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Abstract
Scene-Graph Generation (SGG) seeks to recog-
nize objects in an image and distill their salient
pairwise relationships. Most methods depend
on dataset-specific supervision to learn the va-
riety of interactions, restricting their usefulness
in open-world settings, involving novel objects
and/or relations. Even methods that leverage large
Vision Language Models (VLMs) typically re-
quire benchmark-specific fine-tuning. We intro-
duce Open-World SGG, a training-free, efficient,
model-agnostic framework that taps directly into
the pretrained knowledge of VLMs to produce
scene graphs with zero additional learning. Cast-
ing SGG as a zero-shot structured-reasoning prob-
lem, our method combines multimodal prompt-
ing, embedding alignment, and a lightweight pair-
refinement strategy, enabling inference over un-
seen object vocabularies and relation sets. To
assess this setting, we formalize an Open-World
evaluation protocol that measures performance
when no SGG-specific data have been observed
either in terms of objects and relations. Experi-
ments on Visual Genome, Open Images V6, and
the PSG dataset demonstrate the capacity of pre-
trained VLMs to perform relational understanding
without task-level training.

1. Introduction
Scene Graph Generation (SGG) converts an image into a
structured graph, with nodes as object entities and edges as
semantic relationships. This representation supports struc-
tured reasoning over visual content and benefits tasks like
image captioning, visual question answering, and referring
expression generation (Johnson et al., 2015; Teney et al.,
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2017; Hudson & Manning, 2019; Yang et al., 2019). Accu-
rate SGG demands understanding both visual appearance
and contextual object interactions.

Traditional SGG methods are supervised and trained on
datasets like Visual Genome, which provide dense triplet an-
notations. While effective, these models are limited by anno-
tation bias, vocabulary constraints, and poor generalization
to rare object-predicate classes (Zellers et al., 2018; Lu et al.,
2016). To overcome these challenges, Open-Vocabulary
SGG (OV-SGG) has emerged, targeting prediction of unseen
objects (OVD) or relations (OVR) (Gu et al., 2021), and even
settings where both objects or predicates may be novel at in-
ference (Chen et al., 2024; Liu et al., 2025). However, such
models still rely on fine-tuning or auxiliary training, limit-
ing adaptability. With the rise of Vision-Language Models
(VLMs) trained on large-scale image-text corpora (Bai et al.,
2023; Deitke et al., 2024; Liu et al., 2024b; OpenAI, 2024;
Team et al., 2024), a key question arises: Can VLMs enable
zero-shot SGG without task-specific training? While VLMs
demonstrate strong generalization and have been applied to
reformulate SGG sub-tasks as image-text matching, most
approaches still depend on dataset-specific components or
costly pairwise inference, limiting open-world evaluation.

Despite growing interest, evaluating VLMs for SGG faces
key challenges. First, there is no standardized baseline for
open-world SGG. Second, prompting strategies for struc-
tured graph generation are underdeveloped. Third, extract-
ing subject–predicate–object triplets from open-ended VLM
outputs remains nontrivial, hindering compatibility with
benchmarks such as Visual Genome (Krishna et al., 2017),
Panoptic Scene Graph (Yang et al., 2022), and OpenIm-
age (Kuznetsova et al., 2020).

To address this, we propose Open World SGG (OwSGG):
a zero-shot, model-agnostic framework using pretrained
VLMs. Our approach combines multimodal prompting,
embedding alignment, and a lightweight pair-refinement
module to convert raw VLM outputs into structured graphs
compatible with existing evaluation protocols—without any
task-specific training. We evaluate LLaVa-next (Liu et al.,
2024b) and Qwen2-VL (Wang et al., 2024) under closed,
open-vocabulary, and fully open-world settings. While not
state-of-the-art in closed settings, VLMs show potential in
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open-world cases. To support future research, we introduce
a strong open-world evaluation baseline that isolates perfor-
mance on novel object–relation pairs. Our results highlight
the promise of pretrained VLMs for scalable, open-world
scene understanding and underscore the need for new bench-
marks.

2. Open-world Scene Graph Generation
(Ow-SGG)

We introduce our framework for Open-world Scene Graph
Generation (SGG) using Vision-Language Models (VLMs).
We first provide background and notation, then define a tax-
onomy of open-world SGG tasks, highlighting their distinct
challenges. Finally, we present our VLM-based approach
and its suitability for open-world scenarios.

2.1. Background and Notations

Scene Graph Generation (SGG) aims to represent an image’s
visual content as a structured graph, or scene graph, defined
as G = (V, E). Here, V = {vi}Ni=1 denotes the set of
nodes (objects), and E = {eij} ⊆ V × V × R is the set
of directed edges, with rij ∈ R, representing pairwise
semantic relationships.

Each object vi = (bi, oi) includes a bounding box bi ∈ R4

and a class label oi ∈ O, where O is a predefined set of
object categories. Each edge eij = (vi,vj, rij) denotes a
relation from vi to vj, labeled by rij . We consider two
problem formulations for SGG based on the available infor-
mation.

Predicate Classification (PredCls). Given an image I ∈
RH×W×C and the set of ground-truth objects V , the task
is to predict the relationships E , i.e., identify object pairs
(vi,vj) and assign predicate labels rij . As objects are pro-
vided, PredCls is a constrained variant of SGG.

Scene Graph Detection (SGDet). Given only the image I ,
the goal is to detect both objects V and their relationships
E . The output is a set of triplets E = {(vi,vj, rij) | i ̸=
j, rij ∈ R}, representing the scene’s structured content.
SGDet reflects a more general and realistic setting of the
SGG problem.

2.2. Open-world Taxonomy

To benchmark SGG in open-world settings, we define a
taxonomy of task setups based on the novelty of triplet com-
ponents (oi, oj , rij) ∈ Etest with respect to the training set
Etrain. These categories capture varying degrees of novelty
in objects, predicates, or both.
Closed Vocabulary (CS). All triplets in Etest are seen during
training, i.e., (oi, oj , rij) ∈ Etrain.

Zero-Shot (ZS). Full triplets are unseen, but components
are known: (oi, oj , rij) /∈ Etrain, while oi, oj ∈ Otrain and
rij ∈ Rtrain.

Open-Vocabulary Relations (OVR). Predicate is novel,
objects are seen: oi, oj ∈ Otrain, rij /∈ Rtrain.

Open-Vocabulary Detections (OVD). Objects are novel,
predicate is known: rij ∈ Rtrain, oi, oj /∈ Otrain.

Open-Vocabulary Detections + Relations (OVD+R). Ei-
ther the object or predicate is novel:

(oi, oj /∈ Otrain) ∨ (rij /∈ Rtrain).

Open World (OW). Both object and predicate are novel,
the most challenging setup:

(oi, oj /∈ Otrain) ∧ (rij /∈ Rtrain).

This taxonomy supports systematic evaluation of general-
ization to increasingly open and challenging scenarios in
scene graph generation.

2.3. Proposed Framework for Using VLMs for Ow-SGG

Figure 1 shows our framework for Ow-SGG using VLMs,
comprising of the following five steps.

2.3.1. ENTITY GENERATION

The goal of this step is to enumerate a diverse set of potential
entities present in an image by prompting vision-language
models (VLMs). We simply prompt a VLM to generate
candidate object classes (or entities) present in an image.
Our Entity Generation Prompts are shown in Appendix C.2.

2.3.2. ENTITY MAPPING

We map VLM-predicted entities to known object cate-
gories, as their outputs may include paraphrases or hal-
lucinations not aligned with dataset labels. To ensure
semantic consistency, we use an embedding-based mod-
ule that matches predicted entities to dataset categories
via similarity scores computed with a contrastive encoder
(SimCSE (Gao et al., 2021)). A softmax-based strat-
egy ranks candidates, and up to k categories within a δ-
neighborhood of the top match are retained per entity. This
approach improves robustness to synonyms (e.g., “man” vs.
“boy”) and supports consistent downstream reasoning. De-
tails are shown in the Semantic Pair Scoring for
Entity Mapping box below. Additionally, we detail the
steps and also compare our method against other approaches
in Appendix C.3.
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Figure 1. Overview of our proposed framework for open-world SGG using VLMs.

2.3.3. ENTITY DETECTION

Once the VLM-generated entities have been mapped to
a list of candidate objects, Grounding DINO (Liu et al.,
2024c) is used to localize different instances of every object
by predicting its corresponding bounding box inside the
image. This step also serves as another layer of refinement
by ignoring entities predicted but otherwise not present in
the image. Appendix C.4 further highlights the strengths of
our Detection module.

2.3.4. PAIR REFINEMENT

Given object proposals {(bi, oi)}Ni=1, we construct candi-
date pairs (vi,vj) for relation prediction. Exhaustively enu-
merating all N(N−1) pairs is costly and noisy, while spatial
filtering alone risks missing meaningful but non-adjacent
interactions (e.g., looking at). We address this with a
pair refinement module that combines semantic and geomet-
ric cues to retain only informative object pairs.

Semantic Pair Refinement. A VLM estimates semantic
compatibility for each category pair (oi, oj), shared across
instances:

PS
ij = VLM(oi, oj) ∈ [0, 1], (1)

producing a semantic matrix PS ∈ RN×N .

Geometric Pair Refinement. To assess spatial plausibility,
we compute each object’s 2D center c2Di = (xi, yi) and
its normalized median depth di ∈ [0, 1] from a monocular
depth map (Yang et al., 2024). The pairwise distance be-
tween objects oi and oj combines normalized 2D and depth

differences:

dij = λ1

(
∥c2Di − c2Dj ∥2√

H2 +W 2

)
+ λ2∥di − dj∥2, (2)

where λ1, λ2 > 0 weight the 2D and depth contributions,
and H,W are the image height and width.

To allow soft filtering, this distance is converted into a spatial
compatibility score via a sigmoid:

PG
ij = σ (−β(dij − τ)) , (3)

where τ > 0 is a distance threshold, and β controls the
sharpness of the transition. The resulting matrix PG ∈
RN×N encodes the spatial plausibility of each object pair.

Fusion. We combine semantic and geometric scores:

Pcombined
ij = α logPS

ij + (1− α) logPG
ij , (4)

where α ∈ [0, 1] balances modalities. Top-k pairs with high-
est Pcombined

ij scores are retained for downstream relationship
prediction. The effectiveness of our pair refinement strategy
is further discussed in Appendix A. Additional implementa-
tion information and some qualitiatives examples are also
highlighted in Appendix C.5 and D respectively.

2.3.5. SCENE GRAPH GENERATION

We pass the set of refined pairs obtained from the previ-
ous module to a Vision-Language Model (VLM), which
is prompted to predict the corresponding relationship be-
tween the two entities given the input image. This results
in a set of relational triplets that form the final scene graph.
We show the prompts as well as some qualitative results in
Appendix C.6.
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3. Experimental Results
Evaluation Metrics. We evaluate relationship predictions
R with confidence scores S using standard SGG metrics:
Recall@K (R@K) and mean Recall@K (mR@K).

Datasets. We evaluate on VG150 (Krishna et al., 2017),
OIV6 (Kuznetsova et al., 2020), and PSG (Yang et al., 2022).
VG150 contains 150 object and 50 relation classes; OIV6
includes 601 objects and 30 relations; PSG has 133 object
and 56 relation classes.

Backbones and Baselines. We use LLaVa-next (Liu et al.,
2024a), Qwen2-VL 7B, and Qwen2-VL 72B (Wang et al.,
2024) as vision-language model (VLM) backbones to
demonstrate our framework’s model-agnostic nature. We
compare against SOTA baselines including PGSG (Li et al.,
2024), SGTR (Li et al., 2022), RAHP (Liu et al., 2025), and
OvSGTR (Chen et al., 2024).

Semantic Pair Scoring for Entity
Mapping

Let p be a predicted entity, D = {d1, . . . , dN} the
dataset categories, h(·) a SimCSE encoder, with tem-
perature τ = 0.2, threshold δ = 0.05, and max k = 2
matches per entity.

1. Similarity scoring:
si = cos (h(”There is a p.”), h(”There is a di.”))

2. Temperature-scaled softmax:
ŝi =

exp(si/τ)∑N
j=1 exp(sj/τ)

3. Near-maximum filter:
C =

{
i

∣∣∣∣ max
j

ŝj − ŝi < δ

}
4. Retain top-k matches:

M(p) = {di | i ∈ C and ŝi in top-k}

5. Merge mappings:
M =

⋃
p∈P

M(p)

M maps predicted entities to aligned dataset cate-
gories.

3.1. Open Vocabulary Relationship (OVR) Results

We evaluate our framework on the Open-Vocabulary Rela-
tionship Prediction (OVR) task, which assesses a model’s
ability to correctly identify predicates that are absent from
the training set. This task measures a model’s capacity to
generalize to rare or unseen relationships. Since our frame-
work operates without any task-specific training, it is particu-
larly well-suited for open-vocabulary settings. In contrast to
conventional scene graph generation (SGG) models—which

often struggle with unseen predicates due to their depen-
dence on fixed label spaces—our approach leverages the
semantic priors of vision-language models to reason over a
broader predicate space. As shown in Table 1, our Qwen2-
72B-based framework outperforms baseline methods on the
OVR task for the PSG dataset. On the Visual Genome (VG)
dataset under the PredCls setting, the OwSGG Qwen2-72B
model achieves performance comparable to the best existing
model. However, in most other settings—particularly on
VG—our models underperform relative to baselines. These
results suggest that vision-language models can generalize
well in simpler but face challenges when applied to more
complex or varied data.

Table 1. Open Vocabulary Relation SGG Performance on
VG150 and PSG: We show OVR results on the VG150 and the
PSG Dataset. We compare our results on both SgDet & PredCls.

VG PSG
Method Name novel (Relation) novel (Relation)

mR @ 50 / 100 R @ 50 / 100 mR @ 50 / 100 R @ 50 / 100

SG
D

et

VS3+RAHP (Liu et al., 2025) – 3.75 / 5.12 – –
OvSGTR (Chen et al., 2024) 1.82 / 2.32 13.45 / 16.19 – –
OvSGTR+RAHP (Chen et al., 2024) 3.01 / 4.04 15.59 / 19.92 – –
PGSG (Li et al., 2024) 3.7 / 5.2 – 7.4 / 11.3 –
SGTR (Li et al., 2022) 0.0 / 0.0 – 0.0 / 0.0 0.0 / 0.0
OwSGG (LLaVA-next) 2.34 / 3.04 2.33 / 3.04 8.27 / 10.4 8.31 / 10.49
OwSGG (Qwen7b) 1.14 / 1.67 1.15 / 1.67 5.77 / 7.51 5.93 / 7.6
OwSGG (Qwen72b) 2.19 / 3.07 2.19 / 3.06 10.25 / 13.35 10.42 / 13.54

Pr
ed

C
ls

CaCao (Yu et al., 2023) – 7.4 / 9.7 – –
PGSG (Li et al., 2024) 5.2 / 7.7 – – –
SGTR+RAHP (Liu et al., 2025) 11.82 / 15.46 15.46 / 20.37 – –
OwSGG (LLaVA-next) 0.75 / 1.36 / 1.5 0.74 / 1.36 / 1.5 4.82 / 5.77 4.89 / 5.81
OwSGG (Qwen7b) 0.44 / 1.2 / 2.12 0.44 / 1.19 / 2.11 4.02 / 5.29 4.03 / 5.31
OwSGG (Qwen72b) 7.64 / 11.04 7.62 / 11.02 6.36 / 7.68 6.34 / 7.69

3.2. Close Vocabulary and Zero-Shot Results

We also evaluate our open-world framework in the stan-
dard closed-vocabulary scene graph generation (SGG) set-
ting, and additionally report zero-shot performance within
this setup, as shown in Table 2. While our models are
not expected to outperform baselines trained explicitly on
dataset-specific labels, they yield several notable results. On
the OIV6 dataset under the PredCls setting, the OwSGG
(Qwen2-72B) model achieves higher recall at R@50 than
all baselines except HEIRCOM (Jiang et al., 2025). As
anticipated, our framework shows a relative advantage in
the zero-shot scenario, where conventional models often
fail to generalize beyond their training vocabulary. This is
evident in the SgDet setting, where OwSGG (Qwen2-72B)
surpasses all models except PGSG at R@100. However,
on the more complex VG dataset, our models struggle to
match baseline performance under both PredCls and SgDet
settings.

3.3. Open Vocabulary Detection + Relation based SGG
(OvD+R) and Open World Results

The OvD+R setting evaluates models trained exclusively on
base classes of objects and relationships, but tested on either
novel objects or novel relationships—never both simulta-
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Table 2. Close Vocabulary SGG Performance on VG150, OIV6,
and PSG: We show Zero-Shot and Close Vocabulary results on
the VG150, OIV6 and the PSG Dataset. We compare our results
on both SgDet and PredCls for VG150 and OIV6 and only SgDet
for PSG.

Method Name
Close Vocabulary Zero-Shot

mR @ 20 / 50 / 100 R @ 20 / 50 / 100 R @ 20 / 50 / 100

V
G

Pr
ed

C
ls

IMP (Xu et al., 2017) 11.7 / 14.8 / 16.1 – / 44.8 / 53.1 –
MOTIFS(Zellers et al., 2018) 11.7 / 14.8 / 16.1 58.5 / 65.2 / 67.1 – / 10.9 /14.5
VCTree+HIERCOM (Jiang et al., 2025) 17.6 / 26.3 / 31.8 55.9 / 69.8 / 75.8 – / 17.8 / 24.8
CooK (Kim et al., 2024) – / 33.7 / 35.8 – / 62.1 / 64.2 –
CaCao (Yu et al., 2023) 36.2 / 31.7 / 43.7 – –
OwSGG (llava-next) 9.74 / 14.96 / 19.26 9.72 / 14.87 / 19.08 3.99 / 6.74 / 10.02
OwSGG (Qwen7b) 4.82 / 8.73 / 12.64 4.9 / 8.9 /12.87 2.67 / 5.77 / 8.82
OwSGG (Qwen72b) 7.63 / 13.54 / 19.76 7.53 / 13.44 / 19.64 3.3 / 6.52 / 9.7

SG
D

et

SSRCNN (Teng & Wang, 2022) – / 18.6 / 22.5 – / 23.7 / 27.3 – / 3.1 / 4.5
SGTR (Li et al., 2022) – / 12.0 / 15.2 –/ 24.6 / 28.4 – / 2.5 / 5.8
PGSG (Li et al., 2024) – / 8.9 / 11.5 – / 16.7 / 21.2 – / 6.2 / 8.5
OwSGG (llava-next) 1.88 / 2.89 / 3.7 1.7 / 2.61 / 3.36 0.98 / 1.71 / 2.36
OwSGG (Qwen7b) 0.67 / 1.15 / 1.71 0.64 / 1.09 / 1.61 0.48 / 0.91 / 1.32
OwSGG (Qwen72b) 1.38/ 2.43 / 3.4 1.3 / 2.28 / 3.18 0.73 / 1.24 /1.95

O
I6

Pr
ed

C
ls

SGTR (Li et al., 2022) – – / 59.9 / – –
ReIDN (Zhang et al., 2019) – – / 72.8 / – –
GPS-Net (Lin et al., 2020) – – / 74.7 / – –
HEIRCOM (Jiang et al., 2025) – – / 85.4 / – –
OwSGG (llava-next) 59.92 / 66.82 / 70.24 59.88 / 66.81 / 70.22 30.08 / 35.03 / 36.59
OwSGG (Qwen7b) 56.91 / 67.59 / 73.51 56.88 / 67.6 / 73.47 26.82 / 33.46 / 36.59
OwSGG (Qwen72b) 71.54 / 79.83 / 83.76 71.56 / 79.86 / 83.78 40.1 / 47.14 / 47.14

SG
D

et

SGTR (Li et al., 2022) – /38.6 / – – / 59.1 / – – / 19.4 / 31.6
PGSG (Li et al., 2024) – / 8.9 / 11.5 – / 16.7 / 21.2 – / 23.1 / 38.6
OwSGG (llava-next) 7.93 / 9.6 / 11.21 7.9 / 9.55 / 11.16 2.34 / 4.04 / 6.77
OwSGG (Qwen7b) 2.7 / 4.61 / 6.74 2.68 / 4.59 / 6.71 2.47 / 2.99 / 2.99
OwSGG (Qwen72b) 6.68 / 8.8 / 10.82 6.65 / 8.75 / 10.75 3.52 / 3.52 / 4.3

PS
G

SG
D

et

PSGTR (Yang et al., 2022) – / 20.3 / 21.5 – / 32.1 / 35.3 – / 3.1 / 6.4
SGTR (Li et al., 2022) – / 24.3 / 27.2 – / 33.1 / 36.3 – / 4.1 / 5.8
PGSG (Li et al., 2024) – / 20.9 / 22.1 – / 32.7 / 33.4 – / 6.8 / 8.9
OwSGG (llava-next) 5.59 / 8.12 / 10.02 5.63 / 8.12 / 10.08 1.84 / 2.51 / 4.68
OwSGG (Qwen7b) 3.71 / 6.13 / 8.47 3.93 / 6.34 / 8.59 1.84 / 3.34 / 5.3
OwSGG (Qwen72b) 7.22 / 10.49 / 13.67 7.36 / 10.68 / 13.98 2.84 / 4.68 / 6.44

neously. This setup measures partial generalization, where
some components of the scene graph remain within the train-
ing distribution. In contrast, we introduce a more stringent
Open-World (OW) evaluation setting, in which models
must reason about both unseen objects and unseen relation-
ships at test time, without any task-specific fine-tuning. The
corresponding results are presented in Tab. 3. This scenario
more closely reflects real-world conditions and provides a
rigorous assessment of a model’s compositional generaliza-
tion and robustness. Our proposed framework is explicitly
designed for this open-world regime, leveraging the seman-
tic flexibility of vision-language models without relying on
supervision from predefined label sets. While the OwSGG
results are still lower than those of baseline models trained
with access to closed-world labels, they demonstrate the
potential of this approach. The goal of establishing the OW
baseline is to motivate future work toward models capable
of operating effectively in fully unknown environments.

4. Limitations and Conclusions
OwSGG depends on pre-trained components—Grounding-
DINO for detection and SimCSE for similarity—which can
introduce errors at various pipeline stages. Analyzing their
impact is a key direction for future work. Prompting VLMs
with all object pairs also raises scalability concerns due
to context length limits, motivating the need for more effi-

Table 3. Open Vocabulary Detection and Open World SGG
Performance on VG150: We show results for the SgDet task on
the VG150 Dataset. † indicates that the results were generated for
this work.

Method Name OVD + R OW

novel (Object) novel (Relation) novel (Object & Relation)
R@50 / R@100 R@50 / R@100 R@50 / R@100

IMP (Xu et al., 2017) 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00†

MOTIFS (Zellers et al., 2018) 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00†

VCTREE (Tang et al., 2019) 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00†

TDE (Tang et al., 2020) 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00†

VS3 (Zhang et al., 2023) 6.00 / 7.51 0.00 / 0.00 –
OvSGTR (Swin-B) (Chen et al., 2024) 17.58 / 21.72 14.56 / 18.20 5.97 / 10.06†

VS3+RAHP (Liu et al., 2025) 13.01 / 14.82 3.75 / 5.12 –
OvSGTR+RAHP (Swin-T) (Liu et al., 2025) 12.45 / 15.38 13.31 / 16.46 –
OwSGG (LLaVA-next) 2.9 / 3.7 2.33 / 3.04 1.92 / 2.56
OwSGG (Qwen7b) 1.16 / 1.73 1.15 / 1.67 0.86 / 1.18
OwSGG (Qwen72b) 2.48 / 3.44 2.19 / 3.06 1.61 / 2.41

cient pair refinement. Despite these challenges, our results
show that VLMs, when guided by prompts and lightweight
modules, can predict scene graph relationships without task-
specific training. This underscores the potential of zero-shot
approaches for structured vision-language tasks and paves
the way for more general and interpretable visual reasoning
systems.
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A. Effectiveness of Pair Refinement
Fig. 2 (a) illustrates how varying the hyperparameter α, with a fixed top k of 25, influences model performance. The
F1 score here reflects the quality of pair refinement—Recall captures how well Ground Truth pairs are preserved, while
Precision indicates the degree to which noisy pairs are filtered out. As expected, increasing top k generally improves recall
by increasing the likelihood of retrieving Ground Truth object pairs. An α = 0 corresponds to pure depth-based refinement,
whereas α = 1 denotes purely semantic refinement. The results suggest that a balanced combination of both semantic and
depth cues leads to more effective pair refinement for all the models. Fig. 2 (b) presents further ablation results, showing
how the F1 score varies with different values of the β parameter used during depth-based refinement. These results highlight
the model’s ability to retain meaningful pairs under a fixed top k of 25. Tab. 4 complements these findings by reporting
Triplet Recall values across various pair refinement strategies for the OwSGG (Qwen2-72B) model. We observe that while
depth-only refinement performs well in a close-vocabulary setting, combining semantic and depth-based filtering yields
consistently better performance as the evaluation setting becomes more open and data-limited.

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

0.410

0.415

0.420

0.425

0.430

F1
 S

co
re

F1 Score vs Alpha

llava-next
qwen2_72vl
qwen2_vl

4 6 8 10 12 14 16
Beta

F1 Score vs Beta

llava-next
qwen2_72vl
qwen2_vl

Figure 2. Ablation Study: F1 scores across different (a) α and (b) β values for the Qwen-72B model.

Table 4. Effect of depth and semantic filtering on PSG (PredCls, Qwen72B). Bold = best, underline = 2nd best.

Setup Depth Semantic R@20/50/100 mR@20/50/100

CS
✓ ✗ 4.8 / 6.94 / 8.32 4.76 / 6.86 / 8.22
✗ ✓ 2.67 / 4.03 / 5.09 2.61 / 4.0 / 5.05
✓ ✓ 4.76 / 6.02 / 6.91 4.76/ 6.02 / 6.91

ZS
✓ ✗ 2.06 / 2.9 / 4.35 2.09 / 2.9 / 4.35
✗ ✓ 1.34 / 2.17 / 2.17 1.34 / 2.17 / 2.17
✓ ✓ 2.34 / 2.68 / 3.51 2.34 / 2.68 / 3.51

OVR
✓ ✗ 4.36 / 6.09 / 7.47 4.4 / 6.17 / 7.55
✗ ✓ 2.03 / 3.56 / 4.52 2.12 / 3.65 / 4.61
✓ ✓ 4.88 / 6.34 / 7.69 4.88 / 6.36 / 7.68

B. Dataset Descriptions and Evaluation Splits
Datasets We evaluate our framework on two categories of SGG: SgDet and PredCls. We evaluate on three datasets: Visual
Genome (VG) (Krishna et al., 2017), Open Images V6 (OIV6) (Kuznetsova et al., 2020), and Panoptic Scene Graph
(PSG) (Yang et al., 2022), using the standard splits from prior work (Xu et al., 2017; Zellers et al., 2018; Yang et al., 2022).
Since our method requires no training, we evaluate only on the test data. For VG (Krishna et al., 2017), we follow the
cleaning protocol of (Xu et al., 2017; Zellers et al., 2018), removing images with insufficient annotations. This yields 26,446
test images (from 32,422), covering 150 object and 50 relation classes. For OIV6 (Kuznetsova et al., 2020), we use the test
split with 5,322 images, 601 object classes, and 30 relations. For PSG (Yang et al., 2022), we evaluate on the validation split,
which contains 1,000 images, 133 objects, and 56 relations.
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We also leverage publicly available scripts and ID lists for split generation and novelty definitions:

• Zero-Shot Triplets are generated using the T-CAR repository’s notebook1, which filters unseen triplets from the
combined val+test pool.

• VG Novel Predicates (VG150) come from the OvSGTR codebase2, and the base predicate set follows (He et al., 2022).

• OIV6 Novel Objects are defined in the Pix2Grp CVPR2024 script3, and similarly for PSG Novel Predicates4.

• For VG and OIV6, we adopt the train/val/test splits from previous works (Xu et al., 2017; Zellers et al., 2018). For
PSG, we follow the official code and splits distributed at5.

C. Implementation Details
C.1. Vision Language Models

All VLMs used are instruction-tuned to interpret structured prompts better. For inference, we leverage the vLLM frame-
work (Kwon et al., 2023), which enables efficient execution of large-scale language models through a paged attention
mechanism. Unlike traditional approaches that allocate contiguous memory, paged attention uses fixed-size pages, reducing
fragmentation and improving memory reuse—allowing larger models to run with lower overhead. vLLM also features an
optimized key-value (KV) cache that eliminates redundant computations by reusing previously computed attention values,
significantly accelerating autoregressive generation. These optimizations make vLLM highly scalable and well-suited for
low-latency inference with large VLMs. Due to hardware constraints, we quantize all models: 7B models from float32
to bfloat16, and Qwen2-vl-72B using AWQ. This substantially reduces memory usage while maintaining performance.

C.2. Entity Generation

In the Entity Generation module, we prompt a VLM with the task of generating a comprehensive list of entities present
in the input image. The module is configured using the following hyper-parameters: 1. num outputs=1. We request a
single generation output per image
2. temperature=0.1: A low temperature ensures deterministic outputs, reducing randomness and encouraging factual
extraction
3. max tokens=512

4. top p=1.0: This is to enable nucleus sampling with a large cutoff to avoid premature truncation of less frequent but
relevant entities
5. presence penalty=0.4: To penalize repetitions to encourage novel mentions without being too aggressive
6. repetition penalty=1.1: To mildly discourage duplicate tokens during generation

Prompt examples. Datasets like (Krishna et al., 2017) have a lot of trivial objects such as “hair”, while (Kuznetsova et al.,
2020) has generic as well as specific object names such as “girl” and “woman” as compared to cleaner object names in
(Yang et al., 2022). Therefore, in order to instruct the VLMs to generate entities that are present in the target datasets,
we use dataset-specific prompts tailored to encourage comprehensive object enumeration. The prompt examples used
for three datasets are shown by PSG Dataset Prompt, Open Images (OI) Prompt and Visual Genome
(VG) Prompt.

1https://github.com/jkli1998/T-CAR/blob/main/zs_check.ipynb
2https://github.com/gpt4vision/OvSGTR/blob/018453e07cf04be416ac42d13e1bf27d1611678d/

datasets/vg.py#L37
3https://github.com/SHTUPLUS/Pix2Grp_CVPR2024/blob/main/lavis/datasets/datasets/oiv6_

rel_detection.py
4https://github.com/SHTUPLUS/Pix2Grp_CVPR2024/blob/main/lavis/datasets/datasets/psg_rel_

detection.py
5https://github.com/franciszzj/OpenPSG
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PSG Dataset Prompt

### Task Start You are an expert at detecting objects in images. You are given
an image. Your task is to list all objects visible in the image, including both
foreground and background. The objects may include natural elements, human-made
structures, or any other discernible entities.
### Output Format Instructions
- Do not repeat object names.
- Do not describe attributes, adjectives, or relationships.
- Return the result as a comma-separated list.
- If unsure, include it.
### Prompt
List all the objects visible in the image, including foreground and background.
Return the objects as a comma-separated list.

Open Images (OI) Prompt
### Task Start
You are an expert at detecting objects in images. You are given an image. Your task
is to identify and list all visible objects in the image, including both foreground
and background. Include a wide range of recognizable categories, whether specific or
general, as long as they are visibly present in the scene.
### Output Format Instructions
- Do not repeat object names.
- Do not describe attributes, adjectives, or relationships.
- Return the result as a comma-separated list.
- If unsure, include it.
### Prompt
List all the objects visible in the image, including foreground and background.
Return the objects as a comma-separated list.

Visual Genome (VG) Prompt
### Task Start
You are an expert at detecting objects in images. You are given an image. Your
task is to list all identifiable objects visible in the image, including those in
the foreground and background. Include both whole objects and meaningful parts or
components that are visually discernible.
### Output Format Instructions
- Do not repeat object names.
- Do not describe attributes, adjectives, or relationships.
- Return the result as a comma-separated list.
- If unsure, include it.
### Prompt
List all the objects visible in the image, including foreground and background.
Return the objects as a comma-separated list.

C.3. Entity Mapping

Our entity-mapping pipeline aligns VLM-predicted object labels to a fixed ground-truth vocabulary via a three-stage cascade.
First, each label is normalized (converted to lowercase, trimmed of whitespace, and stripped of all punctuation). Second, we
compare the normalized prediction directly against a cache of normalized ground-truth entries; any exact hits are accepted
with confidence 1.0. Third, any remaining labels are resolved via semantic matching with a contrastively pretrained SimCSE
(Gao et al., 2021) encoder.

In the semantic stage, we convert each candidate label X into a full sentence of the form:

“There is a X in the image.”

and embed it with SimCSE. We compare that embedding—via cosine similarity—to a cache of precomputed embeddings
for every normalized ground-truth entry. To sharpen the score distribution, we apply temperature scaling with τ = 0.2. We
then filter out any ground-truth entries whose cosine score falls more than ∆ = 0.05 below the maximum observed score,
and finally select the top k = 2 remaining candidates as our matches.
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Illustrative Mapping Cases We present examples to illustrate both positive and negative mapping outcomes from our
entity alignment module. A mapping is considered positive if one or more of the matched categories appear in the ground
truth, and negative if all matches are semantically reasonable but absent from the GT labels.

Positive Mapping Cases

• GT objects: person, tree, car

• VLM prediction: man

• SimCSE top-2 matches:

– gentleman (cos = 0.92) [not in GT]

– person (cos = 0.89) [in GT]

• VLM prediction: woman

• SimCSE top-2 matches:

– lady (cos = 0.90) [not in GT]

– person (cos = 0.87) [in GT]

• GT objects: dog, grass

• VLM prediction: puppy

• SimCSE top-2 matches:

– canine (cos = 0.82) [not in GT]

– dog (cos = 0.79) [in GT]

Negative Mapping Cases

• GT objects: person, car, tree

• VLM prediction: skateboarder

• SimCSE top-2 matches:

– skateboard (cos = 0.76) [not in GT]

– rider (cos = 0.73) [in GT]

• GT objects: tennis racket, person

• VLM prediction: tennis player

• SimCSE top-2 matches:

– athlete (cos = 0.81) [not in GT]

– player (cos = 0.78) [not in GT]

In Sec. C.4 we show how the negative mapping cases are handled by using Grounding DINO (Liu et al., 2024c) as our object
detection module.
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C.3.1. ENTITY MAPPING ABLATION

To quantify the benefit of SimCSE’s contrastive training, we ran an ablation comparing it against a standard Sentence-BERT
(SBERT) (Reimers & Gurevych, 2019) encoder—while keeping the same normalization and synonym steps across three
datasets (PSG, OI, VG) and three VLMs: LLava Next, Qwen2-vl 7b Qwen7) and Qwen2-vl 72b(Qwen72). The grouped bar
chart above shows recall for each model–method pairing. Overall, SimCSE (gold, crimson, sky-blue bars) yields up to a 5%
recall boost over SBERT (orange, pink, teal bars) on the PSG and OI sets, particularly for Qwen7, highlighting its stronger
discrimination of fine-grained object labels. On the more challenging VG data, both methods converge to lower recall,
although SBERT slightly outperforms SimCSE for Qwen72 on PSG. These results suggest that contrastive supervision in
SimCSE enhances generalization in complex scenes, while SBERT can sometimes better capture subtle category nuances in
smaller models as shown in Fig. 3.

C.4. Entity Detection

We utilize Grounding-DINO (Liu et al., 2024c) for zero-shot entity detection, specifically employing the ground-
ingdino swinb cogcoor variant. We set the box threshold to 35% and the text threshold to 25%, following default values
recommended by the authors. A single object name serve as a single text prompt for Grounding-DINO.
It is worth noting that the original Grounding-DINO paper highlights its capability to ground multiple objects in the text by
separating their names with dots (e.g., ‘person.cat.dog’). However, in our practical experience, while combining multiple
objects in a single prompt speeds up entity detection, it compromises the quality of detected boxes. Grounding-DINO
demonstrates superior performance when tasked with detecting a single object per text prompt. Therefore, we adopt a
strategy of providing individual object names to maximize detection quality.
Object Filtering As discussed in Section C.3, the entity mapping stage may generate spurious or semantically irrelevant
object labels. Here, we show how the pair refinement and filtering stages effectively remove such cases before the final triplet
prediction. Figures 4 and 5 illustrate two examples where several incorrect or irrelevant mapped entities are successfully
discarded.

Figure 3. Recall comparison across datasets, models, and methods.
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Figure 4. Example 1 — Initial mapped entities: [windshield, vehicle, light, building, car, street, cat,
bag]. Irrelevant objects such as light, building, street, and bag are successfully filtered out.

Figure 5. Example 2 — Initial mapped entities: [ski, light, tree, skier, number, snow, roof]. Irrelevant objects
such as light, number, and roof are removed during filtering.
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C.5. Pair Refinement

We present the prompt formulation and hyperparameter values used in the two stages of pair refinement in our framework.

C.5.1. SEMANTIC PAIR REFINEMENT

To perform semantic filtering, we present the VLM with the full set of candidate entity pairs and ask it to rank them by their
semantic relevance. Semantic Pair Scoring Prompt box shows the exact prompt used for Fig. 6, illustrating how
the model refines the image’s relationships.

Figure 6. Example of semantic pair refinement. Given an image and a list of object pairs, the VLM is prompted to assign interaction
likelihood scores, helping filter out semantically implausible relationships.

Semantic Pair Scoring Prompt

You are a world-class vision-language analyst, highly specialized in understanding
spatial and functional relationships between objects in visual scenes. Your role
is to evaluate how likely it is that specific object pairs are engaged in meaningful
physical interactions in the given image.
### Object Pair List:
Pair 1: book and bookcase
Pair 2: book and bottle
Pair 3: book and cat
Pair 4: book and chair
Pair 5: book and chest of drawers
Pair 6: book and computer monitor
Pair 7: book and desk
Pair 8: book and drawer
Pair 9: book and lamp
Pair 10: book and laptop
Pair 11: book and mouse
Pair 12: book and musical keyboard
Pair 13: book and poster
Pair 14: book and window
Pair 15: bookcase and bottle
Pair 16: bookcase and cat
Pair 17: bookcase and chair
Pair 18: bookcase and chest of drawers
Pair 19: bookcase and computer monitor
Pair 20: bookcase and desk
Pair 21: bookcase and drawer
Pair 22: bookcase and lamp
Pair 23: bookcase and laptop
Pair 24: bookcase and mouse
Pair 25: bookcase and musical keyboard
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Pair 26: bookcase and poster
Pair 27: bookcase and window
Pair 28: bottle and cat
Pair 29: bottle and chair
Pair 30: bottle and chest of drawers
Pair 31: bottle and computer monitor
Pair 32: bottle and desk
Pair 33: bottle and drawer
Pair 34: bottle and lamp
Pair 35: bottle and laptop
Pair 36: bottle and mouse
Pair 37: bottle and musical keyboard
Pair 38: bottle and poster
Pair 39: bottle and window
Pair 40: cat and chair
Pair 41: cat and chest of drawers
Pair 42: cat and computer monitor
Pair 43: cat and desk
Pair 44: cat and drawer
Pair 45: cat and lamp
Pair 46: cat and laptop
Pair 47: cat and mouse
Pair 48: cat and musical keyboard
Pair 49: cat and poster
Pair 50: cat and window

### Task:
Carefully assess each object pair listed above and determine the likelihood that they
participate in a meaningful interaction within the scene. Base your assessment on how
objects of those categories typically relate in physical or functional terms within
real-world images.
Provide a single integer confidence score from 1 to 5 for each pair, where:
- 1 = Very Unlikely
- 2 = Unlikely
- 3 = Uncertain
- 4 = Likely
- 5 = Very Likely

### Output Format:
- Do not include any object names, explanations, or extra text.
- Stop after the final pair.
- You must return exactly one line per pair listed above.
- Use the format: Pair [index]: [score]

### Begin:

C.5.2. GEOMETRIC PAIR REFINEMENT

Following prior work (Elskhawy et al., 2025), we adopt the same geometric distance formulation:
λ1

(
xij

y

)
+ λ2∥di − dj∥2 < τ , where λ1 = 1.0, λ2 = 1.5, and τ = 0.5. Unlike (Elskhawy et al., 2025), which directly

prunes pairs exceeding this threshold, we convert the distance into a soft compatibility score using a sigmoid function
(Eq. 3).

We introduce an additional hyperparameter β, which controls the sharpness of this score. We use β = 16 for 7B models
(LLaVA-next and Qwen2-vl 7B), and β = 10 for Qwen2-vl 72B. For the final fusion of semantic and geometric scores, we
set the weighting factor α = 0.25.

C.6. Scene Graph Generation

In the final scene-graph generation stage, we feed the VLM the semantically refined object pairs and ask it to infer their
relationships. Because Qwen2-VL was instruction-tuned on bounding-box annotations—unlike the LLaVA models—the pre-
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cise prompt templates differ: see Relation Generation Prompt for LLaVA and Relation Generation
Prompt for Qwen2-VL for the exact prompts used for Fig. 7. The final list of correct and incorrect outputs is presented
in Sample VLM Outputs (Correct and Incorrect).

Figure 7. Final scene graph generation setup. Refined object pairs, along with their bounding box coordinates, are passed to the VLM to
predict relationships.

Sample VLM Outputs (Correct and Incorrect)

Pair 1:
Sentence1: The woman is sitting on the chair. — Sentence2: The chair is being used by the woman.

Pair 2:
Sentence1: The woman is next to the chair. — Sentence2: The chair is beside the woman.

Pair 3:
Sentence1: The woman is located on the table. — Sentence2: The table is behind the woman.

Pair 4:
Sentence1: The woman is resting her arm on the table. — Sentence2: The table is supporting the woman’s arm.

Pair 5:
Sentence1: The chair is on top of the table. — Sentence2: The table is on the chair.

Pair 6:
Sentence1: The man is seated at the table. — Sentence2: The table is in front of the man.

Relation Generation Prompt for LLaVA

You are a vision-language expert. Given an image with pairs of objects along
with their bounding box coordinates. The bounding box coordinates are defined by
(X top left, Y top left, X bottom right, Y bottom right) and are normalized between 0
and 1.
### Object Pair List
Pair 1: First object: ’woman’ [0.36, 0.51, 0.49, 0.87], Second object:’chair’ [0.37,
0.67, 0.57, 1.0]
Pair 2: First object: ’woman’ [0.36, 0.51, 0.49, 0.87], Second object:’chair’ [0.54,
0.64, 0.71, 1.0]
Pair 3: First object: ’woman’ [0.36, 0.51, 0.49, 0.87], Second object:’chair’ [0.7,
0.63, 0.9, 0.97]
Pair 4: First object: ’woman’ [0.36, 0.51, 0.49, 0.87], Second object:’chair’ [0.82,
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0.61, 1.0, 0.93]
Pair 5: First object: ’woman’ [0.36, 0.51, 0.49, 0.87], Second object:’chair’ [0.14,
0.7, 0.32, 1.0]
Pair 6: First object: ’woman’ [0.36, 0.51, 0.49, 0.87], Second object:’table’ [0.07,
0.64, 0.54, 0.74]
Pair 7: First object: ’woman’ [0.36, 0.51, 0.49, 0.87], Second object:’table’ [0.51,
0.6, 0.77, 0.71]
Pair 8: First object: ’woman’ [0.36, 0.51, 0.49, 0.87], Second object:’chair’ [0.48,
0.57, 0.55, 0.63]
Pair 9: First object: ’woman’ [0.36, 0.51, 0.49, 0.87], Second object:’table’ [0.18,
0.55, 0.53, 0.65]
Pair 10: First object: ’chair’ [0.37, 0.67, 0.57, 1.0], Second object:’man’ [0.51,
0.52, 0.69, 0.91]
Pair 11: First object: ’chair’ [0.37, 0.67, 0.57, 1.0], Second object:’table’ [0.07,
0.64, 0.54, 0.74]
Pair 12: First object: ’chair’ [0.37, 0.67, 0.57, 1.0], Second object:’table’ [0.51,
0.6, 0.77, 0.71]
Pair 13: First object: ’man’ [0.08, 0.42, 0.19, 0.64], Second object:’chair’ [0.06,
0.51, 0.1, 0.75]
Pair 14: First object: ’man’ [0.08, 0.42, 0.19, 0.64], Second object:’chair’ [0.48,
0.57, 0.55, 0.63]
Pair 15: First object: ’man’ [0.08, 0.42, 0.19, 0.64], Second object:’table’ [0.18,
0.55, 0.53, 0.65]
Pair 16: First object: ’man’ [0.08, 0.42, 0.19, 0.64], Second object:’table’ [0.52,
0.52, 0.75, 0.62]
Pair 17: First object: ’chair’ [0.06, 0.51, 0.1, 0.75], Second object:’table’ [0.18,
0.55, 0.53, 0.65]
Pair 18: First object: ’man’ [0.51, 0.52, 0.69, 0.91], Second object:’chair’ [0.54,
0.64, 0.71, 1.0]
Pair 19: First object: ’man’ [0.51, 0.52, 0.69, 0.91], Second object:’chair’ [0.7,
0.63, 0.9, 0.97]
Pair 20: First object: ’man’ [0.51, 0.52, 0.69, 0.91], Second object:’chair’ [0.82,
0.61, 1.0, 0.93]
Pair 21: First object: ’man’ [0.51, 0.52, 0.69, 0.91], Second object:’table’ [0.07,
0.64, 0.54, 0.74]
Pair 22: First object: ’man’ [0.51, 0.52, 0.69, 0.91], Second object:’table’ [0.51,
0.6, 0.77, 0.71]
Pair 23: First object: ’man’ [0.51, 0.52, 0.69, 0.91], Second object:’chair’ [0.48,
0.57, 0.55, 0.63]
Pair 24: First object: ’man’ [0.51, 0.52, 0.69, 0.91], Second object:’table’ [0.18,
0.55, 0.53, 0.65]
Pair 25: First object: ’man’ [0.51, 0.52, 0.69, 0.91], Second object:’table’ [0.52,
0.52, 0.75, 0.62]
Pair 26: First object: ’chair’ [0.54, 0.64, 0.71, 1.0], Second object:’man’ [0.71,
0.47, 0.85, 0.92]
Pair 27: First object: ’chair’ [0.54, 0.64, 0.71, 1.0], Second object:’man’ [0.84,
0.46, 0.96, 0.78]
Pair 28: First object: ’chair’ [0.54, 0.64, 0.71, 1.0], Second object:’table’ [0.07,
0.64, 0.54, 0.74]
Pair 29: First object: ’chair’ [0.54, 0.64, 0.71, 1.0], Second object:’table’ [0.51,
0.6, 0.77, 0.71]
Pair 30: First object: ’chair’ [0.54, 0.64, 0.71, 1.0], Second object:’table’ [0.18,
0.55, 0.53, 0.65]
Pair 31: First object: ’man’ [0.71, 0.47, 0.85, 0.92], Second object:’chair’ [0.7,
0.63, 0.9, 0.97]
Pair 32: First object: ’man’ [0.71, 0.47, 0.85, 0.92], Second object:’chair’ [0.82,
0.61, 1.0, 0.93]
Pair 33: First object: ’man’ [0.71, 0.47, 0.85, 0.92], Second object:’table’ [0.51,
0.6, 0.77, 0.71]
Pair 34: First object: ’man’ [0.71, 0.47, 0.85, 0.92], Second object:’chair’ [0.48,
0.57, 0.55, 0.63]
Pair 35: First object: ’man’ [0.71, 0.47, 0.85, 0.92], Second object:’table’ [0.18,
0.55, 0.53, 0.65]
Pair 36: First object: ’man’ [0.71, 0.47, 0.85, 0.92], Second object:’table’ [0.52,
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0.52, 0.75, 0.62]
Pair 37: First object: ’chair’ [0.7, 0.63, 0.9, 0.97], Second object:’man’ [0.84,
0.46, 0.96, 0.78]
Pair 38: First object: ’chair’ [0.7, 0.63, 0.9, 0.97], Second object:’table’ [0.07,
0.64, 0.54, 0.74]
Pair 39: First object: ’chair’ [0.7, 0.63, 0.9, 0.97], Second object:’table’ [0.51,
0.6, 0.77, 0.71]
Pair 40: First object: ’chair’ [0.7, 0.63, 0.9, 0.97], Second object:’table’ [0.52,
0.52, 0.75, 0.62]
Pair 41: First object: ’man’ [0.84, 0.46, 0.96, 0.78], Second object:’chair’ [0.82,
0.61, 1.0, 0.93]
Pair 42: First object: ’man’ [0.84, 0.46, 0.96, 0.78], Second object:’table’ [0.51,
0.6, 0.77, 0.71]
Pair 43: First object: ’man’ [0.84, 0.46, 0.96, 0.78], Second object:’chair’ [0.48,
0.57, 0.55, 0.63]
Pair 44: First object: ’man’ [0.84, 0.46, 0.96, 0.78], Second object:’table’ [0.52,
0.52, 0.75, 0.62]
Pair 45: First object: ’chair’ [0.82, 0.61, 1.0, 0.93], Second object:’table’ [0.51,
0.6, 0.77, 0.71]
Pair 46: First object: ’chair’ [0.14, 0.7, 0.32, 1.0], Second object:’table’ [0.07,
0.64, 0.54, 0.74]
Pair 47: First object: ’table’ [0.07, 0.64, 0.54, 0.74], Second object:’chair’ [0.48,
0.57, 0.55, 0.63]
Pair 48: First object: ’table’ [0.51, 0.6, 0.77, 0.71], Second object:’chair’ [0.48,
0.57, 0.55, 0.63]
Pair 49: First object: ’chair’ [0.48, 0.57, 0.55, 0.63], Second object:’table’ [0.18,
0.55, 0.53, 0.65]
Pair 50: First object: ’chair’ [0.48, 0.57, 0.55, 0.63], Second object:’table’ [0.52,
0.52, 0.75, 0.62]
### Output Format Instructions
- Write two sentences describing their spatial relationship.
- Sentence one describes how the first object is related to the second object.
- Sentence two describes how the second object is related to the first object.
- Use natural but concise relationships.
- Do not describe properties of a single object.
- Format your answer in the following manner:
Pair [idx]:
Sentence1:|Sentence2:

### Begin:

Relation Generation Prompt for Qwen2-VL

You are a vision-language expert. Given an image with pairs of objects along
with their bounding box coordinates. The bounding box coordinates are defined by
(X top left, Y top left, X bottom right, Y bottom right) and are scaled between 1 and
1000.
### Object Pair List
Pair 1: First object: ’woman’ [360, 510, 490, 870], Second object: ’chair’ [370,
670, 570, 1000]
Pair 2: First object: ’woman’ [360, 510, 490, 870], Second object: ’chair’ [540,
640, 710, 1000]
Pair 3: First object: ’woman’ [360, 510, 490, 870], Second object: ’chair’ [700,
630, 900, 970]
Pair 4: First object: ’woman’ [360, 510, 490, 870], Second object: ’chair’ [820,
610, 1000, 930]
Pair 5: First object: ’woman’ [360, 510, 490, 870], Second object: ’chair’ [140,
700, 320, 1000]
Pair 6: First object: ’woman’ [360, 510, 490, 870], Second object: ’table’ [70, 640,
540, 740]
Pair 7: First object: ’woman’ [360, 510, 490, 870], Second object: ’table’ [510,
600, 770, 710]
Pair 8: First object: ’woman’ [360, 510, 490, 870], Second object: ’chair’ [480,
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570, 550, 630]
Pair 9: First object: ’woman’ [360, 510, 490, 870], Second object: ’table’ [180,
550, 530, 650]
Pair 10: First object: ’chair’ [370, 670, 570, 1000], Second object: ’man’ [510,
520, 690, 910]
Pair 11: First object: ’chair’ [370, 670, 570, 1000], Second object: ’table’ [70,
640, 540, 740]
Pair 12: First object: ’chair’ [370, 670, 570, 1000], Second object: ’table’ [510,
600, 770, 710]
Pair 13: First object: ’man’ [80, 420, 190, 640], Second object: ’chair’ [60, 510,
100, 750]
Pair 14: First object: ’man’ [80, 420, 190, 640], Second object: ’chair’ [480, 570,
550, 630]
Pair 15: First object: ’man’ [80, 420, 190, 640], Second object: ’table’ [180, 550,
530, 650]
Pair 16: First object: ’man’ [80, 420, 190, 640], Second object: ’table’ [520, 520,
750, 620]
Pair 17: First object: ’chair’ [60, 510, 100, 750], Second object: ’table’ [180,
550, 530, 650]
Pair 18: First object: ’man’ [510, 520, 690, 910], Second object: ’chair’ [540, 640,
710, 1000]
Pair 19: First object: ’man’ [510, 520, 690, 910], Second object: ’chair’ [700, 630,
900, 970]
Pair 20: First object: ’man’ [510, 520, 690, 910], Second object: ’chair’ [820, 610,
1000, 930]
Pair 21: First object: ’man’ [510, 520, 690, 910], Second object: ’table’ [70, 640,
540, 740] Pair 22: First object: ’man’ [510, 520, 690, 910], Second object: ’table’
[510, 600, 770, 710]
Pair 23: First object: ’man’ [510, 520, 690, 910], Second object: ’chair’ [480, 570,
550, 630]
Pair 24: First object: ’man’ [510, 520, 690, 910], Second object: ’table’ [180, 550,
530, 650]
Pair 25: First object: ’man’ [510, 520, 690, 910], Second object: ’table’ [520, 520,
750, 620]
Pair 26: First object: ’chair’ [540, 640, 710, 1000], Second object: ’man’ [710,
470, 850, 920]
Pair 27: First object: ’chair’ [540, 640, 710, 1000], Second object: ’man’ [840,
460, 960, 780]
Pair 28: First object: ’chair’ [540, 640, 710, 1000], Second object: ’table’ [70,
640, 540, 740]
Pair 29: First object: ’chair’ [540, 640, 710, 1000], Second object: ’table’ [510,
600, 770, 710]
Pair 30: First object: ’chair’ [540, 640, 710, 1000], Second object: ’table’ [180,
550, 530, 650]
Pair 31: First object: ’man’ [710, 470, 850, 920], Second object: ’chair’ [700, 630,
900, 970]
Pair 32: First object: ’man’ [710, 470, 850, 920], Second object: ’chair’ [820, 610,
1000, 930]
Pair 33: First object: ’man’ [710, 470, 850, 920], Second object: ’table’ [510, 600,
770, 710]
Pair 34: First object: ’man’ [710, 470, 850, 920], Second object: ’chair’ [480, 570,
550, 630]
Pair 35: First object: ’man’ [710, 470, 850, 920], Second object: ’table’ [180, 550,
530, 650]
Pair 36: First object: ’man’ [710, 470, 850, 920], Second object: ’table’ [520, 520,
750, 620]
Pair 37: First object: ’chair’ [700, 630, 900, 970], Second object: ’man’ [840, 460,
960, 780]
Pair 38: First object: ’chair’ [700, 630, 900, 970], Second object: ’table’ [70,
640, 540, 740]
Pair 39: First object: ’chair’ [700, 630, 900, 970], Second object: ’table’ [510,
600, 770, 710]
Pair 40: First object: ’chair’ [700, 630, 900, 970], Second object: ’table’ [520,
520, 750, 620]
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Pair 41: First object: ’man’ [840, 460, 960, 780], Second object: ’chair’ [820, 610,
1000, 930]
Pair 42: First object: ’man’ [840, 460, 960, 780], Second object: ’table’ [510, 600,
770, 710]
Pair 43: First object: ’man’ [840, 460, 960, 780], Second object: ’chair’ [480, 570,
550, 630]
Pair 44: First object: ’man’ [840, 460, 960, 780], Second object: ’table’ [520, 520,
750, 620]
Pair 45: First object: ’chair’ [820, 610, 1000, 930], Second object: ’table’ [510,
600, 770, 710]
Pair 46: First object: ’chair’ [140, 700, 320, 1000], Second object: ’table’ [70,
640, 540, 740]
Pair 47: First object: ’table’ [70, 640, 540, 740], Second object: ’chair’ [480,
570, 550, 630]
Pair 48: First object: ’table’ [510, 600, 770, 710], Second object: ’chair’ [480,
570, 550, 630]
Pair 49: First object: ’chair’ [480, 570, 550, 630], Second object: ’table’ [180,
550, 530, 650]
Pair 50: First object: ’chair’ [480, 570, 550, 630], Second object: ’table’ [520,
520, 750, 620]

### Output Instructions
- For each pair, write two short sentences:
- Sentence 1: how the first object relates to the second.
- Sentence 2: how the second object relates to the first.
- Focus on spatial or functional interactions.
- Use this format:
Pair [index]:
Sentence1: | Sentence2:
### Begin:

D. Qualitative Results for Pair Refinement
To better understand the impact of our pair refinement module, we visualize object pairs selected by each refinement strategy:
semantic-only, depth-only, and the fused combination of both. For each image, we also list the ground-truth object pairs
from the dataset. This comparison highlights how semantic and spatial cues contribute differently to filtering, and how
their combination improves the selection of meaningful object pairs for relation prediction. Tab. 5, 6, and 7 show the pairs
detected from the images 8, 9 and 10 respectively.

Table 5. Qualitative comparison of top object pairs per method along with the Ground Truth object pairs for Fig. 8. Green = correct pair,
Red = incorrect.
Semantic Pairs Depth Pairs Fused Pairs GT Pairs

girl[385,79,587,399]
glasses[660,57,936,146]

sunglasses[416,256,572,324]
goggles[413,254,575,325]

girl[385,79,587,399]
glasses[418,256,572,324]

girl [385,79,587,399]
glasses[418,256,572,324]

girl[385,79,587,399]
sunglasses[416,256,572,324]

glasses[418,256,572,325]
girl[385,79,587,399]

sunglasses[416,256,572,324]
girl[385,79,587,399]

sunglasses[416,256,572,324]
girl[385,79,587,399]

girl[0,10,595,682]
glasses[660,57,936,146]

woman[380,90,587,417]
girl[385,79,587,399]

woman[380,90,587,417]
girl[385,79,587,399]

woman[380,90,587,417]
girl[385,79,587,399]
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Figure 8. Example 1: Pair Refinement

Figure 9. Example 2: Pair Refinement
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Figure 10. Example 3: Pair Refinement

Table 6. Qualitative comparison of top object pairs per method along with the Ground Truth object pairs for Fig. 9. Green = correct pair,
Red = incorrect.
Semantic Pairs Depth Pairs Fused Pairs GT Pairs

girl[329,219,620,768]
glasses[861,253,944,281]

woman[329,219,620,765]
girl[329,219,620,768]

woman[329,219,620,765]
girl[329,219,620,768]

woman[329,219,620,765]
girl[329,219,620,768]

girl[329,219,620,768]
sunglasses[520,153,662,204]

glasses[523,159,685,201]
girl[329,219,620,768]

sunglasses[520,153,662,204]
girl[329,219,620,768]

sunglasses[520,153,662,204]
girl[329,219,620,768]

girl[329,219,620,768]
sun hat[460,22,736,238]

glasses[423,355,566,395]
man[295,19,924,768]

glasses[423,355,566,395]
man[295,19,924,768]

glasses[423,355,566,395]
man[295,19,924,768]

Table 7. Qualitative comparison of top object pairs per method along with the Ground Truth object pairs for Fig. 10. Green = correct pair,
Red = incorrect.
Semantic Pairs Depth Pairs Fused Pairs GT Pairs

bicycle helmet[90,138,156,218]
man[751,189,1022,520]

man[197,150,420,633]
roller skates[272,523,317,595]

man[197,150,420,633]
roller skates[272,523,317,595]

man[197,150,420,633]
roller skates[272,523,317,595]

bicycle helmet[328,149,409,266]
man[259,98,429,563]

roller skates[361,524,390,585]
man[331,174,576,589]

roller skates[361,524,390,585]
man[331,174,576,589]

roller skates[361,524,390,585]
man[331,174,576,589]

bicycle helmet[90,138,156,218]
man[0,141,195,491]

roller skates[262,503,280,571]
man[331,174,576,589]

man[131,98,262,530]
bicycle helmet[90,138,156,218]

man[131,98,262,530]
bicycle helmet[90,138,156,218]
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