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Abstract 1 

This study employs the classical 2 

psycholinguistics paradigm, the visual 3 

world eye-tracking paradigm (VWP), to 4 

explore the predictive capabilities of 5 

multimodal large language models 6 

(MLLMs) and compare them with human 7 

anticipatory gaze behaviors. Specifically, 8 

we examine the attention weight 9 

distributions of LLAVA when presented 10 

with visual displays and sentences 11 

containing verb and gender cues. Our 12 

findings reveal that LLAVA, like humans, 13 

can predictively attend to objects relevant 14 

to verbs, but fails to demonstrate gender-15 

based anticipatory attention. Layer-wise 16 

analysis indicates that the middle layers of 17 

the model are more related to predictive 18 

attention than the early or late layers. This 19 

study is pioneering in applying 20 

psycholinguistic paradigms to compare the 21 

multimodal predictive attention of humans 22 

and MLLMs, revealing both similarities 23 

and differences between them. 24 

1 Introduction 25 

Recent psycholinguistic research has shown that 26 

human language processing involves multimodal 27 

predictions, especially between language and 28 

vision (e.g., Altmann & Kamide, 1999; see Huettig 29 

et al., 2011, for a review). For instance, numerous 30 

visual world paradigm (VWP) studies have 31 

demonstrated that when people hear an utterance, 32 

they predict upcoming mentions, which direct their 33 

looks to the visual objects. For example, in Corps 34 

et al. (2022), participants heard a sentence featuring 35 

either male or female characters and looked at the 36 

visual display of four objects at the same time 37 

(Figure 1). They found that: (1) participants used 38 

verb semantics to predict upcoming mentions (e.g., 39 

looking at wearable objects such as a tie or dress at 40 

hearing Tonight, James/Kate will wear …); (2) they 41 

further used the gender of the subject to refine their 42 

prediction (e.g., more looks to a tie than a dress 43 

following James, and more looks to a dress than a 44 

tie following Kate ). 45 

The finding that humans use linguistic (verb and 46 

gender) information to make predictive fixations of 47 

a visual scene led us to ask whether multimodal 48 

large language models (MLLMs) exhibit similar 49 

cross-modal predictive behaviors. Previous studies 50 

have found parallels between model attention 51 

model attention (measured by attention weights) 52 

and human attention (measured by eye tracking 53 

movements) in text reading (Gao et al., 2023; 54 

Kewenig et al., 2024; Sood et al., 2020). Kewenig 55 

et al. (2024) recently provided tentative evidence 56 

that multimodal models like CLIP (Radford et al., 57 

2021) may also resemble human predictive visual 58 

attention in video viewing. But to our best 59 

knowledge, there is not yet research on whether 60 

MLLMs also resemble humans in linguistically-61 

guided predictive visual attention.  62 

The current study employs the widely adopted 63 

VWP in psycholinguistics to investigate whether 64 

LLAVA (Liu et al., 2023), an open-source MLLM, 65 

Multimodal Large Language Models “Foresee” Objects  

Based on Verb Information But Not Gender 
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Figure 1: Sample visual display adapted from Corps 

et al. (2022) 
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shows similar linguistically-guided predictive 66 

visual attention as humans. By analyzing the 67 

model's attention weight distribution on the task 68 

used by Corps et al. (2022), we found that MLLM 69 

can predictively attend to relevant objects based on 70 

verb information, similar to humans, but not gender 71 

information. In addition, layer-wise analysis shows 72 

that the middle layers of MLLM are primarily 73 

responsible for the predictions. These findings 74 

indicate both similarities and differences between 75 

model and human behavior in multimodal 76 

predictions. 77 

2 Methods 78 

2.1 Design and materials 79 

Following Corps et al. (2022), we used 28 pairs of 80 

sentences featuring either male or female 81 

characters (e.g., Tonight, James/Kate will wear the 82 

nice tie/dress), each with a visual display of four 83 

objects (Figure 1). We tested whether an MLLM 84 

can predictively attend to a visual object according 85 

to whether the object is verb-congruent (e.g., dress 86 

and tie for the verb wear) or verb-incongruent (e.g., 87 

drill and hairdryer), and whether this prediction (if 88 

any) is further modulated by the object’s 89 

congruency with the gender of the sentential 90 

subject (e.g., for  James,  tie and drill are gender- 91 

congruent and dress and hairdryer are gender-92 

incongruent; for Kate, the conditions are reversed). 93 

The object images are 200×200 pixels, with their 94 

locations counterbalanced across items. 95 

2.2 Model 96 

We utilized LLAVA 1.5 (7B parameters, Liu et al., 97 

2023), a transformer-based MLLM that encodes 98 

images using CLIP's vision encoder and maps them 99 

into the linguistic embedding space of Vicuna, 100 

allowing cross-modal attention to be computed. 101 

This model was chosen for its open-source 102 

availability and its state-of-the-art performance on 103 

11 benchmarks (Liu et al., 2023). 104 

2.3 Pre-tests 105 

We first conducted three pre-tests to explore if 106 

LLAVA can recognize the basic information in 107 

sentences and pictures as humans do. 108 

(1) Name gender detection. To investigate if 109 

the model can distinguish gender based on names 110 

(James vs. Kate), we asked the model to continue 111 

a sentence preamble (e.g., Although James/Kate 112 

was sick…) and calculated the proportions of 113 

female (she/her/hers) or male pronouns (he/his) 114 

used in the continuations following Cai et al. 115 

(2023, experiment 2). We found that all sentences 116 

with James were continued with male pronouns 117 

and all sentences with Kate were continued with 118 

female pronouns. This indicates that the model 119 

can perfectly distinguish between typical male 120 

and female names in sentences. 121 

(2) Object gender evaluation. To assess 122 

whether the model can identify pictured objects as 123 

stereotypically male (e.g., tie, drill) or female (e.g., 124 

dress, hairdryer), we asked the model to evaluate 125 

the masculinity or femininity of each object on a 126 

5-point Likert scale and calculated the “femininity 127 

score” of each object where 1 represents strongly 128 

masculine and 5 represents strongly feminine.  129 

The results show that the femininity score of 130 

female objects is significantly higher than that of 131 

male objects (3.13 vs. 2.67; t(5641.6) = 11.202, p 132 

< .001), indicating that the model can identify the 133 

gender of the objects. 134 

(3) Multimodal sentence completion. To 135 

examine whether the model can complete the 136 

sentence with verb-and-gender-congruent nouns 137 

in a multimodal setting, we removed the final 138 

noun from the sentence and asked the model to 139 

complete the missing linguistic materials 140 

according to the sentence’s corresponding visual 141 

display. As shown in Figure 4 in Appendix A, the 142 

model produced more verb-congruent 143 

completions than incongruent ones (83.77 vs. 144 

12.52; t(109.29) = -11.844, p < .001), and also 145 

more gender-congruent completions than 146 

incongruent ones (64.61 vs. 29.52; t(109.83) = -147 

4.2849, p <.001). This indicates that the model can 148 

predict verb-and-gender-congruent nouns in a 149 

multimodal sentence completion task. 150 

2.4 Procedure 151 

To simulate human incremental sentence 152 

comprehension, we presented the sentence in an 153 

unfolding fashion, ending first with the name (e.g., 154 

Tonight, James/Kate), then with the verb (e.g., 155 

Tonight, James/Kate will wear), then with the pre-156 

noun adjective (e.g., Tonight, James/Kate will wear 157 

the nice), and finally the whole sentence ending 158 

with the target noun (e.g., Tonight, James/Kate will 159 

wear the nice tie/dress). Each text presentation was 160 

accompanied by the same visual display of four 161 

objects. We used the prompt: "Please read carefully 162 

and look at the objects in the picture," which 163 

mirrors the instructions given to human 164 

participants, ensuring that the model's task closely 165 

parallels the one performed by human subjects. 166 
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3  Analyses and results  167 

3.1 Analysis 168 

We extracted the max-pooled attention weights of 169 

each layer mapping from the last word (name, verb, 170 

pre-noun adjective, or target noun) of each 171 

sentence segment to the four images in the visual 172 

display. Following Manning et al. (2020), if the last 173 

word had multiple tokens, we combined the 174 

weights across the tokens. We then calculated the 175 

proportion of attention allocated to each object 176 

relative to the total attention across all four objects, 177 

similar to fixation proportions in VWP studies (e.g., 178 

Corps et al., 2022).  179 

For statistical analysis, we used linear mixed-180 

effect models, with verb congruency and gender 181 

congruency as interacting predictors, and with 182 

layer and item as random effects. Following 183 

Matuschek et al. (2017), we used forward model 184 

comparison with an alpha level of 0.2 to determine 185 

whether a random slope should be included in the 186 

final model.  187 

3.2 Results 188 

3.2.1 Main results of the whole model 189 

Figure 2 (top panel) shows the attention 190 

proportions to four objects across sentence 191 

segments. Initially, when the name was read, 192 

LLAVA showed no preference for gender-193 

congruent objects (β = 0.001, SE = 0.002, t = 0.326, 194 

p = 0.744), suggesting that the model did not 195 

associate specific objects with the gendered name 196 

in the absence of further contextual information.  197 

As the sentence unfolded to the verb (e.g., wear), 198 

there is a significant preference for verb-congruent 199 

objects (e.g., tie and dress) over incongruent ones 200 

(e.g., drill and hairdryer; β = 0.009, SE = 0.002, t = 201 

4.168, p < .001), indicating that LLAVA can use 202 

verb semantics to direct attention similar to humans. 203 

Nevertheless, there was still no effect of gender 204 

congruency (β = 0.0004, SE = 0.002, t = 0.187, p 205 

= .852), suggesting that the model still does not 206 

preferentially attend to gender-congruent objects at 207 

this stage.   208 

As the model received more input (e.g., Tonight, 209 

James/Kate will wear the nice …), the difference 210 

between verb-congruent and verb-incongruent 211 

objects continued to grow (β = 0.035, SE = 0.004, t 212 

= 8.599, p < .001) and the absence of a gender 213 

congruency effect persisted (β = -0.002, SE = 0.003, 214 

t =- 0.862, p = .389).  215 

Finally, when the sentence was fully presented 216 

(e.g., Tonight, James/Kate would like to wear the 217 

nice tie/dress), the pattern remained unchanged, 218 

with a significant effect of verb congruency (β = 219 

0.024, SE = 0.003, t = 9.491, p < .001), but no 220 

evidence of a gender congruency effect (β = 0.012, 221 

SE = 0.019, t = 0.640, p = .527).  222 

We compared our model attention and human 223 

attention (fixation proportion) in Corps et al. (2022) 224 

(see Appendix B for detailed methods). As shown 225 

in Figure 2, there are both similarities and 226 

differences in anticipatory processing patterns. 227 

Overall, the patterns between humans and the 228 

model are similar (r = 0.11, p = .018). However, 229 

this similarity is primarily driven by the verb factor 230 

(r = 0.25, p < .001), and not by the gender factor (r 231 

= -0.009, p = .896; see Figure 6 in Appendix B). 232 

This is because human participants not only 233 

predictively attended to verb-relevant objects (β = 234 

0.087, SE = 0.010, t = 9.112, p < .001), but also 235 

gender-relevant objects (β = 0.034, SE = 0.016, t = 236 

2.147, p = 0.040) as soon as they heard the verb. 237 

3.2.2 Results of layer-wise analysis 238 

In addition to analyzing the overall behavior of the 239 

model across all layers, we conducted a more fine-240 

grained, layer-wise analysis to identify the layers 241 

that were primarily responsible for the verb-based 242 

predictive visual attention in LLAVA. As shown in 243 

Figure 3, our results indicate that the middle layers 244 

of the model play a crucial role in generating visual 245 

predictions based on verb information. 246 

 

Figure 2: Compare attention proportion of LLAVA 

(top panel) and fixation proportion of humans (bottom 

panel; data from Corps et al., 2022) 
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During the verb segment of the sentence (e.g., 247 

James/Kate will wear), we found a significant main 248 

effect of verb (ps < .05) in layers 10, 12, and 17 (see 249 

the second panel in Figure 3). As the sentence 250 

unfolds (e.g., James/Kate will wear the nice), the 251 

main effect of verb becomes more widespread, 252 

occurring in layers 7 through 26 (see the third panel 253 

in Figure 3). This indicates that a larger portion of 254 

the model's architecture is engaged in verb-based 255 

predictions as more linguistic context becomes 256 

available.  257 

4 Discussion 258 

This study uses the VWP to investigate the 259 

predictive capabilities of MLLMs like LLAVA. 260 

The findings reveal that the model exhibits human-261 

like behavior in using verb information to predict 262 

the upcoming object in a visual display. This aligns 263 

with previous research demonstrating that both 264 

humans and models can utilize multimodal 265 

information to predictively attend to relevant 266 

features (Kewenig et al., 2024). 267 

However, unlike humans, the model does not 268 

predictively attend to relevant objects based on 269 

gender information, consistent with the lack of 270 

gender bias in CLIP, which is the basis for 271 

LLAVA's vision encoder (Hall et al., 2024). Indeed, 272 

our pretest results showed that although the model 273 

can complete sentences with gender-congruent 274 

nouns, it does not do so to the same extent as it 275 

produces verb-congruent nouns (see Figure 4 in 276 

Appendix A). This uncertainty in behavioral 277 

responses is consistent with the lack of a gender 278 

effect in the attention weights. 279 

The difference between the model and humans 280 

may be explained by the nature of the stimuli, as 281 

our study used cartoon-like images while MLLMs 282 

are mainly trained and evaluated on real-world 283 

objects (Liu et al., 2023; Thrush et al., 2022). To 284 

investigate this hypothesis, we replaced the 285 

cartoon-like objects with real-world ones. As 286 

shown in Figure 7 in Appendix C, we observed a 287 

main effect of gender in the verb segment (β = 288 

0.009, SE = 0.002, t = 4.117, p < .001), suggesting 289 

that the model processes real-world objects in a 290 

more human-like way than cartoon objects. This is 291 

consistent with the idea that models lack the 292 

perceptual flexibility of humans, leading to lower 293 

performance in recognizing atypical objects (Zang 294 

et al., 2023). 295 

The study also found that the middle layers play 296 

a significant role in multimodal predictions, 297 

aligning with previous studies showing that 298 

attention weights in middle layers better fit neural 299 

signals (Lamarre et al., 2022). However, the 300 

discrepancy with some studies showing that late 301 

layers correlate most significantly with human eye-302 

tracking data (Kewenig et al., 2024) may be 303 

attributed to task differences: comprehension tasks 304 

(as in our and Lamarre et al.’s studies) require more 305 

high-level semantic processing in middle layers, 306 

while production tasks (as in Kewenig et al., 2024) 307 

focus more on low-level features of individual 308 

words in later layers. Further detailed experiments 309 

are needed to explore this hypothesis. 310 

5 Conclusion 311 

In conclusion, our study utilizes the VWP from 312 

psycholinguistics to probe whether MLLMs like 313 

LLAVA show similar multimodal predictive 314 

patterns to humans. We found that MLLMs can 315 

predictively attend to verb-relevant objects in 316 

visual displays similar to humans, but they do not 317 

show the same predictive attention for gender-318 

relevant objects. These predictive behaviors are 319 

predominantly driven by the middle layers of the 320 

model.   321 

 

Figure 3: Attention results by layers 
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Limitations 322 

One key limitation of this study is that we only 323 

investigated one model — LLAVA-1.5 7B — and 324 

conducted a thorough comparison between its 325 

attention weights and human eye movements. With 326 

more MLLMs being released (see Yin et al., 2024 327 

for a comprehensive review), it is crucial to 328 

compare different models horizontally to 329 

understand the key factors contributing to their 330 

differences and similarities with human cognition. 331 

In addition, caution is needed when comparing 332 

human and model attention. Although both use the 333 

term "attention," they may refer to different 334 

underlying mechanisms. For instance, model 335 

attention is more evenly dispersed, while human 336 

attention tends to be focused (Kewenig et al., 2024; 337 

also see Figure 2). More detailed studies are needed 338 

to explore the similarities and differences between 339 

model attention and human attention. 340 

Ethical considerations 341 

The authors declare no competing interests. The 342 

stimuli used are provided by the first author of 343 

Corps et al. (2022) via email. The human eye- 344 

tracking data used is publicly available 345 

(https://osf.io/nkud5/) and does not contain 346 

personal information about the subjects. The usage 347 

scenario of the model LLAVA conforms to its 348 

licensing terms. As this work focuses on comparing 349 

the multimodal predictions of models and humans, 350 

its potential negative impacts on society seem to be 351 

minimal.  352 
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Since eye movement data in Corps et al. (2022, 456 

accessible at https://osf.io/nkud5) were analyzed at 457 

50ms intervals, we need to transform the data into 458 

four segments to align with the model data. 459 

According to the R scripts available at 460 

https://osf.io/nkud5/, the four segments are  461 
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- Before verb: < 0ms (before verb onset) 463 

- Verb: 0-350ms (from verb onset to verb 464 
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factors and only by gender factors and then 480 
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For each object picture in the stimuli, we search 484 

for a similar picture in Google Images (the same 485 

source as Corps et al., 2022) but with a real-world 486 

object. We replaced each object picture with the 487 

 

Figure 4: Results of sentence completion task 
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new real-world one and conducted the experiment 488 

again. The results are shown as in Figure 7. 489 

 490 

 

Figure 6: Correlation between the model and humans 

when considering both gender and verb factors (top), 

only verb factor (left-bottom), and only gender factor 

(right-bottom) 

Figure 7: Compare model attention proportions using 

real-world stimuli in LLAVA (top) and fixation 

proportions of humans (bottom) 
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