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Abstract
Bayesian optimization is a powerful framework
for optimizing functions that are expensive or
time-consuming to evaluate. Recent work has
considered Bayesian optimization of function net-
works (BOFN), where the objective function is
given by a network of functions, each taking as
input the output of previous nodes in the network
as well as additional parameters. Leveraging this
network structure has been shown to yield signifi-
cant performance improvements. Existing BOFN
algorithms for general-purpose networks evalu-
ate the full network at each iteration. However,
many real-world applications allow for evaluating
nodes individually. To exploit this, we propose
a novel knowledge gradient acquisition function
that chooses which node and corresponding inputs
to evaluate in a cost-aware manner, thereby reduc-
ing query costs by evaluating only on a part of the
network at each step. We provide an efficient ap-
proach to optimizing our acquisition function and
show that it outperforms existing BOFN methods
and other benchmarks across several synthetic and
real-world problems. Our acquisition function is
the first to enable cost-aware optimization of a
broad class of function networks.

1. Introduction
Bayesian optimization (BO) (Močkus, 1975; Frazier, 2018)
has emerged as a powerful framework for optimizing func-
tions with expensive or time-consuming evaluations. BO
has proved its efficacy in a variety of applications, including
hyperparameter tuning of machine learning models (Snoek
et al., 2012), materials design (Frazier et al., 2008; Zhang
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Figure 1: An example function network in the manufactur-
ing problem.

et al., 2020), vaccine manufacturing (Rosa et al., 2022), and
pharmaceutical product development (Sano et al., 2020).

In many applications, such as manufacturing (Ghasemi et al.,
2018), epidemic model calibration (Garnett, 2002), machine
learning pipeline optimization (Xin et al., 2021), and robotic
control (Plappert et al., 2018), objective functions are com-
puted by evaluating a network of functions where each func-
tion takes as input the outputs of its parent nodes. Con-
sider the function network in Figure 1, which illustrates the
stages of a manufacturing process. The process begins with
a raw material described by x1. This raw material is used
to produce an intermediate part described by y1 through
a process f1. Similarly, a second raw material described
by x2 is used to produce another intermediate part described
by y2 through a process f2. These parts (with properties y1
and y2) are combined with another raw material described
by x3 in a process f3 to make the final product, the quality
of which is denoted by y3. Our goal is to choose x1, x2, x3

to maximize y3.

Astudillo & Frazier (2021a) showed that utilizing intermedi-
ate outputs in the network, i.e., y1 and y2, to decide which
design parameters x = (x1, x2, x3) to evaluate significantly
improves the performance of BO. However, this and other
prior work have not exploited the ability to perform partial
evaluations of the function network, i.e., the ability to eval-
uate only a subset of nodes in the network at each iteration
and use the so-obtained information to decide on the in-
puts to subsequent nodes, and potentially even to pause the
evaluation process. As we demonstrate later, doing so can
significantly improve performance, especially when evalua-
tion costs vary significantly across nodes. For example, if
evaluating f1 is much cheaper than evaluating f2, it may be
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advantageous to initially focus resources on understanding
the range of values taken by y1 before performing too many
costly evaluations of f2.

In this work, we introduce a BO algorithm that significantly
improves performance over existing methods by taking ad-
vantage of the ability to perform partial evaluations. This
algorithm iteratively selects a node in the function network
and a corresponding input to evaluate it, with the goal of
identifying the global optimum within a limited budget.

Our contributions are summarized as follows:

1. We introduce a framework for Bayesian optimization
of function networks that allows partial evaluations.

2. We propose a knowledge-gradient-based acquisition
function (p-KGFN) that, to our knowledge, is the first
to actively leverage partial evaluations in general func-
tion networks in a cost-aware fashion.

3. We propose an approximation of p-KGFN that can be
optimized more efficiently.

4. We demonstrate the benefits of exploiting partial evalu-
ations through several numerical experiments, includ-
ing both synthetic and real-world applications with a
variety of network structures.

2. Related Work
Grey-box BO Our work falls within grey-box BO (As-
tudillo & Frazier, 2021b), which focuses on exploiting the
known structure of the objective function (e.g., the func-
tion network structure considered in our work) to improve
sampling decisions. BO of functions with a composite or
network structure has been previously studied in the litera-
ture. For instance, Uhrenholt & Jensen (2019) considered
objective functions that are sums of squared errors, while
Astudillo & Frazier (2019) and Jain et al. (2023) considered
a more general setting where the objective function is the
composition of an expensive vector-valued inner function
and a cheap outer function. BO of function networks was
pioneered by Astudillo & Frazier (2021a), introducing a
probabilistic model that exploits function network structure
and pairing this model with the expected improvement (EI)
acquisition function (Jones et al., 1998).

BO with Partial Evaluations The ability to perform par-
tial evaluations in the context of BO of function networks
has been studied for specific network structures. Kusakawa
et al. (2022) considered function networks constituted by a
chain of nodes and developed an algorithm that can pause
an evaluation at an intermediate node. However, their ap-
proach, which uses an EI-based acquisition function, cannot
be easily extended to quantify the value of evaluating a

single node in more general function networks. Lin et al.
(2021) explored a setting where changing values of a subset
of variables corresponding to different stages in a pipeline
incurs a “switching cost”. Their approach assumes fully
sequential dependence between stages and cannot reuse pre-
vious evaluations. Additionally, Lin et al. (2021) adopted a
“slow-moving bandit” formulation that aims to minimize cu-
mulative regret, whereas we seek to minimize simple regret.
Outside the function networks setting, Hernández-Lobato
et al. (2016) and Daulton et al. (2023) considered BO with
partial evaluations for constrained and multi-objective opti-
mization, respectively.

Cost-aware BO Our work is related to research consider-
ing heterogeneous evaluation costs across the search space.
Our approach is similar in nature to those proposed by Snoek
et al. (2012), Wu et al. (2020), and Daulton et al. (2023),
whose acquisition functions value points based on the value
of information per unit cost, thus favoring lower-cost evalua-
tions. Lee et al. (2020) adopted a cost-cooling schedule that
discourages high-cost points early in the BO loop, Abdol-
shah et al. (2019) incorporated cost-aware constraints while
solving multi-objective BO problems, and Astudillo et al.
(2021) and Lee et al. (2021) proposed non-myopic acquisi-
tion functions formulated using Markov decision processes
for solving budgeted BO problems.

3. Problem Statement and Statistical Model
3.1. Problem Statement

Following the setup of Astudillo & Frazier (2021a), we
consider a sequence of functions f1, f2, . . . , fK , arranged
as nodes in a network representing the evaluation process.
Specifically, the network structure is encoded as a directed
acyclic graph G = (V, E), where V = {1, 2, . . . ,K} and
E = {(i, j) : fj takes the output of fi as input} denote the
sets of nodes and edges, respectively. We assume that the
final node function, fK , is scalar-valued. However, the other
node functions may be vector-valued.

Let J (k) denote the parent nodes of node k. Without loss
of generality, we assume that nodes are ordered such that
j < k for all j ∈ J (k). Let I(k) ⊆ {1, 2, . . . , d} denote
the set of components of the input vector x ∈ X ⊂ Rd taken
as an input by each function fk.1 The output of node k when
the function network is evaluated at x is denoted by yk(x).
The outputs y1(x), y2(x), . . . , yK(x) can be computed re-
cursively as

yk(x) = fk(yJ (k)(x), xI(k)), k = 1, 2, . . . ,K. (1)

For each node k, we assume that there is an associated
1This set may be empty for some nodes if they take as input

only the outputs from their parent nodes.
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known positive evaluation cost function ck(·).2 Our goal
is to maximize the final node’s function value yK(x) while
minimizing the cumulative evaluation cost. To support this
goal, our algorithm will select at each iteration a node k and
corresponding input zk at which fk will be evaluated.

We distinguish two settings associated with the feasible
values of zk:

1. Evaluating a node k requires to previously obtain the
outputs from its parent nodes, in which case zk is com-
prised of the concatenation of these values and the
additional parameters corresponding to node k.

2. The possible outputs of each node are known, and each
node k can be evaluated at any feasible input (any
admissible controllable input as well as any possible
output of its parent nodes).

We focus on the first setting, which aligns with many practi-
cal situations. For example, in our manufacturing problem,
executing a step requires the outputs of the preceding steps.
Additionally, we restrict our attention to function networks
where pairs of nodes do not share common inputs. This
ensures there are valid combinations for evaluation at down-
stream nodes. However, this assumption can be relaxed by
grouping nodes with shared inputs as a preprocessing step.

Finally, we consider the scenario in which each intermediate
output is reusable. In other words, once a node’s output is ob-
tained, it can be repeatedly used in downstream evaluations.
This scenario is common in settings such as machine learn-
ing (ML) pipeline optimization, where trained ML models
can be saved and reused, or in large-batch manufacturing,
where the manufactured batch volume is effectively infinite
relative to the amounts required downstream.

3.2. Statistical Model

Following Astudillo & Frazier (2021a), we model the func-
tions f1, f2, . . . , fK as samples from independent Gaussian
process (GP) prior distributions (Williams & Rasmussen,
2006). For each k = 1, 2, . . . ,K, let µ0,k and Σ0,k denote
the prior mean and covariance functions of fk, respectively.
Let Dn,k = {(zj,k, yj,k)}nk

j=1 denote the observations at
node k after n iterations, where nk is the number of ob-
servations at node k. The posterior distribution over fk
given Dn,k is a Gaussian process whose mean and covari-
ance functions, denoted by µn,k and Σn,k, can be computed
in closed form using the standard GP regression formulas
(Williams & Rasmussen, 2006).

2When ck(·) is unknown, we may learn it using a surrogate
model and compute quantities involving costs by either taking the
expectation over the distribution of ck(·) or by replacing the cost
function by the cost model’s posterior mean.

Let Dn = {Dn,k}Kk=1 denote the observations at all
nodes after n iterations. The posterior distributions over
f1, f2, . . . , fK given Dn induce a posterior distribution on
the final node value yK . Although this distribution is gener-
ally non-Gaussian, we can obtain samples from it efficiently,
as discussed in Section 5.2.

Our acquisition function, formally defined in Section 4,
is constructed based on these posterior distributions and
evaluation costs ck(·). It quantifies the cost-normalized
benefit of performing one additional partial evaluation at a
specific node. Our BO algorithm then decides to evaluate
at a node k∗ with input z∗k∗ yielding the maximum value of
this acquisition function.

4. The p-KGFN Acquisition Function
Throughout this section, we assume that n samples have
already been observed and are determining how to allocate
sample n+ 1.

Let νn(x) denote the posterior mean of yK(x) given Dn.
Assuming risk-neutrality, the solution we would select if we
were to stop at time n would be an x that maximizes the
posterior mean of the final node’s value,3 i.e., a solution of

ν∗n = max
x∈X

νn(x). (2)

Now, suppose one additional evaluation at a single node
is allowed. For a node k with a given input zk, observing
fk(zk) would result in an updated posterior over fk, which
in turn yields an updated posterior mean function of the final
node value νn+1(·) and also an updated maximum of the
final node’s posterior mean ν∗n+1. The difference between
the two quantities, i.e., ν∗n+1 − ν∗n, quantifies the increment
in the expected solution quality.

We note that ν∗n+1 − ν∗n is random at time n due to its
dependence on the yet unobserved value of fk(zk). Our
acquisition function is obtained by taking the expectation of
this increment with respect to the posterior on fk(zk) and
dividing it by the evaluation cost ck(zk). Specifically, we
define the knowledge gradient for function networks with
partial evaluations (p-KGFN) by

αn,k(zk) =
Eyk

[ν∗n+1]− ν∗n
ck(zk)

. (3)

The feasible set for zk is given by Zn,k := Yn,J (k)×XI(k),
where Yn,J (k) is the discrete set constituted by the outputs
from the parent nodes of node k that have been previously
generated after n iterations and XI(k) is the set of possible
additional parameters at node k. Thus, at each iteration, the

3Note that we are concerned about the cost of evaluating a
configuration during but not after the optimization.

3



Bayesian Optimization of Function Networks with Partial Evaluations

next node and corresponding inputs to evaluate are given by

(k∗, z∗k∗) ∈ argmax
k∈{1,...,K}, zk∈Zn,k

αn,k(zk). (4)

Our acquisition function generalizes the classical knowledge
gradient for regular BO (Frazier et al., 2008; Wu & Frazier,
2016). Moreover, it is cost-ware (in that it favors lower-cost
evaluations at the same expected quality) and thus is similar
in nature to the acquisition functions proposed by Snoek
et al. (2012), Wu et al. (2020), and Daulton et al. (2023).

4.1. Advantages of Partial Evaluations

In this section, we illustrate the benefits of performing
partial evaluations, as enabled by p-KGFN, through a
simple two-stage function network example. Consider
f1(x) = sin(x) + 2 sin(2x) with domain x ∈ [−4, 4], and
f2(y) = sin(3(y − 1)/4), which takes as input the output
of f1. Additionally, assume that evaluation costs are con-
stant given by c1 = 1 for the first stage and c2 = 49 for
the second stage. We analyze the behavior of our proposed
acquisition function, p-KGFN, and the acquisition function
proposed by Astudillo & Frazier (2021a), EIFN, which also
leverages the function network structure of the objective but
requires full network evaluations at each iteration.

As shown in Figure 2, both EIFN and p-KGFN begin with
three initial observations (black stars), evaluated across
the full network. The initial models for f1(·), f2(·) and
f2(f1(·)) are presented in the first row. Both algorithms are
allocated an evaluation budget of 150, which is equivalent to
performing three evaluations of the full network. Rows two
and three show the evaluations and resulting models upon
budget depletion using EIFN and p-KGFN, respectively. We
observe that EIFN makes decisions aimed at identifying the
global maximum using the composite network model (third
column) without realizing that the first function node is more
complicated and that its evaluation is more cost-effective.
Therefore, EIFN first chooses to evaluate in a region close
to the initial inferred best solution (black square) and then
performs two full evaluations, exploring areas with high
uncertainty, such as the boundary at x = 4, and its inferred
best solution upon budget depletion (purple square).

In contrast, p-KGFN takes evaluation costs into account
and allocates the budget more efficiently. It first gathers
information about the first function node through multiple
evaluations (light green triangles) and then evaluates the
second node only at the points that it considers most likely to
improve the expected solution quality. This behavior yields
a more efficient sampling policy which, in turn, results in a
more accurate composite function model and inferred best
solution (red square).

Similar behaviors emerge when comparing p-KGFN against
KGFN with full evaluations, a knowledge-gradient-based

acquisition function that also leverages function network
but requires full evaluations (see Appendix G).

5. Maximization of p-KGFN
For simplicity, here we assume that f1, f2, . . . , fK are
scalar-valued.4 To solve (4), it suffices to solve

z∗k ∈ argmax
zk∈Zn,k

αn,k(zk) (5)

for each node k. Recall that Zn,k = Yn,J (k)×XI(k), where
Yn,J (k) is the discrete set constituted by the outputs from
the parent nodes of node k that have been previously gener-
ated after n iterations. The discrete nature of Yn,J (k) makes
solving (5) challenging. Additionally, solving (5) presents
challenges due to the presence of nested expectations that
cannot be computed in closed form, as we explain below.

To overcome the aforementioned challenges, we propose an
approach to compute an approximate solution to (5). Our
approach employs sample average approximation (SAA)
(Kim et al., 2015; Balandat et al., 2020), which substitutes
αn,k(zk) in (5) with a Monte Carlo (MC) estimate that is
deterministic given a set of finite number of random vari-
ables independent of zk. This is similar to the approach
adopted by Astudillo & Frazier (2021a). Additionally, to
further accelerate computation, we approximate ν∗n+1 by
maximizing νn+1 over a discretization of X, which is similar
to the approaches pursued by Scott et al. (2011) and Cakmak
et al. (2020). Pseudo-code summarizing the approximate
maximization of p-KGFN can be found in Appendix A.

5.1. Monte Carlo Estimation of the Outer Expectation

Recall that the outer expectation in the definition of p-KGFN
is over the observation yk = fk(zk) that results from observ-
ing node k at zk. To compute this expectation, we use the
reparametrization trick (Kingma & Welling, 2013; Wilson
et al., 2018) to generate samples from the posterior distri-
bution on fk(zk). Following Balandat et al. (2020), we call
these fantasy samples. They are given by

ŷ
(i)
k = µn,k(zk) + σn,k(zk)U

(i)

where U (i), i = 1, 2, . . . , I are i.i.d. standard normal ran-
dom variables and µn,k(·) and σn,k(·) denote the mean and
standard deviation of the GP for node k at iteration n.

Each fantasy sample, were it actually observed, would gen-
erate a new posterior distribution. Let ν(i)n+1(x; zk) denote
the new posterior mean of yK at x, conditioned on having
observed ŷ

(i)
k . An unbiased estimator of αn,k(zk) is then

4Our framework can directly handle multi-output function
nodes by employing a multi-output GP model (Alvarez et al.,
2012) for each fk.
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Figure 2: Comparison of EIFN and p-KGFN on a 1-D synthetic two-stage function network f2(f1(·)). Top row (left
to right): Initial models for f1(·), f2(·) and f2(f1(·)). Second and third rows: Resulting surrogate models upon budget
depletion by EIFN and p-KGFN, respectively. Each ground truth function is represented by an orange curve, while blue
curves and shaded blue areas denote posterior mean and standard deviation, respectively. Black stars indicate the initial
three points fully evaluated across the network for both algorithms. Dark green triangles represent the locations of full
network evaluations. Light green triangles represent partial observations where only the first node was evaluated by p-KGFN.
Black, purple, and red squares correspond to the initial and final inferred best solutions identified by EIFN and p-KGFN,
respectively. We use the different colors for each axis to represent different types of inputs and outputs of the network as
follows: light blue denotes the original input x to the network, dark blue denotes the output of the first node y1, and dark
navy denotes the output of the second node y2.

given by[
1

I

I∑
i=1

max
x

ν
(i)
n+1(x; zk)− ν∗n

]
/ ck(zk).

5.2. Monte Carlo Estimation of νn+1

We now discuss computation of ν(i)n+1(x; zk). To explain
our approach, we first describe how to generate a sample

of the objective function value yK(x) under a particular
posterior distribution. This approach is general, but we focus
specifically on the posterior that defines ν(i)n+1(x; zk). This
is the posterior distribution that conditions on n previous
observations and a new observation ŷ

(i)
k of fk at zk. We

refer to this distribution as the fantasy-i posterior.

Fix an index j and let W (j) = (W
(j)
1 ,W

(j)
2 , . . . ,W

(j)
K )T ∼
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N (0, IK). For a generic input x and the proposed point to
sample zk, define recursively over ℓ = 1, 2, . . . ,K,

ẑ
(i,j)
ℓ (x; zk) := (ŷ

(i,j)
J (ℓ)(x; zk), xI(ℓ))

ŷ
(i,j)
ℓ (x; zk) = µ

(i)
n+1,ℓ(ẑ

(i,j)
ℓ (x; zk))

+ σ
(i)
n+1,ℓ(ẑ

(i,j)
ℓ (x; zk))W

(j)
ℓ ,

(6)

where µ
(i)
n+1,ℓ(·) and σ

(i)
n+1,ℓ(·) are the mean and standard

deviation of the GP for node ℓ under the fantasy-i posterior.
We use the notation ẑ

(i,j)
ℓ (·; zk) and ŷ

(i,j)
ℓ (·; zk) to indicate

dependence of these quantities on U (i), W (j), and zk.

By construction, ŷ(i,j)K is a sample from the fantasy-i poste-
rior over yK(x). Thus, we can approximate ν

(i)
n+1(x; zk)

by drawing many samples independently from a K-
dimensional standard normal distribution and averaging the
resulting final node value samples obtained via (6). For J
samples, this estimate is given by 1

J

∑J
j=1 ŷ

(i,j)
K (x; zk).

5.3. Putting the Pieces Together

We can now derive the following MC estimator of the p-
KGFN acquisition function:

α̂n,k(zk) =

1
I

∑I
i=1 max

x∈X
1
J

∑J
j=1 ŷ

(i,j)
K (x; zk)− ν∗

n

ck(zk)
. (7)

We emphasize that the SAA approach relies on fixing the
samples U (i), i = 1, 2, . . . , I , and W (j), j = 1, 2, . . . ,K
that drive the above MC approximation as opposed to gen-
erating new samples for each x. Thus, the maximization of
α̂n,k(zk) can be seen as a deterministic optimization prob-
lem, and its solution as an estimator of the maximizer of
αn,k(zk) (defined in (3)). Theorem 1 shows that this es-
timator does indeed converge to a maximizer of αn,k(zk)
almost surely as the number of samples increases to infinity.
We note that this result requires J to depend on I , so we
write J(I) to make this dependence explicit. The proof of
Theorem 1 can be found in Appendix B.
Theorem 1. Assume that the prior means µ0,k′(·) and vari-
ances σ0,k′(·) are continuous and bounded for all nodes k′,
that X and Zn,k′ are compact, and that infz∈Zn,k′ ck′(z) >
0, for all k′. Consider any node k and write α̂n,k(z) as
α̂n,k,I,J(I)(z) to make the dependence on I and J explicit.
Then, φ̂I,J(I) := maxz∈Zn,k

α̂n,k,I,J(I)(z) converges to
φ∗ := maxz∈Zn,k

αn,k(z) almost surely as I → ∞
where J is a function of I such that limI→∞ J(I) = ∞.
Moreover, let ẑI,J(I) ∈ argmaxz∈Zn,k

α̂n,k,I,J(I)(z) and
Z∗ = argmaxz∈Zn,k

αn,k(z). Then, the distance between
ẑI,J(I) and Z∗ converges to zero almost surely as I →∞.

5.4. Discretization of the Inner Problem

To speed up the maximization of α̂n,k(zk), we discretize
the set over which we take the maximum for each fantasy-i

posterior in (7). I.e., rather than solving the inner maxi-
mization problem in (7) over the continuous domain X, we
instead solve it over a discrete set A. Similar discretization
approaches have been proposed in the literature (Scott et al.,
2011; Ungredda et al., 2022).

The set A can be chosen through several heuristic ap-
proaches. Here, we choose A by taking into account two
goals: exploring the promising domain based on the cur-
rent statistical model, and exploiting the location of the
current inferred best solution x∗

n. Hence, in each iteration,
we form A using candidates generated by combining the
following approaches: First, we draw NT realizations from
the posterior on yK and include the maximizers of these
realizations in A. Second, we randomly generate NL local
points around x∗

n. We define a local point x ∈ X to be one
for which d(x, x∗

n) ≤ rmaxi=1,2,...,d(bi − ai), where ai
and bi are the lower and upper bounds of ith dimension in-
put, respectively, and r is a positive hyperparameter. Finally,
we also include the point x∗

n itself in A.

An alternative approach to the discretization-based approach
described above is to optimize α̂n,k(zk) in a “one-shot”
fashion (Balandat et al., 2020) by introducing a fantasy
variable x(i) for each index i and then maximizing

1
IJ

∑I
i=1

∑J
j=1 ŷ

(i,j)
K

(
x(i); zk

)
− ν∗n

ck(zk)
. (8)

However, this approach results in an optimization problem
where the dimension grows linearly in I , which in turn
results in a substantial increase in computation time. In
Appendix C.2, we compare one-shot optimization and the
discretization-based approach we propose below in terms of
compute time and solution quality.

5.5. Further Details

We maximize α̂n,k(zk) by enumerating all available (pre-
viously evaluated) yJ (k) ∈ Yn,J (k) and maximize the ac-
quisition function over xI(k) ∈ XI(k) for each yJ (k) using
gradients with respect to xI(k), which we compute using
auto-differentiation. Since α̂n,k(zk) is deterministic, we use
(quasi-)higher-order gradient-based methods, which have
been shown to be fast and effective acquisition function
optimizers (Daulton et al., 2020). We emphasize that this
approach is trivially parallelizable: each maximization prob-
lem maxzk α̂n,k(zk) for each previously evaluated yJ (k)

and for each k can be solved independently and in parallel.
Hence, the (wall-)time complexity for optimizing p-KGFN
for each previously evaluated yJ (k) and for each k is the
same as solving for a single node k from a single starting
point yJ (k), given enough parallel compute resources.
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6. Numerical Experiments
We evaluate p-KGFN against several benchmarks, includ-
ing three algorithms that do not leverage the objective’s
function network structure: a random sampling baseline
(Random), standard versions of expected improvement (EI)
and knowledge gradient (KG), and three algorithms that
do leverage network structure but require evaluation of the
full network: EIFN (Astudillo & Frazier, 2021a), a slight
modification of EIFN that uses the knowledge gradient in-
stead of EI (KGFN),5 and Thompson sampling for func-
tion networks (TSFN). While both p-KGFN and KGFN
are one-step lookahead policies, KGFN considers full func-
tion network evaluations, whereas p-KGFN obtains one
additional observation at one specific node. TSFN rep-
resents a simple acquisition function leveraging network
structures constructed by a series of GP realizations sam-
pled from the nodes’ posterior distributions. All algorithms
were implemented in BoTorch (Balandat et al., 2020). The
code to reproduce our experiments is available at https:
//github.com/frazier-lab/partial_kgfn.

We assess performance on several function network struc-
tures, including single sequential networks, a multi-process
network, and a multi-output network. Specifically, we ex-
plore two synthetic functions inspired by typical networks
in materials design and manufacturing operations, as well
as two real-world applications. In our experiments, we con-
sider problems where the upstream nodes must be evaluated
before downstream nodes. In this setting, exploiting partial
evaluations is usually beneficial when the upstream node
is cheaper to evaluate than the downstream node. When
the situation is reversed, there are limited gains from us-
ing partial evaluations since the expensive upstream nodes
must be evaluated before each evaluation of the cheaper
downstream nodes. Motivated by real-world scenarios, here
we focus on the case where initial nodes are cheaper than
later nodes. Moreover, we consider problems without the
upstream restriction in Appendix D.5.

In all experiments, each algorithm begins with 2d+1 points
chosen at random over the input space X ⊆ Rd. Each point
x ∈ X is fully evaluated across the entire network (i.e., we
observe yk(x) for k = 1, . . . ,K). Then, at each iteration,
each algorithm sequentially selects a point to evaluate. All
six baselines choose a point x ∈ X and evaluate the entire
network. In contrast, p-KGFN can take advantage of partial
evaluations by selecting both a node k and its input zk ∈
Zn,k to evaluate at each iteration. All experiments discussed
in this section are noise-free. We conduct an additional
experiment with noisy observations in Appendix D.6 to
show the robustness of p-KGFN.

5KGFN has not been previously proposed in the literature. Our
work is thus the first to describe KG policies for function networks
with both partial and full evaluations.

We evaluate the performance of each algorithm by reporting
at each iteration the ground truth value of yK(x∗

n), where
x∗
n ∈ argmaxx∈X νn(x). To highlight the benefits of par-

tial evaluations, we utilize a posterior distribution for the
final node value yK obtained from a statistical model that
incorporates the network structure discussed in Section 3.2
to compute the metric for all algorithms. Note that this fa-
vors algorithms such as EI, KG, and Random, which make
decisions without leveraging the network structure (results
when using a model not incorporating network structure
are presented in Appendix H). Averaging over 30 replica-
tions, we report the mean of this metric with the error bars
showing two standard errors.

6.1. Synthetic Test Problems

Ackley6D (Ackley) This problem is structured as a two-
stage function network (Figure 3a), where the first stage
takes a 6-dimensional input and the second stage takes as
an input the output of the first stage. The node function f1
is the negated Ackley function (Jamil & Yang, 2013), and
f2 is given by f2(y1) = −y1 × sin(5y1/6π). This network
structure is commonly found in materials design, sequential
processes, and multi-fidelity settings. In many applications,
the early stages in a path through the function network are
cheaper to evaluate than subsequent stages. For example,
the first node can be an approximation or partial evaluation
of a subsequent node. We therefore assume the costs are
given by c1 = 1 and c2 = 49.

Manufacturing Network (Manu-GP) Motivated by the
manufacturing application discussed in Section 1, we build
a two-process network where the outputs of the two pro-
cesses are combined at a final node (Figure 3b). The first
process has two sequential nodes and its initial input is
2-dimensional. The second process has one node which
takes a different 2-dimensional input. This network struc-
ture is typical in scenarios where individual components are
produced through independent processes and combined to
create a final product (e.g., chemical synthesis processes).
In this experiment, we employ a sample path drawn from a
GP prior for each function node. This is intended to emu-
late the variations in the characteristics of intermediate/final
products, with respect to different design parameters. Since
different processes typically have different levels of com-
plexity, resulting in heterogeneous costs, we assume that
c1 = 5 and c2 = 10 in the first process, and c3 = 10 in
the second process. As the final stage usually involves both
component assembly and product quality assessment, we
assume the final stage incurs a relatively high cost, c4 = 45.

6.2. Real-World Applications

Molecular Design (FreeSolv) We consider the FreeSolv
dataset (Mobley & Guthrie, 2014), which consists of cal-
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Figure 3: Function network structures in the numerical experiments: (a) Ackley and FreeSolv, (b) Manu-GP, and (c) Pharma.
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Figure 5: Cost sensitivity analysis for Ackley problem with different costs (a) c1 = 1, c2 = 1; (b) c1 = 1, c2 = 9; and (c)
c1 = 1, c2 = 49.

culated and experimental hydration-free energies of 642
small molecules. A continuous representation is derived
from the SMILES representation of each molecule through
a variational autoencoder model (Gómez-Bombarelli et al.,
2018). We apply principal component analysis (PCA) to
reduce the dimension of these representations to three. In
the context of materials design, our objective is to minimize
the experimental free energy. We formulate this problem
as a two-stage function network (Figure 3a). The first node
takes the 3-dimensional representation of molecules as input
and outputs the negative calculated free energy. The sec-
ond node takes this output as input and returns the negative
experimental free energy, which is our target for maximiza-

tion. We fit GP surrogate models for both nodes based on
the entire available dataset, which allows us to consider a
continuous optimization domain. As in the Ackley problem,
we assume c1 = 1 and c2 = 49.

Pharmaceutical Product Development (Pharma) An
orally disintegrating tablet (ODT) is a drug dosage form
designed to dissolve on the tongue. To ensure the produc-
tion of high-quality ODTs, one must consider two crucial
properties: disintegration time (f1) and tensile strength (f2).
We employ surrogate models proposed in Sano et al. (2020)
for these two target properties as functions of four input
variables in the production process. In the same study, a
simple deterministic score function (f3), which combines
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these two targets, is proposed to measure the ODT quality
(Figure 3c). Our goal is to find the four input variables that
maximize the score produced by node f3. While both target
properties are equally significant in determining the quality
of the ODT, their measurements typically involve different
levels of complexity. To reflect this, costs are set at c1 = 1
for f1 and c2 = 49 for f2. The f3 score function, being
already known and cost-free to evaluate, is not included as
a node in the p-KGFN optimization process.

6.3. Results and Discussion

Figure 4 shows the performance of p-KGFN compared to
various baselines across different experiments. While the
baselines require full evaluations of the function networks,
resulting in regular-spaced steps in their performance curves,
p-KGFN operates without this limitation. We note that p-
KGFN outperforms all baselines across all experiments.

In the FreeSolv and Ackley experiments, similar to the toy
example from Section 4.1, p-KGFN demonstrates strategic
budget allocation by learning the first function node thor-
oughly before deciding to explore the second node, and only
in regions with high potential values. To assess the impact
of evaluation costs on performance, we conduct a sensitivity
analysis where we vary the cost of evaluating the second
node in two-node network problems, as shown in Figure 5
and detailed in Appendix E. We observe that when the costs
of the two nodes are equal, p-KGFN typically performs
full evaluations, achieving performance levels comparable
to baseline algorithms. The advantages of partial evalua-
tions become more pronounced as the evaluation cost of the
second node increases.

Comparing results across different test problems, we note
that p-KGFN achieves more significant performance gains
in scenarios where downstream nodes in the function net-
work show strong correlations with their parent nodes (as
seen in the Ackley and FreeSolv experiments) and involve
higher evaluation costs. Such dynamics are common in real-
world settings, where an upstream node might simulate a
scenario that is physically tested in a downstream node. To
explore the robustness of p-KGFN, we conduct additional
experiments where upstream nodes are more challenging to
model than downstream nodes, detailed in Appendix D.7. In
such experiments, p-KGFN’s performance remains on par
with other benchmarks, confirming its effectiveness across
diverse problem settings.

Overall, the networks evaluated in the numerical experi-
ments showcase p-KGFN’s capability to effectively manage
a diverse range of network structures. These include se-
quential networks, multi-process networks, and multi-output
networks with clearly defined objectives.

7. Conclusion
In this work, we considered Bayesian optimization of ob-
jectives represented by a network of functions, where indi-
vidual nodes in the network can be evaluated independently.
We proposed a new acquisition function for this class of
problems, p-KGFN, that leverages the objective’s function
network structure along with the ability to evaluate indi-
vidual nodes to improve sampling efficiency. Our numeri-
cal experiments on both synthetic and real-world problems
demonstrate that our approach can significantly reduce eval-
uation costs and provide higher-quality solutions.

While our method offers substantial benefits through partial
evaluations, it is also subject to some limitations. Specifi-
cally, optimizing the p-KGFN acquisition function requires
considerable computational resources as it considers all
nodes and available outputs at each iteration, which could be
challenging for large networks (the average runtime for opti-
mizing each acquisition function is reported in Appendix F).
Nonetheless, in many real-world scenarios where evaluation
costs are high, the savings achieved through an improved
query strategy significantly outweigh the additional compu-
tational time. Additionally, it may be possible to extend and
integrate the stock reduction technique from Kusakawa et al.
(2022), designed for cascade-type networks, to a broader
range of network structures to reduce the number of opti-
mization problems considered in p-KGFN. We leave this
as a direction for future work. Finally, our algorithm, like
other knowledge-gradient-based algorithms, looks only a
single step ahead. An interesting research direction would
be to explore multi-step lookahead acquisition functions
(Jiang et al., 2020) for function networks, though this would
further increase the computational cost.
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A. Pseudo-Code for the p-KGFN Algorithm
We present the pseudo-code for implementing Bayesian optimization with the p-KGFN acquisition function, supplementing
the descriptions in Section 5. Algorithm 1 outlines the BO loop employing the p-KGFN algorithm. Algorithm 2 describes
the computation of the MC estimate of the acquisition value. Algorithm 3 describes how we estimate the posterior mean
of the final function node via MC simulation, which is necessary for Algroithm 2. We defer the discussion of acquisition
optimization to Appendix C, where we compare our implementation, optimization-via-discretization, against a commonly
used approach, one-shot optimization.

Algorithm 1 Bayesian Optimization using p-KGFN
Input:
ck(·), the evaluation cost function for node k, k = 1, . . . ,K
B, the total evaluation budget
µ0,k(·) and σ0,k(·), the mean and standard deviation of the GP for node k, k = 1, . . . ,K (fitted using initial observations)
Output: the point with the largest posterior mean at the final function node

1: n← 0
2: b← 0
3: while b < B do
4: n← n+ 1
5: for k = 1, . . . ,K do
6: identify the set of combinations of previously evaluated yJ (k), Yn,J (k)

7: if Yn,J (k) = ∅ then
8: α̂∗

n,k ← −1
9: else

10: α̂∗
n,k ← maxz∈Zn,k

α̂n,k(z) where α̂n,k(·) is computed using Algorithm 2
11: z∗k ← argmaxz∈Zn,k

α̂n,k(z)
12: if ck(z∗k) > B − b then
13: α̂∗

n,k ← −1
14: end if
15: end if
16: end for
17: if maxk α̂

∗
n,k = −1 then

18: break
19: else
20: k∗ ← argmaxk∈{1,...,K} α̂

∗
n,k

21: obtain yk∗ = fk∗(z∗k∗)
22: update the GP model for node k∗ with the additional observation (z∗k∗ , yk∗)
23: b← b+ ck∗(z∗k∗)
24: end if
25: end while
return argmaxx∈X ν̂n(x), an estimate of νn(x) given in Algorithm 3 using a gradient-based method
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Algorithm 2 MC Estimate of αn,k(zk)

Input:
k, the node to be evaluated
zk, the input for node k
ck(·), the evaluation cost function for node k
I , the number of fantasy observations to create
J , the number of MC samples for estimating the posterior mean of the final function node
µn,k(·) and σn,k(·), the mean and standard deviation of the GP for node k, k = 1, . . . ,K
Output: α̂n,k(zk), the estimated acquisition value

1: solve maxx∈X ν̂n(x), an estimate of νn(x) given in Algorithm 3 using a gradient-based method and obtain ν̂∗n
2: generate I independent standard normal random variables U (i), i = 1, . . . , I
3: for i = 1, . . . , I do
4: ŷ

(i)
k ← µn,k(zk) + σn,k(zk)U

(i)

5: update the posterior of GP for node k with the additional observation
(
zk, ŷ

(i)
k

)
6: solve maxx∈X ν̂

(i)
n+1(x) to obtain ν̂

(i)∗
n+1 for fantasy-i model using Algorithm 3

7: end for
8: α̂n,k(zk)← 1

ck(zk)

(
1
I

∑I
i=1 ν̂

(i)∗
n+1 − ν̂∗n

)
9: return α̂n,k(zk)

Note that in Line 6 of Algorithm 2, the samples W (j) used in Algorithm 3 are shared across the MC approximation for all
fantasy-i models.

Algorithm 3 Posterior Mean Estimate of the Final Function Node via MC Simulation
Input:
x ∈ X, a design point of the function network
J , the number of MC samples
µk(·) and σk(·), the mean and standard deviation of the GP for node k, for k = 1, . . . ,K
Output: ν̂(x), the estimated posterior mean

1: generate J independent samples W (j) =
(
W

(j)
1 ,W

(j)
2 , . . . ,W

(j)
K

)T
for j = 1, . . . , J from N (0, IK);

2: for j = 1, . . . , J do
3: for k = 1, . . . ,K do
4: define ẑ

(j)
k (x) := (ŷ

(j)
J (k)(x), xI(k))

5: ŷ
(j)
k (x)← µk(ẑ

(j)
k (x)) + σk(ẑ

(j)
k (x))W

(j)
k

6: end for
7: end for
8: ν̂(x)← 1

J

∑J
j=1 ŷ

(j)
K (x)

9: return ν̂(x)

B. Proof of Theorem 1
In this section, we prove the following theorem.

Theorem 1. Assume that the prior means µ0,k′(·) and variances σ0,k′(·) are continuous and bounded for all nodes
k′, that X and Zn,k′ are compact, and that infz∈Zn,k′ ck′(z) > 0, for all k′. Consider any node k and write α̂n,k(z)
as α̂n,k,I,J(I)(z) to make the dependence on I and J explicit. Then, φ̂I,J(I) := maxz∈Zn,k

α̂n,k,I,J(I)(z) converges to
φ∗ := maxz∈Zn,k

αn,k(z) almost surely as I → ∞ where J is a function of I such that limI→∞ J(I) = ∞. Moreover,
let ẑI,J(I) ∈ argmaxz∈Zn,k

α̂n,k,I,J(I)(z) and Z∗ = argmaxz∈Zn,k
αn,k(z). Then, the distance between ẑI,J(I) and Z∗

converges to zero almost surely as I →∞.

Our proof is mainly based on Lemma A1 and Theorem A1 in Rubinstein & Shapiro (1993). We will assume throughout this
section the assumptions in the statement of Theorem 1 — that the prior means µ0,k′(·) and variances σ0,k′(·) are continuous
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and bounded for all k′, that X and Zn,k′ are compact, and that the cost ck′(z) is bounded below away from 0.

To support this proof, we first introduce the notation used in the statements and proofs of the lemmas below. Observe that the
posterior distribution of fk given the data up to time n and an additional observation of fk at z is a Gaussian process whose
posterior mean and posterior variance can be written using the standard Gaussian process regression formulas (Williams &
Rasmussen, 2006):

µn+1,k(z
′) = µn,k(z

′) + Σn,k(z
′, z)(Σn,k(z, z) + λ)−1(fk(z)− yn,k(z)),

and

σn+1,k(z
′) = Σn,k(z

′, z′)− Σn,k(z
′, z)(Σn,k(z, z) + λ)−1Σn,k(z

′, z)

= Σn,k(z
′, z′)− Σn,k(z

′, z)2/(Σn,k(z, z) + λ).

Let U = (fk(z)− yn,k(z))/
√

Σn,k(z, z) + λ, which is a standard normal random variable. Then, we can rewrite µn+1,k as

µn+1,k(z
′) = µn,k(z

′) + Σn,k(z
′, z)U/

√
Σn,k(z, z) + λ.

Define µn+1,ℓ = µn,ℓ and σn+1,ℓ = σn,ℓ for ℓ ̸= k.

Now, we can create a recursive expression for a sample from the posterior over yK(x) given these n + 1 evaluations in
terms of the posterior means and variances and a sequence of standard normal random variables W = (Wℓ : ℓ = 1, . . . ,K).
Specifically, define recursively for each ℓ = 1, . . . ,K,

zℓ(x; z) := (yJ(ℓ)(x; z), xI(ℓ))

yℓ(x; z) = µn+1,ℓ(zℓ(x; z)) + σn+1,ℓ(zℓ(x; z))Wℓ.

Making a slight abuse, we make the dependence of yK(x) on, z, U , and W explicit through the notation yK(U,W, x, z).

Now, consider a specific node k. We drop the subscript n, k for convenience. We define h(U,W, x, z) = yK(U,W,x,z)
c(z) . In

addition, define
α(z) = E[max

x∈X
E[h(U,W, x, z)|U ]]

and

α̂I,J(I)(z) =
1

I

I∑
i=1

max
x∈X

1

J(I)

J(I)∑
j=1

h(Ui,Wj , x, z),

where J(I) will be defined later.

Before proving the theorem 1, we prove several auxiliary lemmas.

Lemma 1. For almost every (u,w), h(u,w, ·, ·) is continuous.

Proof of Lemma 1. Since the prior means µ0,k′(·) variances σ0,k′(·) are continuous, a simple argument shows that the
posterior means µn+1,k′(·) and variances σn+1,k′(·) are continuous too. Thus, h(u,w, x, z) is a composition of continuous
functions and so is also continuous.

Lemma 2. There exist finite non-negative constants c0, c1 and c2 not depending on U , W , x or z such that
|yK(U,W, x, z)| ≤ c0 + c1|WK |+ c2|U |.

Proof of Lemma 2. Consider two cases. In the first case, suppose that the node we are measuring, k, precedes the final
node, k < K. In this case, the posterior mean and variance of node K do not change and are equal to their values under
the prior. Thus, yK(U,W, x, z) is equal to the prior mean function µn,K(·) evaluated at a random input zK(x; z) plus the
noise term σn,K(zK(x; z))WK . This is bounded above by supz′∈Zn,K

|µn,K(z′)|+ supz′∈Zn,K
|σn,K(z′)||WK |. Note that

c0 = supz′∈Zn,K
|µn,K(z′)| and c1 = supz′∈Zn,K

|σn,K(z′)| are finite.

14
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In the second case, we measure the final node, k = K. Then,

µn+1,K(z′) = µn,K(z′) + σ̃n,K(z′, z)U

where σ̃n,K(z′, z) = Σn,K(z′, z)/
√

Σn,K(z, z) + λ.

Thus,
yK(U,W, x, z) = µn,K(zK(x; z)) + σ̃n,K(zK(x; z), z)U + σn+1,K(z′)WK

and we have that

|yK(U,W, x, z)| ≤ |µn,K(zK(x; z))|+ |σ̃n,K(zK(x; z), z)||U |+ |σn+1,K(z′)||WK |. (9)

Observe that σ̃n,K , µn,K(z′) and σn+1,K are continuous and thus bounded over their compact domains. Thus, the right-hand
side of (9) can be written in the form claimed in the statement of this lemma.

Lemma 3. The family {|h(u,w, x, z)| : x ∈ X, z ∈ Z} is dominated by an integrable function (with respect to the
probability distribution over U and W ), i.e. |h(u,w, x, z)| ≤ a(u,w), where E[a(U,W )] < ∞. Moreover, br(w) :=
max{u:|u|≤r} a(u,w) is also integrable for each r <∞.

Proof of Lemma 3. We will show the statement of the lemma for the case where c(x) = 1. The general case follows from
this because we can replace a(u,w) by a(u,w)/minz∈Z c(z), where the denominator is strictly positive by our assumptions.

Setting a(U,W ) = c0 + c1|WK | + c2|U | using the constants c0, c1 and c2 from Lemma 2 shows that |h(u,w, x, z)| ≤
a(u,w), where E[a(U,W )] <∞.

Moreover, letting br(W ) := max{u:|u|≤r} a(u,w) = c0 + c1|WK |+ c2|r|, we have that br(W ) is integrable.

Lemma 4. For each z ∈ Z, α̂I,J(I)(z)→ α(z) almost surely.

Proof of Lemma 4. Fix z ∈ Z. Let

β̂I(U ; z) = max
x∈X

1

J(I)

J(I)∑
j=1

h(U,Wj , x, z)

and
β(U ; z) = max

x∈X
E[h(U,W, x, z)|U ].

Observe that the mapping (x, u)→ h(u,w, x, z) satisfies the assumptions of Lemma A1 in Rubinstein & Shapiro (1993),
when u is restricted to the set {u : |u| ≤ r}, i.e.

• X× {u : |u| ≤ r} is compact.

• The mapping (x, u)→ h(u,w, x, z) is continuous for almost every w.

• h(u,w, x, z) ≤ b(w) = maxu:|u|≤r a(u,w) for all x ∈ X and u ∈ [−r, r], and E|b(W )| <∞ by Lemma 3.

Thus we have by the Lemma A1, w.p. 1, 1
J(I)

∑J(I)
j=1 h(U,Wj , x, z) converges to E[h(U,W, x, z)|U ] uniformly in x, U over

X× [−r, r].

Choose any ϵ > 0 and let I1 be large enough on the given sample path that∣∣∣∣∣∣ 1

J(I)

J(I)∑
j=1

h(U,Wj , x, z)− E[h(U,W, x, z)|U ]

∣∣∣∣∣∣ < ϵ,

for all I ≥ I1, U ∈ [−r, r] and x ∈ X. Then,

|β̂I(U ; z)− β(U ; z)| < ϵ,

15
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for all I ≥ I1 and U ∈ [−r, r].
Let

U (r) =


U if U ∈ [−r, r]
r if U > r

−r if U < −r.

and similarly for U (r)
i .

Let α̂(r)
I (z) = 1

I

∑I
i=1 β̂I(U

(r)
i ; z) and α(r)(z) = E[β(U (r); z)]. We have

|α̂I(z)− α(z)| ≤
∣∣∣α̂I(z)− α̂

(r)
I (z)

∣∣∣+ ∣∣∣α̂(r)
I (z)− α(r)(z)

∣∣∣+ ∣∣∣α(r)(z)− α(z)
∣∣∣ (10)

For I ≥ I1, the second term is bounded above by ϵ. Let’s focus on the first and third terms. We have that the third term is
bounded above by ∣∣∣α(r)(z)− α(z)

∣∣∣ ≤ E
[
1{|U |>r}|β(U)− β(U (r))|

]
≤ E

[
1{|U |>r}(|β(U)|+ |β(U (r))|)

]
≤ E

[
1{|U |>r}(a(U,W ) + a(U (r),W ))

]
, (11)

where the last inequality comes from

|β(U)| = |max
x∈X

E[h(U,W, x, z)|U ]|

≤ max
x∈X

E[a(U,W )|U ] = E[a(U,W )|U ]. (12)

Consider the right hand side of (11), we have that

E[1{|U |>r}(a(U,W ) + a(U (r),W ))]

= E
[
1{|U |>r}(2c0 + 2c1|WK |+ c2|U |+ |U (r)|)

]
= 2c0P(|U | > r) + 2c1P(|U | > r)E[|WK |] + c2E[1{|U |>r}|U |] + E[1{|U |>r}|U (r)|]
= 2c0P(|U | > r) + 2c1P(|U | > r)E[|WK |] + c2E[1{|U |>r}|U |] + E[1{|U |>r}|r|]
= 2c0P(|U | > r) + 2c1P(|U | > r)E[|WK |] + c2E[1{|U |>r}|U |] + rP(|U | > r). (13)

Since U is a standard normal random variable, P(|U | > r) goes to 0 as r → ∞ exponentially fast. Moreover, letting
Y = |U |, we have that

E[1{|U |>r}|U |] = E[1{Y >r}Y ]

=

∫ ∞

r

y√
2π

(
2 exp

(
−y2

2

))
dy

=

√
2

π
exp(−r2

2
),

which also converges to 0 as r → ∞. Therefore, the right-hand side of (11) converges to 0 as r → ∞ and thus can be
bounded above by ϵ for a large enough r.

Consider the first term. It is bounded above by∣∣∣α̂I(z)− α̂
(r)
I (z)

∣∣∣ ≤ ∣∣∣∣∣1I
I∑

i=1

1{|Ui|>r}

(
β̂I(Ui)− β̂I(U

(r)
i )
)∣∣∣∣∣

≤ 1

I

I∑
i=1

1{|Ui|>r}

(
|β̂I(Ui)|+ |β̂I(U

(r)
i )|

)

=
1

I

I∑
i=1

1{|Ui|>r}
1

J(I)

J(I)∑
j=1

a(Ui,Wj) + a(U
(r)
i ,Wj) (14)
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By the strong law of large number the term on the right hand side of (14) converges almost surely to the term on the right
hand side of (11). Since we have chosen r large enough such that the right hand side of (11) is bounded by ϵ, we can choose
I large enough such that the right hand side of (14) is also bounded by ϵ.

Therefore, for a given ϵ > 0, w.p. 1,
|α̂I,J(I)(z)− α(z)| < 3ϵ,

for large enough I . This implies limI→∞ α̂I,J(I)(z) = α(z) almost surely as desired.

Lemma 5. α(z) is continuous in z and α̂I,J(I)(z) converges uniformly to α(z) on Z as I →∞ and limI→∞ J(I) =∞.

Proof of Lemma 5. Observe that

max
x∈X

E[h(U,W, x, z)|U ] ≤ max
x∈X

E[a(U,W )|U ] = E[a(U,W )|U ], (15)

where the inequality follows from Lemma 3. The term of the right hand side of (15) is an integrable function of U since

E[|E[a(U,W )|U |] = E[E[a(U,W )|U ]] = E[a(U,W )] <∞. (16)

Consider any z ∈ Z and a sequence {zk : k ≥ 1} ⊆ Z converging to z. By the Lebesgue dominated convergence theorem
and (16),

lim
k→∞

E[max
x∈X

E[h(U,W, x, zk)|U ]] = E[ lim
k→∞

max
x∈X

E[h(U,W, x, zk)|U ]] (17)

Fixing U , let g(x, z) = E[h(U,W, x, z)|U ]. This function is continuous jointly in x, z because for an arbitrary sequence
{(xk, zk) : k ≥ 1} converging to (x, z), we have

lim
k→∞

E[h(U,W, xk, zk)] = E[ lim
k→∞

h(U,W, xk, zk)] = E[h(U,W, x, z)],

where we have used Lemma 3 and the Lebesgue dominated convergence theorem in the first equality and used continuity
(Lemma 1) in the second equality.

Since X× Z is compact, g is uniformly continuous over X× Z. Thus, there exists a large enough K such that

|g(x, zk)− g(x, z)| < ϵ,

for all k ≥ K and all x ∈ X. Let x∗
k ∈ argmaxx∈X g(x, zk). For all such k, we have

max
x∈X

g(x, zk)−max
x∈X

g(x, z) ≤ g(x∗
k, zk)− g(x∗

k, z) < ϵ. (18)

Similarly, let x∗ ∈ argmaxx∈X g(x, z). For all such k, we have

−ϵ < g(x∗, zk)− g(x∗, z) ≤ max
x∈X

g(x, zk)−max
x∈X

g(x, z) (19)

Equations (18) and (19) imply ∣∣∣∣max
x∈X

g(x, zk)−max
x∈X

g(x, z)

∣∣∣∣ < ϵ.

This shows that limk→∞ maxx∈X g(x, zk) = maxx∈X g(x, z). Thus, (17) becomes

lim
k→∞

E[max
x∈X

E[h(U,W, x, zk)|U ]] = E[ lim
k→∞

max
x∈X

E[h(U,W, x, zk)|U ]]

= E[max
x∈X

E[h(U,W, x, z)|U ]] = α(z). (20)

Equation (20) implies limk→∞ α(zk) = α(z), showing that α(·) is continuous on Z.

Now consider a sequence Nk of neighborhoods of a generic point z ∈ Z shrinking to {z}. Let

bk(u,w) = sup{|h(u,w, x, z)− h(u,w, x, y)| : y ∈ Nk, x ∈ X}.
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Recall that h(u,w, ·, ·) is continuous for almost every (u,w). Choose u,w such that h(u,w, ·, ·) is continuous on X× Z.
Since X × Z is compact, h(u,w, ·, ·) is uniformly continuous on X × Z. Therefore, given ϵ > 0, there exists δ > 0
such that |h(u,w, x′, z′) − h(u,w, x′′, z′′)| < ϵ when ||(x′, z′) − (x′′, z′′)|| < δ. Thus, for a large enough k, we have
|h(u,w, x, z)− h(u,w, x, y)| < ϵ for all y ∈ Nk. This implies limk→∞ bk(u,w) = 0 for almost every (u,w).

Define

ck(Ui,W1:J) = sup


∣∣∣∣∣∣max
x∈X

1

J

J∑
j=1

h(Ui,Wj , x, z)−max
x∈X

1

J

J∑
j=1

h(Ui,Wj , x, z
′)

∣∣∣∣∣∣ : z′ ∈ Nk

 .

Let x∗(z′) ∈ argmaxx∈X
1
J

∑J
j=1 h(Ui,Wj , x, z

′). For z′ ∈ Nk,

max
x∈X

1

J

J∑
j=1

h(Ui,Wj , x, z)−max
x∈X

1

J

J∑
j=1

h(Ui,Wj , x, z
′)

≤ 1

J

J∑
j=1

h(Ui,Wj , x
∗(z), z)− 1

J

J∑
j=1

h(Ui,Wj , x
∗(z), z′)

=
1

J

J∑
j=1

[h(Ui,Wj , x
∗(z), z)− h(Ui,Wj , x

∗(z), z′)]

≤ 1

J

J∑
j=1

|h(Ui,Wj , x
∗(z), z)− h(Ui,Wj , x

∗(z), z′)|

≤ 1

J

J∑
j=1

bk(Ui,Wj). (21)

Similarly,

max
x∈X

1

J

J∑
j=1

h(Ui,Wj , x, z)−max
x∈X

1

J

J∑
j=1

h(Ui,Wj , x, z
′)

≥ 1

J

J∑
j=1

h(Ui,Wj , x
∗(z′), z)− 1

J

J∑
j=1

h(Ui,Wj , x
∗(z′), z′)

≥ − 1

J

J∑
j=1

|h(Ui,Wj , x
∗(z′), z)− h(Ui,Wj , x

∗(z′), z′)|

≥ − 1

J

J∑
j=1

bk(Ui,Wj). (22)

Equations (21) and (22) imply∣∣∣∣∣∣max
x∈X

1

J

J∑
j=1

h(Ui,Wj , x, z)−max
x∈X

1

J

J∑
j=1

h(Ui,Wj , x, z
′)

∣∣∣∣∣∣ ≤ 1

J

J∑
j=1

bk(Ui,Wj).

This implies

ck(Ui,W1:J) ≤
1

J

J∑
j=1

bk(Ui,Wj).

18
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Thus for all z′ ∈ Nk,

|α̂I,J(I)(z
′)− α̂I,J(I)(z)| ≤

1

I

I∑
i=1

ck(Ui,W1:J)

≤ 1

I

I∑
i=1

1

J

J∑
j=1

bk(Ui,Wj). (23)

Fix J to be a function of I , i.e. J = J(I) where limI→∞ J(I) =∞. By the strong law of large number, the right hand side
of Equation (23) converges to E[bk(U,W )] as I →∞ almost surely.

Lemma 3 implies bk(U,W ) ≤ 2a(U,W ). Thus, by the Lebesgue dominated convergence theorem, limk→∞ E[bk(U,W )] =
E[limk→∞ bk(U,W )] = 0.

For any ϵ > 0, there is a large enough K such that E[bK(U,W )] < ϵ. Moreover, w.p.1, there is a large enough I∗ such that

sup
z′∈NK

|α̂I,J(I)(z
′)− α̂I,J(I)(z)| < ϵ ∀I ≥ I∗.

Moreover, since α is continuous, it is possible to choose K large enough that

sup
z′∈NK

|α(z′)− α(z)| < ϵ.

We have shown that, for any point z ∈ Z and any ϵ > 0, there is a neighborhood N(z, ϵ) of z such that w.p. 1 there is a large
enough I∗ such that

sup
z′∈N(z,ϵ)

|α̂I,J(I)(z
′)− α̂I,J(I)(z)| < ϵ ∀I ≥ I∗

and that
sup

z′∈N(z,ϵ)
|α(z′)− α(z)| < ϵ.

Let {N(z, ϵ) : z ∈ Z} be an open cover of Z. Since Z is compact, we can choose a finite subcover. This gives a collection of
points z1, . . . , zJ with neighborhoods N(zj , ϵ) that cover Z such that w.p. 1, for sufficiently large I ,

sup{|α̂I,J(I)(z
′)− α̂I,J(I)(zj)| : z′ ∈ N(zj , ϵ)} < ϵ

and
sup{|α(z′)− α(zj)| : z′ ∈ N(zj , ϵ)} < ϵ.

By Lemma 4, we have
|α̂I,J(I)(zj)− α(zj)| < ϵ.

Thus, given ϵ > 0, w.p. for I large enough,

|α̂I,J(I)(z)− α(z)| ≤ |α̂I,J(I)(z)− α̂I,J(I)(zj)|+ |α̂I,J(I)(zj)− α(zj)|+ |α(zj)− α(z)| < 3ϵ,

where z ∈ N(zj , ϵ). This implies that α̂I,J(I)(z)→ α(z) uniformly on Z as I →∞, as desired.

Using the above lemmas, we are now in position to prove Theorem 1.

Proof of Theorem 1. From Lemma 5, we know that for any ϵ > 0 and a sufficiently large I and all z ∈ Z,

|α̂I,J(I)(z)− α(z)| < ϵ w.p. 1. (24)

Let ẑI,J(I) ∈ argmaxz∈Z α̂I,J(I)(z) and z∗ ∈ argmaxz∈Z α(z). It follows that

|α̂I,J(I)(ẑI,J(I))− α(ẑI,J(I))| < ϵ,
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which implies
α̂I,J(I)(ẑI,J(I)) < α(ẑI,J(I)) + ϵ < α(z∗) + ϵ. (25)

Similarly, we have
|α̂I,J(I)(z

∗)− α(z∗)| < ϵ,

which implies
−ϵ+ α(z∗) < α̂I,J(I)(z

∗) < α̂I,J(I)(ẑI,J(I)) (26)

Equations (25) and (26) yield |φ̂I,J(I) − φ∗| < ϵ. Since ϵ is arbitrary, this implies φ̂I,J(I) converges to φ∗ almost surely as
desired.

Furthermore, suppose that z∗ is a unique maximizer of α(z) over Z. Consider any neighborhood N of z∗ ∈ Z. Following
from the continuity of α and the compactness of Z, there exists ϵ > 0 such that

α(z) > α(z∗) + 2ϵ,

for all z ∈ Z and z ̸∈ N. This combines with (24) implies

α̂I,J(I)(z) > α(z∗) + ϵ, (27)

for all z ∈ Z and z ̸∈ N. Also, since we have |φ̂I,J(I) − φ∗| < ϵ, this implies

α̂I,J(I)(ẑI,J(I)) = φ̂I,J(I) < φ∗ + ϵ = α(z∗) + ϵ. (28)

Equation (28) implies ẑI,J(I) ∈ N. Since N can be chosen arbitrarily, it implies ẑI,J(I) → z∗ almost surely.

Now, let us consider the case where α has multiple maximizers over Z. Suppose for the sake of contradiction that
d(ẑI,J(I),Z∗) := infz∈Z∗ ||ẑI,J(I) − z|| ↛ 0. Since Z is compact, there exists a sequence {ẑI,J(I) : I ≥ 1} such that
d(ẑI,J(I),Z∗) ≥ ϵ for some ϵ > 0 and the sequence {ẑI,J(I) : I ≥ 1} converges to a point z′ ∈ Z, but not in Z∗. By the
continuity of α, we have that α(ẑI,J(I))→ α(z′) < φ∗ as I →∞. Moreover, φ̂I,J(I) = α̂I,J(I)(ẑI,J(I)) and

α̂I,J(I)(ẑI,J(I))− α(z′) = (α̂I,J(I)(ẑI,J(I))− α(ẑI,J(I))) + (α(ẑI,J(I))− α(z′)). (29)

The first term on the right-hand side of (29) goes to zero as I →∞ by Lemma 5, and the second term also converges to 0 by
the continuity of α. This implies that φ̂I,J(I) → α(z′) < φ∗, which is a contradiction. Thus, we have d(ẑI,J(I),Z∗)→ 0
almost surely, as desired.

C. Additional Details on Acquisition Function Optimization
We describe model configuration and hyperparameters used to optimize the acquisition functions used in our numerical ex-
periments. We also present a comparison between the one-shot optimization and optimization-via-discretization approaches
for optimizing the p-KGFN acquisition.

C.1. Hyperparameters in Acquisition Function Optimization

In our experiments, all methods utilize independent GPs with zero mean functions and the Mateŕn 5/2 kernel (Genton,
2001), with automatic relevance determination (ARD). The lengthscales of the GPs are assumed to have Gamma priors:
for the Ackley, FreeSolv and Pharm problems, Gamma(3, 6); for the Manu-GP problem, Gamma(5, 2). The outputscale
parameters are assumed to have Gamma(2, 0.15) priors in all problems. The lengthscales and outputscales are then estimated
via maximum a posteriori (MAP) estimation.

In p-KGFN, we estimate the posterior mean of a function network’s final node value with J = 64 quasi-MC samples using
Sobol sequences (Balandat et al., 2020). For EIFN, we follow the implementation in Astudillo & Frazier (2021a), using
J = 128.

To compute MC estimates for the p-KGFN acquisition value, we use I = 8 fantasy models. As described in Section 5.4, we
optimize the p-KGFN acquisition function via discretization, replacing the domain of the optimization problem in line 6 of
Algorithm 2 by a discrete set of candidate solutions A. We include in A the current maximizer of the final node posterior
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mean x∗
n, NT = 10 points obtained from a Thompson sampling method described in the main text, NL = 10 local points

with r = 0.1.

When optimizing EIFN, TSFN, KGFN with full evaluations or p-KGFN for a problem with d-dimensional function network
input, we use 100d raw samples for identifying the starting points for the multi-start acquisition optimization and 10d
starting points for the multi-start acquisition function optimization. We set the number of raw samples to 100 and the number
of starting points to 20 when optimizing the standard EI and KG acquisition functions.

We refit the hyperparameters of the GP models in each iteration. For p-KGFN, this occurs after we obtain one additional
observation of a specific function node; for other benchmarks, this occurs after we obtain observations of the entire function
network for a design point.

All algorithms are implemented in the open source BoTorch package (Balandat et al., 2020). We extend the implementation
outlined in Astudillo & Frazier (2021a) to enable partial evaluations for function networks.

C.2. Comparison Between One-Shot Optimization and Optimization-Via-Discretization
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Figure 6: Comparison between one-shot optimization and optimization-via-discretization in terms of acquisition value
attained and computation time, on the Ackley6D problem with different numbers of fully-evaluated points: (a) n = 5, (b)
n = 10, and (c) n = 15. Both the value averaging over 100 trials and the standard error are presented.

We perform a comparative analysis between two methods for optimizing KG-based acquisition functions discussed in
Section 5.4: “One-shot” optimization and optimization-via-discretization.

The one-shot optimization method, proposed by Balandat et al. (2020), has gained popularity in optimizing non-myopic
acquisition functions in recent years (Jiang et al., 2020; Astudillo et al., 2021; Daulton et al., 2023). This method effectively
addresses the nested optimization problem, a common challenge encountered when optimizing KG. However, it introduces
its own challenges – namely, by turning the nested optimization problem into a single high-dimensional (and typically
more difficult) optimization problem, the one-shot optimization approach can be more likely to get stuck in local optima
and require long computation time (due to the higher number of optimization variables, and the potential of the numerical
optimization failing to converge).

Optimization-via-discretization, as used by Frazier et al. (2009), is a commonly used alternative technique for optimizing
KG (Ungredda et al., 2022; Buckingham et al., 2023). This method accelerates KG optimization by discretizing the domain
of the inner optimization problem. Nevertheless, it has its own limitations, as the discretization will lead to less accurate
solutions for the inner optimization problem, potentially resulting in sub-optimal outcomes, especially in higher dimensions
(due to the coarser coverage of the space).

For p-KGFN, we follows the optimization-via-discretization approach. However, rather than selecting points randomly
within the domain or arranging them in a grid, we intelligently select the points that form the discrete set for the inner
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optimization problem (see Section 5.4).

To better understand the performance of one-shot optimization and optimization-via-discretization in the context of
optimizing p-KGFN, we conduct a comparative analysis. Specifically, we examine both approaches under different
configurations using the Ackley6D test problem. We consider problem instances where we have access 5, 10, and 15 full
evaluations of the function network. These observations are held fixed and used to fit GP network models. We seek to
optimize p-KGFN at the first function node.

For both approaches, we explore three choices (I = 2, 4, 8) for the number of fantasy models for estimating the p-KGFN
acquisition values. In the optimization-via-discretization approach, we generate the discrete set by using Thompson sampling
approach, i.e., sampling NT realizations of a function network based on the current posterior distributions and optimize
the realizations to obtain their maximizers to include in the discrete set A, and randomly choosing NL local points close
to the current posterior mean maximizer x∗

n. The current posterior mean maximizer itself is also included in the set. We
consider three discrete set sizes for the inner optimization problem: |A| = 11 (NT = NL = 5), |A| = 21 (NT = NL = 10),
and |A| = 41 (NT = NL = 20). We measure performance in terms of both true acquisition function value of the selected
candidates (approximated by the MC estimator described in Algorithm 2, with I = 512 and J = 128) and computational
time (measured in seconds), averaging over 100 trials.

In Figure 6 we observe that although one-shot optimization demonstrates the best performance in terms of acquisition value
attained, optimization-via-discretization can attain comparable acquisition value at significantly reduced run times. For the
setup used in our experiments (I = 8 and |A| = 21), optimization-via-discretization achieves slightly lower acquisition
value compared to the best-performing one-shot optimization method with I = 8 (1.89%, 4.25%, and 5.51% lower for the
problem instances with 5, 10, and 15 fully evaluated points, respectively). However, it significantly reduces the average
run time compared to the best-performing one-shot optimization algorithm, by 67.5%, 37.4%, and 50.5%. The significant
reduction in run time, along with the marginal loss in acquisition values, justifies the employment of the discretization
approach in our experiments. The full comparison analysis results are summarized in Table 1.

D. Additional Details on Numerical Experiments
D.1. Ackley6D (Ackley)

We design the Ackley synthetic test problem as a two-stage function network (Figure 3a). The first function node is the
6-dimensional negated Ackley function (Ackley, 2012):

f1(x) = 20 exp

−0.2
√√√√1

6

6∑
i=1

x2
i

+ exp

(
1

6

6∑
i=1

cos (2πxi)

)
− 20− exp(1),

where xi ∈ [−2, 2] for i = 1, . . . , 6. The second function node, which takes as an input the output of the first function node,
is defined as follows

f2(y) = −y sin
(
5y

6π

)
.

D.2. Manufacturing Network (Manu-GP)

Motivated by real-world manufacturing applications where several intermediate parts are produced and then assembled to
create a final product, we formulate this second test problem involving two processes, each of which takes a two-dimensional
input (Figure 3b). The first process consists of two sequential sub-processes, denoted as f1 and f2. The first sub-process
takes x1, x2 as inputs and returns y1 which is taken by the second sub-process to produce an output y2. The second process,
f3, takes x3 and x4 as input and produces an output y3. The outputs y2 and y3 are then combined in the final process f4
to produce a final output y4, which we aim to maximize. This experiment is designed to mimic a manufacturing scenario.
Here, we set each input xi ∈ [−1, 1], for i = 1, . . . , 4.

For each function node, we draw a sample path from a GP prior with the Matérn 5/2 kernel (Genton, 2001). Notably, we
choose different lengthscales in the kernels for difference function nodes: 0.631 for f1, 1 for f2, 1 for f3, and 3 for f4. The
outputscale parameter in the kernel is set to 0.631 for all functions but f4, which has outputscale equal to 10. We show the
drawn sample paths for each of the function nodes in Figure 7.
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Table 1: Comparisons between one-shot optimization and optimization-via-discretization on the Ackley6D test problem,
with 5, 10, and 15 design points fully evaluated across the network. Performances are reported in terms of acquisition
function value obtained and running time. Both the value averaging over 100 trials and the standard error are reported.
Numbers in boldface denote the highest acquisition function value and the shortest running time.

(a) Number of fully evaluated points: 5

Method Num of fantasy models I Size of discrete set |A| Avg. acqf. val. Avg. running time (seconds)

One-shot
2 NA 0.11787± 0.00070 325± 13
4 NA 0.12332± 0.00016 406± 13
8 NA 0.12416± 0.00004 465± 14

Discretization

2 11 0.11525± 0.00231 135± 5
2 21 0.11928± 0.00035 157± 6
2 41 0.1164± 0.00194 174± 6
4 11 0.11795± 0.00166 120± 5
4 21 0.12020± 0.00133 145± 5
4 41 0.11734± 0.00226 190± 6
8 11 0.12115± 0.00026 117± 4
8 21 0.12181± 0.00024 151± 5
8 41 0.12265± 0.00017 255± 10

(b) Number of fully evaluated points: 10

Method Num of fantasy models I Size of discrete set |A| Avg. acqf. val. Avg. running time (seconds)

One-shot
2 NA 0.2141± 0.0010 291± 17
4 NA 0.2182± 0.0006 324± 16
8 NA 0.2234± 0.0002 289± 16

Discretization

2 11 0.2085± 0.0023 145± 5
2 21 0.2045± 0.0029 166± 6
2 41 0.2079± 0.0027 200± 7
4 11 0.2002± 0.0040 136± 5
4 21 0.2065± 0.0028 162± 5
4 41 0.2087± 0.0023 233± 6
8 11 0.2124± 0.0009 135± 5
8 21 0.2139± 0.0003 181± 5
8 41 0.2143± 0.0003 316± 9

(c) Number of fully evaluated points: 15

Method Num of fantasy models I Size of discrete set |A| Avg. acqf. val. Avg. running time (seconds)

One-shot
2 NA 0.1452± 0.0008 294± 17
4 NA 0.1508± 0.0005 370± 19
8 NA 0.1543± 0.0001 364± 24

Discretization

2 11 0.1428± 0.0007 158± 6
2 21 0.1430± 0.0006 177± 6
2 41 0.1436± 0.0008 222± 8
4 11 0.1446± 0.0005 157± 6
4 21 0.1435± 0.0010 177± 6
4 41 0.1445± 0.0008 250± 9
8 11 0.1453± 0.0005 153± 6
8 21 0.1458± 0.0006 184± 7
8 41 0.1471± 0.0007 321± 13
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Figure 7: The sample paths drawn from GP priors for the manufacturing problem.
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D.3. Molecular Design (FreeSolv)

We use the FreeSolv dataset from Mobley & Guthrie (2014), which comprises both calculated and experimental free energies
(in kcal/mol) for 642 small molecules. Since lower free energy is preferred, we negate free energy (both calculated and
experimental), setting our objective to maximizing the negative experimental free energy.

To represent each small molecule in a continuous space, we utilize a variational autoencoder trained on the Zinc dataset as
studied in Gómez-Bombarelli et al. (2018), resulting in a 196-dimensional representation in the unit cube, i.e., x ∈ [0, 1]196.
We reduce the dimentionality of the representation to three through the standard principal component analysis (PCA)
technique.

We then utilize the entire dataset to train two GP models, and use the posterior mean of the trained model as the underlying
functions in the function network (Figure 3a):

1. f1 takes a three-dimensional representation as input and predicts the negative calculated free energy y1;

2. f2 takes the negative calculated free energy as input and predicts the negative experimental free energy (Figure 8).
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Figure 8: The posterior mean function of the GP fitted between calculated and experimental free energies.

D.4. Pharmaceutical Product Development (Pharm)

In this test problem, we tackle the challenge of manufacturing orally disintegration tablets (ODTs) that meet pharmaceutical
standards, focusing on two crucial properties: disintegration time (f1) and tensile strength (f2). To model these properties,
we adopt the neural network (NN) models proposed in Sano et al. (2020).

Specifically, the two properties are defined as functions of four parameters describing the production process, namely, β
form D-mannitol ratio in the total D-mannitol (x1), L-HPC ratio in a formulation (x2), granulation fluid level (x3) and
compression force (x4). Each parameter xi is constrained to the range [−1, 1]. The fitted NN models are shown as follows:

f1(x) = −3.95 + 9.20× (1 + exp(−(0.32 + 5.06x1 − 4.07x2 − 0.36x3 − 0.34× x4))
−1

+ 9.88× (1 + exp(−(−4.83 + 7.43x1 + 3.46x2 + 9.19x3 + 16.58x4)))
−1

+ 10.84× (1 + exp(−7.90− 7.91x1 − 4.48x2 − 4.08x3 − 8.28x4))
−1

+ 15.18× (1 + exp(−(9.41− 7.99x1 + 0.65x2 + 3.14x3 + 0.31x4)))
−1.
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and

f2(x) = 1.07 + 0.62× (1 + exp(−(3.05 + 0.03x1 − 0.16x2 + 4.03x3 − 0.54x4)))
−1

+ 0.65× (1 + exp(−(1.78 + 0.60x1 − 3.19x2 + 0.10x3 + 0.54x4)))
−1

− 0.72× (1 + exp(−(0.01 + 2.04x1 − 3.73x2 + 0.10x3 − 1.05x4)))
−1

− 0.45× (1 + exp(−(1.82 + 4.78x1 + 0.48x2 − 4.68x3 − 1.65x4)))
−1

− 0.32× (1 + exp(−(2.69 + 5.99x1 + 3.87x2 + 3.10x3 − 2.17x4)))
−1,

To measure the quality of a tablet, the same study introduced a score function f3 (treated as a known function in our
experiment), which combines the two properties f1 and f2:

f3 =
(60− f1)

60
× f2

1.5
,

where the first term aims to ensure that the disintegration time is not too long (less than 60 seconds), and the second term
aims to ensure that the tensile strength is large enough for production and distribution.

D.5. Additional Experiment Without Upstream Evaluation Condition: Ackley6D+Matyas2D (AckMat)

We consider the setting in which node evaluations do not require previously evaluated inputs from upstream nodes. Instead,
we assume each node can be evaluated at any point in the set of possible outputs of the upstream nodes. We design this
problem as a 7-dimensional cascade network where the first node is the 6-dimensional Ackley function (Ackley, 2012):

f1(x) = −20 exp

−0.2
√√√√1

6

6∑
i=1

x2
i

− exp

(
1

6

6∑
i=1

cos (2πxi)

)
+ 20 + exp(1),

where xi ∈ [−2, 2] for i = 1, . . . , 6. The second function node, which takes as input the output y of the first node and one
additional input x7, is the negated Matyas function (Jamil & Yang, 2013):

f2(y, x7) = −0.26(y2 + x2
7) + 0.48yx7.

We set the range x7 ∈ [−10, 10] and we assume that the range of the output from the first node is known, i.e. y ∈ [0, 20].
The evaluation costs for this experiment are set to be c1 = 1 and c2 = 49 and we restrict to the same BO budget equal to
700. The results in Figure 9 show that p-KGFN is also effective in this setting. Interestingly, we see that p-KGFN makes
progress more slowly in the beginning, but then quickly overtakes and substantially outperform all baselines. This reflects
the fact that the algorithm initially allocates most of its budget to learning about the behavior of the first node that is cheap
to evaluate, and then with that knowledge moves to effectively optimize the second.

D.6. Additional Experiment with Noisy Observations

In this section, we consider the FreeSolv problem presented in Section 6 and Appendix D.3. We conduct additional
experiments that add normally distributed noise to a node’s output before it is passed to subsequent nodes. We assume that
the noise at each function node follows the standard normal distribution N (0, 1).

We use the noisy observations to update the GP describing each node. This entails standard equations for Gaussian process
regression with noisy observations (Williams & Rasmussen, 2006).

We consider our default setting, i.e. costs c1 = 1 and c2 = 49 with a total BO budget equal to 700. Figure 10 illustrates
the performance comparison between p-KGFN and benchmark algorithms on this variant of the test problem. The results
demonstrate that p-KGFN still outperforms all benchmark algorithms, indicating its robustness to observation noise.

D.7. Additional Experiments where Downstream Nodes are More Difficult to Optimize

We conduct additional experiments where upstream nodes are more difficult to optimize than downstream nodes. We
consider two problem setups:
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Figure 9: Optimization performance on AckMat problem without upstream evaluation condition comparing between our
proposed p-KGFN and benchmarks including EIFN, KGFN, TSFN, EI, KG and Random.

• (GPs-1): A sequential network with two nodes, shown in Figure 3a. The first function node takes in a 1-D input,
x ∈ [−1, 1]. Both function nodes are drawn from GP priors. The lengthscales of the GP priors for the first and second
nodes are set to 0.5 and 0.25, respectively. This ensures that the second node is more difficult to optimize compared
to the first node. As with the test problems in our main paper, we set the cost of evaluating the second node to be
substantially higher than that of evaluating the first node, i.e., c1 = 1 and c2 = 49. We set the total BO budget at 700.

• (GPs-2): A function network with four function nodes (Figure 11). The first three function nodes, f1, f2 and f3,
respectively take input x1, x2, x3 ∈ [−1, 1]. The final function node, f4, takes the outputs of f1, f2, and f3 as its inputs.
All functions are drawn from GP priors with a common lengthscale. We set the evaluation costs to be c1 = c2 = c3 = 1
and c4 = 47 and a total BO budget of 700.

We used the same settings for other parameters, such as the number of initial observations, as in the main experiments.

As presented in Figure 12, our algorithm, p-KGFN, performs comparably to the other benchmarks in these additional
problems.

E. Sensitivity Analysis for Evaluation Costs
We conduct a sensitivity analysis to examine the impact of cost functions on the optimization performance across three
experiments with two nodes presented in the main text: Ackley (result is presented in the main text), FreeSolv and Pharm.
In this section, we again consider scenarios where evaluating a downstream node requires previously obtained outputs from
its parent nodes. This implies that the first node must be evaluated regardless of its cost. Our focus is thereby directed
towards assessing the consequences of varying the cost associated with the second node. We investigate three cost function
scenarios: (a) c1 = 1, c2 = 1; (b) c1 = 1, c2 = 10; and (c) c1 = 1, c2 = 49, which correspond to the situations where both
nodes have similar evaluation costs, where one node has a higher evaluation cost than the other, and where one node has
an exceptionally high evaluation cost, respectively. The evaluation budgets for each problem are set to 50, 150, and 700,
respectively, in the three scenarios.
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Figure 11: A function network structure for an additional experiment where the first layer node is harder-to-learn than the
second layer (GPs-2).
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Figure 12: Optimization performance comparison between p-KGFN and benchmark algorithms on additional experiments
where the first layer node is harder-to-learn than the second layer node. (a) GPs-1 with evaluation costs c1 = 1, c2 = 49 and
(b) GPs-2 with evaluation costs c1 = c2 = c3 = 1 and c4 = 47. Both problems have BO budget equal to 700. Performance
curves for p-KGFN and benchmarks, averaging over 30 replications. The mean and ±2 standard errors of the mean over the
evaluation budget used are reported.

28



Bayesian Optimization of Function Networks with Partial Evaluations

We also conduct the sensitivity analysis study for an additional experiment: AckMat presented in Appendix D.5 for which
we do not impose the upstream evaluation restriction.

Figure 13 reveals that performing partial evaluations notably improves optimization performance, especially when the costs
of the two nodes are dramatically different. On the other hand, in the equal-cost scenario, p-KGFN takes less advantage
of partial evaluating, tending to complete full evaluations in sequential networks (Ackley and FreeSolv), and chooses to
evaluate the two properties in Pharm problem an equal number of times. Results for AckMat problem are presented in the
last row of Figure 13 and are consistent with the previous three problems with upstream evaluation restriction. Table 2
reports the average number of times p-KGFN selected to evaluate each node in each problem and cost scenario.

Table 2: Number of times each node was evaluated by p-KGFN and benchmark algorithms (averaging over 30 replications)
for different problems and costs of evaluation.

Problem Costs of evaluation Average number of times each
node was evaluated by p-KGFN

Number of full function network
evaluations by benchmark algorithms

Ackley c1 = 1, c2 = 1 [36.1, 13.9] 25
Ackley c1 = 1, c2 = 9 [48.9, 11.2] 15
Ackley c1 = 1, c2 = 49 [64.6, 13.0] 14
Manufacturing c1 = 5, c2 = 10, c3 = 10, c4 = 45 [30.8, 13.9, 18.0, 5.0] 10
FreeSolv c1 = 1, c2 = 1 [31.0, 19.0] 25
FreeSolv c1 = 1, c2 = 9 [39.0, 12.3] 15
FreeSolv c1 = 1, c2 = 49 [62.3, 12.9] 14
Pharm c1 = 1, c2 = 1 [23.8, 26.0] 25
Pharm c1 = 1, c2 = 9 [27.6, 13.6] 15
Pharm c1 = 1, c2 = 49 [63.0, 13.0] 14
AckMat c1 = 1, c2 = 1 [21.8, 28.2] 25
AckMat c1 = 1, c2 = 9 [42.0, 12.0] 15
AckMat c1 = 1, c2 = 49 [74.4, 12.8] 14

F. Wall Clock Times
In this section, we report wall clock time on 8-core CPUs used to optimize each acquisition function on Ackley experiment.

Table 3: Acquisition optimization wall clock time in seconds on 8-core CPUs. Mean values and ± 2 standard errors are
reported. KGFN takes significantly longer to optimize than p-KGFN because we use a larger number of samples when
approximating its acquisition value.

Problem EI KG Random EIFN KGFN TSFN p-KGFN

Ackley 6.7 ± 0.5 76.9 ± 4.5 0.00033 ± 0.00001 51.9 ± 4.8 1362.6 ± 50.1 7.7 ± 0.2 246.6 ± 5.1
Manufacturing 4.5 ± 1.1 54.4 ± 7.8 0.00025 ± 0.00001 29.5 ± 3.6 2047.8 ± 83.1 4.0 ± 0.1 302.6 ± 15.0
FreeSolv 3.4 ± 0.3 111.7 ± 10.8 0.00036 ± 0.00001 57.9 ± 5.3 1050.9 ± 98.3 1.8 ± 0.1 158.7 ± 6.0
Pharma 3.9 ± 0.3 27.6 ± 1.4 0.00033 ± 0.00001 14.6 ± 1.4 222.4 ± 13.7 5.9 ± 0.7 101.4 ± 3.2
AckMat 1.4 ± 0.1 306.7 ± 27.0 0.00029 ± 0.00001 40.4 ± 2.4 1634.5 ± 86.2 9.3 ± 0.3 508.0 ± 16.7

G. Additional Illustration of the Benefits of Partial Evaluations
In this section, we add the performance of KGFN with full evaluations to our 1-dimensional illustration example previously
presented in Section 4.1 in order to highlight the substantial incremental benefits of performing partial evaluation. KGFN
with full evaluations exhibits a similar behaviour to EIFN as depicted in the third row of Figure 14. Specifically, KGFN
makes decisions towards its goal of identifying a point with the best solution quality. It first decides to evaluate around the
initial best inferred solution and then spends two full evaluations exploring the boundaries of the domain where uncertainty
is high. Focusing only on the final goal without taking evaluation costs into account makes KGFN fail to obtain an accurate
final composite function model and a good best inferred solution (pink square).
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Figure 13: Cost sensitivity analysis for (from top to bottom) FreeSolv, Pharma and AckMat problems with different costs:
(a) c1 = 1, c2 = 1; (b) c1 = 1, c2 = 10; and (c) c1 = 1, c2 = 49. The performance metric is the true objective value at the
maximizer of final function node’s posterior mean versus the budget spent.
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H. Alternative Approach to Computing the Comparison Metric
As outlined in the main text, we employed a posterior distribution of the final node value yK obtained from a statistical model
that utilizes a network structure to compute our optimization comparison metric yK(x∗

n) across all algorithms including
EI, KG and Random. The purpose is to underscore benefits of partial evaluations, but it unnecessarily favors these three
algorithms as they do not actually consider a network structure in decision-making. In order to provide a more equitable
comparison, we include the progress curves of the metric computed using a posterior distribution obtained from a standard
Gaussian process model for these three algorithms. The results presented in Figure 15 illustrate, as expected, a degradation
in their performance due to this modification. Notably, the Random baseline exhibits a declining trend in the AckMat
problem when the network structure is not utilized. This is explained by the fact that the problem has a relatively small
region of favorable outcomes.
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Figure 15: Optimization performance comparing between our proposed p-KGFN and benchmarks including EIFN, KGFN,
TSFN, EI, KG and Random on four experiments: (a) Ackley, (b) Manu-GP, (c) FreeSolv, (d) Pharm and (e) AckMat. Every
algorithm utilizes a statistical model in its decision-making process to calculate the comparison metric.
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Figure 14: Comparison of EIFN, KGFN and p-KGFN on a 1-D synthetic two-stage function network f2(f1(·)). The top row,
from left to right, shows the initial models for f1(·), f2(·) and f2(f1(·)). Similarly, the second, third and fourth rows show
the resulting models upon budget depletion by EIFN, KGFN, and p-KGFN. Each true function is represented by an orange
curve, while blue curves and shaded blue areas denote posterior mean functions and posterior uncertainty, respectively.
Black stars indicate the initial three points fully evaluated across the network for both algorithms. Dark green triangles
represent the locations of full network evaluations. Light green triangles represent partial observations where only the first
node was evaluated by p-KGFN. Black, purple, pink and red squares correspond to the initial and three final best inferred
solutions identified by EIFN KGFN, and p-KGFN, respectively.
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