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Abstract
Reinforcement Learning (RL) has become a pow-
erful tool for enhancing the reasoning abilities
of large language models (LLMs) by optimizing
their policies with reward signals. Yet, RL’s suc-
cess relies on the reliability of rewards, which are
provided by verifiers. In this paper, we expose
and analyze a widespread problem, false nega-
tives (FNs), in which verifiers incorrectly reject
the correct model outputs. Our in-depth study
of the Big-Math-RL-Verified dataset reveals that
over 38% of model-generated responses suffer
from FNs, where the verifier fails to recognize
correct answers. We show, both empirically and
theoretically, that these FNs severely impair RL
training by depriving the model of informative
gradient signals and slowing convergence. To mit-
igate this, we propose TINYV, a lightweight LLM-
based verifier that enhances existing rule-based
methods, which dynamically identifies potential
FNs and recovers valid responses to produce more
accurate reward estimates. Across multiple math-
reasoning benchmarks, integrating TINYV boosts
pass rates by up to 10% and accelerates conver-
gence relative to the baseline. Our findings high-
light the critical importance of addressing verifier
FNs and offer a practical approach to improve
RL-based fine-tuning of LLMs.

1. Introduction
Reinforcement Learning (RL) has become a cornerstone
for advancing the reasoning capabilities of large language
models (LLMs) (Chen et al., 2025b), as evidenced by state-
of-the-art models like OpenAI o1 (Jaech et al., 2024) and
DeepSeek-R1 (DeepSeek-AI et al., 2025). The effectiveness
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Q: Given the function 𝑓(𝑥) = (𝑘𝑥 + 1/3)𝑒! − 𝑥, if the 
solution set of 𝑓(𝑥) 	< 	0 contains only one positive 
integer, then the range of the real number 𝑘 is ______.

False Negative!

CN_K12

Ground Truth

LLM

Verifier

Wrong!
No Reward

Figure 1: This figure illustrates a false negative case in the
CN_K12 dataset, where the ground truth and the response
generated by LLM (DEEPSEEK-R1-DISTILL-QWEN-7B)
are mathematically equivalent, yet Prime Verifier and Math
Verify incorrectly marks the response as wrong.

of RL depends on verifiable rewards, which provide essen-
tial supervision signals for policy optimization (Lambert
et al., 2024). In reasoning tasks, prior work has predomi-
nantly relied on rule-based verifiers (Zeng et al., 2025b;
Luo et al., 2025; Yang et al., 2024), which assign a binary
reward by comparing the model’s generated answer with the
ground truth, yielding a reward of 1 if they are equivalent
and 0 otherwise.

Despite the widespread use of verifiers to assess model out-
puts (Chen et al., 2025a; Contributors, 2023; Gao et al.,
2024), their reliability in the context of RL training and its
impact on performance remain underexplored. In this paper,
we investigate the prevalence of false negatives (FNs) in
answer verification, where conventional approaches (e.g.,
rule-based verifiers relying on string matching (Yu et al.,
2025) or advanced parsing (Cui et al., 2025; Hugging Face,
2025)) fail to recognize correct answers, leading to incor-
rect reward assignment. Figure 1 illustrates a case where
the rule-based verifiers Prime Verifier (Cui et al., 2025)
and Math Verify (Hugging Face, 2025) fails to verify an
equivalent answer due to their rule-based matching criteria.
To quantify these issues, our analysis of the Big-Math-RL-
Verified dataset (Albalak et al., 2025) revealed that among
responses marked as incorrect by Prime Verifier, 38.5%
were actually correct, indicating a high prevalence of FNs.
Our further analysis identified natural language elements
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in either the model’s response or the ground truth answer as
the primary cause of these false negatives, underscoring a
critical limitation of rule-based verifiers.

The reliance on rule-based verifiers with high FNs in RL
for reasoning tasks poses significant challenges for advanc-
ing research and model development. First, problems that
are harder to verify using rule-based approaches, such as
those involving natural language elements or complex latex
expressions, are often excluded from training and evalu-
ation, thereby limiting the model’s reasoning capabilities
and hindering understanding of such challenging reason-
ing problems. Second, the high prevalence of FNs caused
by rule-based verifiers reduces training efficiency by intro-
ducing incorrect reward signals, which can mislead policy
optimization and slow convergence, ultimately impeding
progress in developing more robust and generalizable rea-
soning models.

In this paper, we examined the impact of false negatives on
RL training both empirically and theoretically. Empirically,
we find that FNs, arising from incorrect reward signals,
significantly impair training efficiency by reducing the avail-
ability of informative gradient signals, particularly during
early training stages. Furthermore, our theoretical analy-
sis demonstrates that FNs hinder learnability, as measured
by the reverse Kullback-Leibler (KL) divergence between
policies at consecutive optimization steps, thereby slowing
convergence.

To address the issue of FNs in RL, we propose TINYV,
a lightweight LLM-based verifier designed to enhance re-
ward accuracy while maintaining computational efficiency.
By augmenting rule-based verifiers like Prime Verifier,
TINYV corrects FNs, enabling more effective RL train-
ing for mathematical reasoning tasks. To evaluate its per-
formance and bridge the gap in existing benchmarks, we
develop the HardVerify-Math Bench, which focuses on chal-
lenging verification scenarios. Our experimental results
demonstrate that TINYV achieves up to a 10% improvement
in pass rates across HardVerify-Math, with notable increases
in performance on other benchmarks such as MATH and
Olympiad Bench, and accelerates convergence compared to
baseline verifiers. Interestingly, we also found that training
on questions with easily verifiable answers leads to poor
performance on hard-to-verify questions, opening avenues
for future research on developing more accurate reward
assignment and diverse training datasets to address these
challenges.

2. Preliminaries
Reinforcement Learning in Language Models. RL in the
context of language models involves optimizing a training
policy, denoted as πθ, which is initialized from a reference

policy, πinit. The goal of this optimization is to maximize
the rewards obtained from a reward function, r. This pro-
cess seeks to find the optimal parameters θ by maximizing
the expected reward, while also considering the KL diver-
gence between the training policy and the initial policy. The
objective function can be expressed as:

max
θ

Ey∼πθ(·|x)[r(x,y)− βDKL(πθ(y|x)||πinit(y|x))]
(1)

Here, x is the input, y the output, r the reward, and β is
a hyperparameter that balances reward maximization with
policy deviation, as measured by the KL divergence DKL.

Group Relative Policy Optimization (GRPO). Group Rel-
ative Policy Optimization (GRPO) (Shao et al., 2024) by-
passes parameterized value models used in traditional meth-
ods like Proximal Policy Optimization (PPO). GRPO dis-
tinctively calculates policy gradients by weighting trajectory
log-likelihoods according to group-based advantages, elimi-
nating the need for a critic model.

In practice, for a given prompt x, GRPO involves sampling
n responses (rollouts) {y1,y2, · · · ,yn}. The reward, ri,
associated with each of these yi is then used to compute
the advantage, Ai, for each response yi. This advantage is
calculated as:

Ai =
ri − mean(r1, . . . , rn)√

var(r1, . . . , rn) + ε
, (2)

where mean(·) and var(·) represent the average and variance
of the rewards for the n responses, respectively. ε > 0 is a
small smoothing constant that ensures the denominator is
non-zero.

Verification and Reward Calculation in RL. We denote
x, yi, yref ∈ VL, where V is the vocabulary space and L
is the text length, and yref is the ground truth answer to
the question x. A verifier is needed to calculate the reward
ri associated with each generated response yi for a given
question x. Following (Chen et al., 2025a), we model the
verifier as an equivalence comparison function:

ψ : VL × VL × VL → {0, 1},

ψ
(
x,yi,yref

)
=

{
1, if yi is equivalent to yref given x,

0, otherwise.
(3)

This function determines if the model’s generated response
yi is equivalent to the ground truth answer yref . The input
prompt x is optional in this function. The verifier returns
1 if the responses are deemed equivalent and 0 otherwise,
providing a binary reward signal for training. The reward
ri is then defined as ri = ψ

(
x,yi,yref

)
. We note that in

practice, we only extract answers within a structured format,
e.g., \boxed{}, which simplifies verification process.
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3. Discovering and Analyzing False Negatives
from the Wild

This section analyzes false negatives in real-world datasets.
Specifically, we aim to quantify the prevalence of FNs in
answer verification when applying rule-based verifiers.

Dataset Curation. We leverage the Big-Math-RL-Verified
dataset (Apache license 2.0) (Albalak et al., 2025), which
comprises over 250,000 diverse, high-quality mathematical
problems paired with ground-truth solutions from different
sources. Notably, this dataset includes pass rates p(x) for
each prompt x derived from generating 64 responses using
LLAMA-3.1-8B, providing an indicator of problem diffi-
culty. To explore false negatives in open-domain settings,
we generate n = 4 responses per problem using DEEPSEEK-
R1-DISTILL-QWEN-7B (Guo et al., 2025), with a temper-
ature of T = 1, top-p sampling of p = 1, and a context
length of 32, 768 tokens. By default, we adopt Prime Veri-
fier (Cui et al., 2025), a widely used tool in RL frameworks
(e.g., VERL (Sheng et al., 2025)), as the baseline verifier.
For our analysis, we retain only the seemingly incorrect
prompt-response pairs that pass the format check (i.e., has
\boxed{} in the response) but measured as incorrect by
Prime Verifier:

W =
{
(x,yi) : ψprime(x,yi,yref) = 0,x ∈ X

}
, (4)

where X is the set of all mathematical problems in the
dataset and i ∈ {1, . . . , n}.

False Negative Annotation. Although Prime Verifier ac-
counts for equivalence beyond strict string matching (e.g.,
LaTeX expression equivalence), it may still misclassify cor-
rect answers as incorrect, resulting in false negatives. To
systematically investigate these FNs, we employ LLMs to
re-evaluate the incorrect responses marked by Prime Verifier.
To mitigate selection bias and ensure robustness, we select
two different LLM annotators: QWEN2.5-72B-INSTRUCT
(LLM1) and GROK-3-MINI-HIGH (LLM2), evaluated in
non-thinking and thinking modes, respectively. The full
prompt can be found in Appendix H.1. We constitute the
false-negative set by retaining only those prompt-response
pairs from W where both LLMs agree to be correct:

FN =
{
(x,yi) ∈ W :

ψLLM1(x,yi,yref) = 1 ∧ ψLLM2(x,yi,yref) = 1
}
.

(5)

Effectiveness of LLM Annotation. To validate the reliabil-
ity of our annotation process, we perform a manual review
by randomly selecting 200 responses from FN . We observe
an accuracy of 99.5%, with only one response incorrectly
marked as correct due to a missing component in its so-
lution. Additionally, the two LLM verifiers identify three
questions with incorrect ground truth answers in the dataset.
This indicates that our design can effectively detect false
negatives.

Key Takeaways. Upon analyzing the false-negative set
FN , we have the following key takeaways.

Takeaway 1: High Proportion of False Negatives from
the Wild.

Our experiments reveal that, among the 226K prompt-
response pairs within seemingly incorrect prompt-response
pairs (W), Prime Verifier mislabels 87K (38.5%) correct
responses as incorrect. Additionally, among the 95K unique
prompts in W , it fails to identify correct responses for 40K
(42.1%) prompts. Figure 2 (upper) shows the false negative
ratios across datasets sources, with CN_K12 exhibiting the
highest rate (> 50%).

Takeaway 2: [Taxonomy of False-Negative Types]
Language differences, formatting inconsistencies, and
notation discrepancies are the most prevalent sources of
false negatives.

To understand why these false negatives occur, we conduct
a detailed analysis on FN and developed a comprehensive
taxonomy consisting of seven broad error classes (with 31
finer subcategories), spanning issues from formatting and
notation to semantic misunderstandings. We then employ
GROK-3-MINI-HIGH to automatically label each prompt
exhibiting at least one false negative. The results are demon-
strated in Figure 2 (lower). The complete category defini-
tions and annotation prompt are provided in Appendices C
and H.2, respectively.

Our analysis reveals that language differences constitute
the predominant source of FNs, particularly in cases where
either the ground-truth answer or the model-generated re-
sponse incorporates natural language elements. The second
and third most common error sources are formatting issues
(e.g., missing whitespace or delimiter style) and notation
discrepancies (e.g., intervals versus inequalities), respec-
tively. The remarkable diversity of these error types under-
scores the significant challenge faced by rule-based verifiers
in attempting to capture all possible variations.

4. Analysis of False Negatives and Their
Impact on RL Training

4.1. Empirical Analysis of FNs during RL

Having examined the distribution of false negatives across
datasets in the previous section, we now investigate how
these verification errors influence the RL training process.

RL Training Setups. We follow (Zeng et al., 2025a) and
perform zero RL training on two base models, QWEN2.5-
7B and QWEN2.5-MATH-7B, respectively. We follow (Ye
et al., 2025; Muennighoff et al., 2025) by randomly selecting
5K challenging questions from Big-Math-RL-Verified that
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ORCA-Math

32,406

CN_K12 Big-MathOlympiads MATHAOPS HARPOmni-MATH OpenMathGSM8K

25,915
16,488 12,462 2,316 1,880 878 865 677 594

Precentage (%)

Figure 2: This figure demonstrates FNs in Big-Math-RL-Verified by source (upper) and category (lower).

satisfy specific difficulty criteria: pass rate p(x) ≤ 0.2
for LLAMA-3.1-8B and p(x) = 0.25 for the Deepseek-
Distilled models from our curated dataset in Section 3. We
perform GRPO (Shao et al., 2024) for 12 epochs with a
batch size of 128 and 8 rollouts per sample (i.e., n = 8).
During training, we employ the default Prime Verifier to
assign binary rewards based on its verification results. We do
not assign additional format rewards during the RL training.
Full hyperparameter configurations are in Appendix E.1.

Methodology. To systematically investigate false negatives
during RL fine-tuning, we adopt the LLM-based false nega-
tive annotation outlined in Section 3 and perform an offline
evaluation of each rollout generated by the GRPO algorithm.
We then compare LLM judgments against the rewards as-
signed by Prime Verifier.

To evaluate how FNs affect GRPO training at each step, we
adopt the approach from DAPO (Yu et al., 2025) and define
Prompt Efficiency ηk for a mini-batch of m prompts at
training step k as:

ηk = Pk(0 < p(x) < 1) = 1−Pk(p(x) = 0)−Pk(p(x) = 1),
(6)

where p(x) = 1
n

∑n
i=1 ri is the pass rate for a prompt x

with n rollouts, ri ∈ {0, 1} is the binary reward for the i-th
rollout, and Pk is the empirical probability over the mini-
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Figure 3: The fraction of unique prompts in the training
dataset that encounter at least one false-negative rollout
across steps. The x-axis represents the training step, and the
y-axis shows the cumulative fraction of prompts affected by
false negatives.

batch, defined as Pk(p(x) = 0) = |{x : p(x) = 0}|/m and
Pk(p(x) = 1) = |{x : p(x) = 1}|/m.

Intuitively, prompts for which all rollouts are either cor-
rect or incorrect provide no useful gradient signal for RL,
whereas partially correct batches are more informative for
policy updates. At each training step, we compute Prompt
Efficiency using Prime Verifier’s reward values and compare
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these results with the correctness labels derived from our
LLM annotations. This comparison enables us to quantify
the impact of false negatives on RL training efficiency and
overall model performance.

Takeaway 3: High Proportion of False Negative during
RL Training.

Figure 3 shows the fraction of unique prompts in the train-
ing dataset that experience at least one false-negative rollout
across training epochs. The fraction of FN prompts in-
creases steadily after the first epoch, reaching 46.7% for
QWEN2.5-7B and 50.5% for QWEN2.5-MATH-7B by the
end of training. This trend indicates that false negatives
accumulate over time, likely due to the model exploring
diverse answer formats that Prime Verifier fails to recognize
as correct. Moreover, Figure 4 illustrates that the false-
negative ratio remains high at every training step, reaching
20% of rollouts on average.

Takeaway 4: False Negatives reduce prompt efficiency
in early RL training.

Figure 4 illustrates the all-wrong ratio (Pk(p(x) = 0)),
all-correct ratio (Pk(p(x) = 1)), and prompt efficiency ηk
during RL training. We observe that false negatives sig-
nificantly reduce prompt efficiency ηk, particularly in the
early stages of training. For instance, while Prime Verifier
marks 50% of prompts as having no correct rollouts, LLM
annotations reveal that only 35% lack correct rollouts, in-
dicating a 15% gap. As the all-correct ratio increases with
LLM annotations, prompt efficiency based on LLM anno-
tation consistently surpasses that of Prime Verifier, driven
by a substantial reduction in the all-wrong ratio. We high-
light that prompts with low pass rates are more critical for
RL training, as they provide informative gradient signals
for learning challenging problems (Ye et al., 2025; Muen-
nighoff et al., 2025). Although the gap in prompt efficiency
between Prime Verifier and LLM annotations narrows in
later training stages, Prime Verifier’s high false-negative
rate in early stages hinders effective learning on challenging
prompts.

4.2. Theoretical Analysis of Efficiency Degradation Due
to False Negatives

In this section, we theoretically analyze the efficiency degra-
dation in GRPO (Shao et al., 2024) caused by false negatives
in reward signals. We compare the learnability (defined
later) of policies trained with ground truth rewards against
those trained with rewards affected by false negatives.

Let πGT
k (yi|x) denote the policy optimized at the k-th step

using ground truth rewards, and let πFN
k (yi|x) represent the

policy optimized using rewards with false negatives. The
success probabilities under these policies for a given prompt

x are defined as:

PGT
k = Ey∼πGT

k (·|x)1{rGT(y,yref)=1}, (7)

P FN
k = Ey∼πFN

k (·|x)1{rFN(y,yref)=1}, (8)

where 1{·} is the indicator function, rGT(y,yref) is the
ground truth reward function, and rFN(y,yref) is the reward
function affected by false negatives.

Given the definition of false negatives, where a correct re-
sponse may be incorrectly marked as incorrect, we have the
following lemma.
Lemma 4.1. PGT

k > P FN
k for all k.

Our theoretical framework relies on the following two as-
sumptions:

Assumption 1. PGT
k increases with k.

This assumption posits that the GRPO is fundamentally
sound, ensuring that the success probability (i.e., average
reward scores) improves over iterations when trained with
ground truth rewards.

Assumption 2. PGT
k < 2PGT

k−1 for all k.

This assumes that the average reward scores will not grow
exponentially during training, which is consistent with the
practical improvement of reward scores in reinforcement
learning policy updates.

Following (Bae et al., 2025), we define step-wise learnability
as the reverse KL divergence between policies at consecutive
optimization steps, denoted byDk. For a policy trained with
ground truth rewards and rewards containing false negatives,
the step-wise learnability is:

Dk,GT = DKL
(
πGT
k−1(y|x) ∥πGT

k (y|x)
)
, (9)

Dk,FN = DKL
(
πFN
k−1(y|x) ∥πFN

k (y|x)
)
. (10)

These metrics quantify improvement in policy distribution
between consecutive steps. Specifically, the reverse KL di-
vergence measures the distance between the previous policy
πk−1 and the updated policy πk, where a largerDk indicates
greater policy improvement and thus better learnability.

Our main theoretical result is encapsulated in the following
theorem:
Theorem 4.2. Let δk = Dk,GT−Dk,FN denote the step-wise
learnability gap at training step k. Under Lemma 1 and
Assumption 1, δk > 0 for all k.

The proof is provided in Appendix D. This theorem shows
that policies trained with ground truth rewards have greater
step-wise learnability than those with false negatives, high-
lighting the importance of accurate reward signals in RL, as
false negatives impede convergence.
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Base Model = Qwen2.5-7B

Base Model = Qwen2.5-Math-7B

Figure 4: This figure demonstrates the impact of FNs on training efficiency by comparing Prime Verifier and LLM
annotations. LLM annotations consistently achieve higher prompt efficiency by reducing the all-wrong ratio, particularly in
the early stages of training.

5. Improve RL by Detecting False Negatives
with TINYV

Our experimental and theoretical analysis demonstrate that
false negatives are a pervasive issue in RL training, severely
impacting training efficiency. While LLM-based annotators
like QWEN2.5-72B-INSTRUCT and GROK-3-MINI-HIGH
can effectively identify false negatives, this approach is com-
putationally expensive, economically infeasible, and intro-
duces delays due to the high resource demands of large-scale
LLMs. To address these limitations, we propose TINYV,
a lightweight LLM-based verifier that augments existing
rule-based methods like Prime Verifier, which dynamically
identifies potential FNs and recovers valid responses, en-
abling more accurate reward estimates while maintaining
computational efficiency.

5.1. Curation of TINYV

In this subsection, we outline the process for creating
TINYV , focusing on dataset curation, model training, and
deployment setup.

TinyV

SFT

Real 
FN/TN

Synthetic
FN/TN

Rule-based
Verifier

Ground Truth

LLM

Prompt
𝒙

𝒚𝒓𝒆𝒇

𝒚𝒊

Big-Math LLM

TinyV 
Training

TinyV 
Deployment

Reward 𝒓𝒊

Figure 5: This figure demonstrates the curation and deploy-
ment of TINYV.

Dataset Curation. To develop a reliable verifier capable

of handling diverse scenarios, we curate a hybrid dataset
comprising both real and synthetic examples of false neg-
atives and true negatives. The real false negative and true
negative data are sourced from Section 3, where the correct-
ness of the responses were annotated by LLMs. To ensure
broader coverage and robustness, we augment this dataset
with synthetically generated false negatives. Specifically,
we prompt QWEN2.5-72B-INSTRUCT to generate poten-
tial false negative cases for a given question by introducing
variations such as LaTeX formatting differences, numeri-
cal approximations, or alternative mathematical expressions
that preserve semantic equivalence. These generated can-
didates are then re-annotated by LLMs to confirm they are
false negative. The detailed data curation process, including
the prompts used, is provided in Appendix E.2. In total,
we collect 638,000 instances, each consisting of a prompt,
ground truth, model answer, and LLM-annotated correct-
ness label. This hybrid approach ensures that TINYV can
generalize across a wide range of false negative patterns.

Model Training. We perform supervised fine-tuning on
Qwen2.5-1.5B-Instruct, a compact model with balanced
performance and computational efficiency. The training
employs a binary classification setup, where the model pre-
dicts a label of “True” for a response that is correct (i.e.,
a false negative when flagged as incorrect by Prime Veri-
fier) and “False” otherwise. The inputs are model’s answer,
the ground truth, and the problem context. To ensure a
balanced dataset, we sample 159,000 instances, equally dis-
tributed between “True” and “False” labels. The training
template, hyperparameters, and configurations are detailed
in Appendix E.3. Additionally, we experiment with training
TINYV-THINK, a variant that performs intermediate analy-
sis before predicting the final label. However, this approach
introduces significant delays due to longer generation time,
making it less practical for RL. Consequently, we adopt
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Table 1: Final performance comparison of Qwen2.5-7B and Qwen2.5-Math-7B across different experiment setups on
mathematical reasoning benchmarks. Values represent accuracy percentages, with the best performance for each base model
and dataset highlighted in bold.

Base Model Experiment Setup HardVerify-Math MATH AMC Olympiad Average

Qwen2.5-7B
TINYV 68.68% 73.40% 43.37% 32.40% 54.46%

Prime Verifier 58.64% 72.40% 44.58% 31.65% 51.82%
DeepScalaR 53.01% 72.60% 38.55% 32.54% 49.18%

Qwen2.5-Math-7B
TINYV 69.08% 80.80% 53.01% 37.00% 59.97%

Prime Verifier 62.65% 79.80% 48.19% 38.04% 57.17%
DeepScalaR 55.82% 78.00% 56.63% 36.11% 56.64%

TINYV for our main experiments. A comparison between
TINYV and TINYV-THINK is provided in Appendix G.1.

TINYV Deployment. To maximize efficiency and align
with Theorem 4.2, we integrate TINYV in an add-on mode
alongside Prime Verifier, as shown in Figure 5. Specif-
ically, TINYV is queried only when Prime Verifier re-
turns a negative result (i.e., flags a response as incorrect).
TINYV then re-evaluates the response to determine false
negative, thus avoiding unnecessary computations for re-
sponses already deemed correct. This hierarchical setup
ensures that TINYV complements Prime Verifier by focus-
ing computational resources on challenging cases, thereby
enhancing the accuracy of reward signals in RL training
while minimizing overhead.

5.2. HardVerify-Math Benchmark

While existing mathematical benchmarks have advanced the
evaluation of LLMs in reasoning tasks, they often consist
of questions with easily verifiable answers, such as simple
numerical solutions. This limitation highlights the need for
a new benchmark that focuses on challenging verification
scenarios prone to false negatives. To address this, we
curate the HardVerify-Math Bench, a benchmark comprising
250 hard-to-verify answers spanning all categories and the
taxonomy discussed in Section 3. Specifically, we manually
select 115 questions from Olympiad benchmark and 10
questions from the MATH test sets that are prone to false
negative cases due to their complexity in answer format.
Additionally, we include 125 questions from the Big-Math
dataset, chosen based on a Llama-3.1-8B pass rate of less
than 0.05 and identified as challenging to verify by human
experts. A detailed introduction to this benchmark including
its distribution and examples is in Appendix F.

5.3. Experimental Setups

Models and Datasets. We use Qwen2.5-7B and Qwen2.5-
Math-7B and perform zero-RL training using GRPO (Shao
et al., 2024). For training, we sample 5,000 questions from
the Big-Math dataset that exhibit FN cases, with pass rates
satisfying 0.05 < p(x) ≤ 0.2 for LLAMA-3.1-8B and
p(x) ≤ 0.25 for DeepSeek-Distilled models. These criteria

ensure sufficient challenge while avoiding overlap with our
HardVerify-Math benchmark. We employ TINYV and Prime
Verifier to assign rewards. For comparative analysis, we also
randomly sample 5,000 questions from DeepScaleR (Luo
et al., 2025), which contains questions with easily verifiable
answers (e.g., plain numerical values or simple formats
evaluable using the SYMPY library), and use Prime Verifier
for evaluation due to its simplicity in answer verification.

Benchmarks and Evaluation Setups. We assess perfor-
mance of trained models on MATH500 (Hendrycks et al.,
2021), AMC (2023 and 2024), Olympiad Bench (He et al.,
2024a), and HardVerify-Math. We employ greedy decod-
ing to ensure deterministic and reproducible results. For
MATH500, AMC, and the Olympiad Bench, we adopt the
standard practice of using Prime Verify for answer verifi-
cation. For the more challenging HardVerify-Math, we in-
stead employ LLM-based evaluations to assess performance.
More experimental Setups can be found in Appendix E.1.

5.4. Experimental Results

We present a summary of our experimental results, highlight-
ing the improvements achieved by TINYV in RL training
efficiency and model performance across benchmarks.

Takeaway 5: TINYV enhances RL training efficiency
and final model performance.

As shown in Figure 6 and Table 1, TINYV significantly
enhances the efficiency of RL training compared to Prime
Verifier, achieving faster convergence. Furthermore, the fi-
nal model performance of TINYV consistently outperforms
that of Prime Verifier across almost all training steps, with
a performance gap of up to 10% in some benchmarks. We
attribute this improvement to TINYV ’s ability to provide
more accurate reward signals, enabling the model to learn
effectively from challenging questions where Prime Verifier
often fails to detect correct responses.

Takeaway 6: TINYV improves performance on
HardVerify-Math compared to baselines.

As shown in Figure 7, TINYV trained on the Big-Math
dataset outperforms the baseline using DeepScaleR on the

7
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Base Model = Qwen2.5-7B

Base Model = Qwen2.5-Math-7B

Figure 6: Performance trends of Qwen2.5-7B on the AMC, MATH and Olympiad benchmark, comparing TINYV with
Prime Verifier. The darker lines are smoothed using a sliding window whose size is 5% of the total training steps. We
observe that model trained with TINYV converges faster and has better final model performance.

HardVerify-Math benchmark. Notably, the performance
of DeepScaleR on HardVerify-Math fluctuates, likely due
to its focus on easily verifiable questions that do not gen-
eralize well to hard-to-verify scenarios. In contrast, both
TINYV and Prime Verifier with Big-Math show consistent
improvement, with TINYV achieving a final accuracy of
68.68% compared to Prime Verifier’s 58.64% with Qwen2.5-
7B as the base model. We attribute this to DeepScaleR’s
limitation in training on questions with simple, clean an-
swers, which leaves the model underprepared for the com-
plex, false negative-prone questions in HardVerify-Math.
This performance advantage of TINYV also extends to other
benchmarks like MATH500 and Olympiad Bench, where
some solutions are similarly challenging to verify due to
their complexity (e.g., symbolic expressions or sets). This
suggests a gap in current training datasets that fail to ad-
dress hard-to-verify scenarios, opening avenues for future
research into developing more diverse datasets and adaptive
verification methods that can better handle such challenges.

Additional Experimental Results. We compare perfor-
mance of different verifiers, including TINYV, TINYV-
THINK, Math Verify, and Prime Verifier in Appendix G.1.
We also compare training costs with and without TINYV in
Appendix G.2. Our analysis demonstrates that TINYV in-
curs only a 6% overhead, confirming its lightweight design.

6. Conclusion and Future Work
This work investigates false negatives (FNs) in RL training,
specifically addressing three key research questions to un-
derstand their prevalence, impact, and mitigation in the
context of mathematical reasoning tasks. We demonstrated
that the proposed TINYV enhances reward accuracy while

Figure 7: This figure compares performance of HardVerify-
Math Bench between Big-Math (hard to verify) and Deep-
ScaleR (easy to verify) datasets.

maintaining computational efficiency, achieving both im-
proved final performance and faster convergence compared
to baseline verifiers. Future work could explore false nega-
tives in broader RL domains, such as theorem proving (Xin
et al., 2024), medical applications (Lai et al., 2025), software
engineering development (Wei et al., 2025), and robotics
(Boyle et al., 2025), to further enhance the robustness and
generalizability of RL training across diverse reasoning and
decision-making tasks.
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A. Related Work
Rule-based Answer Verification in LLMs. Rule-based answer verification is widely used in LLM data pre-processing
(Xiong et al., 2025), model training (Yu et al., 2025; DeepSeek-AI et al., 2025; Shao et al., 2024), and evaluation frameworks
such as LM Eval Harness (Gao et al., 2024), OpenCompass (Contributors, 2023), openai-evals (OpenAI, 2025), and
UltraEval (He et al., 2024b). This approach assesses the correctness of LLM outputs by comparing them against ground-truth
answers associated with specific datasets. However, rule-based verification may struggle to evaluate semantically equivalent
but textually distinct responses, potentially resulting in false negatives (Chen et al., 2025a).

LLM as a Judge. The increasing capabilities of LLMs have spurred interest in using them as judges to evaluate other
models, often referred to as “LLM as a judge” (Gu et al., 2025). This approach leverages LLMs’ understanding to assess
output quality, particularly for subjective or complex tasks where traditional metrics may fall short. LLM-as-a-judge methods
are widely employed in alignment tasks (Lin et al., 2024; Li et al., 2024; Dubois et al., 2024; Li et al., 2023; Gu et al., 2025;
Li et al., 2025). Recently, xVerify introduced a compact LLM as an efficient answer verifier for reasoning model evaluations,
surpassing GPT-4o in overall performance (Chen et al., 2025a). Additionally, LLM-as-a-judge techniques are increasingly
integrated into training processes. For instance, SEED-THINKING-V1.5 employs a reasoning model to evaluate a diverse set
of verifiable questions across varied scenarios (Shao et al., 2024). Recently, (Ma et al., 2025) utilizes a model-based verifier
to deliver robust and accurate cross-domain rewards for RL training.

Increasing Efficiency in RL for LLMs. Recent efforts have focused on improving the efficiency of RL training for LLMs,
particularly with GRPO (Shao et al., 2024). DAPO (Yu et al., 2025) enhances GRPO’s efficiency by introducing dynamic
sampling, which filters out prompts with accuracy values of 0 or 1, retaining only those with effective gradients while
maintaining a consistent batch size. VAPO (Yuan et al., 2025) improves the utilization efficiency of positive samples
during RL training through the Positive Example LM Loss. Additionally, PODS (Xu et al., 2025) proposes max-variance
down-sampling to select rollouts with maximally diverse reward signals, achieving greater efficiency compared to the GRPO
baseline.

B. Limitations and Broader Impacts
Limitations. This study focuses on false negatives (FNs) within the domain of mathematical reasoning and does not
explore FNs in other domains, such as theorem proving (Xin et al., 2024), medical applications (Lai et al., 2025), or
software engineering development (Wei et al., 2025), where FNs may still occur. Our experiments and theoretical analysis
primarily utilize GRPO (Shao et al., 2024). While we believe our findings can generalize to both online methods (e.g,.
PPO (Schulman et al., 2017), RLOO (Huang & Ahmadian, 2024), and DAPO (Yu et al., 2025)), as well as offline methods
(e.g., DPO (Rafailov et al., 2024), RAFT (Dong et al., 2023), and Reinforce-Rej (Xiong et al., 2025)) that employ rejection
sampling, we have not empirically validated this hypothesis. Additionally, the proposed TINYV currently relies on Prime
Verifier’s answer extraction mechanism (i.e., within \boxed{}), which focuses solely on the final answer rather than
considering the entire output, such as the reasoning process.

Broader Impacts. Our work advances the efficiency of reinforcement learning training for mathematical reasoning,
potentially enhancing the efficiency of machine learning, without identified negative societal impacts.

C. Detailed False Negative Categories
In this section, we present a comprehensive taxonomy of false negatives identified in answer verification for mathematical
reasoning tasks, based on our analysis on the Big-Math-RL-Verified dataset. These categories highlight the diverse
reasons why rule-based verifiers, such as Prime Verifier, may incorrectly mark a model’s response as wrong despite it
being mathematically correct. Each category is divided into subcategories, with descriptions and illustrative examples to
demonstrate the variations leading to false negatives.

C.1. Formatting and Syntax Differences

This category captures differences in formatting and syntax that do not alter the mathematical meaning of the answer.

• Formatting → Whitespace and Spacing Issues

– Description: Variations in spaces around operators, within expressions, or between elements.
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– Example:
ground truth answer: f(x) = 2 x
model answer: f(x)=2x

• Formatting → Symbol Representation Issues

– Description: Differences in symbol notation, including Unicode vs. command-based symbols, delimiter styles, or
minor symbol variations (e.g., degree symbols, infinity notation).

– Example:
ground truth answer: (−∞, -3) ∪ (3, +∞)
model answer: (−∞, -3) ∪ (3, ∞)

• Formatting → Markup Variation Issues

– Description: Differences in syntax for equivalent rendering, such as LaTeX command choices or delimiter sizing.
– Example:
ground truth answer: \frac{32}{9}
model answer: \dfrac{32}{9}

• Formatting → Unit Representation Issues

– Description: Differences in the inclusion, omission, or representation of units (e.g., missing units, abbreviated vs.
full unit names).

– Example:
ground truth answer: 18.8^\circ
model answer: 18.8

• Formatting → Contextual Addition or Omission Issues

– Description: Missing or extra prefixes (e.g., "x=") or explanatory text not affecting the core answer, excluding
units.

– Example:
ground truth answer: N=n
model answer: n

• Formatting → Other Formatting Issues

– Description: Miscellaneous formatting differences, such as newline characters or non-alphanumeric separators.
– Example:
ground truth answer: 60^\text{circ} 42’
model answer: 60^\circ 42’

C.2. Mathematical Notation Variations

This category includes differences in standard mathematical conventions for expressing the same concept.

• Notation → Interval vs. Inequality Notation

– Description: Representing ranges as intervals or inequalities.
– Example:
ground truth answer: (−∞, -5)
model answer: k < -5

• Notation → Ratio and Proportion Variations

– Description: Different ways of expressing ratios or proportions (e.g., colon, fraction, or single value).
– Example:
ground truth answer: 2:1
model answer: 2/1
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• Notation → Aggregated vs. Individual Solution Variations

– Description: Using symbols like ± or listing solutions separately.

– Example:
ground truth answer: 1 ± \sqrt{19}
model answer: 1 + \sqrt{19}, 1 - \sqrt{19}

• Notation → Vector and Matrix Notation Variations

– Description: Variations in displaying vectors or matrices.

– Example:
ground truth answer: \begin{pmatrix} -7 \\16 \\5 \end{pmatrix}
model answer: (-7,16,5)

• Notation → Other Notation Variations

– Description: Variations due to regional conventions (e.g., decimal points vs. commas) or other notation differences.

– Example:
ground truth answer: 3.14
model answer: 3,14

C.3. Mathematical Expression Equivalencies

This category covers expressions that differ in form but are mathematically equivalent.

• Expression → Algebraic Equivalence Variations

– Description: Different but equivalent algebraic forms, including term ordering, factoring, or simplification.

– Example:
ground truth answer: \frac{1-p^{2}}{3}
model answer: \frac{-p^2+1}{3}

• Expression → Root and Exponent Form Variations

– Description: Using roots, fractional exponents, or simplified exponents differently.

– Example:
ground truth answer: 2^{-2 / 3}
model answer: \frac{1}{\sqrt[3]{4}}

• Expression → Logarithmic and Trigonometric Form Variations

– Description: Equivalent forms using logarithmic or trigonometric identities.

– Example:
ground truth answer: \frac{\log 2}{\log 2-\log 3}
model answer: -\frac{\ln 2}{\ln 3-\ln 2}

• Expression → Other Equivalence Variations

– Description: Equivalencies in combinatorial quantities, complex numbers, or other mathematical structures.

– Example:
ground truth answer: \frac{3 m}{2}-1
model answer: \dfrac{3m - 2}{2}
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C.4. Numerical Representation Differences

This category addresses variations in how numerical values are presented.

• Numeric → Exact vs. Approximate Form Variations

– Description: Exact (fraction, symbolic) vs. decimal or percentage approximations.
– Example:
ground truth answer: \frac{600}{7}
model answer: 85.71

• Numeric → Alternative Exact Form Variations

– Description: Different exact representations, such as scientific notation or evaluated powers.
– Example:
ground truth answer: 10^{3}
model answer: 1000

• Numeric → Rounding and Precision Variations

– Description: Approximations with different decimal places or rounding rules.
– Example:
ground truth answer: 1.27\%
model answer: 1.3\%

• Numeric → Other Numerical Variations

– Description: Other numerical format differences, such as mixed vs. improper fractions.
– Example:
ground truth answer: 6\frac{1}{64}
model answer: 6.015625

C.5. Language and Contextual Variations

This category captures differences in natural language or implied context.

• Language → Presence/Absence of Explanatory Text

– Description: Model output or ground truth includes additional descriptive text, or vice versa.
– Example:
ground truth answer: 10,11,12,13,14,-2,-1,0,1,2
model answer: Sequence 1: -2, -1, 0, 1, 2 and Sequence 2: 10, 11, 12, 13,
14

• Language → Implicit vs. Explicit Variable/Function Assignment

– Description: One output explicitly assigns values to variables or defines a function while the other lists values or
the expression directly.

– Example:
ground truth answer: 16,3,1,1
model answer: w=16, d=3, a=1, b=1

• Language → Phrasing and Conciseness Variations

– Description: Differences in wording, synonyms, or level of detail.
– Example:
ground truth answer: \text{Any odd number of participants}
model answer: odd
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• Language → Other Language Variations

– Description: Minor differences in separators (e.g., "and" vs. comma) or answer structure.
– Example:
ground truth answer: 1,3
model answer: 1 \text{ and } 3

C.6. Set and List Differences

This category includes variations in presenting collections of results, assuming correctness.

• Set/List → Order of Element Variations

– Description: Different sequencing of elements in sets or lists where order is not mathematically significant.
– Example:
ground truth answer: (6,3),(9,3),(9,5),(54,5)
model answer: (9,3),(6,3),(54,5),(9,5)

• Set/List → Structural Formatting Variations

– Description: Variations in tuple, set, or list formatting, including use of braces.
– Example:
ground truth answer: (1,2), (3,4)
model answer: {(1,2), (3,4)}

• Set/List → Element Delimiter Variations

– Description: Differences in delimiters used to separate elements (e.g., commas vs. semicolons).
– Example:
ground truth answer: (1,2,3)
model answer: (1;2;3)

• Set/List → Other Set and List Variations

– Description: Other differences in set or list presentation, such as redundant parentheses.
– Example:
ground truth answer: (1,2)
model answer: ((1,2))

C.7. Symbolic Representation Variations

This category addresses differences in variable or constant symbols.

• Symbolic → Variable and Constant Choice Variations

– Description: Different letters or cases for arbitrary constants or parameters.
– Example:
ground truth answer: ...+\pi k, ...
model answer: ...+n \pi, ...

• Symbolic → Subscript or Superscript Variations

– Description: Differences in subscript or superscript notation for variables or constants.
– Example:
ground truth answer: x_1, x_2
model answer: x^1, x^2

• Symbolic → Custom Symbol Variations
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– Description: Use of unconventional or user-defined symbols for variables or constants.
– Example:
ground truth answer: α, β
model answer: a, b

• Symbolic → Other Symbolic Variations

– Description: Other differences in symbolic representation, such as case sensitivity.
– Example:
ground truth answer: P(x)
model answer: p(x)

D. Proof of Theorem 1
In this section, we provide a detailed proof of Theorem 4.2, which states that policies trained with ground truth rewards have
greater step-wise learnability than those with false negatives. We first derive the closed-form expression of the step-wise
learnability in Section D.1, and then prove the positivity of the step-wise learnability gap in Sections D.2 and D.3.

D.1. Reverse KL for GRPO Updates

We begin with the GRPO objective

max
θ

Ey∼πθ(·|x)
[
r(x,y)

]
− β DKL

(
πθ(y | x) ∥πinit(y | x)

)
,

and transform this optimization into a step-wise recursion. Throughout, we denote:

• x: input prompt

• y: output token/sequence

• r(x,y) ∈ {0, 1}: binary reward

• pk(x) = Ey∼πk(·|x)
[
1{r(x,y)=1}

]
: success probability of policy πk for prompt x

• pref(x) = Ey∼πref(·|x)
[
1{r(x,y)=1}

]
: success probability of reference policy for prompt x

Lemma D.1 (GRPO Policy Dynamics (Mroueh, 2025)). For k ≥ 1, the optimal GRPO iterate satisfies

πk(y | x) = 1

Zk−1(x)
πref(y | x) exp

(
1
β

[
ω+
ε

(
pk−1(x)

)
1{r(x,y)=1} − ω−

ε

(
pk−1(x)

)
1{r(x,y)=0}

])
with weights

ω+
ε (p) =

1− p√
p(1− p) + ε

, ω−
ε (p) =

p√
p(1− p) + ε

,

and normalizing constant

Zk−1(x) = pref(x) e
1
β ω+

ε

(
pk−1(x)

)
+

(
1− pref(x)

)
e
− 1

β ω−
ε

(
pk−1(x)

)
.

Proof. See (Mroueh, 2025) for the proof.

Building on Lemma D.1, we now derive the reverse Kullback–Leibler (KL) divergence between two consecutive GRPO
iterates.

Lemma D.2 (Reverse KL for GRPO Updates). Given the GRPO policy updates from Lemma D.1, the reverse KL divergence
satisfies

DKL
(
πk−1(· | x) ∥πk(· | x)

)
=

1

β

[
ω+
ε

(
pk−2(x)

)
pk−1(x)− ω−

ε

(
pk−2(x)

) (
1− pk−1(x)

)]
− log

Zk−2(x)

Zk−1(x)
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Proof. By definition, the reverse KL divergence between πk−1 and πk is:

DKL
(
πk−1(· | x) ∥πk(· | x)

)
=

∑
y

πk−1(y | x) log πk−1(y | x)
πk(y | x)

.

Using the GRPO update rule from Lemma D.1 for both policies, we can express πk−1 and πk as:

πk−1(y | x) = 1

Zk−2(x)
πref(y | x) exp

(
1
β

[
ω+
ε

(
pk−2(x)

)
1{r(x,y)=1} − ω−

ε

(
pk−2(x)

)
1{r(x,y)=0}

])
and similarly for πk(y | x). Taking the log-ratio and simplifying the result, we get:

log
πk−1(y | x)
πk(y | x)

= log
Zk−1(x)

Zk−2(x)
+ 1

β

[
∆+

k (x)1{r(x,y)=1} −∆−
k (x)1{r(x,y)=0}

]
(11)

where we denote:

∆+
k (x) = ω+

ε

(
pk−2(x)

)
− ω+

ε

(
pk−1(x)

)
, ∆−

k (x) = ω−
ε

(
pk−2(x)

)
− ω−

ε

(
pk−1(x)

)
.

Taking the expectation with respect to πk−1(· | x) and noting that:∑
y

πk−1(y | x)1{r(x,y)=1} = pk−1(x) (12)

∑
y

πk−1(y | x)1{r(x,y)=0} = 1− pk−1(x) (13)

we obtain:

DKL
(
πk−1∥πk

)
= log

Zk−1(x)

Zk−2(x)
+ 1

β

[
∆+

k (x)pk−1(x)−∆−
k (x)(1− pk−1(x))

]
(14)

Substituting the definitions of ∆+
k (x) and ∆−

k (x) and expanding:

DKL
(
πk−1∥πk

)
= log

Zk−1(x)

Zk−2(x)
+ 1

β

[
ω+
ε (pk−2(x))pk−1(x)− ω+

ε (pk−1(x))pk−1(x) (15)

− ω−
ε (pk−2(x))(1− pk−1(x)) + ω−

ε (pk−1(x))(1− pk−1(x))
]

(16)

A key observation is that for any p, we have ω+
ε (p)p − ω−

ε (p)(1 − p) = 0, which can be verified from their definitions.
Applying this identity to the terms involving pk−1(x):

ω+
ε (pk−1(x))pk−1(x)− ω−

ε (pk−1(x))(1− pk−1(x)) = 0

Therefore, these terms cancel out, yielding:

DKL
(
πk−1(· | x) ∥πk(· | x)

)
=

1

β

[
ω+
ε

(
pk−2(x)

)
pk−1(x)− ω−

ε

(
pk−2(x)

)
(1− pk−1(x))

]
− log

Zk−2(x)

Zk−1(x)

which completes the proof.

D.2. Integral Form of the Step-Wise Learnability Gap

According to the closed-form of the step-wise learnability derived in the previous section, we can further transform the
difference of step-wise learnability into an integral form involving partial derivatives. Then we prove that these partial
derivatives are positive, which establishes our main result.

We simplify the notation of the step-wise learnability in Lemma D.2 as follows:

D(a, b) =
1

β

[
ω+
ε (b)a− ω−

ε (b)(1− a)
]
− log

Z(b)

Z(a)

where:
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• a represents the success probability at the current step

• b represents the success probability at the previous step

Let Dk,GT = D(PGT
k , PGT

k−1) represents the step-wise learnability when training with ground truth rewards, while Dk,FN =
D(P FN

k , P FN
k−1) represents the step-wise learnability when training with rewards containing false negatives.

Lemma D.3 (Integral Form of the Step-Wise Learnability Gap). Let δk = Dk,GT −Dk,FN be the step-wise learnability gap
at training step k, where Dk,GT and Dk,FN are defined in Equations (9) and (10). We can express δk as:

δk =

∫ ∆k

0

[∂1D + ∂2D](PGT
k − t, PGT

k−1 − t) dt

where ∂1D denotes ∂D(a,b)
∂a , ∂2D denotes ∂D(a,b)

∂b , and ∆k = PGT
k − P FN

k > 0 by Lemma 4.1.

Proof. We define a function f(t) = D(PGT
k − t, PGT

k−1 − t) for t ∈ [0,∆k]. At the boundaries of the integration domain, we
have:

f(0) = D(PGT
k , PGT

k−1) = Dk,GT (17)

At t = ∆k = PGT
k − P FN

k , we have:

f(∆k) = D(P FN
k , P FN

k−1) = Dk,FN (18)

Therefore, the learnability gap can be expressed as δk = f(0)− f(∆k). By the fundamental theorem of calculus:

δk = −
∫ ∆k

0

f ′(t) dt

Computing f ′(t) via the chain rule:

f ′(t) =
d

dt
D(PGT

k − t, PGT
k−1 − t) (19)

= ∂1D(PGT
k − t, PGT

k−1 − t) · (−1) + ∂2D(PGT
k − t, PGT

k−1 − t) · (−1) (20)

= −[∂1D + ∂2D](PGT
k − t, PGT

k−1 − t) (21)

Therefore:

δk =

∫ ∆k

0

[∂1D + ∂2D](PGT
k − t, PGT

k−1 − t) dt

Since ∆k > 0 by Lemma 4.1, proving δk > 0 reduces to showing that the integrand [∂1D + ∂2D](a, b) > 0 throughout the
integration domain. In other words, if the sum of partial derivatives of D with respect to its arguments is positive, then the
step-wise learnability with ground truth rewards exceeds that with false negative rewards.

Lemma D.4 (Positivity of the Partial Derivatives). For any (a, b) ∈ (0, 1)2 satisfying b < a < 2b, the following inequality
holds:

[∂1D + ∂2D](a, b) > 0

Proof. We begin by computing the partial derivatives of the function

D(a, b) =
1

β

(
W+(b) a − W−(b) (1− a)

)
− log

Z(b)

Z(a)
,
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where we use W+ and W− as shorthand for ω+
ε and ω−

ε to simplify notation.

Direct differentiation with respect to a and b yields:

∂1D(a, b) =
1

β

(
W+(b) +W−(b)

)
+

Z ′(a)

Z(a)
,

∂2D(a, b) =
1

β

(
aW+′

(b) − (1− a)W−′
(b)

)
− Z ′(b)

Z(b)
.

Summing these two partial derivatives, we obtain:

[∂1D + ∂2D](a, b) =
1

β
T (b)︸ ︷︷ ︸
A

+
[Z ′(a)

Z(a)
− Z ′(b)

Z(b)

]
︸ ︷︷ ︸

B

,

where
T (b) =W+(b) +W−(b) + aW+′

(b)− (1− a)W−′
(b).

Our proof strategy is to show that both term A and term B are positive under the given conditions.

Part A: Proving 1
βT (b) > 0

Recall the definitions:
W+(p) =

1− p√
p(1− p) + ε

, W−(p) =
p√

p(1− p) + ε
,

where ε > 0 is a small positive constant, and denote d(b) =
√
b(1− b) + ε.

For the term T (b) =W+(b) +W−(b) + aW+′
(b)− (1− a)W−′

(b), after simplification, we have:

T (b) =
d(b)− d′(b)(a− b)

d(b)2

where d′(b) = 1−2b

2
√

b(1−b)
. Thus

T (b) =
b(1− b) + ε

√
b(1− b)− (a− b)(1− 2b)√

b(1− b)(
√
b(1− b) + ε)2

For b > 1
2 , since 1− 2b < 0, a− b > 0, we have T (b) > 0.

For b ≤ 1
2 , by using a < 2b:

T (b) >
b(1− b)− b(1− 2b)√
b(1− b)(

√
b(1− b) + ε)2

>
b2√

b(1− b)(
√
b(1− b) + ε)2

> 0

Thus, T (b) > 0 for all b ∈ (0, 1), which implies 1
βT (b) > 0.

Part B: Proving Z′(a)
Z(a) − Z′(b)

Z(b) > 0 when a > b

We want to prove that g(p) = Z′(p)
Z(p) is strictly increasing, which will show that when a > b, we have g(a)− g(b) > 0.

Recall that:

Z(p) = Prefe
u(p) + (1− Pref)e

−v(p) (22)

u(p) =
1

β
W+(p) (23)

v(p) =
1

β
W−(p) (24)
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Define the weights:

w1(p) =
Prefe

u(p)

Z(p)
, w2(p) =

(1− Pref)e
−v(p)

Z(p)
(25)

Note that w1(p) + w2(p) = 1.

The derivative of Z(p) is:

Z ′(p) = Prefe
u(p)u′(p) + (1− Pref)e

−v(p)(−v′(p)) (26)
= Z(p) · [w1(p)u

′(p)− w2(p)v
′(p)] (27)

Therefore:

g(p) =
Z ′(p)

Z(p)
= w1(p)u

′(p)− w2(p)v
′(p) (28)

Thus we have

g′(p) = w′
1(p)u

′(p) + w1(p)u
′′(p) + w′

2(p)(−v′(p)) + w2(p)(−v′′(p)) (29)

We know that w1(p) + w2(p) = 1, so w′
1(p) + w′

2(p) = 0, i.e., w′
1(p) = −w′

2(p).

Using the definition of w1(p) and w2(p), we can derive:

w′
1(p) = w1(p)[u

′(p)− g(p)] (30)
w′

2(p) = w2(p)[(−v′(p))− g(p)] (31)

Substituting these into the expression for g′(p):

g′(p) = w1(p)[u
′(p)− g(p)]u′(p) + w2(p)[(−v′(p))− g(p)](−v′(p)) (32)

= w1(p)u
′(p)2 − w1(p)g(p)u

′(p) + w2(p)v
′(p)2 − w2(p)g(p)(−v′(p)) (33)

= w1(p)u
′(p)2 + w2(p)v

′(p)2 − g(p)2 (34)

We can expand g(p)2 as:

g(p)2 = w1(p)
2u′(p)2 − 2w1(p)w2(p)u

′(p)v′(p) + w2(p)
2v′(p)2 (35)

Substituting this into our expression for g′(p):

g′(p) = w1(p)u
′(p)2 + w2(p)v

′(p)2 − [w1(p)
2u′(p)2 − 2w1(p)w2(p)u

′(p)v′(p) + w2(p)
2v′(p)2] (36)

= w1(p)u
′(p)2(1− w1(p)) + w2(p)v

′(p)2(1− w2(p)) + 2w1(p)w2(p)u
′(p)v′(p) (37)

= w1(p)w2(p)u
′(p)2 + w1(p)w2(p)v

′(p)2 + 2w1(p)w2(p)u
′(p)v′(p) (38)

= w1(p)w2(p)[u
′(p) + v′(p)]2 (39)

This is positive since it’s a squared term multiplied by positive weights (w1(p) > 0 and w2(p) > 0).

Consequently, g(p) = Z′(p)
Z(p) is strictly increasing, which means that when a > b, we have g(a)− g(b) > 0.

Combining the results from Part A and Part B, we have:

[∂1D + ∂2D](a, b) =
1

β
T (b) +

[
Z ′(a)

Z(a)
− Z ′(b)

Z(b)

]
> 0

This completes the proof of Lemma D.4.
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D.3. Proof of Theorem 1

Having established the necessary lemmas, we now complete the proof of Theorem 4.2.

Proof. From Lemma D.3, we have expressed the step-wise learnability gap as an integral:

δk =

∫ ∆k

0

[∂1D + ∂2D](PGT
k − t, PGT

k−1 − t) dt

where ∆k = PGT
k − P FN

k > 0 by Lemma 4.1.

From Lemma D.4, we have established that [∂1D + ∂2D](a, b) > 0 for all pairs (a, b) ∈ (0, 1)2 satisfying b < a < 2b
(Assumption 1 and 2).

Since the integrand [∂1D + ∂2D](PGT
k − t, PGT

k−1 − t) is positive throughout the integration domain, and the integration is
performed over a positive interval [0,∆k], we conclude that δk > 0 for all k.

This theoretical result highlights the importance of accurate reward signals in reinforcement learning. False negatives in
reward feedback significantly impede the learning process by reducing the step-wise improvement of the policy at each
iteration, potentially leading to slower convergence and suboptimal performance.

E. More on Experimental Setups
In this section, we details our setups for the experiments.

E.1. Experimental Setups for Zero RL

We follow (Luo et al., 2025) and use the following hyper-parameters detailed in Table 2 for Zero RL training. We perform
experiments on 8 A100 GPUs. The model is trained using VERL (Sheng et al., 2025).

Table 2: This table shows the hyper-parameters for zero RL training.

Hyper-parameter Value

Learning Rate 1× 10−6

Number of Epochs 12
Number of Devices 8
Rollout Batch Size 128
PPO Mini Batch Size 64
Max Prompt Length 1024
Max Response Length 3072 (QWEN2.5-MATH-7B), 4096 (QWEN2.5-7B)
KL Coefficient 0.001
Rollout Engine VLLM (V0.8.2)
Optimizer Adamw
Learning Rate Scheduler cosine
Warmup Ratio 0.1
Max Sequence Length 4096

E.2. TINYV Data Curation

Real Example Generation. We utilize the seemingly incorrect prompt-response pairs collected in Section 3 as the source
of real examples. Specifically, for each prompt-response pair (x,yi) marked as incorrect by Prime Verifier, we adopt LLM
annotations as the ground truth label: “True” for a response that is correct and “False” otherwise. Additionally, we retain the
intermediate analysis of LLMs for TINYV-THINK training.

Synthetic Example Generation. To enhance coverage, ensure robustness, and balance the dataset with an equal number of
“True” and “False” labels, we augment the dataset with synthetically generated false negatives. Specifically, we prompt
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Prompt Template for TINYV Training and Inference

You are an AI tasked with identifying false negatives in answer verification. A
false negative occurs when a model’s answer is essentially correct but is
marked as incorrect due to minor discrepancies or formatting issues. Your job
is to analyze the given question, ground truth answer, and model answer to
determine if the model’s answer is actually correct despite appearing different
from the ground truth.

<question>{{QUESTION}}</question>

<ground_truth_answer>{{GROUND_TRUTH_ANSWER}}</ground_truth_answer>

<model_answer>{{MODEL_ANSWER}}</model_answer>

Return "True" if the model’s answer is correct, otherwise return "False".

Figure 8: Prompt Template for TINYV Training and Inference.

QWEN2.5-72B-INSTRUCT to generate potential false negative cases for a given question by introducing variations such as
LaTeX formatting differences, numerical approximations, or alternative mathematical expressions that preserve semantic
equivalence. These generated candidates are then re-annotated by LLMs to confirm their correctness. As with the real
examples, we retain the intermediate analysis of LLMs. The prompts used for generating synthetic examples are provided in
Appendix H.3.

E.3. TINYV Training

Table 3 demonstrates the detailed supervised fine-tuning (SFT) hyper-parameters for training TINYV. We perform experi-
ments on 8 A100 GPUs. The training and inference template is demonstrated in Figure 8. The model is trained using Llama
Factory (Zheng et al., 2024).

Table 3: This table shows the hyper-parameters for supervised fine-tuning of TINYV.

Hyper-parameter Value

Learning Rate 1× 10−5

Number of Epochs 2
Number of Devices 8
Per-device Batch Size 8
Gradient Accumulation Steps 8
Effective Batch Size 512
Optimizer Adamw
Learning Rate Scheduler cosine
Warmup Ratio 0.1
Max Sequence Length 4096

F. HardVerify-Math Benchmark
In this section, we detail our HardVerify-Math Bench, a benchmark comprising 250 hard-to-verify answers that span all
categories and the taxonomy discussed in Section 3. The dataset consists of two parts: (1) from existing benchmarks, we
manually select 115 questions from the Olympiad benchmark and 10 questions from the MATH test sets, which are prone to
false negatives due to their complex answer formats; (2) from other sources, we include 125 questions from the Big-Math
dataset, selected based on a LLaMA-3.1-8B pass rate of less than 0.05 and identified as challenging to verify by human
experts. Each question in HardVerify-Math Bench results in at least one false negative when evaluated using Prime Verifier.
We include the incorrect answer that triggers the false negative, along with the question and its ground truth answer, for
reference. Figure 9 illustrates examples, while Figure 10 shows the sources of the questions.
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Example 1 (Olympiad Benchmark)

Question: Determine all real numbers $x>0$ for which\n\n$$\n\\log _{4} x-\\log _{x}
16=\\frac{7}{6}-\\log _{x} 8\n$$

Ground Truth: $2^{-2 / 3}$, $8$
Model Output: 8, \\frac{1}{\\sqrt[3]{4}}

Example 2 (Olympiads Big-Math)

Question: Which clock shows the correct time more often: one that is one minute
slow or one that is stopped?

Ground Truth: A stopped clock shows the correct time more often.
Model Output: \\text{stopped}

Example 3 (CN_K12)

Question: After the epidemic, the tourism market in Yunnan has shown strong
recovery this year. A travel agency rented two types of rooms, $A$ and $B$,
during the Spring Festival this year. The number of rooms rented for $A$ at
$4800$ yuan is the same as the number of rooms rented for $B$ at $4200$ yuan.
The rent for each $A$ room this year is $30$ yuan more than the rent for each
$B$ room. Find the rent for each $A$ and $B$ room this year.

Ground Truth: The rent for each $A$ room is $240$ yuan, and for each $B$ room is
$210$ yuan.

Model Output: 240 \\text{ yuan (A)},\\ 210 \\text{ yuan (B)}

Example 4 (ORCA Math)

Question: A can do a piece of work in 12 days and B alone can do it in 14 days. How
much time will both take to finish the work together?

Ground Truth: 6.46
Model Output: \\dfrac{84}{13}\\text{ days}

Figure 9: HardVerify-Math Bench Examples.

Source: Existing Benchmarks Source: Big-Math

Figure 10: This figure shows the source distribution of HardVerify-Math Bench.
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G. More Experimental Results
G.1. Comparison Across Different Verifiers

Figure 11 compares the performance among TINYV, TINYV-THINK, Math Verify, and Prime Verifier on AMC, MATH,
Olympiad and HardVerify-Math Bench. The base model is QWEN2.5-MATH-7B. We observe that the performance of
TINYV and TINYV-THINK is comparable and surpasses that of rule-based verifiers (i.e., Math Verify and Prime Verifier) in
training efficiency and model performance. Given that the training time for TINYV-THINK is significantly higher than that
for TINYV (53.73 hours vs. 18.71 hours), we adopt TINYV as the default setup for our experiments.
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Figure 11: This figure compares the model performance of TINYV, TINYV-THINK, Math Verify, and Prime Verifier on
diverse benchmarks. The base model is QWEN2.5-MATH-7B.

G.2. Training Cost Analysis

Figure 12 compares the time cost of TINYV with that of Prime Verifier during GRPO training. We observe that the model
trained with both TINYV and Prime Verifier exhibits a comparable average time per step, with TINYV incurring only a 6%
additional computational cost. This indicates that TINYV maintains high efficiency in RL training.

H. Prompt Templates
H.1. Prompt for FN Annotation

Figure 13-14 demonstrates the prompt template for labeling false negative responses.

H.2. Prompt for FN Category Annotations

Figure 15-17 demonstrates the prompt template for labeling FN categories.
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Figure 12: This figures compares the average time cost of TINYV compared with Prime Verifier during GRPO training. The
peak occurs when saving model checkpoints.

H.3. Prompt for Generating Synthetic FN Examples

Figure 18 demonstrates the prompt template for generating Synthetic FN Examples.
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Prompt Template for False Negative Annotation (Part 1)

## Task Description

You are an AI tasked with identifying false negatives in answer verification. A false negative occurs when
a model’s answer is essentially correct but is marked as incorrect due to minor discrepancies or
formatting issues. Your job is to analyze the given question, ground truth answer, and model answer to
determine if the model’s answer is actually correct despite appearing different from the ground truth
.

Analyze the inputs carefully, considering the following:
1. Is the model’s answer mathematically equivalent to the ground truth?
2. Are there minor formatting differences that don’t affect the answer’s correctness?
3. Is the model’s answer more precise or in a different but valid format?

## Examples

Here are some examples of questions, ground truth answers, and model answers. All of them are correct.

**Example 1 (Order-Insensitive):**
<question>Determine all real values of $x$ for which $(x+8)^{4}=(2 x+16)^{2}$.</question>
<ground_truth_answer>-6,-8,-10</ground_truth_answer>
<model_answer>-10, -8, -6</model_answer>

<analysis>
‘‘‘json
{
"reasoning": "The model’s answer lists the same values as the ground truth but in a different order.

Since the question asks for all solutions, the order doesn’t matter for correctness.",
"is_correct": true

}
‘‘‘
</analysis>

**Example 2 (Latex Expression):**
<question>A bag contains 3 green balls, 4 red balls, and no other balls. Victor removes balls randomly

from the bag, one at a time, and places them on a table. Each ball in the bag is equally likely to be
chosen each time that he removes a ball. He stops removing balls when there are two balls of the same
colour on the table. What is the probability that, when he stops, there is at least 1 red ball and at
least 1 green ball on the table?</question>

<ground_truth_answer>$\\frac{4}{7}$</ground_truth_answer>
<model_answer>4/7</model_answer>

<analysis>
‘‘‘json
{
"reasoning": "The model’s answer ’4/7’ is mathematically equivalent to the ground truth answer ’$\\frac

{4}{7}$’. The only difference is in the notation - the ground truth uses LaTeX fraction notation
while the model uses a simple division format. The numerical value is identical in both cases."

"is_correct": true
}
‘‘‘
</analysis>

Figure 13: Prompt Template for Labeling FN Responses (Part 1)
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Prompt Template for False Negative Annotation (Part 2)

**Example 3 (Variable):**
<question>If $T=x^{2}+\\frac{1}{x^{2}}$, determine the values of $b$ and $c$ so that $x^{6}+\\frac{1}{x

^{6}}=T^{3}+b T+c$ for all non-zero real numbers $x$.</question>
<ground_truth_answer>-3,0</ground_truth_answer>
<model_answer>b=-3, c=0</model_answer>

<analysis>
‘‘‘json
{
"reasoning": "The model’s answer ’b=-3, c=0’ is mathematically equivalent to the ground truth answer

’-3,0’. The model simply labeled the values with their corresponding variables, which provides more
clarity but doesn’t change the mathematical content of the answer.",

"is_correct": true
}
‘‘‘
</analysis>

**Example 4 (Paraphrase):**
<question>Peter has 8 coins, of which he knows that 7 are genuine and weigh the same, while one is fake

and differs in weight, though he does not know whether it is heavier or lighter. Peter has access to a
balance scale, which shows which side is heavier but not by how much. For each weighing, Peter must
pay Vasya one of his coins before the weighing. If Peter pays with a genuine coin, Vasya will provide
an accurate result; if a fake coin is used, Vasya will provide a random result. Peter wants to
determine 5 genuine coins and ensure that none of these genuine coins are given to Vasya. Can Peter
guaranteedly achieve this?</question>

<ground_truth_answer>Petya can guarantee finding 5 genuine coins.</ground_truth_answer>
<model_answer>Yes, Peter can guarantee finding 5 genuine coins while ensuring that none of these genuine

coins are paid to Vasya.</model_answer>

<analysis>
‘‘‘json
{
"reasoning": "The model’s answer correctly states that Peter can guarantee finding 5 genuine coins, which

matches the ground truth. The model provides additional details about ensuring none of these coins
are paid to Vasya, but this doesn’t change the correctness of the answer."

"is_correct": true
}
‘‘‘
</analysis>

## Input

Now, please analyze the following question, ground truth answer, and model answer.

<question>
{{QUESTION}}
</question>

<ground_truth_answer>
{{GROUND_TRUTH_ANSWER}}
</ground_truth_answer>

<model_answer>
{{MODEL_ANSWER}}
</model_answer>

## Output

Please provide your analysis in the following JSON format:
<analysis>
‘‘‘json
{
"reasoning": "Your detailed reasoning here",
"is_correct": true/false

}
‘‘‘
</analysis>

Ensure your reasoning is thorough and considers all aspects of the answers. The "is_correct" field should
be true if the model’s answer is essentially correct despite any minor differences from the ground
truth and false otherwise.

Figure 14: Prompt Template for Labeling FN Responses (Part 2)
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Prompt Template for Labeling FN Categories (Part 1)

## Task Description

You are an AI assistant tasked with classifying schemes for common types of equivalence and mismatch
between mathematical answers.

## Taxonomy

---

### 1. Formatting and Syntax Differences

Differences in formatting and/or syntax that do not affect mathematical meaning.

* **1.1 Formatting -> Whitespace and Spacing Issues**
* *Description:* Variations in spaces around operators, within expressions, or between elements.

* *Example:* ‘ground truth answer‘: ‘f(x) = 2 x‘, ‘model answer‘: ‘f(x)=2x‘

* **1.2 Formatting -> Symbol Representation Issues**
* *Description:* Differences in symbol notation, including Unicode vs. command-based symbols, delimiter

styles, or minor symbol variations (e.g., degree symbols, infinity notation).

* *Example:* ‘ground truth answer‘: ‘$(-\infty,-3)\cup(3,+\infty)$‘, ‘model answer‘: ‘$(-\infty,-3)\cup
(3,\infty)$‘

* **1.3 Formatting -> Markup Variation Issues**
* *Description:* Differences in syntax for equivalent rendering, such as LaTeX command choices or

delimiter sizing.

* *Example:* ‘ground truth answer‘: ‘\frac{32}{9}‘, ‘model answer‘: ‘\dfrac{32}{9}‘

* **1.4 Formatting -> Unit Representation Issues**
* *Description:* Differences in the inclusion, omission, or representation of units (e.g., missing

units, abbreviated vs. full unit names).

* *Example:* ‘ground truth answer‘: ‘18.8^\circ‘, ‘model answer‘: ‘18.8‘

* **1.5 Formatting -> Contextual Addition or Omission Issues**
* *Description:* Missing or extra prefixes (e.g., "x=") or explanatory text not affecting the core

answer, excluding units.

* *Example:* ‘ground truth answer‘: ‘N=n‘, ‘model answer‘: ‘n‘

* **1.6 Formatting -> Other Formatting Issues**
* *Description:* Miscellaneous formatting differences, such as newline characters or non-alphanumeric

separators.

* *Example:* ‘ground truth answer‘: ‘60^\textcirc 42’‘, ‘model answer‘: ‘60^\circ 42’‘

---

### 2. Mathematical Notation Variations

Differences in standard mathematical conventions for expressing the same concept.

* **2.1 Notation -> Interval vs. Inequality Notation**
* *Description:* Representing ranges as intervals or inequalities.

* *Example:* ‘ground truth answer‘: ‘(-\infty, -5)‘, ‘model answer‘: ‘k < -5‘

* **2.2 Notation -> Ratio and Proportion Variations**
* *Description:* Different ways of expressing ratios or proportions (e.g., colon, fraction, or single

value).

* *Example:* ‘ground truth answer‘: ‘2:1‘, ‘model answer‘: ‘2/1‘

* **2.3 Notation -> Aggregated vs. Individual Solution Variations**
* *Description:* Using symbols like $\pm$ or listing solutions separately.

* *Example:* ‘ground truth answer‘: ‘1 $\pm$ \sqrt{19}‘, ‘model answer‘: ‘1 + \sqrt{19}, 1 - \sqrt{19}‘

* **2.4 Notation -> Vector and Matrix Notation Variations**
* *Description:* Variations in displaying vectors or matrices.

* *Example:* ‘ground truth answer‘: ‘\begin{pmatrix} -7 \\ 16 \\ 5 \end{pmatrix}‘, ‘model answer‘:
‘(-7,16,5)‘

* **2.5 Notation -> Other Notation Variations**
* *Description:* Variations due to regional conventions (e.g., decimal points vs. commas) or other

notation differences.

* *Example:* ‘ground truth answer‘: ‘3.14‘, ‘model answer‘: ‘3,14‘

---

Figure 15: Prompt Template for Labeling FN Categories (Part 1)
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Prompt Template for Labeling FN Categories (Part 2)

### 3. Mathematical Expression Equivalencies

Expressions that differ in form but are mathematically equivalent.

* **3.1 Expression -> Algebraic Equivalence Variations**
* *Description:* Different but equivalent algebraic forms, including term ordering, factoring, or

simplification.

* *Example:* ‘ground truth answer‘: ‘\frac{1-p^{2}}{3}‘, ‘model answer‘: ‘\frac{-p^2+1}{3}‘

* **3.2 Expression -> Root and Exponent Form Variations**
* *Description:* Using roots, fractional exponents, or simplified exponents differently.

* *Example:* ‘ground truth answer‘: ‘2^{-2 / 3}‘, ‘model answer‘: ‘\frac{1}{\sqrt[3]{4}}‘

* **3.3 Expression -> Logarithmic and Trigonometric Form Variations**
* *Description:* Equivalent forms using logarithmic or trigonometric identities.

* *Example:* ‘ground truth answer‘: ‘\frac{\log 2}{\log 2-\log 3}‘, ‘model answer‘: ‘-\frac{\ln 2}{\ln
3-\ln 2}‘

* **3.4 Expression -> Other Equivalence Variations**
* *Description:* Equivalencies in combinatorial quantities, complex numbers, or other mathematical

structures.

* *Example:* ‘ground truth answer‘: ‘\frac{3 m}{2}-1‘, ‘model answer‘: ‘\dfrac{3m - 2}{2}‘

---

### 4. Numerical Representation Differences

Variations in how numerical values are presented.

* **4.1 Numeric -> Exact vs. Approximate Form Variations**
* *Description:* Exact (fraction, symbolic) vs. decimal or percentage approximations.

* *Example:* ‘ground truth answer‘: ‘\frac{600}{7}‘, ‘model answer‘: ‘85.71‘

* **4.2 Numeric -> Alternative Exact Form Variations**
* *Description:* Different exact representations, such as scientific notation or evaluated powers.

* *Example:* ‘ground truth answer‘: ‘10^{3}‘, ‘model answer‘: ‘1000‘

* **4.3 Numeric -> Rounding and Precision Variations**
* *Description:* Approximations with different decimal places or rounding rules.

* *Example:* ‘ground truth answer‘: ‘1.27\%‘, ‘model answer‘: ‘1.3\%‘

* **4.4 Numeric -> Other Numerical Variations**
* *Description:* Other numerical format differences, such as mixed vs. improper fractions.

* *Example:* ‘ground truth answer‘: ‘6\frac{1}{64}‘, ‘model answer‘: ‘6.015625‘

---

### 5. Language and Contextual Variations

Differences in natural language or implied context.

* **5.1 Language -> Presence/Absence of Explanatory Text**
* *Description:* Model output or ground truth includes additional descriptive text, or vice versa.

* *Example:* ‘ground truth answer‘: ‘10,11,12,13,14,-2,-1,0,1,2‘, ‘model answer‘: ‘Sequence 1: -2, -1,
0, 1, 2 and Sequence 2: 10, 11, 12, 13, 14‘

* **5.2 Language -> Implicit vs. Explicit Variable/Function Assignment**
* *Description:* One output explicitly assigns values to variables or defines a function while the

other lists values or the expression directly.

* *Example:* ‘ground truth answer‘: ‘16,3,1,1‘, ‘model answer‘: ‘w=16, d=3, a=1, b=1‘

* **5.3 Language -> Phrasing and Conciseness Variations**
* *Description:* Differences in wording, synonyms, or level of detail.

* *Example:* ‘ground truth answer‘: ‘\text{Any odd number of participants}‘, ‘model answer‘: ‘odd‘

* **5.4 Language -> Other Language Variations**
* *Description:* Minor differences in separators (e.g., "and" vs. comma) or answer structure.

* *Example:* ‘ground truth answer‘: ‘1,3‘, ‘model answer‘: ‘1 \text{ and } 3‘

---

Figure 16: Prompt Template for Labeling FN Categories (Part 2)
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Prompt Template for Labeling FN Categories (Part 3)

### 6. Set and List Differences

Variations in presenting collections of results, assuming correctness.

* **6.1 Set/List -> Order of Element Variations**
* *Description:* Different sequencing of elements in sets or lists where order is not mathematically

significant.

* *Example:* ‘ground truth answer‘: ‘(6,3),(9,3),(9,5),(54,5)‘, ‘model answer‘: ‘(9,3),(6,3),(54,5)
,(9,5)‘

* **6.2 Set/List -> Structural Formatting Variations**
* *Description:* Variations in tuple, set, or list formatting, including use of braces.

* *Example:* ‘ground truth answer‘: ‘(1,2), (3,4)‘, ‘model answer‘: ‘\{(1,2), (3,4)\}‘

* **6.3 Set/List -> Element Delimiter Variations**
* *Description:* Differences in delimiters used to separate elements (e.g., commas vs. semicolons).

* *Example:* ‘ground truth answer‘: ‘(1,2,3)‘, ‘model answer‘: ‘(1;2;3)‘

* **6.4 Set/List -> Other Set and List Variations**
* *Description:* Other differences in set or list presentation, such as redundant parentheses.

* *Example:* ‘ground truth answer‘: ‘(1,2)‘, ‘model answer‘: ‘((1,2))‘

---

### 7. Symbolic Representation Variations

Differences in variable or constant symbols.

* **7.1 Symbolic -> Variable and Constant Choice Variations**
* *Description:* Different letters or cases for arbitrary constants or parameters.

* *Example:* ‘ground truth answer‘: ‘...+\pi k, ...‘, ‘model answer‘: ‘...+n \pi, ...‘

* **7.2 Symbolic -> Subscript or Superscript Variations**
* *Description:* Differences in subscript or superscript notation for variables or constants.

* *Example:* ‘ground truth answer‘: ‘x_1, x_2‘, ‘model answer‘: ‘x^1, x^2‘

* **7.3 Symbolic -> Custom Symbol Variations**
* *Description:* Use of unconventional or user-defined symbols for variables or constants.

* *Example:* ‘ground truth answer‘: ‘\alpha, \beta‘, ‘model answer‘: ‘a, b‘

* **7.4 Symbolic -> Other Symbolic Variations**
* *Description:* Other differences in symbolic representation, such as case sensitivity.

* *Example:* ‘ground truth answer‘: ‘P(x)‘, ‘model answer‘: ‘p(x)‘

---

## Input

<ground_truth_answer>
{{GROUND_TRUTH_ANSWER}}
</ground_truth_answer>

<model_answer>
{{MODEL_ANSWER}}
</model_answer>

## Output

Identify the most precise equivalence or mismatch category from the taxonomy above that best characterizes
the relationship between the ground truth answer and the model answer. Specify the primary category (
required), and, if relevant, a secondary category (optional). Avoid selecting "Others" categories when
possible.

Respond in this format, providing only the category ID and name:

<primary_category>
[ID] [Category Name] (e.g., 1.1 Formatting -> Whitespace and Spacing Issues)
</primary_category>

<second_category>
[ID] [Category Name], if applicable (e.g., 6.1 Set/List -> Order of Element Variations)
</second_category>

Figure 17: Prompt Template for Labeling FN Categories (Part 3)
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Prompt Template for Generating Synthetic FN Examples

## Task Description

You are an AI assistant tasked with generating a set of mathematically equivalent answers to a given
ground truth answer. These equivalent answers should maintain the same mathematical meaning while
potentially varying in format, notation, or phrasing.

## Examples

Below are examples of questions with their ground truth answers, followed by equivalent answers that
preserve the mathematical meaning.

**Example 1 (Order-Insensitive):**
<question>Determine all real values of $x$ for which $(x+8)^{4}=(2 x+16)^{2}$.</question>
<ground_truth_answer>-6,-8,-10</ground_truth_answer>

<equivalent_answer_1>-8, -10, -6</equivalent_answer_1>

**Example 2 (Latex Expression):**
<question>A bag contains 3 green balls, 4 red balls, and no other balls. Victor removes balls randomly

from the bag, one at a time, and places them on a table. Each ball in the bag is equally likely to be
chosen each time that he removes a ball. He stops removing balls when there are two balls of the same
colour on the table. What is the probability that, when he stops, there is at least 1 red ball and at
least 1 green ball on the table?</question>

<ground_truth_answer>$\\frac{4}{7}$</ground_truth_answer>

<equivalent_answer_1>4/7</equivalent_answer_1>

**Example 3 (Variable):**
<question>If $T=x^{2}+\\frac{1}{x^{2}}$, determine the values of $b$ and $c$ so that $x^{6}+\\frac{1}{x

^{6}}=T^{3}+b T+c$ for all non-zero real numbers $x$.</question>
<ground_truth_answer>-3,0</ground_truth_answer>
<model_answer>b=-3, c=0</model_answer>

<equivalent_answer_1>b=-3, c=0</equivalent_answer_1>
<equivalent_answer_2>b = -3, c = 0\</equivalent_answer_2>

**Example 4 (Paraphrase):**
<question>Peter has 8 coins, of which he knows that 7 are genuine and weigh the same, while one is fake

and differs in weight, though he does not know whether it is heavier or lighter. Peter has access to a
balance scale, which shows which side is heavier but not by how much. For each weighing, Peter must
pay Vasya one of his coins before the weighing. If Peter pays with a genuine coin, Vasya will provide
an accurate result; if a fake coin is used, Vasya will provide a random result. Peter wants to
determine 5 genuine coins and ensure that none of these genuine coins are given to Vasya. Can Peter
guaranteedly achieve this?</question>

<ground_truth_answer>Petya can guarantee finding 5 genuine coins.</ground_truth_answer>

<equivalent_answer_1>Yes, Peter can guarantee finding 5 genuine coins while ensuring that none of these
genuine coins are paid to Vasya.</equivalent_answer_1>

## Input

<question>
{{QUESTION}}
</question>

<ground_truth_answer>
{{GROUND_TRUTH_ANSWER}}
</ground_truth_answer>

## Output

Please generate at least 5 mathematically equivalent answers to the ground truth answer. Each answer
should be placed inside tags like <equivalent_answer_1>...</equivalent_answer_1>, <equivalent_answer_2
>...</equivalent_answer_2>, etc.

Figure 18: Prompt Template for Generating Synthetic FN Examples
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