantee the loss error less
than ξ, i.e.,

HTAP(x) = − logP (x ∈ X y|D, θ)
= L1 ≤ ξ.

(18)

This finishes the proof.

A.2 Domain-Incremental Learning (DIL)

For domain-incremental learning (DIL), Let Xt =
⋃
j Xt,j and Yt = {Yt,j}, where j ∈ {1, ..., |Yt|}

denotes the j-th class in task t. Now assume we have a ground event denoted as D = {D1, ...,Dt}
and a pre-trained model fθ. For any sample x ∈

⋃t
k=1 Xk, a general goal of the DIL problem is to

8



learn P (x ∈ X∗,j |D, θ), where X∗,j represents the j-th class domain in any task. Of note, Yt = Yt′ ,
∀t ̸= t′ for DIL. This can be decomposed into two probabilities, including task-identity inference
(TII) and within-task prediction (WTP), denoted as P (x ∈ Xi|D, θ) and P (x ∈ Xi,j |x ∈ Xi,D, θ),
respectively. Based on Bayes’ theorem, we have

P (x ∈ X∗,j |D, θ) =
∑
i

P (x ∈ Xi,j |x ∈ Xi,D, θ)P (x ∈ Xi|D, θ), (19)

where {∗, j} represents the j-th class in each domain.

Then we have the following theorems in terms of the sufficient and necessary conditions for improving
DIL with pre-training.

Theorem 3 For domain-incremental learning with pre-training, if Ex[HWTP(x)] ≤ δ,
Ex[HTII(x)] ≤ ϵ, and Ex[HTAP(x)] ≤ η, we have the loss error L ∈ [0,max{δ + ϵ+ log t, η}],
regardless whether WTP, TII and TAP are trained together or separately.

Proof of Theorem 3

Proof. Let j̄ ∈ {1, ..., |Yt|} and y ∈ Yt be the ground truth of an x w.r.t. the within-task index
and class label, and y = Yi,j̄ for any i ∈ {1, ..., t}. Eq. (19) suggests that if we can improve either
the WTP performance P (x ∈ Xi,j̄ |x ∈ Xi,D, θ), the TII performance P (x ∈ Xi|D, θ), or both,
then the DIL performance P (x ∈ X y|D, θ) would be improved. However, such an improvement
is limited since it is upper-bounded by WTP or TII. To further improve the DIL performance,
we propose a hierarchical decomposition of the objective. That is, besides the improvement of
P (x ∈ X∗,j̄ |D, θ), we also need to directly improve the performance of task-adaptive prediction
(TAP), denoted as P (x ∈ X y|D, θ), where y ∈ {1, ..., |Yt|}, X y represents the domain of class y
in all observed domains, and X y =

⋃
i Xi,j̄ . Then the final goal of DIL is formulated as a multi-

objective optimization problem, i.e., max[P (x ∈ X∗,j̄ |D, θ), P (x ∈ X y|D, θ)]. Notice that the
WTP probability is a categorical distribution over all observed domains {1 : t}, while the TAP
probability is over all observed classes

⋃t
k=1 Yk.

As similarly defined in CIL, here

HWTP(x) = H(1j̄ , {P (x ∈ Xi,j |x ∈ Xi,D, θ)}j)
= − logP (x ∈ Xi,j̄ |x ∈ Xi,D, θ),

(20)

HTII(x) = H(γ, {P (x ∈ Xi|D, θ)}i)
= −γi logP (x ∈ Xi|D, θ),

(21)

HTAP(x) = H(1c̄, {P (x ∈ X c|D, θ)}c)
= − logP (x ∈ X c̄|D, θ)
= − logP (x ∈ X y|D, θ),

(22)

where γ = {γi}ti=1 represents the possibility of x belonging to each observed domain, γi ∈ [0, 1]
and

∑
i γi = 1.

Then, for any simplex γ, we have

H(1j̄ , {P (x ∈ X∗,j |D, θ)}j)
= − logP (x ∈ X∗,j̄ |D, θ)

= − log(
∑
i

P (x ∈ Xi,j̄ |x ∈ Xi,D, θ)P (x ∈ Xi|D, θ))

≤ −
∑
i

γi log(
P (x ∈ Xi,j̄ |x ∈ Xi,D, θ)P (x ∈ Xi|D, θ)

γi
)

= −
∑
i

γi logP (x ∈ Xi,j̄ |x ∈ Xi,D, θ)−
∑
i

γi logP (x ∈ Xi|D, θ) +
∑
i

γi log(γi)

=
∑
i

γiHWTP +HTII +H(γ).

(23)
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Taking expectations on Eq. (22), we have

L1 = Ex[HTAP(x)] ≤ η. (24)

Taking expectations on both sides of Eq. (23), we have

L2 = Ex[H(1j̄ , {P (x ∈ X∗,j |D, θ)}j ]

≤
∑
i

γiEx[HWTP(x)] + Ex[HTII(x)] +H(γ)

≤ δ + ϵ+ log t.

(25)

Since our objective of DIL with pre-training is max[P (x ∈ X∗,j̄ |D, θ), P (x ∈ X y|D, θ)], then we
have the loss error

L = max{Ex[H(1j̄ , {P (x ∈ X∗,j |D, θ)}j)],Ex[HTAP(x)]}
= max{L2,L1}
= max{δ + ϵ+ log t, η}.

(26)

This finishes the proof.

Theorem 4 For domain-incremental learning with pre-training, if the loss error L ≤ ξ, then there
always exist (1) a WTP, s.t. HWTP ≤ ξ; (2) a TII, s.t. HTII ≤ ξ; and (3) a TAP, s.t. HTAP ≤ ξ.

Proof of Theorem 4 For DIL with pre-training, its loss error L = max[L1,L2] ≤ ξ. Assume
x ∈ X∗,j̄ ⊆ X y. According to the proof of Theorem 3, if we define P (x ∈ Xi,j̄ |D, θ) = P (x ∈
X∗,j̄ |D, θ), we have

HWTP(x) = − logP (x ∈ Xi,j̄ |x ∈ Xi,D, θ)

= − log
P (x ∈ Xi,j̄ |D, θ)
P (x ∈ Xi|D, θ)

≤ − logP (x ∈ Xi,j̄ |D, θ)
= − logP (x ∈ X∗,j̄ |D, θ)
= H(1j̄ , {P (x ∈ X∗,j |D, θ)}j)
= L2 ≤ ξ.

(27)

Likewise, if we define γi = 1 and γi′ = 0 for i′ ̸= i, we have

HTII(x) = −
∑
i

γi logP (x ∈ Xi|D, θ)

= − logP (x ∈ Xi|D, θ)

= − log
P (x ∈ Xi,j̄ |D, θ)

P (x ∈ Xi,j̄ |x ∈ Xi,D, θ)
≤ − log(x ∈ Xi,j̄ |D, θ)
= − log(x ∈ X∗,j̄ |D, θ)
= H(1j̄ , {P (x ∈ X∗,j |D, θ)}j)
= L2 ≤ ξ.

(28)

In addition, we have formulated the final goal of DIL as a multi-objective optimization problem, i.e.,
max[P (x ∈ X∗,j̄ |D, θ), P (x ∈ X y|D, θ)]. Then, each objective must guarantee the loss error less
than ξ, i.e.,

HTAP(x) = − logP (x ∈ X y|D, θ)
= L1 ≤ ξ.

(29)

This finishes the proof.

A.3 Task-Incremental Learning (TIL)

For task-incremental learning (TIL), let Xt =
⋃
j Xt,j and Yt = {Yt,j}, where j ∈ {1, ..., |Yt|}

indicates the j-th class in task t. Now assume we have a ground event denoted as D = {D1, ...,Dt}
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and a pre-trained model fθ. For any sample x ∈
⋃t
k=1 Xk, a general goal of the TIL problem is to

learn P (x ∈ Xī,j |x ∈ Xī,D, θ), where ī ∈ {1, ..., t} and j ∈ {1, ..., |Yī|}. This can be equivalent to
within-task prediction (WTP). Different from CIL, the task identity is provided in TIL. Unlike DIL,
Yt ∩ Yt′ = ∅, ∀t ̸= t′. Then we have the following theorems in terms of the sufficient and necessary
conditions for improving TIL with pre-training.

Theorem 5 For task-incremental learning with pre-training, Ex[HTII(x)] = 0, and task-adaptive
prediction (TAP) is degraded into within-task prediction (WTP). If Ex[HWTP(x)] ≤ δ, we have the
loss error L ∈ [0, δ].

Proof of Theorem 5

Proof. For task-incremental learning (TIL) with pre-training, assume Ex[HWTP(x)] ≤ δ. Given
an x with the task identity ī ∈ {1, ..., t}, let j̄ ∈ {1, ..., |Yi|} be the ground truth of x w.r.t. the
within-task index, and y = Yī,j̄ be the ground truth label of x.

As similarly defined in CIL, here
HWTP(x) = H(1j̄ , {P (x ∈ Xī,j |x ∈ Xī,D, θ)}j)

= − logP (x ∈ Xī,j̄ |x ∈ Xī,D, θ),
(30)

HTII(x) = H(1ī, {P (x ∈ Xi|D, θ)}i)
= − logP (x ∈ Xī|D, θ)
= − log 1 = 0,

(31)

HTAP(x) = H(1c̄, {P (x ∈ X c|x ∈ Xī,D, θ)}c)
= − logP (x ∈ X c̄|x ∈ Xī,D, θ)
= − logP (x ∈ X y|x ∈ Xī,D, θ)
= HWTP(x).

(32)

Then, we have
H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)
= − logP (x ∈ Xī,j̄ |D, θ)
= − log(P (x ∈ Xī,j̄ |x ∈ Xī,D, θ)P (x ∈ Xī|D, θ))
= − logP (x ∈ Xī,j̄ |x ∈ Xī,D, θ)− logP (x ∈ Xī|D, θ)
= HWTP(x) +HTII(x)

= HWTP(x).

(33)

Taking expectations on both sides of Eq. (33), we have
L = Ex[H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)]
= Ex[HWTP(x)]

≤ δ.

(34)

Since our objective of TIL with pre-training is P (x ∈ Xī,j̄ |x ∈ Xī,D, θ), then we have the loss error
L ≤ δ. This finishes the proof.

Theorem 6 For task-incremental learning with pre-training, if the loss error L ≤ ξ, then there
always exists a WTP, s.t. HWTP ≤ ξ.

Proof of Theorem 6
For TIL with pre-training, its loss error L ≤ ξ. Assume x ∈ Xī,j̄ ⊆ Xī. According to the proof of
Theorem 5, we have

HWTP(x) = − logP (x ∈ Xī,j̄ |x ∈ Xī,D, θ)

= − log
P (x ∈ Xī,j̄ |D, θ)
P (x ∈ Xī|D, θ)

≤ − logP (x ∈ Xī,j̄ |D, θ)
= H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)
≤ ξ.

(35)

This finishes the proof.
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B Implementation Details

In this section, we describe the implementation details of all experiments.

Baseline: We follow the same implementations for all baselines as their original papers [19, 18, 12]
(except S-Prompt that was originally designed for domain-incremental learning), which have been
shown to yield strong performance. Specifically, L2P [19] is implemented with M = 30 for the
total number of prompts (M = 10 [19] and M = 30 [18] have similar results), Lp = 5 for the
prompt length, and N = 5 for the Top-N keys. DualPrompt [18] is implemented with Lg = 5 for
the prompt length of task-sharing prompts g inserted into layers 1-2 and Le = 20 for the prompt
length of task-specific prompts e inserted into layers 3-5. S-Prompt [17] is implemented similarly to
DualPrompt but replaces all task-sharing prompts with task-specific prompts, i.e., the task-specific
prompts are inserted into layers 1-5 with prompt length Le = 20. CODA-Prompt [12] is implemented
with M = 100 for the total number of prompts and Lp = 8 for the prompt length, inserted into the
same layers 1-5 as DualPrompt and S-Prompt. Ours-Prompt adopts a similar architecture as S-Prompt,
but replaces the task-specific keys with an auxiliary output layer ĥω to predict the task identity and
further preserves statistics of unadapted and adapted representations. Compared with Ours-Prompt,
Ours-LoRA replaces the prompt parameters with LoRA parameters inserted into corresponding
layers. The hyperparameters of LoRA are set to rank = 8 and scaling = 1/rank, with only the value
projection parameters of each layer implemented LoRA. We additionally implement a dataset-shared
LoRA updated by sequential fine-tuning, adding it to the backbone for few-shot learning. For Split
CUB & Cars that includes multiple datasets, we use the TII function to predict which dataset-shared
LoRA to use. The hyperparameters of contrastive regularization in our approach are set to τ = 0.8
and λ = 0.1.

Training Regime: Following the implementations of previous work [19, 18], we employ a pre-trained
ViT-B/16 backbone, an Adam optimizer (β1 = 0.9, β2 = 0.999) and a batch size of 128. The learning
rate is set to 0.001 with cosine decay for CODA-Prompt, compared to 0.005 for other approaches.
The total number of epcohs is set to 50 for all approaches.

Evaluation Metric: We focus on three evaluation metrics for downstream continual learning,
including the final average accuracy (FAA), cumulative average accuracy (CAA) and final forgetting
measure (FFM). Specifically, we define the accuracy on the i-th task after learning the t-th task asAi,t,
and define the average accuracy of all seen tasks as AAt = 1

t

∑t
i=1Ai,t. After learning all T tasks,

we report FAA = AAT , CAA = 1
T

∑T
t=1AAt, and FFM = 1

T−1

∑T−1
i=1 maxt∈{1,...,T−1}(Ai,t −

Ai,T ). FAA is the primary metric to evaluate the final performance of continual learning, CAA further
reflects the historical performance, and FFM serves as a measure of catastrophic forgetting. For
upstream continual learning, we randomly sample multiple N-way K-shot tasks to perform few-shot
learning and present their average accuracy.
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