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Abstract
Recent works have shown that machine learning
models improve at a predictable rate with the total
amount of training data, leading to scaling laws
that describe the relationship between error and
dataset size. These scaling laws can help design
a model’s training dataset, but they typically take
an aggregate view of the data by only considering
the dataset’s size. We introduce a new perspective
by investigating scaling behavior for the value of
individual data points: we find that a data point’s
contribution to model’s performance shrinks pre-
dictably with the size of the dataset in a log-linear
manner. Interestingly, there is significant variabil-
ity in the scaling exponent among different data
points, indicating that certain points are more valu-
able in small datasets while others are relatively
more useful as a part of large datasets. We provide
learning theory to support our scaling law, and we
observe empirically that it holds across diverse
model classes. We further propose a maximum
likelihood estimator and an amortized estimator to
efficiently learn the individualized scaling behav-
iors from a small number of noisy observations
per data point. Using our estimators, we provide
insights into factors that influence the scaling be-
havior of different data points. Finally, we demon-
strate applications of the individualized scaling
laws to data valuation and data subset selection.
Overall, our work represents a first step towards
understanding and utilizing scaling properties for
the value of individual data points.

1. Introduction
Machine learning models for vision and language have im-
proved dramatically in recent years (Radford et al., 2021;
Touvron et al., 2023; OpenAI, 2023; Gemini Team et al.,
2023), in part due to increasing model sizes, but also due to
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using larger amounts of high-quality training data (Gadre
et al., 2023). Recent research has found that increasing the
amount of training data improves models at a predictable
rate, leading to scaling laws that describe the relationship
between error and dataset size (Kaplan et al., 2020). For
example, Hoffmann et al. (2022) introduced the following
scaling law to determine Chinchilla’s compute-optimal train-
ing budget,

error ≈ ϵ+
a

pγ
+

b

nλ
, (1)

where ϵ represents irreducible error, p is the number of
model parameters, n is the number of training examples,
and (a, b, ν, λ) are learned constants. These scaling laws
help inform how to trade off model and data size, but they
take an aggregate view of the dataset by not differentiating
between training examples; this is limiting because certain
data points are more useful than others, particularly for
noisy web-scraped datasets.

In the current era of datasets aggregated from heterogeneous
sources, it is important to understand how individual data
points or data sources affect the behavior of model training.
This can give practical guidance on what type of data to
prioritize, especially as the dataset grows. It also provides
more fundamental insights into how the impact of different
data scales with data size—e.g., which points are useful in
small datasets but whose value diminishes quickly as the
data size increases, and which points are relatively more
valuable in large datasets.

Our work aims to take initial steps in this direction: moti-
vated by these questions, we propose individualized data
scaling laws, which describe how the impact of data scales
with the size of the dataset for each training example. Our
analysis focuses on a data point’s marginal contribution
to a trained model’s performance, which previous work
has noted shrinks with the size of the preceding dataset
(Kwon and Zou, 2021); we build on this by showing that
the marginal contribution shrinks at a reliable rate, and that
this rate varies between data points. The scaling behavior is
represented by a simple parametric form, which is inspired
by existing aggregate scaling laws (see Section 2). We find
support for this phenomenon in certain classical learning
settings (e.g., linear regression), and we show that it holds
empirically across several model types, including logistic re-
gression, multi-layer perceptrons (MLPs) and support vector
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machines (SVMs).

Analyzing individual scaling laws can ultimately help im-
prove the dataset, for example by identifying data points
that consistently degrade a model’s performance, or by sur-
facing data points whose contributions remain large even
as the dataset size grows. Doing so requires fitting scaling
parameters for every example in a dataset, which can be
computationally costly; for example, it would be intractable
to precisely estimate each point’s expected marginal con-
tribution at a range of dataset sizes, even though this is a
natural way to observe the trend from the scaling law (see
Figure 1). We therefore consider how to make the fitting
approach efficient in Section 3, where we develop proce-
dures that let us estimate the scaling parameters for entire
datasets. These include (1) a statistical approach to esti-
mate the scaling law given a moderate number of sampled
marginal contributions, and (2) a neural estimator that amor-
tizes the fitting process across all examples in a dataset.

We conduct experiments to test our approach on several
datasets (including tabular, text and image data) and multiple
model types. We verify that the scaling law accurately
describes the mean contribution at each dataset size: for
example, we find that our scaling law explains >0.9 of the
variance in marginal contributions between data points (see
Table 1). We also test whether it can extrapolate beyond the
range where it is fit, which would enable the scaling law to
be learned in a less costly dataset range before being used
in a larger regime. Finally, we explore applications of the
scaling laws to data subset selection, where we find that they
identify useful new data points that depend on the current
dataset size; and we demonstrate their application to data
valuation, which we show is closely related to our scaling
analysis (Ghorbani and Zou, 2019).

Our contributions. The main contributions of this work are
the following: (1) we propose and find evidence for individ-
ualized data scaling laws, (2) we show how to fit the scaling
behavior using a small number of noisy observations per
data point, (3) we provide qualitative understanding of fac-
tors that influence scaling behavior, and (4) we demonstrate
that individualized scaling laws can facilitate data valuation
and data subset selection. Overall, the scaling behavior of
individual data points provides a new tool for understanding
and improving training data for machine learning models.

Related work. Scaling laws for deep learning have become
well known in recent years (Hestness et al., 2017; Rosenfeld
et al., 2019; Kaplan et al., 2020; Hoffmann et al., 2022).
They serve several purposes, including reasoning about the
trade-offs between increasing training data and model pa-
rameters (Kaplan et al., 2020; Hoffmann et al., 2022), pre-
dicting the performance of large-scale models (Cherti et al.,
2023), and comparing the performance of learning algo-
rithms at manageable scales (Dubois et al., 2023). The most

similar works to ours are Hashimoto (2021) and Rolf et al.
(2021), which study how model performance scales when
training with multiple data sources; our work instead takes
the perspective of studying individual data points, which
offers a more granular tool for analyzing the contents of a
training dataset.

Separately, another line of work about data valuation fo-
cuses on the role of individual data points in improving the
model’s performance (Ghorbani and Zou, 2019; Kwon and
Zou, 2021; Wang and Jia, 2022). These methods typically
score training examples based on their marginal contribu-
tion—how much including them in the training data af-
fects the model’s accuracy—by averaging this across many
datasets of different sizes. Such methods can be used to iden-
tify mislabeled data, filter for high-quality data, upweight
helpful examples, and select promising new points for active
learning (Ghorbani and Zou, 2019; Kwon and Zou, 2023;
Jiang et al., 2023). Our work is similarly framed around
each data point’s marginal contribution, but we study how
the loss improvement scales with the size of the dataset for
each training example, and we find that the most helpful
training examples can vary with the dataset size.

Aside from these methods focused on each example’s
marginal contributions, others analyze individual data points
using different importance measures (Ilyas et al., 2022; Park
et al., 2023; Just et al., 2023). In particular, many works
have explored extensions of the classic influence function to
nonlinear models like neural networks (Cook and Weisberg,
1980; Koh and Liang, 2017; Grosse et al., 2023; Kwon et al.,
2023). Ilyas et al. (2022) briefly discuss the effect of train-
ing dataset size on example-to-example influence scores,
but to our knowledge, our work is the first to thoroughly
explore scaling behavior for individual data points.

2. Individualized data scaling laws
We focus here on supervised learning problems, and as a
notational setup, we write individual data points as tuples
z = (x, y) where x is an input and y the response variable.
We write datasets as D = {zi}ki=1, and the datasets can have
variable sizes that we denote by |D|. When creating datasets
of different sizes, we assume access to a single large training
pool Dt from which the smaller datasets D can be sampled
without replacement. We consider a learning algorithm that
trains a model on a given dataset D, which we denote by
fD, and we consider several options for the model class
(e.g., logistic regression, MLPs). Our analysis focuses on
the population error L(fD), for example the cross-entropy
loss, and we only consider the effects of the training data
(i.e., we do not vary the number of model parameters).

Recall the form of current aggregate scaling laws: if we
ignore the number of model parameters, several works are
based on the same functional form L(fD) ≈ ϵ + b|D|−λ
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(Rosenfeld et al., 2019; Kaplan et al., 2020; Hashimoto,
2021; Hoffmann et al., 2022). We can view this as a claim
about the expected loss given a dataset of size k, where
datasets are sampled uniformly at random:

E|D|=k[L(fD)] ≈ ϵ+
b

kλ
. (2)

The functional form in Eq. (2) takes an aggregate view by
only focusing on the dataset size k, but our goal is to analyze
how the loss is affected by individual data points. We there-
fore focus on each data point’s marginal contribution, which
is defined as the performance difference between models
trained with and without z. We write the marginal contribu-
tion ∆(z,D) as follows, where we expect ∆(z,D) > 0 in
most cases for useful data points:

∆(z,D) = L(fD)− L(fD∪{z}). (3)

This quantity is the basis of many data valuation methods,
(Ghorbani and Zou, 2019; Ghorbani et al., 2020; Kwon
and Zou, 2021; Wang and Jia, 2022), and its expectation
across z is reflected via the derivative of current scaling
laws like Eq. (2).1 Our goal here is to understand how
marginal contributions scale as a function of the dataset size
|D|. We expect them to shrink monotonically towards zero,
but at a rate that may be specific to each data point. We
therefore posit the following scaling law for the expectation
ψk(z) ≡ E|D|=k[∆(z,D)] across datasets of size k:

ψk(z) ≈
c(z)

kα(z)
. (4)

This shares a similar form with aggregate scaling laws, but
there is no irreducible term because the contribution should
shrink to zero, and we allow both the numerator c(z) and
exponent α(z) to depend on the data point. In the remainder
of this section, we show that this functional form holds in
practice for several model classes (Section 2.1), and we
examine support for this parametric form from classical
learning settings (Section 2.2).

2.1. Empirical validation of the scaling law

To test if the scaling law in Eq. (4) holds in practice, we
first run a simple experiment to visualize the hypothesized
behavior. Our approach is to select a range of dataset sizes
k and estimate each expectation ψk(z) by averaging a large
number of sampled contributions ∆(z,D). We can then
plot the results to observe the following linear trend in the
log-transformed means and cardinalities k,

log |ψk(z)| ≈ log |c(z)| − α(z) log(k), (5)

where we use the absolute values |ψk(z)| and |c(z)| because
certain examples have negative contributions. We conduct

1If the aggregate scaling law E|D|=k[L(fD)] ≈ ϵ+ b
kλ holds,

then we have Ez,|D|=k[∆(z,D)] ≈ bλ
kλ+1 .
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Figure 1. Individualized scaling laws for logistic regression
trained on the IMDB dataset. Top: Marginal contribution vs.
the dataset size in log-scale for several data points with a range of
scaling exponents α(z). Left: Histogram of R2 scores for linear
trend lines fit to each data point in the log-scale. Right: Plot of
the R2 score from our scaling law predictions at each cardinality,
measured across data points. We achieve an overall R2 = 0.987
for the predictions across all points and dataset sizes.

this experiment for 1000 data points from the IMDB movie
review dataset (Maas et al., 2011), where we use 10 log-
spaced cardinalities between k = 100 and k = 1000, and
we average 1000 samples ∆(z,D) to estimate each ψk(z).

Table 1. Overall R2 score of predicting expected contributions.
The overall R2 score is measured for linear trends fit in log-space
after estimating ψk(z) for a range of k values (the same estimation
approach used in Figure 1), and it is calculated across data points
and cardinalities.

Logistic Regression MLP SVM

MiniBooNE 0.993 0.963 0.929
CIFAR10 0.944 0.942 0.963

IMDB 0.985 0.956 0.946

Figure 1 shows results for logistic regression models trained
on frozen BERT embeddings (Devlin et al., 2018). The
slope of each line represents the scaling exponent α(z), and
the intercept represents the coefficient magnitude log |c(z)|.
We observe variability in the estimated slopes, and Figure 1
shows several points corresponding to different quantiles of
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the fitted scaling exponent α(z).

To test the scaling law’s accuracy, we calculate the goodness-
of-fit for each data point’s linear trend via the R2 score,
which we fit with ordinary least squares. Figure 1 shows a
histogram of these scores, which confirms that the majority
of points follow clean log-linear trends. A minority of
points do not, but we find that these outliers generally have
very small contributions log |ψk(z)| across k values, which
may indicate numerical or optimization noise as the loss
differences approach zero (see Figure 10). To account for
the variability between points, we also calculate theR2 from
the linear trends within each cardinality, where we see that
the score is ≈1.0 across k values (Figure 1 bottom right).
Overall, many data points are accurately described by log-
linear trends, but we observe some deviations as k grows
and the loss differences shrink towards zero; such issues
may be due to noise, or cases where the scaling law does
not perfectly fit the data, but it is accurate enough in most
cases to provide useful insights.

These observations provide initial evidence for the scaling
behavior hypothesized in Eq. (4) and motivate the remainder
of our analysis. Because our fitting approach in Figure 1
requires a large number of samples for each z, we develop a
more efficient approach to fit the scaling law in Section 3. In
our more comprehensive experiments in Section 4, we per-
form similar analysis of the scaling law’s fit using multiple
datasets and model classes, and we also discuss implications
for data subset selection and data valuation. As a preview,
Table 1 shows that the scaling law achieves a high overall
R2 score for three datasets and model classes.

2.2. Theoretical support for the scaling law

We mathematically analyze linear regression and more gen-
eral M-estimators to provide theoretical support for the exis-
tence of the scaling law and give insight into factors that can
affect the scaling parameters. The theorems and details are
provided in Appendix A, but we summarize the results here.
Overall, we find general confirmation for a reliable decay
rate in the marginal contributions, and we identify intuitive
factors that influence the magnitude of the contribution: for
example, for linear regression we find that the relative noise
of the response variable is relevant, as is the input vector’s
leverage score. However, our theory does not make precise
predictions about the scaling behavior, because it requires
strong regularity conditions and has error terms whose ex-
pectations may be non-negligible. These limitations may
explain why our empirical results show heterogeneity in the
scaling exponent α(z), although it is often concentrated in
a range from [1, 1.5] that is consistent with the loose pre-
dictions from our theoretical results. We remark that such
partial mismatches between theory and practice are also
widely observed with aggregate scaling laws (Kaplan et al.,

2020; Hutter, 2021).

3. Efficient scaling law estimation
A key challenge in using individualized scaling laws is
fitting them to every example in a dataset. Recall that Sec-
tion 2.1 used a large number of samples ∆(z,D) at each
cardinality to estimate the expectation ψk(z). This lets us vi-
sualize a linear trend in the log-log space, but the procedure
is intractable to repeat for every example in a large dataset.
To address this issue, we now describe two approaches to
more efficiently estimate individualized scaling laws.

3.1. Maximum likelihood-based estimation

Our goal is to fit the scaling parameters c(z), α(z) using a
limited number of marginal contribution samples ∆(z,D),
which is challenging because the scaling law in Eq. (4) is
defined via the expectation ψk(z) at each cardinality. We
find that there is significant variability in the marginal con-
tributions at each k; in fact, it is common to observe a mix
of positive and negative contributions for a single example
z (see Figure 2). This means that whereas our procedure in
Section 2 relied on noiseless log-transformed mean contri-
butions ψk(z), a more efficient procedure must tolerate a
noisy view of the scaling trend.

We therefore propose fitting the scaling law in the original
loss space, and in a way that carefully handles noise in the
sampled contributions, which tends to be largest at smaller
cardinalities k. We frame this as a statistical inference
problem by modeling the marginal contributions at each k
with the following Gaussian distribution:

∆(z,D) | |D| = k ∼ N
(
c(z)

kα(z)
,
σ2(z)

kβ(z)

)
. (6)

Notice that the mean for each k is governed by our scal-
ing law from Eq. (4), and the variance is governed by a
separate scaling law with parameters σ(z) and β(z). The
variance in marginal contributions also naturally shrinks
with k (Kwon and Zou, 2021), and we observe that the vari-
ance follows this general scaling behavior (see Figure 11
in Appendix C.1). Fitting the variance parameter σ(z) and
exponent β(z) > 0 lets us capture the natural reduction in
variability as k grows, and it encourages the learned scaling
law to tolerate larger deviations for small k values. This is
essential for correctly modeling the mean-related parameters
c(z), α(z), but we do not otherwise use the variance-related
parameters.2

Based on this statistical model, we can fit the parameters by
obtaining a set of samples ∆(z,Di) for i = 1, . . . ,m and

2When fitting their scaling law, Hoffmann et al. (2022) handled
outliers by using a Huber loss and downweighting points in the low-
compute regime. Directly modeling the variance is an alternative
approach that we have not seen in the scaling law literature.
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Figure 2. Likelihood-based scaling law estimator. The estimator
is fit for a single example from the IMDB dataset, and the scaling
parameters are fit using m = 100 samples.

then minimizing the negative log-likelihood as follows:

argmin
c,α,σ,β

1

m

m∑
i=1

NLL(∆(z,Di), |Di|; c, α, σ, β). (7)

The optimization problem is non-convex, but we find that
it can be effectively optimized with Adam (Kingma and
Ba, 2014) using a moderate number of gradient steps; our
exact procedure is described in Appendix B, and it involves
using analytic solutions for c, σ to only take gradient steps
on α, β. An example of the fitting result is shown in Fig-
ure 2, where we see that the learned curve correctly allows
larger deviations at smaller k values and fits more precisely
when k is large. Our experiments use up to m = 1000
samples per data point for the most accurate results, which
is an order of magnitude fewer samples than the validation
in Section 2 (which used 1000 samples per cardinality).
Our experiments also test the estimator’s convergence and
show strong results with as few as m = 100 samples (see
Section 4), which provides a 100× speedup.

3.2. Amortized scaling law estimation

The likelihood-based approach is a more efficient way to
fit individualized scaling laws, but the number of samples
m required for each example z is still moderately large
(e.g., m = 100). The key issue is that each data point is
treated independently, and therefore requires its own set of
samples ∆(z,D) to fit the scaling curve. We now consider
an alternative approach where we share information across
examples z to use fewer samples per data point, and in the
process jointly fit the scaling parameters c(z), α(z) for an
entire dataset.

Our approach is to replace the objective from Eq. (7), which
optimizes over the scaling parameters for a single z, with a
combined objective parameterized by a neural network. We
use a network g(z; θ) ∈ R4 that predicts the four parameters
for the Gaussian distribution in Eq. (6): the network must
receive only the data point z = (x, y) as an input, which
we implement by passing x to a standard architecture (e.g.,

a MLP), predicting scaling parameters for all classes, and
using only those for the relevant class y. We then train the
network using the following loss function:

min
θ

Ez,D

[
NLL

(
∆(z,D), |D|; g(z; θ)

)]
. (8)

Like the previous objective, this is optimized using a set of
samples ∆(z,D), but this version is equivalent to solving
Eq. (7) simultaneously for all data points with parameters
predicted by the network g(z; θ). This general approach is
known as amortized optimization and is used for a range of
machine learning tasks (Amos et al., 2023), but not previ-
ously for estimating scaling laws. We can in principle train
the network with as few as m = 1 contributions per data
point, but in our experiments we construct a dataset of rela-
tively few samples ∆(z,D) per data point (e.g., m = 10),
and we train until the loss stops improving on a held-out
validation set.

4. Experiments
4.1. Evidence for individualized data scaling laws

We begin our more comprehensive experiments by provid-
ing further empirical evidence to support the parametric
scaling law in Eq. (4).3 We focus on three model classes:
logistic regression, SVMs and MLPs (specifically, two-layer
ReLU networks). We evaluate these models on three dif-
ferent datasets: MiniBooNE (Roe et al., 2005), CIFAR-10
(Krizhevsky et al., 2009), and IMDB movie reviews (Maas
et al., 2011). To accelerate training and avoid underfitting,
we use frozen ResNet-50 (He et al., 2016) and BERT (De-
vlin et al., 2018) pre-trained embeddings for CIFAR-10 and
IMDB, respectively. Full details for the experiments are
provided in Appendix C.1.

For each setting mentioned above, we evaluate the model
performance by computing the cross-entropy loss on a test
dataset of size 1000. Similar to our analysis in Section 2.1,
we first test the accuracy of log-linear trendlines by aver-
aging many samples ∆(z,D) at a range of log-spaced car-
dinalities. For logistic regression, we use 1000 data points
and 1000 samples per k value. For SVMs and MLPs, due to
the higher variance in marginal contributions, we use 200
data points and 5000 samples per dataset size k.

Following Figure 1, we show the R2 from lines fit to each
point, and we observe across settings that the R2 scores are
generally very close to 1. Figure 3 shows these results via
histograms for each setting. The mass is most concentrated
towards 1 for logistic regression, whereas MLPs and SVMs
have more points with sub-optimal fits. We attribute this
to worse estimation of the mean at each cardinality, and a
similar issue mentioned in Section 2.1 with instability as the

3Code for our experiments is available at https://github.
com/iancovert/data-scaling

5

https://github.com/iancovert/data-scaling
https://github.com/iancovert/data-scaling


Scaling Laws for the Value of Individual Data Points in Machine Learning

0.00 0.25 0.50 0.75 1.00
R2

0

5

10

15

cif
ar

10

Logistic Regression

0.00 0.25 0.50 0.75 1.00
R2

0

2

4

6

8

Fr
eq

ue
nc

y

Neural Network

0.00 0.25 0.50 0.75 1.00
R2

0

2

4

6

Fr
eq

ue
nc

y

SVM

0.00 0.25 0.50 0.75 1.00
R2

0

5

10

15

M
in

iB
oo

NE

0.00 0.25 0.50 0.75 1.00
R2

0

1

2

3

4

5

Fr
eq

ue
nc

y

0.00 0.25 0.50 0.75 1.00
R2

0

2

4

6

Fr
eq

ue
nc

y

0.00 0.25 0.50 0.75 1.00
R2

0

5

10

15

im
db

0.00 0.25 0.50 0.75 1.00
R2

0

2

4

6

8

10

Fr
eq

ue
nc

y

0.00 0.25 0.50 0.75 1.00
R2

0

2

4

6

8

10

Fr
eq

ue
nc

y

Figure 3. Histogram of R2 score when fitting the scaling law.
Similar to Figure 1, we find that linear trends in log-space achieve
highR2 scores for most data points, which supports the parametric
form in Eq. (4).

loss differences approach zero. The R2 across data points
and cardinalities is reported in Table 1, which reveals that
the scaling law overall captures nearly all the variability
in expected contributions at each dataset size, despite the
existence of some poorly fitting data points.

Next, we examine the distribution of estimated parameters
α(z). Analysis of c(z) is deferred to Appendix C. His-
tograms of the fitted values are shown in Figure 4, where
we see that the distribution of α(z) has a mode between 1
and 1.5, which coincides with the range seen in our theo-
retical results (see Appendix A). The heterogeneity in α(z)
is important, because it suggests that different data points
have different decay rates for their marginal contributions.
A data point with a higher α(z) value may have a larger
contribution in a small-sample regime compared with other
data points, but due to its fast decay rate, it could have a
much smaller contribution in a large-sample regime. We
illustrate this phenomenon in Figure 5: for each setting, we
select the points with α(z) in 20%, 40%, 60%, and 80%
quantiles among all points being evaluated, and we show
their marginal contribution against the size of the preceding
dataset. The results illustrate that there exist many lines
that cross one another, which supports the idea that the
most valuable data points depend on the dataset size. In
Section 4.4, we test this insight in experiments where we
add points to an existing dataset based the scaling law’s
predictions at different k values.

A natural question to ask is why different points have dif-
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Figure 4. Histogram of estimated α(z). The estimated values
have a mode between 1 and 1.5 and exhibit significant heterogene-
ity. We exclude points with R2 < 0.8 to ensure the estimated α(z)
values are reliably estimated.

ferent scaling exponents α(z). A comprehensive answer
to this question is beyond the scope of our work, but we
provide some preliminary ideas. In Figure 6, we show the
relationship between the estimated α(z) and the distance to
the decision boundary for logistic regression models with
two binary classification datasets. There is a strong correla-
tion between α(z) and the distance to the decision boundary:
closer points have lower α(z) and further points have higher
α(z). A possible explanation is that when the size of the
preceding dataset is small, every point will have a signif-
icant contribution to learning the decision boundary in a
high-dimensional space. However, when the dataset is large,
the logistic regression model may have an accurate deci-
sion boundary, and only nearby points contribute by helping
better calibrate the magnitude of the normal vector; these
points may be those with a slower decay rate. However, we
also remark that α(z) is not completely determined by this
factor, and that there is significant heterogeneity very near
the decision boundary, so there are other factors at play. We
leave a more thorough analysis of this behavior as a future
research direction.

Finally, we also examine the similarity between estimated
scaling parameters for different model types. Table 2 shows
the Pearson correlation between α(z) estimates for each pair
of models, and we observe a positive correlation for two
out of three datasets, CIFAR-10 and IMDB, but relatively
weak correlations for MiniBooNE. The degree of correlation
between models is similar for the estimated c(z) values. The
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(b) IMDB with Log Reg

Figure 5. Marginal contribution for points with different α(z).
Similar to Figure 1, we plot the expected contribution log |ψk(z)|
against the dataset size log k. Lines with different α(z) cross one
another, indicating that the ranking of valuable points depends on
the dataset size k.

deviations between models may be attributed to the differing
geometry of each function class, where different points can
be more influential depending on the shape of the decision
boundary. Again, we leave a more complete characterization
of this finding to future work.

Table 2. Correlation between estimated α(z) for different mod-
els. The Pearson correlation between estimated scaling exponents
shows weak positive similarity for CIFAR-10 and IMDB.

LogReg/MLP LogReg/SVM SVM/MLP

MiniBooNE -0.01 0.18 -0.04
CIFAR-10 0.38 0.26 0.34

IMDB 0.49 0.50 0.27

4.2. Scaling law estimation accuracy

We now move to testing our more efficient scaling law es-
timators from Section 3. In evaluating our proposed ap-
proaches, we use metrics based on how accurately we pre-
dict the marginal contributions at each dataset size. For
example, Figure 14 shows that for IMDB with logistic re-
gression, we can accurately predict the expectation ψk(z)
at multiple dataset sizes from k = 100 to k = 1000. For
a more systematic evaluation, Figure 7 shows the accuracy
of our scaling law predictions across dataset sizes for both
versions of our likelihood-based estimator, and when fitting
with different numbers of samples. Our scaling laws are
all fit in the range k ∈ [100, 1000], so we mark the bound-
ary where our scaling law begins extrapolating to larger
ranges. An expanded version of these results is shown in
Appendix C.2, where we find that the R2 score drops when
we extrapolate beyond k = 2500, but the correlation and
rank correlation with the true expectation remain high.

The likelihood-based estimator improves as we fit with more
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Figure 6. Distance to decision boundary vs. scaling exponent
for logistic regression model. We fit a logistic regression model
on all points being evaluated and then compute the distance of each
example to the decision boundary. The sign of distance is kept to
distinguish points from each class. There is a strong correlation
between distances and the estimated α values.
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Figure 7. Scaling law estimation accuracy at multiple cardinali-
ties for IMDB with logistic regression. We evaluate the scaling
law’s predictions at cardinalities up to an order of magnitude larger
than where it is fit, according to the Pearson correlation with the
true expectation ψk(z) for each k. The numbers in parentheses are
the number of samples used to fit the estimator.

samples, and it provides the highest accuracy across all k
value when fit with 500 samples. The amortized estimator
is relatively accurate given the small number of samples.
The accuracy of all the estimators are consistently high in
the fitting range k ∈ [100, 1000], although the performance
suffers slightly at the dataset sizes with the noisiest samples.
Interestingly, we see that as we extrapolate to datasets an or-
der of magnitude larger than our fitting range, the amortized
estimator tends to be more accurate than the parametric
estimator even though it is fit with many fewer samples.

4.3. Application to data valuation

Next, we consider the application of our scaling laws to data
valuation. Data valuation is the most direct application of
our scaling analysis, because these methods are typically
based on a weighted average of the expectations ψk(z) at
different k values (Ghorbani and Zou, 2019; Kwon and Zou,
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Table 3. Data valuation accuracy with 10 samples per data
point. We report the Pearson correlation of the estimates with
ground truth values. Note that the non-amortized likelihood esti-
mator can be unreliable with insufficient samples.

Method MiniBooNE CIFAR-10 IMDB

Monte Carlo 0.967 0.857 0.916
Likelihood 0.858 0.077 0.342
Amortized 0.994 0.893 0.930

Table 4. Data valuation accuracy with 50 samples per data
point. We report the Pearson correlation of the estimates with
ground truth values. All the estimators are quite accurate.

Method MiniBooNE CIFAR-10 IMDB

Monte Carlo 0.988 0.965 0.981
Likelihood 0.995 0.936 0.985
Amortized 0.996 0.931 0.986

2021; Wang and Jia, 2022), which means we can estimate
the scores using our scaling parameters c(z), α(z). In fact,
our approach can be viewed as a version of a stratified data
valuation estimator (Wu et al., 2023) with the mean at each
k estimated via the shared set of scaling parameters. Among
the various available methods, we focus on Distributional
Data Shapley (Ghorbani et al., 2020), which uses a uniform
average across cardinalities. We measure the estimation
accuracy relative to ground truth values computed using a
large number of sampled marginal contributions, and we
compare the accuracy to a standard Monte Carlo estimator
(see a more thorough discussion in Appendix C.3). Our goal
is to show that our estimators converge to the same value as
the conventional estimator, which attests to the scaling law
accurately capturing the decay in marginal contributions;
and we hope to observe that one or both of our estimators
can outperform the standard one when using a small number
of marginal contribution samples.

Our full results are in Appendix C.3, but a summary is
shown in Table 3 and Table 4 with results calculated for
estimates using 10 and 50 samples, respectively. In general,
we observe that the amortized estimator achieves the best
Pearson correlation with the ground truth valuation scores
when using just 10 samples; this reflects its improved sam-
ple complexity from sharing information across data points.
In contrast, the parametric estimator cannot fit reliably with
so few samples. The three estimators tend to perform simi-
larly with larger numbers of samples, with the exception of
CIFAR-10, where the Monte Carlo estimator works better.
Overall, this validates that our scaling law accurately cap-
tures the decay in marginal contributions with k, and offers
an alternative approach to calculate data valuation scores.

Table 5. Accuracy improvement (%) with 20 points added to
preceding datasets of size 100. Each element represents the
improvement in test set accuracy with and without the selected
points. The last row reports the model’s average accuracy before
adding new points.

Method MiniBooNE CIFAR-10 IMDB

Scaling 1000 0.21 ± 1.03 1.99 ± 0.97 0.88 ± 0.96
Scaling 100 0.47 ± 1.02 3.28 ± 1.09 2.22 ± 0.86

Shapley 0.28 ± 1.02 2.06 ± 0.92 0.77 ± 1.20
Random 0.44 ± 0.91 2.01 ± 1.09 1.00 ± 0.85

Preceding 80.76 ± 1.58 75.50 ± 1.97 78.77 ± 1.64

Table 6. Accuracy improvement (%) with 20 points added to
preceding datasets of size 1000. The settings are the same as
Table 5.

Method MiniBooNE CIFAR-10 IMDB

Scaling 1000 0.20 ± 0.39 0.17 ± 0.14 0.13 ± 0.10
Scaling 100 0.21 ± 0.34 0.05 ± 0.06 0.06 ± 0.05

Shapley 0.22 ± 0.36 0.18 ± 0.14 0.11 ± 0.09
Random 0.03 ± 0.20 0.04 ± 0.13 0.03 ± 0.10

Preceding 83.92 ± 0.46 85.38 ± 0.40 85.45 ± 0.35

4.4. Application to point addition

We now apply our scaling law to select high-value examples
to add to an existing dataset. Based on our observation in
Figure 5, the lines for different points can cross one another,
indicating that the relative rankings of data points may vary
depending on the size of the dataset. This suggests that the
size of the preceding dataset should be taken into account
when evaluating which point is most helpful to add. We
therefore design a set of experiments inspired by Kwon and
Zou (2021) where we compare the addition of high-value
data points selected by different methods.

Here, we consider selecting 20 points from a population of
1000 to be added to preceding datasets with two different
sizes: 100 and 1000. Each preceding dataset is randomly
sampled from the whole training dataset, excluding the pool
from which we select the new points, which is also randomly
sampled. We use two baseline approaches to select points,
random selections from the pool and Distributional Shapley
values (Ghorbani et al., 2020) fit with a large number of
marginal contribution samples. For our approach, we fit
the scaling parameters using the likelihood estimator from
Section 3.1 with 500 samples, and we use the parameters
to estimate the expected contribution ψk(z) ≈ c(z)/kα(z).
Because we consider two initial dataset sizes, we test our
scaling law with two different k values, k = 100 and k =
1000, which we refer to as Scaling 100 and Scaling 1000.

The results are shown in Tables 5 and 6, where we repeat the
experiment 1000 times to report the mean and standard de-
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viation in accuracy improvement. According to the results,
Scaling 100 achieves the best performance when k = 100,
as it selects based on the predicted contribution for this
dataset size. However, the same set of points performs badly
for k = 1000, indicating that points with high contribu-
tion in the small-sample regime and large-sample regime
are different. Similarly, we observe that Scaling 1000 per-
forms well when k = 1000, but badly when k = 100.
Interestingly, we observe that the performance of Shapley
and Scaling 1000 are very similar, implying that the Shap-
ley values are closely correlated with contributions in the
large sample regime, and may be unreliable when evaluating
performance in a small-sample regime. In Appendix C.4,
we conduct a similar experiment with larger dataset sizes,
which demonstrates the same trend.

In conclusion, selecting new training examples using the
scaling law predictions at different dataset sizes can lead
to quite different results, and selecting points based on the
current dataset size can help more reliably achieve better
performance. This provides further support for our analysis
of scaling behavior for individual data points, but we cau-
tion that a more powerful data selection method should take
into account not just the size but the contents of the current
dataset; our approach only quantifies the expected improve-
ment when a data point is added to a random dataset, and
this is a limitation to its current usage for dataset selection.

5. Discussion
This work studies scaling laws for the value of individual
data points, and we found evidence for a simple parametric
form that holds across datasets and model classes. Our
experiments validated the scaling law by visualizing the log-
linear trend and testing the scaling law’s ability to predict
marginal contributions at different dataset sizes, and we
found that the scaling law can extrapolate to larger dataset
sizes than the range where it is fit. The behavior we study is
costly to measure for an entire training dataset, so we also
developed procedures to estimate the scaling parameters
from a small number of noisy observations per data point.

Our study is a first step towards understanding this phe-
nomenon, and it has certain limitations and suggests several
future directions. Fitting individual scaling laws remains
somewhat expensive, as we require separate marginal contri-
bution samples for each point; it may be possible to borrow
insights from recent data valuation estimators that avoid cal-
culating marginal contributions for each point and rely on
a single pool of shared models (Feldman and Zhang, 2020;
Wang and Jia, 2022; Li and Yu, 2023). Another limitation
is that our method is not specifically designed for dataset
selection, and selecting many highly ranked points may lead
to negative interaction effects that our scaling law does not
take into account; we speculate that our study of scaling

behavior could also be useful for predicting contributions
to a specific dataset. Our analysis is restricted to the effect
of individual points on a model’s error, whereas other re-
cent works have considered how training examples impact
specific predictions (Ilyas et al., 2022; Park et al., 2023;
Grosse et al., 2023); a follow-up direction is to analyze
whether similar scaling behavior holds for these datapoint-
to-datapoint relationships. Our experiments additionally fo-
cused on relatively simple models and small-scale datasets,
so an important direction for future work is studying the
same phenomenon for large-scale deep learning models. Fi-
nally, we believe that similar techniques that we use here
can also be used to study how the value of a fixed subset of
data scales as the rest of the dataset increases; this would
be a natural interpolation of individualized and aggregate
scaling.
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A. Theoretical support for the individualized scaling law
We now consider theoretical perspectives on our scaling law for some simple models and data distributions. We aim to
provide preliminary mathematical support for the existence of the scaling law and give insight into factors that can affect
the scaling parameters. A precise characterization requires reasoning about the expectation over ∆(z,D) for datasets of a
fixed size, which we find is a significant technical obstacle. We instead characterize the limiting behavior of ∆(z,D), which
provides some general confirmation of the scaling behavior we observe in practice, and we leave a more rigorous analysis of
ψk(z) as a future direction.

We begin by considering the case of linear regression, where datasets D = {zi}ki=1 are generated from the following
distribution,

(P) : yi = x⊤i β
∗ + ϵi, xi

i.i.d.∼ N (0,Σ), ϵi
i.i.d.∼ N (0, σ2),

with Σ ∈ Rd×d assumed to be positive definite. Denote the data point to be added as z = (x, y), the preceding data matrix
as XD = (x1, . . . , xk)

⊤ ∈ Rn×d, and the ordinary least squares estimator corresponding to D and D ∪ {z} as β̂D and
β̂D∪{z}. The loss function is defined as the mean squared error on the population,

L(β) = E(x′,y′)∼P [(y
′ − β⊤x′)2],

and the marginal contribution can be written as ∆(z,D) = L(β̂D)− L(β̂D∪{z}). With this setup, we can characterize the
marginal contribution of z as follows.

Theorem A.1. If we denote the noise in z as ϵ = y − x⊤β∗, we have the following expectation with respect to the labels
conditioned on the preceding dataset XD:

E[∆(z,D) | z,XD] =
2σ2 − ϵ2

k2
x⊤Σ−1x+ oP

(
1

k2

)
.

The proof is deferred to Appendix A.1. According to Theorem A.1, marginal contributions are expected to follow the scaling
law with a scaling exponent α(z) = 2 in the large sample regime. Meanwhile, the coefficient c(z) depends on two factors:
the first term 2σ2 − ϵ2 represents the relative noise level of z, where less noise results in a higher contribution, and the
threshold for positive/negative contribution is twice the population noise level σ2. The second term x⊤Σ−1x represents
the asymptotic leverage score of the point, where a point with a higher score is more influential, and hence amplifies the
magnitude of the contribution. Here we only analyze the expectation conditioned on the preceding dataset to give initial
intuition about why the scaling law may exist, as the expectation over the preceding dataset is technically hard to analyze.
Even if the leading term on the right-hand side does not depend on XD, the oP (k−2) term may have a non-negligible
expectation. We leave a more complete characterization as a future direction.

Next, we consider the case of M-estimators, a more general family of models that minimize an empirical loss function,
including robust least squares and GLMs like logistic regression. Our model in this case has parameters θ ∈ Rd, and we
consider a per-example loss ℓ(θ;x, y) with a metric L(θ) on the model performance (typically an expectation L(θ) over
a population distribution Q). We assume that the preceding dataset D = {(xi, yi)}ki=1 is sampled i.i.d. from Q, and we
consider the following M-estimation problem:

θ̂D = argmin
θ∈Rd

k∑
i=1

ℓ(θ;xi, yi). (9)

Given a new training example z = (x, y), we also define the corresponding problem with one additional loss term:

θ̂D∪{z} = argmin
θ∈Rd

(
ℓ(θ;x, y) +

k∑
i=1

ℓ(θ;xi, yi)

)
. (10)

Our goal is to evaluate the difference in model performance from including the single data point z, and the marginal
contribution is ∆(z,D) = L(θ̂D)− L(θ̂D∪{z}). To characterize this term we define the population minimizer as

θ∗ = argmin
θ∈Rd

E(x′,y′)∼Q[ℓ(θ;x
′, y′)],
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and we denote the population Hessian matrix at θ∗ as

Vθ∗ = ∇2E(x′,y′)∼Q[ℓ(θ
∗;x′, y′)].

Based on these terms, we can characterize the marginal contribution as follows.
Theorem A.2. (Informal) Under regularity conditions on ℓ,L and Q,

(1) if ∇L(θ∗) ̸= 0, the marginal contribution satisfies

∆(z,D) =
1

k
∇L(θ∗)⊤V −1

θ∗ ∇ℓ(θ∗;x, y) +OP

(
1

k3/2

)
,

(2) if ∇L(θ∗) = 0, then
√
k∇L(θ̂D) = OP (1) and

∆(z,D) =
1

k3/2
(
√
k∇L(θ̂D))⊤V −1

θ∗ ∇ℓ(θ∗;x, y) +OP

(
1

k2

)
.

A formal statement of the regularity conditions and the proof are deferred to Appendix A.2. In principle, the model
performance should be the loss function evaluated on the population level, i.e., L(θ) = E(x′,y′)∼Q[ℓ(θ;x

′, y′)]. In this case,
the optimality of θ∗ implies ∇L(θ∗) = 0. However, the underlying distribution Q is often intractable, so a common surrogate
is the average loss on a held-out validation dataset {(x′j , y′j)}mj=1, i.e., L̂(θ) = 1

m

∑m
j=1 ℓ(θ;x

′
j , y

′
j). The minimizer of

this finite-sample metric is generally different from the population minimizer θ∗, and we therefore have ∇L̂(θ∗) ̸= 0.
According to Theorem A.2, the asymptotic rate can differ under these two settings. In practice, the test set typically has a
comparable size to the training set, hence we should expect the empirical behavior to be mixed. We also remark that even if√
k∇L(θ̂D) = OP (1), its expectation could be non-negligible and the leading term could be OP (k

−2) in the second case.
This occurs in the linear regression model according to Theorem A.1, but for general M-estimators, it is not clear what the
order of this term is after taking the expectation across D.

Overall, our theoretical analysis provides support for a scaling exponent α(z) in the marginal contribution with respect to
the dataset size, and some examples of factors that affect the coefficient c(z). However, we emphasize that our theoretical
analysis is limited, as it requires strong regularity assumptions on both the models and data distributions. Moreover, our
results are limited to single marginal contributions ∆(z,D), and the expectation of the OP terms may not be negligible
even in the limit. Therefore, these results do not make precise predictions about the exact parameters for the scaling law in
practice, which also involves finite sample bias from both training and evaluation. These factors explain why our empirical
results show heterogeneity in the scaling parameter α(z), although it is often concentrated in a range from [1, 1.5] that is
consistent with the loose predictions from our theoretical results. We remark that such disagreements between theory and
practice are also widely observed with aggregate scaling laws (Hutter, 2021).

A.1. Proof of Theorem A.1

Proof. In the following analysis we denote XD = (X1, · · · , Xn)
T ∈ Rn×p,yD = (y1, · · · , yn)T ∈ Rn, ϵD =

(ϵ1, · · · , ϵn)T ∈ Rn for convenience. Notice that:

L(β) = E(x′,y′)∼P [(x
′Tβ⋆ + ϵ− x′Tβ)2] = σ2 + (β − β⋆)TΣ(β − β⋆),

β̂D − β⋆ = (XT
DXD)

−1XT
DϵD, β̂D∪{n+1} − β⋆ = (XT

DXD + xxT )−1(XT
DϵD + xϵ)

Then, in expectation over ϵD (i.e., expectation conditional on XD and z), we have

E[∆(z,D)|z,XD] =EϵD [ϵ
T
DXD(X

T
DXD)

−1Σ(XT
DXD)

−1XT
DϵD]

− EϵD [(X
T
DϵD + xϵ)T (XT

DXD + xxT )−1Σ(XT
DXD + xxT )−1(XT

DϵD + xϵ)]

=σ2 tr(XD(X
T
DXD)

−1Σ(XT
DXD)

−1XT
D)

− ϵ2xT (XT
DXD + xxT )−1Σ(XT

DXD + xxT )−1x

− σ2 tr(XD(X
T
DXD + xxT )−1Σ(XT

DXD + xxT )−1XT
D)

=σ2 tr((XT
DXD)

−1Σ− (XT
DXD + xxT )−1Σ)

− (ϵ2 − σ2)xT (XT
DXD + xxT )−1Σ(XT

DXD + xxT )−1x

13
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Applying the Sherman–Morrison formula, we know that

(XT
DXD + xxT )−1 = (XT

DXD)
−1 − (XT

DXD)
−1xxT (XT

DXD)
−1

1 + xT (XT
DXD)−1x

.

By the law of large numbers we have 1
kX

T
DXD

p−→ Σ, and therefore by the continuous mapping theorem we have
k(XT

DXD)
−1 p−→ Σ−1 and k(XT

DXD + xxT )−1 p−→ Σ−1. Hence,

E[∆(z,D)|z,XD] =
σ2xT (XT

DXD)
−1Σ(XT

DXD)
−1x

1 + xT (XT
DXD)−1x

− (ϵ2 − σ2)xT (XT
DXD + xxT )−1Σ(XT

DXD + xxT )−1x

=
1

k2
σ2xTΣ−1ΣΣ−1x+ oP (1)

1 + oP (1)
− 1

k2
(
(ϵ2 − σ2)xTΣ−1ΣΣ−1x+ oP (1)

)
=
2σ2 − ϵ2

k2
xTΣ−1x+ oP

(
1

k2

)
,

which finishes the proof.

A.2. Proof of Theorem A.2

In this section, we prove the individualized scaling law for M-estimators. For convenience, we index the point to be evaluated
as (xk+1, yk+1), and write θ̂k+1 = θ̂D∪{z}, θ̂k = θ̂D in the following analysis. For this general model family, we cannot
obtain a closed-form solution as before, and we will focus on the asymptotics instead. A standard result on the asymptotic
distribution of M-estimators is the following.
Lemma A.3 (Asymptotic normality of M-estimators). Assume that the loss function ℓ(θ;x, y) is twice differentiable in θ
such that, for every θ1, θ2 in a neighborhood of θ∗ and a measurable function M(x, y) with EQ[M(x, y)] ≤ ∞,

∥ℓ(θ1;x, y)− ℓ(θ2;x, y)∥ ≤M(x, y)∥θ1 − θ2∥.

∥∇ℓ(θ1;x, y)−∇ℓ(θ2;x, y)∥ ≤M(x, y)∥θ1 − θ2∥.
Also assume that EQ[∥∇ℓ(θ∗;x, y)∥22] ≤ ∞, θ → EQ∇ℓ(θ;x, y) is differentiable at θ∗ with nonsingular derivative matrix

Vθ∗ . If θ̂k
P−→ θ∗ and k−1

∑k
i=1 ∇ℓ(θ̂k;xi, yi) = op(k

−1/2), then
√
k(θ̂D − θ∗) is asymptotically normal with mean zero

and covariance matrix V −1
θ∗ EQ[∇ℓ(θ∗;x, y)∇ℓ(θ∗;x, y)T ]V −1

θ∗ .

The proof can be found in Van der Vaart (2000) (see Theorem 5.21 therein). Define the empirical Hessian matrix evaluated
on the empirical minimizers as

Ĥk+1 :=
1

k + 1

k+1∑
i=1

∇2ℓ
(
θ̂k+1;xi, yi

)
.

Also, define for 1 ≤ i ≤ k + 1,

δi,k+1 :=
(k + 1)−1

∥∥∥Ĥ−1
k+1∇ℓ

(
θ̂k+1;xi, yi

)∥∥∥
2

1− (k + 1)−1
∥∥∥Ĥ−1

k+1∇2ℓ
(
θ̂k+1;xi, yi

)∥∥∥
op

.

The main technique we use to prove Theorem A.2 is the following inequality on leave-one-out M-estimators from Kuchibhotla
(2018).
Lemma A.4 (Corollary 7.1 from Kuchibhotla 2018). Assume that ℓ(θ;x, y) is convex and twice differentiable in θ for every
(x, y). If δi,k+1 ≥ 0 for all 1 ≤ i ≤ k + 1 and

max
1≤i ̸=j≤n

C

(
3

2
δi,k+1;xj , yj

)
≤ 4

3

then
∥θ̂k − θ̂k+1 − (k + 1)−1Ĥ−1

k+1∇ℓ(θ̂k+1;xk+1, yk+1)∥2

≤3δk+1,k+1

2

[
max
1≤i≤k

C

(
3

2
δk+1,k+1;xi, yi

)
− 1 + (k + 1)−1

∥∥∥Ĥ−1
k+1∇

2ℓ(θ̂k+1;xk+1, yk+1)
∥∥∥
op

]
.
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A few more assumptions we need to analyze the marginal contribution are:

Assumption A.5. The metric L(θ) is twice differentiable, and ∥∇L(θ)∥2, ∥∇2L(θ)∥op are bounded by a universal constant
C1 > 0.

Assumption A.6. For u ≥ 0, the function

C(u;x, y) = sup
∥θ1−θ2∥2≤u

sup
∥e∥2=1

eT∇2ℓ(θ1;x, y)e

eT∇2ℓ(θ2;x, y)e
(11)

is differentiable with its derivative bounded by a universal constant C2 at a neighborhood of u = 0 for any (x, y).

Now we are ready to state and prove the formal version of Theorem A.2.

Theorem A.7 (Formal version of Theorem A.2). Under the conditions of Lemma A.3 and Lemma A.4, assume that
Assumption A.5, Assumption A.6 hold, and EQ[∥∇2ℓ(θ;x, y)∥] ≤ ∞, then:

(1) if ∇L(θ∗) ̸= 0, the marginal contribution satisfies

∆(z,D) =
1

k
∇L(θ̂∗)TV −1

θ∗ ∇ℓ(θ∗;x, y) +OP (
1

k3/2
),

(2) if ∇L(θ∗) = 0, then
√
k∇L(θ̂k) = OP (1) and

∆(z,D) =
1

k3/2
(
√
k∇L(θ̂k))TV −1

θ∗ ∇ℓ(θ∗;x, y) +OP (
1

k2
),

Proof of Theorem A.2. Applying Taylor’s theorem to the marginal contribution, we have

∆(z,D) =L(θ̂k)− L(θ̂k+1) = ∇L(θk)T (θ̂k − θ̂k+1) +
1

2
(θ̂k − θ̂k+1)

T∇2L(ξ)(θ̂k − θ̂k+1), (12)

where ξ = αθ̂k + (1− α)θ̂k+1 for some α ∈ [0, 1]. Then notice that

∥Ĥk+1 −
1

k + 1

k+1∑
i=1

∇2ℓ (θ∗;xi, yi) ∥op ≤ 1

k + 1

k+1∑
i=1

M(xi, yi)∥(θ̂k+1 − θ∗)∥2,

from Lemma A.3, we know that θ̂k+1 − θ∗2 = OP (k
−1/2), and by law of large number, 1

k+1

∑k+1
i=1 M(xi, yi) = OP (1),

hence Ĥk+1 − 1
k+1

∑k+1
i=1 ∇2ℓ (θ∗;xi, yi) = OP (k

−1/2). On the other hand, from the central limit theorem,

1

k + 1

k+1∑
i=1

∇2ℓ (θ∗;xi, yi)− E∇2ℓ (θ∗;xi, yi) = OP (k
−1/2).

Use the fact that E∇2ℓ (θ∗;xi, yi) = ∇E∇ℓ (θ∗;xi, yi) = Vθ∗ , we conclude that Ĥk+1 − Vθ∗ = OP (k
−1/2) and hence

Ĥ−1
k+1 − V −1

θ∗ = OP (k
−1/2) (13)

with the fact that Vθ∗ is nonsingular.

Moreover, since θ̂k+1 − θ∗ = OP (k
−1/2), and ∇ℓ,∇2ℓ are continuous and Lipscitz, we know that

∇ℓ(θ̂k+1;xk+1, yk+1)−∇ℓ(θ∗;xk+1, yk+1) = OP (k
−1/2), (14)

and

∇2ℓ(θ̂k+1;xk+1, yk+1)−∇2ℓ(θ∗;xk+1, yk+1) = OP (k
−1/2). (15)

Based on (13)-(15), we shall conclude that δk+1,k+1 = OP (k
−1), and then use Assumption A.6,

max
1≤i≤k

C

(
3

2
δk+1,k+1;xi, yi

)
− 1 = OP (k

−1). (16)
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Combining (13)-(16) with Lemma A.4, we can conclude that

θ̂k − θ̂k+1 =
1

k + 1
V −1
θ∗ ∇ℓ(θ∗;xk+1, yk+1) +OP (k

−3/2).

Then plug it into (12), we know that

∆(z,D) =
1

k + 1
∇L(θ̂k)T (V −1

θ∗ ∇ℓ(θ∗;xk+1, yk+1) +OP (k
−3/2)) +OP (k

−2). (17)

Applying the Delta method to ∇L(θ̂k), the limiting distribution of ∇L(θ̂k) is

√
k(∇L(θ̂k)−∇L(θ∗)) d−→ N

(
0,∇2L(θ∗)V −1

θ∗ EQ[∇ℓ(θ∗;x, y)∇ℓ(θ∗;x, y)T ]V −1
θ∗ ∇2L(θ∗)

)
. (18)

If ∇L(θ∗) ̸= 0, then (17) implies

∆(z,D) = k−1∇L(θ̂∗)TV −1
θ∗ ∇ℓ(θ∗;xk+1, yk+1) +OP (k

−3/2).

And if ∇L(θ∗) = 0, then
√
k∇L(θ̂k) = OP (1) and (17) implies

∆(z,D) = k−3/2(
√
k∇L(θ̂k))TV −1

θ∗ ∇ℓ(θ∗;xk+1, yk+1) +OP (k
−2),

which finishes the proof.

Remark A.8. Although we introduce many assumptions to establish Theorem A.7, many of them are natural and could be
verified. For example, for a logistic regression model, the loss function is ℓ(θ;x, y) = −θTxy + log(1 + exp(θTx)), so the
first and second order derivatives are

∇ℓ(θ;x, y) = −x
(
y − exp(θTx)

1 + exp(θTx)

)
, ∇2ℓ(θ;x, y) =

exp(θTx)

(1 + exp(θTx))2
xxT . (19)

Moreover, the third derivative can be written as

∇3ℓ(θ;x, y) =
exp(θTx)(1− exp(θTx))

(1 + exp(θTx))3
x⊗ x⊗ x. (20)

Then the Lipschitz condition in Lemma A.3 can be guaranteed if the EQ[∥x∥32] <∞. Suppose the metric is either L1(θ) =
E(x′,y′)∼Q[ℓ(θ;x

′, y′)] or L2(θ) =
1
m

∑m
j=1 ℓ(θ;x

′
j , y

′
j), Assumption A.5 and the requirement EQ[∥∇2ℓ(θ;x, y)∥] ≤ ∞ is

also implied by EQ[∥x∥32] <∞. For the requirement on function C, the upper bound in Lemma A.4 could be verified by
(16). In particular, since ∇2ℓ(θ;x, y) is a rank-one matrix and depends on θ only through the scale, we have

C(u;x, y) = sup
∥θ1−θ2∥2≤u

exp(θT1 x)

(1 + exp(θT1 x))
2

(1 + exp(θT2 x))
2

exp(θT2 x)

≤ sup
∥θ1−θ2∥2≤u

exp(θT1 x)

exp(θT2 x)
sup

∥θ1−θ2∥2≤u

exp(θT2 x)
2

exp(θT1 x)
2

≤ exp(3u∥x∥2).

Hence Assumption A.6 can be fulfilled by assuming ∥x∥2 is bounded. We want to highlight that many assumptions can be
relaxed, and here we only state a basic version for clarity.
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B. Likelihood-based scaling law estimator
Our objective when fitting the likelihood-based estimator is the following loss function,

min
c,α,σ,β

L(c, α, σ, β) =
m∑
i=1

NLL(∆(z,Di), |Di|; c, α, σ, β),

where the negative log-likelihood for each marginal contribution is based on Gaussian distributions with certain shared
parameters:

NLL(∆, k; c, α, σ, β) =
1

2
log(2π) +

1

2
log(σ2)− β

2
log(k) +

(∆− ck−α)
2

2σ2k−β
.

The objective is non-convex, and we find that directly optimizing over the four parameters leads to unstable results. We
therefore use another approach that involves solving analytically for two of the four parameters. Given values for α and β,
we can derive optimal values for c and σ in an analytic fashion. Beginning with c, we can see that its optimal value does not
depend on σ, so we can write the optimal value c(α, β) as follows:

c(α, β) = argmin
c

m∑
i=1

kβi
(
∆i − ck−α

i

)2
=

∑
i k

β−α
i ∆i∑

i k
β−2α
i

.

Next, we consider the optimal value for σ2 given fixed values for α, β and the optimal value c(α, β). We solve this problem
by reparameterizing in terms of the precision τ = 1/σ2, and we use the solution to define the optimal value σ(α, β):

σ(α, β) =

(
argmin

τ

m∑
i=1

− log(τ) + τ

(
∆i − c(α, β)k−α

i

)2
k−β

)− 1
2

=

√∑
i k

β
i

(
∆i − c(α, β)k−α

i

)2
m

.

Using these analytic expressions, we can define our objective solely over the exponents α and β. We therefore simplify the
fitting process by optimizing the following loss:

L(α, β) = L (c(α, β), α, σ(α, β), β) .

We optimize the two-parameter objective with Adam (Kingma and Ba, 2014), and we find that this leads to stable results
with a moderate number of gradient steps.

Amortized estimator. For the amortized estimator, we use several approaches to stabilize and improve the model’s
performance. Because we observe a wide range of values for the c(z) coefficient from the non-amortized estimator, we set
up the network to separately predict the sign and log-magnitude of this coefficient, or sign(c(z)) and log |c(z)|. We use
gradient clipping, we clamp the predicted β values to have a maximum value of exp(2) to avoid variance predictions too
close to 0 at large k values, and we apply a small prior to the predicted α(z) values via a penalty (α(z)− 1)2.
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C. Additional Experimental Results
C.1. Evidence for individualized data scaling laws

Here, we provide experimental details for the results shown in Section 4.1. For SVMs we use the RBF kernel, and for neural
networks we set the network width as 32, weight decay as 0.01, and train using the Adam optimizer (Kingma and Ba, 2014)
with learning rate 0.01 for 200 epochs. All of our models are run with scikit-learn package in Python. For each setting, we
evaluated the model performance on a held-out test dataset of size 1000. In addition, when generating the preceding dataset,
we enforced the class balance to avoid degenerate scenarios where certain classes are not represented.

First, we show the estimated log |c(z)| and the relationship between α(z) and log |c(z)| in Figure 8. The estimated c(z)
values exhibit a significant long-tail behavior in the original space, but we find that it has a well-shaped distribution in
log-space. Moreover, we observe a strong positive correlation between α(z) and log |c(z)|. This can be explained by the
exponential effect of α(z) on ψk(z): if α(z) increases by 1, c(z) needs to increase by a factor of k to keep ψk(z) unchanged,
therefore it is more reasonable to look at log |c(z)| values. Similar to α(z), we also observe significant heterogeneity in the
log |c(z)| values.
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(a) Histogram of estimated log |ĉ(z)|
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(b) Relationship between α and log |c(z)|

Figure 8. Histogram of estimated log |c(z)| and the relationship between α(z) and log |c(z)|: The estimated c(z) values exhibit a
well-shaped distribution in the log scale, and we observe a strong correlation between α(z) and log |c(z)|. Similar to Figure 4, we also
exclude points with R2 < 0.8 to make sure the estimates are reliable.

In Figure 3, we observe that most of the R2 values are very close to 1, but there is still a small portion of points whose R2 is
below 1. We want to highlight that this is largely due to the finite sample error of estimating the mean at each cardinality.
In Figure 9, we show the empirical distribution of R2 using different numbers of samples, and we can observe that the
distribution converges to 1 as the sample size increases; we generally expect all data points’ R2 values to be close to 1 when
we have an infinite number of samples, which is consistent with our scaling law in Eq. (4). Moreover, in Figure 10, we
examine the relationship between R2 and log |ψk(z)|. It is observed that for points with smaller R2, they also tend to have
smaller marginal contributions; this is most apparent when visualizing ψk(z) for k = 100 and the average of ψk(z) in the
range from 100 to 1000 (Figure 10 left and bottom). This observation suggests that the poorly-fitting points may not be due
to the scaling law not applying, but to estimation noise that is relatively large when viewed in log-space.

Besides the evidence of the scaling law for the marginal contribution, we also provide evidence for the scaling law of the
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Figure 9. Density of R2 score with different numbers of samples. As the sample size increases, the distribution of R2 is concentrating
towards 1.

marginal contribution’s variance, i.e., we aim to show that

Var(∆(z,D) | |D| = k) ≈ σ2(z)

kβ(z)
. (21)

Similar to our approach in Section 2.1, we can verify this scaling law by taking the following log transform,

log Var(∆(z,D) | |D| = k) ≈ log σ2(z)− β(z) log k, (22)

and evaluating the R2 score of fitting a simple linear regression in log-space. The experiment results are shown in Figure 11,
and we find that the R2 scores for the variance are very close to 1 for all logistic regression and MLP models. For SVM, the
computed R2 are mostly close to 1, but there exists a portion of points that have a relatively small R2. A possible reason is
that the classifier returned by SVM depends only on the support vectors, hence whether or not the point is a support vector
makes the marginal contribution differ significantly. Therefore, although the mean of those marginal contributions aligns
well with the scaling law, the variance could be relatively unstable and result in a poor fit.

Next, we examine the distribution of fitted parameters β(z) and log σ2(z). Similar to the c(z) values, here we also observe a
long-tail behavior of σ2(z) and hence plot log σ2(z) instead. As we can observe, the variance of logistic regression models
is decaying at a very fast rate, the majority of β(z) values lie between 2 and 4. By contrast, for MLPs and SVMs, β(z) is
mostly between 1 and 2. Therefore, the signal-to-noise ratio of the marginal contribution is much lower for these models,
making the estimation of the mean ψk(z) at each cardinality more challenging.

Finally, we also show the relationship between distance to decision boundary and log |c(z)| in Figure 13. Surprisingly, we
observe a very different behavior for the logistic regression model on two different datasets. For the MiniBooNE dataset, the
heterogeneity of log |c(z)| mainly comes from the points that are close to the decision boundary, and there is no significant
trend when points are far from the decision boundary, as they all concentrate around 0. In contrast, we observe a clear
positive correlation between the distance and the estimated log |c(z)| for the IMDB dataset. This difference implies that the
scaling law parameters strongly depend on the data distribution, and they may have fundamentally different behavior when
evaluating the same model for different datasets.
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(a) Relationship between R2 and log |ψ100(z)|
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(b) Relationship between R2 and log |ψ1000(z)|
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(c) Relationship between R2 and log |ψ(z)|, here ψ(z) is defined
as the average ψk(z) over 10 log-spaced cardinalities between k =
100 and k = 1000.

Figure 10. The relationship between R2 score and the marginal contribution. We examine the marginal contribution by evaluating
log |ψk(z)| at k = 100, k = 1000, and an average over 10 log-spaced cardinalities between k = 100 and k = 1000. For points with
small R2, they tend to have small marginal contributions. For k = 1000, the marginal contributions of all points are dominated by the
sampling error, therefore it is hard to distinguish points with different R2.
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Figure 11. Histogram of R2 score of fitting the scaling law fitting on the variance: for each setting, we compute the variance of
sampled ∆(z,D) with the same size |D|, and then fit a simple linear regression according to (22) to obtain R2
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Figure 12. Histogram of estimated β̂(z) and log σ̂2(z): the logistic regression model has a much higher β compared with neural
networks and SVM.
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Figure 13. Distance to decision boundary vs. log |c(z)| for logistic regression model. We fit a logistic regression model on all points
being evaluated and then compute the distance of each data point to the decision boundary. The sign of distance is kept to distinguish
points from each class.
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C.2. Accuracy of efficient scaling law estimators

Here, we show three additional results related to our scaling law estimators. Like our results in Section 4.2, all are conducted
using the IMDB dataset with logistic regression. The first experiment provides intuition for our metrics by showing a
scatterplot of the scaling law’s predictions at each cardinality, and the true expectation ψk(z) for each data point (estimated
using 1000 samples). This result is shown in Figure 14, where we observe very strong predictive accuracy for four dataset
sizes. We report three measures of the prediction accuracy, where ρ denotes Pearson correlation and τ denotes Spearman
correlation. All three metrics are close to 1, particularly for the larger dataset sizes k.
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Figure 14. Scaling law estimation accuracy scatterplots. For four dataset sizes k, we plot the scaling law’s predictions for the marginal
contribution against the true expectations ψk(z).

The next result is an expanded version of Figure 7, where we show the scaling law’s accuracy at different k values with
different numbers of samples and according to three metrics: the R2 score, Pearson correlation, and Spearman correlation.
All three metrics are calculated using expectations ψk(z) estimated with 1000 samples, similar to the previous result and
our validation in Section 2.1. Within the range where the scaling law is fit (k ∈ [100, 1000]), we generally observe high
accuracy, particularly at larger cardinalities that have less noise, and when each estimator is fit with more samples. As shown
in the main text, we see that the Pearson and Spearman correlation remain relatively high even as we extrapolate to dataset
sizes an order of magnitude larger than where the scaling law is fit. However, the R2 score quickly degrades once we exceed
k = 1000, which we find is due to the predicted contributions not shrinking as quickly as the empirical ones.
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Figure 15. Scaling law estimation accuracy at multiple cardinalities. We evaluate the scaling law’s predictions at cardinalities up to an
order of magnitude larger than where it is fit, and according to three accuracy metrics: R2, Pearson correlation and Spearman correlation.

Finally, we show a more thorough analysis of the likelihood-based estimator’s convergence characteristics. Figure 16 shows
the accuracy at each cardinality via a colored line as a function of the number of samples used to fit the estimator. We also
separately show results for interpolation (k ∈ [100, 1000]) and extrapolation (k > 1000). Overall, we see that for most
interpolation cardinalities, the R2 score converges to 1 within relatively few samples; the more difficult cases in the top
row the smallest cardinalities. On the other hand, in the bottom row, we see that the performance has significant room for
improvement even after fitting with 100 samples.
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Figure 16. Likelihood-based scaling law estimator convergence. We verify that the likelihood-based estimator becomes more accurate
as it is fit on more samples, where we separately show cardinalities in the fitting range (top) and beyond the fitting range (bottom).
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C.3. Application to data valuation

Here we provide additional results applying individualized scaling laws to data valuation. We first recall the definition of the
distributional Shapley value (Ghorbani et al., 2020), which is one of many data valuation scores based on a data point’s
marginal contributions (Kwon and Zou, 2021; Wang and Jia, 2022; Li and Yu, 2023). Given a maximum cardinality kmax,
this method defines the valuation score ψ(z) as a uniform average over the expected marginal contributions ψk(z) up to
k = kmax. In practice, we generally also require a minimum cardinality kmin because models cannot be reliably trained
without a reasonable amount of data (see the OpenDataVal package for example, Jiang et al. 2023). With this in mind, we
can define the valuation score as follows:

ψ(z) =
1

kmax − kmin + 1

kmax∑
k=kmin

ψk(z).

Our experiments involve estimating these scores using a conventional Monte Carlo estimator, which averages marginal
contributions ∆(z,D) with dataset sizes sampled uniformly random, and comparing them to estimates derived from our
scaling parameters. For a data point z with parameters c(z) and α(z), we can estimate the expected contribution at cardinality
k as ψ̂k(z) = c(z)/kα(z), and we can average this across k to estimate ψ̂(z). We test this approach when the scaling
parameters are estimated using both our likelihood-based estimator from Section 3.1 and the amortized estimator from
Section 3.2. As the ground truth for the performance metrics, we use Monte Carlo estimates computed using 10000 sampled
marginal contributions, which is chosen to reliably approximate the exact value.

The expanded versions of our main text results are shown in Figure 17 for IMDB, Figure 18 for CIFAR-10, and Figure 19
for MiniBooNE. We also show results for an additional case, the adult census dataset in Figure 20 (Dua and Graff, 2017).
All the results are generated by training logistic regression models. We observe that in all four cases, our scaling law-based
estimates converge to the same result as the conventional Monte Carlo estimator, which attests to the scaling law accurately
capturing the rate of decay of marginal contributions in practice. We observe that the parametric estimator becomes reliable
when we use more than 20 samples, although it only outperforms the Monte Carlo estimator for MiniBooNE and the rank
correlation metric for IMDB and adult census. On the other hand, the amortized estimator generally provides the best
performance in the noisiest regime with just 10 samples, and it is the best estimator for all numbers of samples with the
adult census dataset; however, in the case of CIFAR-10 it is surpassed by the non-amortized estimator for larger numbers of
samples.
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Figure 17. Data valuation estimation accuracy for the IMDB dataset with logistic regression.
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Figure 18. Data valuation estimation accuracy for the CIFAR-10 dataset with logistic regression.
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Figure 19. Data valuation estimation accuracy for the MiniBooNE dataset with logistic regression.
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Figure 20. Data valuation estimation accuracy for the adult census dataset with logistic regression.

26



Scaling Laws for the Value of Individual Data Points in Machine Learning

C.4. Application to point addition

Here, we provide additional experimental results on the point addition task. In Section 4.4, we consider adding 20 points
to preceding datasets of size 100 and 1000, and here we consider the setting of adding 50 points to preceding datasets
of size 200 and 2000. Again, we will predict the expected contribution using the scaling law ψ̂k(z) = c(z)/kα(z) with
fitted parameters c(z) and α(z) at k = 200 and k = 2000 to select the top points for Scaling 200 and Scaling 2000. The
results are shown in Table 7 and Table 8, and the Scaling 200 and Scaling 2000 selections show superior performance
on the corresponding smaller and larger datasets, while performing badly in the other regime. Selections based on the
Shapley value have worse performance than scaling law selections based on the dataset size. We notice that in Table 7 there
is one setting where random selection achieves the best performance, which may be due to interaction effects where the
selected points are similar, so the contribution from a whole set may not be as beneficial as expected. In all other settings,
we generally observe that random selection has the worst performance.

Table 7. Accuracy improvement (%) with 50 points added to preceding datasets of size 200. The settings are the same as Table 5,
Scaling 200 achieves the best performance compared to other methods.

Method MiniBooNE CIFAR-10 IMDB

Scaling 2000 0.27 ± 0.95 1.51 ± 0.58 0.71 ± 0.68
Scaling 200 0.33 ± 0.98 2.04 ± 0.59 1.55 ± 0.61

Shapley 0.28 ± 0.99 1.50 ± 0.58 1.19 ± 0.67
Random 0.44 ± 0.68 1.16 ± 0.57 0.73 ± 0.53

Preceding 81.99 ± 0.97 80.51 ± 0.97 81.71 ± 0.94

Table 8. Accuracy improvement (%) with 50 points added to preceding datasets of size 2000. The settings are the same as Table 5,
Scaling 2000 achieves the best performance compared to other methods.

Method MiniBooNE CIFAR-10 IMDB

Scaling 2000 0.15 ± 0.33 0.16 ± 0.13 0.09 ± 0.09
Scaling 200 0.14 ± 0.32 0.11 ± 0.10 0.06 ± 0.06

Shapley 0.14 ± 0.32 0.14 ± 0.13 0.08 ± 0.06
Random 0.01 ± 0.17 0.05 ± 0.13 0.03 ± 0.09

Preceding 84.51 ± 0.37 86.39 ± 0.35 86.38 ± 0.24
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