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ABSTRACT

Diffusion models have shown tremendous potential for high-quality image gen-
eration in recent years. Accordingly, there has been a rising focus on security
threats associated with diffusion models, primarily because of their potential for
malicious utilization. Recent studies have shown diffusion models are vulnerable
to backdoor attack, which can make diffusion models generate designated target
images given corresponding triggers. However, current backdoor attacks depend
on manually designed trigger generation functions, which are usually visible pat-
terns added to input noise, making them easily detected by human inspection. In
this paper, we propose a novel and general optimization framework to learn invis-
ible trigger, making the inserted backdoor more stealthy and robust. Our proposed
framework can be applied to both unconditional and conditional diffusion mod-
els. In addition, for conditional diffusion models, we are the first to show how to
backdoor diffusion models in text-guided image editing/inpainting pipeline. Ex-
tensive experiments on various commonly used samplers and datasets verify the
effectiveness and stealthiness of the proposed framework. Our code is publicly
available on https://github.com/invisibleTriggerDiffusion/
invisible_triggers_for_diffusion.

1 INTRODUCTION

Recently, diffusion models have demonstrated high-quality and diverse image generation capabil-
ity (Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Ho & Salimans, 2022;
Nichol et al., 2021). Based on diffusion models, many popular applications have been developed
including GLIDE (Nichol et al., 2021), Imagen (Saharia et al., 2022), and Stable Diffusion (Rom-
bach et al., 2022), which provide a great tool for creative content generation. By slowly adding
random noise to data, diffusion models learn to reverse the diffusion process to construct desired
data samples from the noise. However, this procedure also brings new security threats. Salman et al.
(2023) manages to conduct adversarial attack with diffusion models and uses them to prevent im-
ages from malicious editing. They proposes to use adversarial examples instead of original images
to create unrealistic images after editing. Also, backdoor attacks have also been studied in diffusion
models (Chou et al., 2023a; Chen et al., 2023b; Chou et al., 2023b; Struppek et al., 2022), showing
the potential threat caused by backdooring the diffusion procedure. However, they either inject vis-
ible image triggers and additional text into input noise/prompt to backdoor diffusion models (Chou
et al., 2023a; Chen et al., 2023b; Chou et al., 2023b), or replace input text characters with non-Latin
characters to backdoor only text encoder, instead of diffusion models (Struppek et al., 2022). Albeit
achieving high success rate, triggers in Chou et al. (2023a) and Chen et al. (2023b) can be easily
detected by human inspection. To the best of our knowledge, none of the previous works have con-
sidered invisible image triggers for backdooring diffusion models, which means that the security
threat posed by backdoor attacks has not been fully explored. For more detailed discussion on the
importance and motivation of backdooring diffusion models with invisible triggers, please refer to
Appendix B.

In this paper, as shown in Figure 1, we explore backdoor attacks with invisible image triggers for
both unconditional and conditional diffusion models. Specifically, we propose a novel and general
framework formulated by bi-level optimization to learn (input-aware) invisible triggers. In the inner
optimization, given the fixed diffusion model, a trigger generator is optimized to make the diffusion
model generate target image when sampled with the generated trigger and, at the same time, keep the
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Figure 1: Illustration for our proposed invisible triggers, and visible triggers used in Chou et al.
(2023a;b); Chen et al. (2023b).

trigger invisible. In the outer optimization, given the fixed trigger generator, the diffusion model is
optimized to achieve a good performance on both clean data and poisoned data. Therefore, under our
framework, backdooring on conditional and unconditional diffusion model could be incorporated
into one optimization problem. Note that although previous works (Doan et al., 2021b;a) also utilize
a bi-level optimization to achieve invisible triggers, learning an invisible backdoor trigger in the
context of diffusion models is totally different than finding one in the classification model. For
detailed discussion, please refer to Appendix C. We also manage to derive a general loss function to
handle a series of efficient samplers such as DDIM (Song et al., 2020) and DPMSolver (Lu et al.,
2022) instead of only one sampler as in Chou et al. (2023a). We then derive the loss function
accordingly given different priors. Specifically, when the prior is a random Gaussian noise for the
unconditional diffusion model, we train the diffusion model to learn different distribution mappings
so that the diffusion model would generate the target image given an initial noise that contains the
trigger. We show the proposed framework are able to insert more than one trigger-target pair and
generate a instance adaptive initial noise rather than a uniform perturbation. For the conditional
diffusion model, by learning a simple neural network to generate instance-adaptive and invisible
trigger, we manage to insert backdoor into the the additional priors so that the conditional diffusion
model would generate the target image regardless of any given text. While previous works focus on
designing the trigger in the text domain, we are the first to successfully plant the invisible backdoor
into the image space.

To summarize, for the first time, we propose a novel and general optimization framework to in-
ject (input-aware) invisible image triggers into both unconditional and conditional diffusion models,
which makes the injected backdoor more stealthy and robust. Specifically, for the unconditional
generation, we also derive a general loss function which makes the trained diffusion models appli-
cable to a wide range of commonly used samplers. On the other hand, for the conditional generation,
we are also the first to show how to backdoor conditional diffusion models in the text-guided image
editing/inpainting pipeline. We conduct extensive experiments on various datasets and samplers to
show the effectiveness of the proposed framework.

2 RELATED WORK

Diffusion models As a new family of powerful generative models, diffusion models could achieve
superb performance on high-quality image synthesis (Ho et al., 2020; Nichol et al., 2021; Saharia
et al., 2022; Rombach et al., 2022). They have shown impressive results on various tasks, such as
class-to-image generation (Dhariwal & Nichol, 2021; Ho & Salimans, 2022), text-to-image gen-
eration (Saharia et al., 2022), image-to-image translation (Meng et al., 2021), text-guided image
editing/inpainting (Nichol et al., 2021; Rombach et al., 2022), and so on. With the powerful ca-
pability, the research community has started to focus on the potential security issues that diffusion
models may introduce. In this paper, we propose a strong attack framework which can make diffu-
sion models perform maliciously when some invisible patterns are injected into the input, revealing
the potential severe security risk that previous works did not cover.

Backdoor attacks on diffusion models Recently, diffusion models have been shown to be vul-
nerable to backdoor attacks (Chou et al., 2023a; Chen et al., 2023b; Chou et al., 2023b; Struppek
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et al., 2022). Struppek et al. (2022) proposed to backdoor the text encoder only in text-to-image dif-
fusion models by replacing text characters with non-Latin characters, showing the potential threat
in text-to-image generation. However, their method did not consider the backdoor threat on the dif-
fusion models, limiting the practical use of the method. Chou et al. (2023a) and Chen et al. (2023b)
proposed to backdoor diffusion models in different ways. Their methods focus on backdooring
unconditional diffusion models, which may not be applicable to backdoor diffusion models in con-
ditional case. Very recently, Chou et al. (2023b) proposed a unified framework on backdoor attack
for both unconditional diffusion models and text-to-image diffusion models. However, to the best of
our knowledge, none of previous works consider invisible triggers for backdoor attack in diffusion
models. In this paper, we propose a novel and general framework to inject invisible triggers into
both unconditional and conditional diffusion models. Moreover, we are also the first to show how to
backdoor conditional diffusion models in text-guided image editing/inpainting pipeline.

3 METHODOLOGY

3.1 THREAT MODEL

We consider a similar threat model to previous work (Chou et al., 2023a;b) where there are two
parties in the attack scenario. An attacker injects backdoors into diffusion models then releases
backdoored models and a user downloads pre-trained models from the web for further usage so that
the user can have full access to backdoored models. Also, the user will have a subset of clean data to
evaluate the performance of the models. The attacker is allowed to control the training procedure of
the diffusion including the training or fine-tuning. Also, modification on the training datasets is al-
lowed so that the attacker is capable to add some additional examples into training dataset. Through
the training, the attacker aims to release backdoored models that perform designated behavior when
the input is injected with the trigger and behave normally on inputs without the trigger. Hence
the attack goals are achieving high utility and high specificity of backdoored models. High utility
means the backdoored models should perform similarly to clean models and generate high quality
images that follow the training dataset distribution; high specificity means that the backdoored mod-
els should perform maliciously by generating target images once the trigger is in the initial noise or
inputs. Since current backdoor triggers all make poisoned images visually different from clean im-
ages and universal across all the inputs, they can be detected easily by universal perturbation-based
detection and human inspection. In this paper, we aims to learn input-aware invisible triggers to
make the injected backdoor stronger and more stealthy.

3.2 PRELIMINARY ON DIFFUSION MODELS

Diffusion models consist of two processes, the forward/diffusion process as a Markov chain and the
backward/reverse process (Ho et al., 2020). In the diffusion process, given an image sampled from
real data distribution, noise randomly sampled from Gaussian distribution is gradually added to the
image until it is transformed into noise. Specifically, Gaussian noise is gradually added to real data
x0 ∈ Rd sampled from the real data distribution q(x0) for T steps, producing a series of noisy
copies x1,x2, · · · ,xT ∈ Rd. As T → ∞, xT will follow the isotropic Gaussian distribution, i.e.,
xT ∼ N (0, I). More formally, the diffusion process is defined as

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI). (1)

By defining αt := 1− βt, ᾱt :=
∏t

s=1 αs, we have

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (2)

We can simulate the true data distribution by reversing the diffusion process described above. Hence
the reverse process can also be defined as a Markov chain with learned Gaussian transitions starting
from p(xT ) = N (xT ;0, I):

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)). (3)
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The training is performed by optimizing the variational lower bound, which can be further rewritten
as comparing the KL divergence between the pθ(xt−1|xt) and q(xt−1|xt,x0) as

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI), µ̃t(xt,x0) =
1

√
αt

(
xt(x0, ϵ)−

βt√
1− ᾱt

ϵ

)
,

(4)

where xt(x0, ϵ) =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I).

Due to the property of Gaussian distribution, the loss function can be further written as

L = Et,x0,ϵ

[
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
. (5)

3.3 OPTIMIZATION FRAMEWORK FOR LEARNABLE INVISIBLE TRIGGER

In this paper, we aim to inject invisible image triggers into both unconditional and conditional dif-
fusion models to make the backdoor more stealthy and effective. To this end, we formulate the
problem of injecting an invisible trigger in a bi-level optimization framework, which learns the in-
visible trigger to be inserted given different priors. For the purpose of generality, let g be a trigger
generator that generates invisible triggers given different priors P , A be the trigger insertion function
which inserts the invisible trigger generated by g into P , and y be the target image that the back-
doored diffusion model will generate when the trigger is activated. Let ϵθ be the diffusion model
which takes the prior P as input to predict the noise, and S denote the whole sampling process of
diffusion models which takes diffusion model ϵθ and P as input to generate real data by iterative
sampling. We first show the general optimization framework for different priors (i.e., unconditional
and conditional generation). Then we will elaborate on the specific parameterization of g and A for
different priors P in detail.

We formulate generating invisible backdoor for difussion model problem into a bi-level optimiza-
tion. In the inner optimization, we optimize the trigger generator g given fixed ϵθ to generate the
target image y. The MSE(mean squared error) is used as loss function to train g as:

Linner(ϵθ, P, g(P )) =
∥∥∥S(ϵθ,A(P, g(P ))

)
−y

∥∥∥2 . (6)

At the same time, to ensure the invisibility of the generated trigger, the generated trigger is bounded
by ℓp norm (ℓ∞ used in this paper), where we use PGD (Madry et al., 2017) optimization to force
the constraint. To optimize g, all intermediate results during sampling have to be stored to compute
the gradient with respect to g. Hence it becomes infeasible to sample many steps like the original
DDPM (Ho et al., 2020) sampling. Alternatively, we use DDIM (Song et al., 2020) to perform the
accelerated sampling process to make the optimization tractable.

For the outer optimization of bi-level optimization, we optimize the diffusion model ϵθ to correctly
predict the noise for both clean data and poisoned data (i.e., backdoor diffusion process). Let Louter

denote the loss function for the outer optimization, and details for Louter given different priors P
will be described later. Hence the loss function for outer optimization can be written as

Louter (ϵθ,x0, P, g(P ),y, t) . (7)

Hence the whole bi-level optimization framework for learnable invisible trigger can be written as

min
θ

Louter (ϵθ,x0, P, g
∗
θ(P ),y, t)

s.t. g∗θ = argmin
g

∥∥∥S(ϵθ,A(P, g(P ))
)
−y

∥∥∥2 , ∥g(P )∥∞ ≤ C, (8)

where ∥ ·∥∞ denotes the ℓ∞ norm, and C is the norm bound of the trigger. Given the general frame-
work in Equation 8, we now describe the specific parameterization of each term in the framework
for different priors.

3.3.1 BACKDOORING UNCONDITIONAL DIFFUSION MODEL

When we backdoor unconditional diffusion model, the prior could be regarded as random Gaussian
noise P = ϵ, ϵ ∼ N (0, I). Specifically, we optimize g as a universal trigger generator for any
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random noise sampled from N (0, I). That is, g(ϵ) = δ,∀ϵ ∼ N (0, I). The trigger injection
function A then could be defined as A(P, g(P )) = A(ϵ, δ) = δ + ϵ. In other words, we aim
to make the diffusion model generate the target image given any poisoned noise sampled from
N (δ, I). By generating different δ, our proposed method could insert multiple invisible universal
trigger-target pairs simultaneously. Furthermore, to make the trigger more invisible and versatile,
instead of keeping δ universal, we optimize g to be a trigger distribution N (δ, I) so that any noise
draw from the trigger distribution will make the diffusion model generate target image. Formally,
we make g(ϵ) = δ′ and A(P, g(P )) = δ′ + ϵ, δ′ ∼ N (δ, I), ϵ ∼ N (0, I). Keeping the trigger
invisible, our trigger generator is dynamic and sample-specific, which is able to bypass the current
universal perturbation-based detection and defense.

Given the above parameterization of g and A, we define the loss function Louter based on
DDIM (Song et al., 2020) where we aim to create a secrect mapping for poisoned data between
target image y and poisoned distribution N (δ, I) or N (δ′, I).

Let x′
0 = y (the target image distribution). x′

1,x
′
2, · · · ,x′

T ∈ Rd is then generated by gradually
adding noise into x′

0 where noise schedule is also controlled by βt. The backdoored forward process
is defined as:

qσ(x
′
1:T |x′

0) := qσ(x
′
T |x′

0)

T∏
t=2

qσ(x
′
t−1|x′

t,x
′
0), (9)

where qσ(x
′
T |x′

0) = N (
√
ᾱTx

′
0, (1 − ᾱT )I), and qσ(x

′
t−1|x′

t,x
′
0) = N (

√
ᾱt−1x

′
0 + (1 −

√
ᾱt−1)δ +

√
1− ᾱt−1 − σ2

t ·
x′

t−
√
ᾱtx

′
0−(1−

√
ᾱt)δ√

1−ᾱt
, σ2

t I).

The mean function in qσ(x
′
t−1|x′

t,x
′
0) is chosen to ensure that qσ(x′

t|x′
0) := N (x′

t;
√
ᾱtx

′
0 + (1−√

ᾱt)δ, (1 − ᾱt)I) (See Appendix A for proof). Using DDIM sampling process, we can directly
set σt = 0 to further simplify the derivation. the loss function based on the minimization of KL
divergence between parameterized pθ(x

′
t−1|x′

t) and qσ(x
′
t−1|x′

t,x
′
0) can be written as

Ex′
0,ϵ,t

[
∥ϵ+

√
ᾱt−1 −

√
ᾱt√

ᾱt−1

√
1− ᾱt −

√
ᾱt
√
1− ᾱt−1

δ − ϵθ(x
′
t(x

′
0, δ, ϵ), t)∥2

]
, (10)

where x′
t(x

′
0, δ, ϵ) =

√
ᾱtx

′
0 + (1 −

√
ᾱt)δ +

√
1− ᾱtϵ. We defer the detailed derivation in

the appendix A. To let the diffusion model learn different distribution mapping, we construct the
poisoned dataset as D = {Dc,Dp} where Dc denotes the clean data and Dp is the poisoned data.
Now we can combine the loss function for backdooring diffusion process with loss function for
clean diffusion process to obtain Louter for the outer optimization. The training algorithm under the
bi-level optimization framework is shown in Algorithm 1. During training, for poisoned sample and
clean sample, we design the following loss function:

Louter (ϵθ,x0, ϵ, δ,y, t) ={
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2, if x0 ∈ Dc,

∥ϵ+
√
ᾱt−1−

√
ᾱt√

ᾱt−1

√
1−ᾱt−

√
ᾱt

√
1−ᾱt−1

δ − ϵθ(x
′
t(y, δ, ϵ), t)∥2, if x0 ∈ Dp.

(11)

To be noted, although our loss is derived from DDIM, our proposed framework could choose a wide
range of samplers such as DDIM (Song et al., 2020), DPMSolver (Lu et al., 2022) etc.

3.3.2 BACKDOORING CONDITIONAL DIFFUSION MODEL

Different from the above unconditional diffusion models in which the prior is random noise, con-
ditional diffusion models can have various priors, such as texts, images, masked images, and even
sketches (Ramesh et al., 2021; Nichol et al., 2021; Meng et al., 2021; Saharia et al., 2022; Rombach
et al., 2022). Since the prior are all natural images and texts, it is thus crucial to make the trig-
ger invisible where previously used visible triggers (Chou et al., 2023a; Chen et al., 2023b; Chou
et al., 2023b) can be detected without any effort. For simplicity, we formulate how to learn invisible
triggers for conditional diffusion model in the text-guided image editing pipeline used in (Nichol
et al., 2021). For text-guided image editing, the priors consist of the masked image to be edited, a
mask marking editing regions, and text (Nichol et al., 2021; Rombach et al., 2022). Unlike previous
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Algorithm 1 Backdoored diffusion model training given the prior is random noise, i.e., uncondi-
tional generation.

1: Input: K,D, stepsizes α and β, initializations δ0 and θ0, target image y, dataset D = {Dc,Dp}.
2: for k = 0, 1, 2, ...,K do
3: Set δ0

k = δD
k−1 if k > 0 and δ0 otherwise

4: for i = 1, ...., D do
5: ϵ̃ ∼ N (0, I)

6: δ̃i
k = δi−1

k − α∇δLinner(ϵθk , ϵ̃, δ
i−1
k )

7: δi
k = Proj∥·∥∞≤C(δ̃

i
k)

8: end for
9: x0 ∼ {Dc,Dp}

10: t ∼ Uniform({1, . . . , T})
11: ϵ ∼ N (0, I)
12: Compute gradient∇θLouter

(
ϵθk ,x0, ϵ, δ

D
k ,y, t

)
13: Update θk+1 = θk − β∇θLouter

(
ϵθk ,x0, ϵ, δ

D
k ,y, t

)
14: end for

works (Struppek et al., 2022; Chou et al., 2023b) that insert the backdoor into text representation,
to best of our knowledge, not only are we the first to propose a general framework to learn invisible
triggers but also the first to show how to backdoor text-guided image editing/inpainting pipeline.

Let the masked image be x̃ = x0 ⊙M where M is the binary mask. Let c be the text instruction
for editing. Then the priors can be written as P = {x̃,M , c}. The aim of invisible triggers in
this pipeline is to only insert imperceptible perturbation into masked natural images x̃ to backdoor
diffusion models. In this setting, we have to ensure that there is no perturbation/trigger in the masked
region, or the inserted trigger can be immediately detected since the pixel values must be 0 in the
masked region. To this end, we parameterize the trigger generator g with a simple 6-layer neural
network to learn input-aware triggers given masked image x̃, mask M , and target image y. Let
δMx0

= g(x̃,M ,y) be the generated input-aware triggers. To ensure there is no perturbation in the
masked region, we directly constrain the generated trigger to have zero value on the masked region.

We consider two kinds of masks, rectangular masks and free-form masks proposed in (Yu et al.,
2019), which can mimic the user-specified masks used in real-world applications. Note that due to
the existence of additional priors, the sampling process is different now. With the additional priors,
classifier-free guidance is used to generate images conditioned on additional priors (Ho & Sali-
mans, 2022; Nichol et al., 2021). The predicted noise is computed as (1 − γ)ϵθ(xt, t, x̃,M , ∅) +
γϵθ(xt, t, x̃,M , c) where γ is a hyperparameter that controls the strength of guidance (Ho & Sali-
mans, 2022).

As defined in the threat model, the attacker aims to generate the target image y when the backdoor
trigger is activated. This asks the conditional diffusion model should output the same target image
regardless of any given text. In other words, the diffusion models should predict the same noise
whenever there are triggers in the masked image. By setting the text to be a empty string, we mimic
the aforementioned procedure as ϵθ(xt, t, x̃ + δMx0

,M , c) = ϵθ(xt, t, x̃ + δMx0
,M , ∅). Therefore,

in the inner optimization, we perform the sampling process independently with c or ∅, similar to the
above unconditional sampling instead of classifier-free guidance sampling, to generate target image.

We summarize the training algorithm to insert backdoor in conditional diffusion models in Algo-
rithm 2. Given x0 ∼ {Dc,Dp}, for the clean training (i.e., x0 ∈ Dc), we add noise to x0 and
optimize ϵθ which takes noisy x0,x0 ⊙ M ,M and c as input to predict noise. For the backdoor
training (i.e., x0 ∈ Dp), we firstly sample clean data xc ∼ Dc, compute the corresponding masked
version as (xc ⊙ M), and generate the injected trigger δMxc

for the masked image. Then we add
noise to target image y, and optimize ϵθ which takes noisy y, (xc ⊙M + δMxc

),M , and c as input,
to predict the noise. Hence Louter for the outer optimization can be written as

Louter

(
ϵθ,x0,M , c, δMxc

,y, t
)
={

∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t,x0 ⊙M ,M , c)∥2, if x0 ∈ Dc,

∥ϵ− ϵθ(
√
ᾱty +

√
1− ᾱtϵ, t,xc ⊙M + δMxc

,M , c)∥2, if x0 ∈ Dp.
(12)
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Algorithm 2 Backdoored diffusion model training given the priors are masked image, mask, and
text, i.e., conditional generation.

1: Input: K,D, stepsizes α and β, initializations g0 and θ0, target image y, datasetD = {Dc,Dp}, function
GenerateRandomMask() for generating random masks.

2: for k = 0, 1, 2, ...,K do
3: Set g0k = gDk−1 if k > 0 and g0 otherwise
4: for i = 1, ...., D do
5: M ′ ← GenerateRandomMask()
6: (x0, c) ∼ {Dc,Dp}. Set c = ∅ with probability 50%.
7: δ̃M

x0,i = gi−1
k (x0 ⊙M ′,M ′,y)⊙M ′

8: δM
x0,i = Proj∥·∥∞≤C(δ̃

M
x0,i)

9: gik = gi−1
k − α∇gLinner(ϵθk ,x0 ⊙M ′,M ′, c, δM

x0,i)
10: end for
11: (x0, c) ∼ {Dc,Dp}. Set c = ∅ with probability 50%.
12: t ∼ Uniform({1, . . . , T})
13: M ← GenerateRandomMask()
14: if x0 ∈ Dp then
15: Sample xc ∼ Dc

16: δ̃M
xc

= gDk (xc ⊙M ,M ,y)⊙M

17: δM
xc

= Proj∥·∥∞≤C(δ̃
M
xc
)

18: end if
19: Compute gradient∇θLouter

(
ϵθ,x0,x0 ⊙M ,M , c, δM

xc
,y, t

)
20: Update θk+1 = θk − β∇θLouter

(
ϵθ,x0,x0 ⊙M ,M , c, δM

xc
,y, t

)
21: end for

4 EXPERIMENTAL RESULTS

4.1 IMPLEMENTATION DETAILS

To verify the effectiveness and stealthiness of the proposed framework, we conduct extensive exper-
iments in this section. For unconditional generation, we conduct the experiments on two commonly
used datasets, CIFAR10(32×32) (Krizhevsky et al., 2009) and CELEBA-HQ(256×256) (Liu et al.,
2015) used in Chou et al. (2023a;b). For conditional generation, we follow the text-guided image
editing/inpainting pipeline in Nichol et al. (2021) and use the dataset MS COCO(64 × 64) (Lin
et al., 2014). The diffusion models are trained from scratch for 400 epochs on both CIFAR10 and
CELEBA-HQ for unconditional generation and we will also show that finetuning pre-trained models
with less epochs is also feasible to inject the proposed invisible backdoor. For conditional case, we
found that only finetuning for 5 epochs on about 10K images of MS COCO training data is enough to
learn input-aware invisible backdoor. The learning rate of inner optimization is 1e− 3 for all cases,
and for outer optimization, the learning rates are 2e−4, 8e−5, and 5e−4 for CIFAR10, CELEBA-
HQ, and MS COCO, respectively. To make inner optimization feasible, we sample 10, 3, and 5
steps to generate target images with DDIM (Song et al., 2020) sampling for CIFAR10, CELEBA-
HQ, and MS COCO, respectively. All unconditional generation experiments are conducted on a
single NVIDIA 3090 GPU, and all conditional generation experiments are conducted on a single
NVIDIA A6000 GPU. Training on CIFAR10 and CELEBA-HQ from scratch spends about 3 days
and 12 days respectively due to the large image resolution of CELEBA-HQ and multiple sampling
steps in the inner optimization, which can be accelerated by more powerful GPUs. Training on MS
COCO could be finished within about 30 mins since it only requires finetuning for 5 epochs. We
mainly use three target images corresponding to the ‘Hat’, ‘Shoe’, and ‘Cat’ target used in Chou
et al. (2023a;b). To evaluate the performance of backdoored model on utility and specificity, for
unconditional case, we use FID (Heusel et al., 2017) to evaluate the utility, and MSE to evaluate
the specificity. We sample about 50K and 10K images to compute FID and MSE for CIFAR10 and
CELEBA-HQ, respectively. For conditional case, we use FID and LPIPS (Zhang et al., 2018) to
evaluate the utility and MSE to evaluate the specificity. We sample the same number of images as
the MS COCO validation set (about 40K) to compute FID, LPIPS, and MSE.
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4.2 UNCONDITIONAL GENERATION RESULTS

Universal backdoor triggers Firstly, we show the results for learning one universal invisible trig-
ger on CIFAR10 and CELEBA-HQ. For CIFAR10, ℓ∞ norm bound is set as 0.2 and the poison rate
is 0.05. The ‘Hat’ image is the corresponding target image. As shown in Figure 2 and Table 1, the
backdoored model can achieve similar FID with clean model and low MSE simultaneously while
keeping the trigger invisible, demonstrating the high-utility and high-specificity as required by suc-
cessful backdoor attack.

Figure 2: Visualization results for learnable
universal trigger on CIFAR10.

Figure 3: Visualization results for learnable
universal trigger on CELEBA-HQ.

FID MSE
Clean model 12.80 -

Backdoored model 11.76 3.07e-3

Table 1: Quantitative results for learnable
universal trigger on CIFAR10.

FID MSE
Clean model 12.39 -

Backdoored model 11.19 4.57e-3

Table 2: Quantitative results for learnable
universal trigger on CELEBA-HQ.

We show the results on high-resolution datasets CELEBA-HQ(256× 256) in Figure 3 and Table 2,
where the ℓ∞ norm bound is also 0.2 and the poison rate is 0.3. The ‘Cat’ image is the corresponding
target image. It could clearly observed that the proposed invisible trigger is still feasible and effective
for high-resolution images. To further show the capability of the proposed framework, we show it
is possible to learn multiple universal trigger-target pairs simultaneously. Examples are available in
Appendix D.

In addition, we also conducted experiments on different samplers, DPMSolver (Lu et al., 2022) to
show that the proposed loss in unconditional generation can be directly applied to different com-
monly used samplers. Detailed results are shown in Appendix E.
Distribution based trigger results As stated in Section 3, to make the invisible trigger even more
stealthy, we can optimize the trigger distribution instead of universal trigger so that we are able to
generate sample-specific triggers. The results are shown in Figure 4 and Table 3. Compared with
universal trigger, our distribution based trigger achieve a even smaller gap on the FID while keeping
an excellent performance on generating target image with very small MSE.

FID MSE
Clean model 12.80 -

Backdoored model 12.86 1.82e-5

Table 3: Quantitative results for learnable trigger distri-
bution on CIFAR10.

Figure 4: Visualization results for learn-
able trigger distribution on CIFAR10.

4.3 CONDITIONAL GENERATION RESULTS

In this section, we show the results in text-guided image editing/inpainting pipeline on MS COCO
dataset (Lin et al., 2014). For simplicity, we ignore the text part in visualization results since the
proposed framework will generate the target image given any text if the backdoor is triggered. By
setting the norm bound as 0.04, we show the quantitative results on evaluation metrics and visu-
alization results in Figure 5 and Table 4, where the target image is the ‘Hat’ image. The results
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indicate that the backdoored model perform similarly to clean model when there are no triggers in
the inputs, and generate target image when triggers are injected into inputs. Figure 6 and 7 shows

FID LPIPS MSE
Clean model 1.00 0.064 -

Backdoored model 1.01 0.064 6.85e-3

Table 4: Quantitative results for learnable
input-aware trigger in conditional diffusion
models.

Figure 5: Visualization results for learnable
input-aware trigger in conditional diffusion
models.

the visualization results under different norm bounds. With larger norm bound, we can expect larger
perturbations in the generated triggers, which is illustrated in the visualization results. We also

Figure 6: Visualization results with norm bound 0.04.

Figure 7: Visualization results with norm bound 0.06.

conduct experiments to show it is possible to insert multiple targets in this case. Please refer to
Appendix F for details.

4.4 DEFENSE AGAINST BACKDOOR ATTACK IN DIFFUSION MODELS

The above results have shown the powerful capability of our proposed attack, which may lead to
severe consequences in practice. Hence defense for mitigating backdoors is crucial. By effectively
mitigating the backdoor vulnerabilities in diffusion models, we can ensure their safe utilization in
real-world implementations for safety-critical applications. In addition, diffusion models without
backdoors can be confidently employed by individuals for everyday image generation tasks.

Previous work (Chou et al., 2023a) has tested the effectiveness of two defense methods against back-
door in diffusion models, namely Adversarial neuron pruning (Wu & Wang, 2021) and inference-
time clipping. They show the inference-time clipping, which clips the latent generation during
sampling to the range [−1, 1], is effective on their proposed attack. However, we found that both of
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them become totally ineffective in our proposed framework, which indicates more advanced defense
methods need to be developed for diffusion models. For detailed results, please refer to Appendix G.

4.5 ABLATION STUDY

To show the effect of poison rate and norm bound, we conduct ablation studies on unconditional
generation case. Please refer to Appendix H for more results. We also show that finetuning can be
easily done to inject backdoor under our framework. Because of space limit, we defer the results in
Appendix I.

5 CONCLUSION

In this paper, we propose a novel and general optimization framework to learn input-aware invisible
triggers to backdoor diffusion models, which can be used for both unconditional and conditional
diffusion models. Also, to make the optimization in unconditional case feasible, we derive a loss
function based on DDIM (Song et al., 2020) sampling. In addition, we are also the first to show
how to backdoor text-guided image editing pipeline in conditional diffusion models. Our proposed
framework reveals severe security threat that diffusion models may bring. For future work, we will
explore effective defense methods to mitigate possible backdoor in diffusion models.
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