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ABSTRACT

The performance of a machine learning (ML) model depends heavily on the
relevance of its training data to the domain of the downstream evaluation task.
However, in practice, the data involved in an unseen evaluation task is often
not known to us (e.g., conversations between an LLM and a user are end-to-end
encrypted). So, it is not obvious what data would be relevant for training/fine-tuning
the ML model to maximize its task performance. Instead, one can only deploy
the ML model in the unseen evaluation task to gather multiple rounds of coarse
feedback on how well the model has performed. This paper presents a novel global-
to-local algorithm called DUET that can exploit the feedback loop by interleaving
a data selection method with Bayesian optimization. As a result, DUET can
efficiently refine the training data mixture from a pool of data domains to maximize
the model’s performance on the unseen evaluation task and its convergence to the
optimal data mixture can be theoretically guaranteed by analyzing its cumulative
regret. Empirical evaluation on image and LLM evaluation tasks shows that DUET
finds better training data mixtures than conventional baselines.

1 INTRODUCTION

The performance of an ML model depends heavily on the composition of training data domains Chen
et al. (2024a); Xie et al. (2023) and the downstream evaluation task Hoffmann et al. (2022); Long
et al. (2017). For instance, if users of an LLM are interested in asking layman science questions, then
fine-tuning the LLM with more Wikipedia data allows it to converse better with the users. Hence,
knowing the evaluation task is important as it informs us on the relevant training data to be selected
from an existing pool of data domains to produce a better-performing ML model.

However, in practice, the data (e.g., its domain, distribution, or labels) involved in a downstream
unseen evaluation task is often not known to us. So, it is not obvious what data would be relevant
for training or fine-tuning the ML model. Instead, one can only deploy the ML model a few times
in the unseen evaluation task to gather multiple rounds of feedback on how well our ML model
has performed, thereby creating a feedback loop. Furthermore, each round of feedback incurs
significant time or monetary costs. Hence, the key challenge lies in how to achieve efficiency in the
number of feedback rounds to refine the training data and improve the task performance of the ML
model. This problem setting has become increasingly important recently: Any LLM owner would
be interested in fine-tuning its LLM to converse better with the users but due to privacy concerns
Li et al. (2024), conversations between their deployed LLM and users are end-to-end encrypted
(openai.com/enterprise-privacy). So, the LLM owner does not know the conversation
domain or data seen by the deployed LLM. Rather, the LLM owner can only receive coarse feedback
on how well its LLM has performed in the conversation (e.g., ratings from human users indicating
their satisfaction with the LLM) and gather multiple rounds of feedback from the users.

This paper presents a novel algorithm called DUET (Fig. 1) that can exploit the feedback loop to
optimize the training Data mixture for the Unseen Evaluation Task. DUET is a global-to-local
algorithm that interleaves influence function (IF) Koh & Liang (2017) as a data selection method
Albalak et al. (2024); Ting & Brochu (2017) with Bayesian optimization (BO) Snoek et al. (2012);
Srinivas et al. (2010) to optimize the training data mixture for the unseen evaluation task. At the
global level, BO in DUET uses feedback from the unseen evaluation task to automatically reconfigure
the mixing ratio of data domains in the training data mixture iteratively. At the local level, DUET
uses IF to retrieve high-quality data points from each data domain until the proposed mixing ratio is
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reached, improving the quality of data mixture every iteration. By doing so, DUET efficiently refines
the training data mixture and improve the ML model’s performance without needing to know the data
involved in the unseen evaluation task.

Feedback from 
unseen 
evaluation task

Proposed data 
mixing ratio 𝑟

Wiki 

Med 

Math 

Trivia 

News

Data 
selection 
methods 
(Sec. 3.2)
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LLM

LLM

Unknown 
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Figure 1: Overview of DUET algorithm that exploits a feedback loop to optimize the data mixture
for the unseen evaluation task.

In our problem setting, (a) there is no direct access to the data (e.g., its domain, distribution, or
labels) involved in the unseen evaluation task but (b) multiple rounds of feedback (details covered
in Sec. 2.2) can be gathered from the task using a trained ML model. App. A.1 provides other
practical examples of such a setting. This setting is distinctively different from those considered in
conventional domain adaptation (DA) and domain generalization (DG) works. In particular, prior
DA work assumes knowledge of fine-grained data (e.g., a pool of labeled/unlabeled data Zhang et al.
(2022) or data distribution Ganin & Lempitsky (2015); Zhang et al. (2021)) from the evaluation task
for selecting relevant training data that match the evaluation data. On the other hand, DG considers a
rigid setting with no knowledge (not even feedback) of the evaluation task Muandet et al. (2013); Shin
et al. (2024); Wang et al. (2022). Recently, works such as DoReMi Xie et al. (2023) have also used
distributionally robust optimization (DRO) Chen et al. (2024a); Fan et al. (2024) to reweigh training
data domains so that a trained LLM performs well for any distribution of downstream language tasks.
However, they do not exploit feedback from the actual downstream evaluation task to improve the
training data mixture. Hence, they do not work well in our setting, as shown in Sec. 5. Lastly, some
works Ruder & Plank (2017) have used feedback to select training data for transfer learning but rely
heavily on hand-crafted data features and still require knowledge of the data from the downstream
evaluation task.

Other straightforward approaches do not work well in our problem setting. A naive approach is to
train an ML model on the union of data taken from every data domain. However, our work here
(Sec. 5.2) and some others Xia et al. (2024) show that the trained ML model does not perform as
well as a model trained using strategically selected data relevant to the evaluation task. Another
brute-force approach is to iterate through all possible data mixtures (of different mixing ratios) and
select one that yields the best evaluation task performance, which is not feasible due to the need
to evaluate an excessive number of ML models. Lastly, App. A.2 discusses related work on data
selection which, in isolation, do not exploit feedback from the evaluation task.

To the best of our knowledge, DUET is the first work to exploit coarse feedback from an unseen
evaluation task and interleaves data selection with BO to reweigh the data domains adaptively. After
several iterations, DUET automatically assigns a higher proportion of data mixture to more relevant
training data domains, consequently producing a better data mixture. The specific contributions of
our work here are as follows:

• We introduce a novel and realistic problem setting where the data involved in an unseen evaluation
task is not known to us but our ML model can be deployed to gather multiple rounds of feedback
from the task. Then, we introduce a novel algorithm called DUET that can exploit the feedback
loop to optimize the training Data mixture for the Unseen Evaluation Task. To achieve this, DUET
interleaves influence function as a data selection method (Sec. 3.2) with Bayesian optimization
(Sec. 3.3).

• We provide a theoretical analysis of DUET’s convergence to the optimal unseen evaluation task
performance by analyzing DUET’s attained cumulative regret Chen et al. (2024b); Chowdhury &
Gopalan (2017) under the BO framework (Sec. 4).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a paper at DATA-FM workshop @ ICLR 2025

• We demonstrate the effectiveness of DUET on a variety of image classification and LLM language
tasks comprising both in-domain and out-of-domain unseen evaluation tasks. Compared to conven-
tional approaches (e.g., DoReMi or uniform weights), DUET finds better data mixtures for training
ML models that perform better on the downstream unseen evaluation task (Sec. 5.2).

2 PRELIMINARIES

2.1 BAYESIAN OPTIMIZATION

We first provide an outline of how BO can be used to optimize a generic black-box objective function.
We will provide details later on how BO is used in DUET (Sec. 3.3). We consider a black-box objective
function f : Rn 7→ R over the space of inputs r ∈ Rn. The goal is to find r∗ ≜ argminr f(r) which
minimizes the objective function. BO is an active algorithm that strategically selects input points
to query the black-box objective function, conditioned on previous function observations. At each
iteration t = 1, 2, . . . , T of BO, we query the black-box function with a selected input rt to obtain a
noisy observation ỹt ≜ f(rt) + ϵt with a sub-Gaussian noise ϵt (e.g., Gaussian or bounded noise)
to form the sample (rt, ỹt). Consistent with the work of Chowdhury & Gopalan (2017), we model
the unknown function f as a realization of a Gaussian process (GP) Williams & Rasmussen (2006)
that is fully specified by its prior mean µ(r) and covariance κ(r, r′) for all r, r′ ∈ Rn where κ is a
kernel function chosen to characterize the correlation of the observations between any two inputs r
and r′; a common choice is the squared exponential (SE) kernel κ(r, r′) ≜ exp(−∥r − r′∥22/(2m2))
with a length-scale hyperparameter m that can be learned via maximum likelihood estimation from
observations. Given a column vector yt ≜ [ỹτ ]

⊤
τ=1,...,t of noisy observations at previous inputs

r1, . . . , rt, the posterior belief of f at any new input r′ is a Gaussian distribution with the following
posterior mean and variance:

µt(r
′) ≜ κ⊤

t (r
′)(Kt + ζI)−1yt

σt(r
′) ≜ κ(r′, r′)− κ⊤

t (r
′)(Kt + ζI)−1κt(r

′)
(1)

where κt(r
′) ≜ [κ(r′, rτ )]

⊤
τ=1,...,t is a column vector, Kt ≜ [κ(rτ , rτ ′)]τ,τ ′∈1,...,t is a t×t covariance

matrix, and ζ > 0 is viewed as a free hyperparameter that depends on the problem setting Chowdhury
& Gopalan (2017). Using equation 1, the BO algorithm selects the next input query rt+1 by optimizing
an acquisition function, such as minimizing the lower confidence bound (LCB) acquisition function
Srinivas et al. (2010): rt+1 = argminr µt(r)− βt+1σt(r) with an exploration parameter βt+1. In
addition, BO can also handle constraints on inputs r Gardner et al. (2014). The cumulative regret
(for T BO iterations w.r.t. a minimization problem) RT ≜

∑T
t=1[f(rt) − f(r∗)] is used to assess

the performance of a BO algorithm Chowdhury & Gopalan (2017); Tay et al. (2023) where f(r∗) is
the true function minimum. A lower cumulative regret indicates a faster convergence rate of the BO
algorithm. We provide a theoretical analysis of DUET’s cumulative regret in Sec. 4.

2.2 PROBLEM SETTING: OPTIMIZING DATA MIXTURES

In this subsection, we formally describe our problem setting. Suppose that we have N training
datasets D ≜ {D1, D2, . . . , DN} from N different domains (e.g., Wikipedia, ArXiv for language
tasks). Hence, D is the union of training datasets from each domain. Let Leval(θ) be the unseen
evaluation task loss w.r.t. an ML model parameterized by θ. This loss can only be observed as a
coarse feedback from the unseen evaluation task and does not have a closed, mathematical form.
Our goal is to find an optimal data mixture X ∗ ∈ D (a set of training data points) and learn model
parameters θX∗ such that the unseen evaluation task loss Leval is minimized:

min
X∈D

Leval(θX )

s.t. |X | = M,
(2)

where θX ≜ argminθ Ltrain(X , θ) is the model parameters learnt in a standard supervised learning
manner (e.g., gradient descent) from a chosen data mixture X and Ltrain is a standard model training
loss (e.g., cross-entropy loss for LLM prediction). M is a practical constraint that can be decided
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beforehand Mirzasoleiman et al. (2020) and is used to ensure the selected data mixture is not too large.
In practice, evaluation task loss Leval can also be interchanged with other measures to be maximized
(e.g., accuracy, user ratings).

3 OPTIMIZING TRAINING DATA MIXTURES USING DUET

Unfortunately, solving problem (2) is challenging because the unseen evaluation task loss Leval
does not have a closed, mathematical form and finding the optimal data mixture X ∗ directly is a
high-dimensional discrete optimization problem if the size of each dataset in D large. To alleviate
this, DUET adopts a global-to-local approach to optimize the training data mixture. At a global level,
DUET exploits feedback Leval from the unseen evaluation task to iteratively refine the mixing ratio of
training data domains in D. At a local level, DUET uses IF as a data selection method to remove
low-quality data points from the data mixture at each iteration.

3.1 REPARAMETERIZATION OF THE OPTIMIZATION PROBLEM

To perform DUET effectively, we first reparameterize the objective function of problem (2) into a
bilevel optimization problem that, at the outer level, depends on the mixing ratio r ∈ RN of training
data domains (entries in r sum to 1). This reparameterized problem has a unique structure that can be
solved by interleaving data selection methods with BO, which we cover in Sec. 3.2 & 3.3.
Theorem 3.1. X ∗, the optimal set of data points from D, is the solution of the original problem (2)
iff r∗ = ratio(X ∗) is the optimal mixing ratio solution of the reparameterized problem:

min
r∈RN

min
X∈Sr

Leval(θX ), (3)

where Sr ≜ {X : X ∈ D, ratio(X ) = r, |X | = M} and ratio(X ) = r means that the data points in
X satisfies the given ratio r ∈ RN from N data domains and ∥r∥2 = 1.

The proof can be found in App. B.1, where we show that X ∗, the solution data mixture of original
problem (2), satisfies a mixing ratio r∗ that is also the solution of the reparameterized problem (3).
Notice that this reparameterized problem consists of an outer and inner optimization problem, and
the outer problem requires us to find the optimal mixing ratio r∗. DUET aims to solve problem (3)
in an iterative manner. At the outer optimization level (global), DUET uses BO to exploit feedback
from the evaluation task to propose a promising mixing ratio rt at each iteration t. At the inner
optimization level (local), we introduce a sampling strategy that uses the IF values of each data
point w.r.t. its local domain to retrieve a high-quality subset of data points that satisfies the proposed
mixing ratio rt and approximately solves the inner problem. By repeating the process iteratively, our
approach theoretically converges (theorem. 4.1) to the optimal data mixture and outperforms other
baselines in our empirical experiments (Sec. 5.2).

To illustrate DUET qualitatively, consider an unseen evaluation task consisting of an LLM being
deployed to converse with users that frequently ask layman scientific questions. At first, an LLM fine-
tuned on data from different domains with uniform ratio cannot perform optimally on the evaluation
task, since most of the fine-tuning data are irrelevant. In the outer optimization problem, BO in
DUET uses the feedback from the task to automatically place more weight w.r.t. mixing ratio r on the
Wikipedia domain (better for layman scientific questions). In the inner optimization problem, DUET
uses IF to remove low-quality data points (e.g., stub articles) from Wikipedia data Shen et al. (2017)
and allows us to estimate the solution of the inner problem more accurately (Sec. 3.2). In the next
few sections, we provide details and theoretical insights involved in solving both the inner (using IF
as a data selection method in Sec. 3.2) and outer problem (using BO in Sec. 3.3).

3.2 USING DATA SELECTION METHODS FOR INNER PROBLEM

The inner optimization problem seeks to find the best-performing data mixture that satisfies the given
mixing ratio r from the outer level. In this section, we propose an IF-driven estimator that relies on
sampling to approximately solve the inner problem given a data ratio r:

X ∗
r ≜ argmin

X∈Sr

Leval(θX ), (4)

4
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where Sr ≜ {X : ratio(X ) = r, |X | = M}. To solve the inner problem, we need to find a subset
of data X ∗

r that yields the lowest evaluation task loss y∗r = Leval(θX∗
r
) while still constrained to

the proposed mixing ratio r. A simple approach, based on prior works on estimating distribution
extrema de Haan (1981); Lee & Miller (2022), is to randomly sample k different data mixtures
from Sr. This yields k samples of training data mixtures {X1, . . . ,Xk} (each satisfying the mixing
ratio r), in which a uniform random estimator for y∗r can be obtained by checking the evalu-
ation task loss of the ML model trained on each data mixture sample and taking the minimum:
ỹ∗r = minXi

{Leval(θX1
), . . . ,Leval(θXk

)} and X̃ ∗
r = argminXi

{Leval(θX1
), . . . ,Leval(θXk

)} as the
solution estimate of inner problem (4). The estimator ỹ∗r is the 1st-order statistic Arnold et al. (2008)
and a random variable. While consistent (i.e., as we increase the sampling size k, we can estimate the
solution of Eq. 4 more accurately), the uniform random estimator ỹ∗r has high variance (we provide
empirical evidence in Fig. 6) because from k uniformly random data mixture samples, it is unlikely
we can select the optimal data mixture.

We aim to improve the quality of estimator ỹ∗r by using data selection methods Sim et al. (2022);
Wang et al. (2024a) in our sampling process to improve the chance of selecting a data mixture that
results in a smaller evaluation task loss. Specifically, we want to reduce the estimator’s variance or
bias (w.r.t. a fixed sampling size k) by increasing the chance of sampling high-quality data points
(conversely, reduce the chance of sampling low-quality data points) from each data domain, before
using it to train an ML model. To do so, we incorporate Influence function Koh & Liang (2017) (IF),
a popular data selection method that identifies high-quality data points Saunshi et al. (2023) into
our estimator ỹ∗r , and show empirically that doing so improves our estimation of the inner problem
solution by reducing our estimator’s bias and variance. In App. A.4, we also explore and discuss the
use of other data selection methods, such as coresets Mirzasoleiman et al. (2020) and diversity-driven
subset selection Wang et al. (2024b). In general, we found the use of IF the most practical due to its
ease of implementation and efficiency.

IF-driven estimator. We construct the IF-driven estimator in the following manner: first, for each
dataset Di ∈ D from the training domains, we train or fine-tune a local model on that dataset
(e.g., train a model from Wikipedia data, a model from ArXiv etc.). This produces N different ML
models. Second, we derive the IF value of every training data point w.r.t. the trained ML model
for its respective domain (this can be computed and stored beforehand; more details in App. A.3).
Lastly, given a mixing ratio r proposed at each iteration, we perform weighted sampling from each
domain based on each data point’s IF value within the domain dataset (instead of uniform sampling
as mentioned previously) until we satisfy the mixing ratio r. From hereon, we refer to this sampling
process as IF-weighted sampling. Hence, for each data domain, there is a higher chance to sample a
data point with a higher IF value. This yields a single sample of data mixture X IF . By performing
IF-weighted sampling k times, we obtain k samples of IF-weighted data mixtures {X IF

1 , . . . ,X IF
k },

in which we obtain a new IF-driven estimator:

ỹ∗r = min
Xi

{Leval(θX IF
1

), . . . ,Leval(θX IF
k

)}, (5)

which we use to estimate the solution of inner optimization problem (4). The key difference between
the IF-driven estimator and the uniform random estimator is that the IF-driven estimator places higher
emphasis on selecting data with high IF values, and prior works Saunshi et al. (2023) have regarded
data points with higher IF values as of higher quality. Next, we provide empirical evidence into why
the IF-driven estimator performs better than the uniform random estimator in finding better data
mixtures.

In Fig. 2, we have a simple setting of mixing data from two domains to train an ML model to
maximize an evaluation task accuracy (while Eq. 4 & 5 consider the minimization case, we can use
max instead of min for the maximization case). Here, we use a fixed mixing ratio r of 1:1. The
optimal data mixture satisfying this ratio attains the evaluation task accuracy indicated by the red
line and is also the solution of the inner optimization problem (in this example, we obtain this by
iterating through all possible data mixtures in a brute-force manner). Ideally, we want our estimator
to be as close to the red line as possible. Next, we plot the empirical distribution of the uniform
random estimator and IF-driven estimator. Empirically, the IF-driven estimator (green histogram)
has a lower variance and bias than the uniform random estimator (gray histogram), producing a closer
estimate to the true solution (red line). Therefore, the IF-driven estimator ỹ∗r estimates the solution of
Eq. 4 more accurately with lower bias and variance.
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Figure 2: Empirical distribution of the uniform random and IF-driven estimator ỹ∗r . Red line is the
true inner problem solution that we are estimating.
Next, we would like to characterize how close the evaluation task loss of data mixture obtained from
our IF-driven estimator ỹ∗r is to the optimal evaluation task loss y∗r w.r.t. a given data ratio r. To
do so, we theoretically analyze the estimator’s empirical distribution. From our experiments, the
sampling distribution of the evaluation task loss of each data mixture sample Leval(θX IF ) is similar
to a truncated exponential distribution (we provide more evidence in App. A.5). Based on this, the
following theorem characterizes how well the IF-driven estimator ỹ∗r estimates y∗r .
Theorem 3.2. Let {X IF

1 , . . . ,X IF
k } be k samples of data mixtures drawn from Sr using IF-weighted

sampling. Furthermore, assume each independent sample Leval(θX IF
i

) follows the shifted truncated
exponential distribution y∗r +expt(λ, c), for i = 1, 2, . . . , k where expt(λ, c) is a truncated exponen-
tial distribution governed by rate parameter λ and truncated at c > 0. Then, the IF-driven estimator
ỹ∗r defined in Eq. 5 is a random variable: y∗r + ϵ, where y∗r is the true inner problem solution of Eq. 4
and ϵ is a random noise variable with probability density function:

pdfϵ(u) =
λke−λu

1− e−λc

(
e−λu − e−λc

1− e−λc

)k−1

on u ∈ [0, c] .

The proof is shown in App. B.2 and computes the probability distribution of the 1st order statistic
(in which our estimator uses) of a truncated exponential distribution. In App. B.4, we also provide
details to help readers extend our analysis to other empirical sampling distributions as long as they are
sub-Gaussian Chowdhury & Gopalan (2017). This theorem indicates that the support of our IF-driven
estimator’s distribution is on [y∗r , y

∗
r + c] and so this estimator is positively biased. Furthermore,

the pdf indicates that the IF-driven estimator is consistent, since the estimation error ϵ reduces
asymptotically to 0 as the sampling size k increases. Surprisingly, our experiments (Sec. 5) show that
using k = 1 is enough to select good data mixtures, underscoring the effectiveness of the IF-driven
estimator in finding high-quality data mixtures. Theorem 3.2 will be used in our theoretical analysis
of DUET’s convergence in Sec. 4.

3.3 USING BAYESIAN OPTIMIZATION FOR OUTER PROBLEM

With the IF-driven estimator introduced to estimate the inner optimization problem solution, we
shift our focus to solving the outer optimization problem of problem (3), which aims to find the
optimal data mixing ratio r∗ for the unseen evaluation task. Since the solution of the inner problem
y∗r = minX∈Sr

Leval(θX ) depends only on the mixing ratio r, we can succinctly define a function
f(r) ≜ y∗r = minX∈Sr

Leval(θX ), where for a given mixing ratio r, we use the IF-driven estimator
to estimate a solution for the inner problem, producing f(r). As such, the outer optimization problem
of problem (3) can be rewritten into:

minr f(r). (6)

where r ∈ RN is the mixing ratio over the N training domains and the sum of entries in r is
constrained to 1 (since it is a ratio). DUET uses BO with constraints of ∥r∥2 = 1 (Sec. 2.1) to find
the optimal data mixture ratio r∗ to solve outer problem (6). BO is suitable for solving this problem
for a few reasons. First, evaluating f requires us to use the IF-driven estimator to estimate the inner
optimization problem solution and thus f is a black-box function with no closed, mathematical form;
BO is a principled and popular framework to optimize such black-box functions Garnett (2023);
Pyzer-Knapp (2018). Second, we can only estimate the inner problem solution (Theorem 3.2) using

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a paper at DATA-FM workshop @ ICLR 2025

our IF-driven estimator introduced in the previous section. Hence, this implies we can only obtain
noisy observations f(r) + ϵ, where ϵ is a random noise variable with the same distribution as that in
theorem 3.2; fortunately, BO handles noisy function observations gracefully Srinivas et al. (2010);
Chowdhury & Gopalan (2017) during the optimization process, allowing us to find the optimal mixing
ratio eventually (theoretical results shown in Sec. 4).

3.4 INTERLEAVING THE IF-DRIVEN ESTIMATOR AND BO

DUET uses BO at the outer level and IF-driven estimator at the inner level to iteratively optimize the
data mixture, solving problem (3). We describe DUET in Algorithm. 1.

Algorithm 1 DUET: Optimizing Data Mixtures for Unseen Evaluation Task

1: Input: N training datasets from N domains {D1, . . . , DN}. Computed IF values of each data
point (App. A.3) w.r.t. its domain dataset and locally trained model. Initial observation of data
mixture ratio and evaluation task performance: D0 ≜ {(r0, ỹ0)}, SE kernel κ, sampling size k,
parameter βt for acquisition step and total number of BO iterations T .

2: for t = 1, . . . , T do
3: rt = argminr µt(r)− βtσt(r) (BO acquisition step)
4: IF-weighted sampling to obtain k samples of data mixtures {X IF

1 , . . . ,X IF
k } (Sec. 3.2).

5: IF-driven estimator at iteration t:
ỹ∗t = minXi

{Leval(θX IF
1

), . . . ,Leval(θX IF
k

)}.
6: Keep track of best performing data mixture X ∗

t = argminXi
{Leval(θX IF

1
), . . . ,Leval(θX IF

k
)}.

7: Dt = Dt−1 ∪
{(

rt, ỹ∗t

)}
8: Update the GP posterior and κ with updated observations Dt+1 (Sec. 2.1).
9: end for

10: X ∗ = argminX∗
i ∈{X∗

1 ,...,X∗
T } Leval(θX∗

i
)

At iteration t, DUET uses the LCB acquisition function Srinivas et al. (2010) on the GP posterior to
propose a candidate mixing ratio rt for our data domains (Line 3). Using the proposed mixing ratio
rt, we use IF values of each data point to compute the IF-driven estimator ỹ∗r and keep track of the
best performing data mixture X ∗

t at current iteration t (Line 4, 5 and 6). Note that the data mixture
X ∗

t at each iteration t satisfies the proposed mixing ratio rt. Next, we include (rt+1, ỹ∗t ) into our
historical observations Dt+1 (Line 7) and update our GP posterior (Line 8). After which, we repeat
the entire process, until the budget of T BO iterations is exhausted. In the end, we recover the best
performing data mixture X ∗ (Line 10).

DUET can be implemented easily by LLM practitioners. Once a data mixture is sampled using the
IF-driven estimator to fine-tune the LLM at each BO iteration, the trained LLM can be deployed for a
small period of time (e.g., one day on a small subset of users) to gather feedback (e.g., user rating)
from conversations with human users. Then, DUET proposes a new data mixing ratio to refine the
training data mixture. As seen from our experiments (Sec. 5), the model performance on the unseen
evaluation task improves as DUET progressively optimizes the data mixture to be more relevant to
the task.

4 THEORETICAL ANALYSIS

4.1 CONVERGENCE ANALYSIS USING CUMULATIVE REGRET

We analyze the convergence rate of DUET using the growth of attained cumulative regret Chen et al.
(2024b) R̃T =

∑T
t=1 |ỹ∗rt − f(rt)| =

∑T
t=1 |f(r∗) + ϵt − f(rt)| for T BO iterations. The attained

cumulative regret consists of two terms, where |f(r∗)− f(rrt)| indicates the quality of mixing ratio
rt proposed at each iteration while ϵt indicates how well we can estimate the inner problem solution
at every iteration. By analyzing the attained average regret R̃T /T with T → ∞, the following
theorem helps us understand how close our algorithm converges Berkenkamp et al. (2019) to the
optimal evaluation task loss with increasing number of BO iterations T .
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Theorem 4.1. Let f be the outer problem objective defined in Eq. 6 with bounded RKHS norm:
||f ||κ =

√
⟨f, f⟩κ. Also, let our IF-driven estimator for the inner problem solution be governed by the

error distribution introduced in Theorem 3.2 with constant c and λ = 1. Let Ac,k =
c2(1−e−c− c

2 )
k−1

(1−e−c)k
,

where k is a fixed predecided sampling size. Then, running DUET over f using the LCB acquisition
function found in (Chowdhury & Gopalan, 2017) at each BO iteration t = 1, . . . , T yields the
following attained average regret Chen et al. (2024b) upper bound with probability at least 1− δ:

lim
T−→∞

R̃T

T
≤ 6( 4

√
δ +

√
k)

4
√
δk

+ 2Ac,k +

√
2Ac,k

4
√
δ

.

The proof is provided in App. B.3 and bounds |f(r∗)− f(rrt)| and ϵt independently using BO regret
analysis Chen et al. (2024b); Chowdhury & Gopalan (2017) and the error distribution defined in
Theorem. 3.2. Our theorem’s average regret indicates how close our algorithm converges to the
optimal evaluation task loss with increasing BO iteration T and different choices of sampling size
k. Notice that because c characterizes the error of our estimator in Theorem. 3.2, a larger c would
decrease Ac,k and our average regret. In addition, a larger sampling size k reduces the estimation error
of the inner problem (Theorem. 3.2), decreasing Ac,k and also reduces our regret bound, allowing us
to achieve a better-performing data mixture.

In practice, using a large k is computationally expensive because we need to use our IF-driven
estimator to sample data mixtures and train our ML models k times at each iteration (selecting one
that attains the smallest Leval). Fortunately, our experiments (Sec. 5.2) show that setting k = 1 is
sufficient to achieve better results than other baselines. If computational resource is not an issue,
we can also consider setting an adaptive sampling size Chen et al. (2024b) that increases w.r.t. each
iteration t.

5 EXPERIMENTS AND DISCUSSION

In this section, we conduct extensive experiments to showcase the effectiveness of DUET compared
to other baselines. Our experimental evaluation pipeline is constructed as follows: first, we select data
mixtures from different data domains with DUET or other baselines. Second, we train or fine-tune an
ML model according to the selected data mixture. Third, we deploy the ML model on the unseen
evaluation task to evaluate how well the model has performed. In the next subsection, we provide
more details next on how our experiment is setup with varying training and evaluation data domains
to showcase DUET’s effectiveness even in traditionally difficult out-of-domain scenarios. Our code
is in the supplementary material folder.

5.1 EXPERIMENTAL SETUP

Our experiments are carried out on two broad classes of evaluation tasks. The first consists of image
classification tasks by a VGG-16 model Simonyan & Zisserman (2015) over different object domains
Russakovsky et al. (2015); Xiao et al. (2017). The second consists of LLM evaluation tasks by a
Llama-8b-Instruct model Touvron et al. (2023) across different knowledge domains. The image
training data consist of binary classification of 4 different clothing types (Shirt, Boots, Sandals,
Bags) from the FashionMNIST dataset Xiao et al. (2017) and cat/dog classification from the Dog
& Cat dataset Elson et al. (2007) (abbreviated as Dog in our plots). The training data domains for
LLM evaluation consists of 9 topics: Wikitext Merity et al. (2016), gsm8k Cobbe et al. (2021),
PubmedQA Jin et al. (2019), HeadQA Vilares & Gómez-Rodrı́guez (2019) , SciQ Welbl et al.
(2017), TriviaQA Joshi et al. (2017), TruthfulQA Lin et al. (2022), Hellaswag Zellers et al. (2019),
and CommonsenseQA Talmor et al. (2019). These domains are chosen specifically for their diversity
to mimic topics seen by user-facing LLMs. In our experiments, we vary the difficulty of the unseen
evaluation task by adjusting the training and evaluation data domains (see captions of Fig. 3 & 4 for
more information).

We compare our algorithm with several other baselines: DoReMi is a DRO-driven approach which
optimizes the data mixture so that the trained ML model performs well for any evaluation task domain
distributions (the original algorithm is used for pre-training, but in our LLM setting we fine-tune our
LLM instead). The Uniform weights baseline samples from the training data domains uniformly

8
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to produce a data mixture of uniform ratio across different domains. We use DUET with a few
different data selection methods: DUET-IF is our main method that uses our IF-driven estimator
(Eq. 5) to select data mixtures at each BO iteration; DUET-UR, introduced in Sec. 3.2, uses the
uniform random estimator and randomly selects data mixtures that satisfy the proposed mixing ratio;
DUET-RH (Remove Harmful) removes the 20% of data points with the lowest IF values from each
data domain, before random sampling from the leftover data points. Other data selection baselines
are discussed and shown in App. C.3. We use a sampling size of k = 1 and BO iterations T = 30 for
image classification and T = 10 for language tasks. We also constrained the total number of selected
data points to M = 10000.

5.2 MAIN RESULT

(a) Bag & Boots (b) Sneaker & Shirt (c) Bag (d) Shirt, Dog

Figure 3: Comparison of DUET’s convergence with other baselines for unseen image classification
task domains (higher is better) over 30 iterations. The subcaptions denote the evaluation task domains.
Underlined evaluation tasks are more difficult because the evaluation task domains are removed
from the training data (i.e., they are out-of-distribution).

(a) TruthfulQA (b) gsm8k (c) PubMedQA, HeadQA (d) Commonsense, Trivia

Figure 4: Results on unseen LLM evaluation task domains over 10 iterations based on the same
setting as that in Fig. 3 (higher is better). The subcaptions denote the evaluation task domains.
Underlined evaluation tasks are more difficult because the evaluation task domains are removed
from the training data (i.e., they are out-of-distribution). All results are done in a 0-shot setting with
no special prompts.

DUET finds better data mixtures. Our result (Fig. 3 & 4) shows that in different evaluation tasks,
DUET finds data mixtures that produce better-performing ML models within a few iterations of
feedback loops. The first column in Fig. 3 and 4 (for both image classification and LLM) consists of
a relatively easier task where the evaluation task domain is found in the training task domains. In this
case, DUET (green plot) uses feedback from the evaluation task to find the optimal data mixture with
more emphasis on the relevant training data domain. On the other hand, DoReMi (orange dotted line)
cannot adapt to the evaluation task and hence produces worse data mixtures. In the 2nd, 3rd and 4th
columns, we increased the difficulty of our evaluation task by removing the evaluation task domain
from our training domains (so, the task is out-of-domain). Surprisingly, even for these cases, DUET
can still use the unseen evaluation task feedback to automatically improve the quality of the data
mixture, achieving better model performance. This is because data from certain training domains
could still be useful for the out-of-domain evaluation task (e.g., Wikitext data can still be helpful
for mathematical questions in gsm8k). Hence, DUET uses feedback from the unseen evaluation
task to place higher weights on more relevant training data domains. In App. C.2, we provide more
experimental results for different combinations of evaluation tasks to showcase the effectiveness of
DUET.
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IF is an effective data selection method. Our result also shows that DUET-IF, which uses the
IF-driven estimator (Eq. 5) to place more sampling emphasis on data points with high IF values,
performs better than DUET-UR and DUET-RH. This showcases the effectiveness of using IF values
for DUET to work effectively, as compared to other data selection methods.

5.3 ABLATION STUDY ON DIFFERENT COMPONENTS OF DUET

Next, we perform ablation studies to qualitatively analyze the influence of BO and different data
selection methods on DUET’s convergence to the optimal evaluation task performance. For clarity
purpose, we only use the results for one evaluation task for our analysis. Fig. 5 shows that by naively

(A) Performance 
gain from BO 
alone.

(B) Performance 
gain from data 
selection 
method using IF.

(C) 
Performance 
difference 
between 
different data 
selection 
methods.

Figure 5: Performance gains attained by different components of our algorithm. BO and data selection
methods both increase the performance of the ML model on an unseen evaluation task.

using a uniform data mixture and training an ML model, we can only achieve an evaluation task
performance given by the red dotted line. With only BO, DUET automatically reconfigures the
mixing ratio and attains performance gain (A) over the uniform training data mixture. Next, by
incorporating data selection methods, such as using IF values in DUET-IF, we attain even more
performance gains (B) indicated by the green plot. This is because using IF values helps to retrieve
higher-quality data points at each iteration and reduces the estimation error of our inner problem
(Sec. 3.2), yielding higher-quality data mixtures. Lastly, different data selection methods have varying
effectiveness and yield different performance gains for DUET (C). Here, we see that the IF-driven
estimator attains the best performing data mixture in DUET-IF as compared to other data selection
methods (e.g. DUET-RH). We also show more ablation studies w.r.t. the use of larger sampling size
k and other diversity-driven data selection methods in App. C.3. In general, our results show that
increasing k improves the convergence of DUET. We also found that diversity-driven data selection
methods Wang et al. (2024b) are too computationally expensive to be practical in our setting even
with a greedy implementation Chen et al. (2018).

6 CONCLUSION

Our paper proposes DUET, a novel algorithm that exploits multiple rounds of feedback from a
downstream unseen evaluation task to automatically optimize training data mixture. We provide
theoretical guarantees of DUET and show that it finds better data mixtures in a variety of image
and LLM evaluation tasks as compared to other conventional baselines. In light of the growing
importance of our problem setting where we do not know the data in an unseen evaluation task is not
known, we hope our work inspires future research to use coarse feedback from the evaluation task to
refine the training data mixture for ML models.
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A ADDITIONAL DISCUSSIONS

A.1 REAL-WORLD EXAMPLES OF OUR PROBLEM SETTING

In our problem setting, (a) there is no direct access to the data (e.g., its domain, distribution, or labels)
involved in the unseen evaluation task but (b) multiple rounds of coarse feedback (details covered
in Sec. 2.2) can be gathered from the task using a trained ML model. Here, we provide several
real-world examples in which such a setting occurs.

End-to-end encrypted conversations between LLM and users. This setting is specific to the
conversational setting between a trained LLM and human users. LLM owners are interested in fine-
tuning an LLM to converse well with some human-user demographics but due to real-world privacy
concerns Li et al. (2024), conversations between a deployed LLM and users are end-to-end encrypted
during test-time (openai.com/enterprise-privacy). So, an LLM owner does not have
any knowledge of the conversation domain or the (unlabeled or labeled) data seen during test-time.
Instead, they only receive a feedback on how well the LLM has performed in the conversation (e.g.,
ratings from the human user, how long each user stays on the applicaton). The LLM owner can
collect multiple rounds of feedback over a period of time. Hence, they can exploit this feedback to
iteratively refine the training data for the ML model. Many chat-driven applications (e.g., whatsapp,
telegram) nowadays use end-to-end encrypted chats, so our problem setting is relevant here.

Model marketplace. In addition, there are other scenarios in which a model owner needs to improve
an ML model without having access to the data involved in the unseen evaluation task. For instance,
an ML model owner might rent or sell an image classification model in a model marketplace (e.g.,
https://aws.amazon.com/marketplace/solutions/machine-learning). How-
ever, the consumer might give feedback (e.g., how often the model makes mistakes) to the ML model
owner in hope that the ML model owner can improve the model’s performance on its own evaluation
task. Furthermore, the images used by the consumer in its evaluation task are considered sensitive
data, so the ML model owner does not know any data involved in the unseen evaluation task. Hence,
the ML owner can only rely on feedback from the consumer to improve the model’s performance.

A.2 MORE RELATED WORKS

Recently, a large class of data selection methods utilizing coresets, diversity or influence functions
Zhang et al. (2024); Xia et al. (2024); Koh & Liang (2017) have been introduced to retrieve a smaller
subset of data from an existing dataset. These data selection methods have become popular because
they reduce training dataset size (which is an attractive feature when traning LLMs) and prior work
Xia et al. (2024) showed that training a model with strategically selected data points allows it to
perform better. However, these works, when used in isolation, do not work well in our setting because
they do not exploit feedback from an unseen evaluation task. For example, even if we can retrieve a
high-quality data subset from an original dataset of a training domain, that domain might not even be
relevant to the unseen evaluation task. Hence, data selection methods on their own are not applicable
to our setting. Instead, our paper’s algorithm interleaves BO and data selection method together to
exploit feedback from the unseen evaluation task to optimize our training data mixture.

A.3 INFLUENCE FUNCTION AND ITS CALCULATIONS

Influence function (IF) Koh & Liang (2017) has been developed to study the influence of a single data
point on an ML model’s predictions. In this section we provide a summary of IF and its derivation.
The influence of a data point z on the loss of a test data point (or a set of test data points) ztest for an
ML model parameterized by θ is given by the closed-form expression:

IFz,ztest = −∇θL(ztest, θ)
TH−1

θ ∇θL(z, θ), (7)

where L is the loss function of the ML model and H is the hessian of the ML model w.r.t. parameters
θ. In short, a data point is deemed more ”influential” in reducing the model loss on a test data point
if it has a higher IF value. As such, IF values have also become a popular method in selecting data
points which are more helpful in training an ML model.
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In our work, we segregated a validation dataset from each data domain’s dataset, in which we use
to derive the IF value of every training data point in that domain w.r.t. the validation dataset (after
training a ML model over the training data). Then, we normalize these IF values (for data points in
each data domain), allowing us to perform weighted random sampling at every BO iteration of our
algorithm, obtaining a data subset of size n for a given data domain. This IF-weighted sampling is
repeated for every data domain until we sample a dataset fulfilling the proposed mixing ratio at every
BO iteration. Hence, the resulting data mixture contains more proportion of high-quality data points
(based on IF values). A summary of the IF-weighted sampling process for one data domain is given
in Alg. 2. In our algorithm, we repeat this procedure for every data domain.

Algorithm 2 IF-weighted sampling for one data domain containing dataset D

1: Input: number of data points n required for the given data domain (taken from the mixing
ratio proposed at current iteration). Dataset D = {x1, x2, ..., x|D|}, Influence value of each data
point in data domain dataset D: I ≜ [I1, I2, . . . , I|D|], small constant ϵ to avoid degenerate-case
normalization.

2: Normalize the IF values into probabilities: Inormalized ≜

[ I1+min (I)+ϵ∑
I , I2+min (I)+ϵ∑

I , . . . ,
I|D|+min (I)+ϵ∑

I ]

3: Perform weighed sampling from dataset D according to weights given by Inormalized n times.

Precomputing IF values. In addition, we just need to precompute the IF values of every data point
once before reusing them repeatedly at every BO iteration. This greatly improves our algorithm’s
efficiency and runtime, as compared to other methods (see next section).

A.4 USING OTHER DATA SELECTION METHODS TO SOLVE INNER OPTIMIZATION PROBLEM

Data selection methods Albalak et al. (2024); Guo et al. (2024) have been used to retrieve a represen-
tative subset of data from larger datasets. We note that in our work different data selection methods
can be interchanged to produce different estimators for the inner problem solution in line 4 and 5
of Algorithm 1. For example, instead of using the IF-driven estimator which performs weighted
sampling based on each data point’s IF values, one could simply remove data points from each data
domain whose IF value falls below a certain threshold because they have a higher chance of being
low-quality (Koh & Liang, 2017). However, our experiments (Sec. 5.2) have shown that this (labeled
as DUET-RH in Fig. 3 & 4) does not work as well as the IF-driven estimator.

Other data selection methods can be considered as well. For example, coresets Zhang et al. (2024)
have been used to distill a larger dataset into a smaller one while retaining some data properties (e.g.,
training loss gradients, the final performance of the trained ML model). This can also be used as an
estimator of the inner problem solution: when a mixing ratio r is proposed by BO, we can derive the
number of data points needed for each data domain (e.g., n number of data points for data domain A
etc.). Then, we can retrieve a size n coreset from data domain A (and also do this similarly for the
other data domains), before combining each coreset into the final dataset used to train the ML model.
Despite being conceptually simple, coresets typically require much more computational resources
because we need to account for the interaction between every data point. Furthermore, we need to
recompute the coreset for every BO iteration because it depends on the mixing ratio, which changes
every iteration. In contrast, IF values do not depend on the mixing ratio and can be precomputed and
stored beforehand.

Lastly, uncertainty or diversity-driven Wang et al. (2024b) data selection methods can be used to
select subsets of data that satisfy the proposed mixing ratio at every BO iteration. However, they also
demand large amount of computational resources and require recomputation at every iteration. In
App. C.3, we provided additional experimental results using the log-determinant Wang et al. (2024b);
Chen et al. (2018), which captures the diversity of a sampled dataset, as a method to select data
mixtures when estimating the solution of the inner problem. However, our results show that such
methods do not work better than IF in DUET and are computationally expensive, making them
unsuitable for our problem setting.
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(a) Empirical sampling distribution of (b) Empirical estimator distribution

Figure 6: (a): Empirical distribution of evaluation task accuracy Leval(θX ) from each data mixture
sample X (b): empirical distribution of the estimators introduced in Sec. 3.2. The green histogram
is our method of performing IF-weighted sampling to obtain data mixtures. The gray histogram is
simply randomly sampling data mixtures with no data selection methods. The purple histogram is the
method of removing 20% of the data points with the lowest IF values.
A.5 EMPIRICAL DISTRIBUTIONS OF ESTIMATORS FROM DIFFERENT DATA SELECTION

METHODS

We have introduced the IF-driven estimator in Sec. 3.2 as a method for us to estimate the solution
of the inner problem. The IF-driven estimator performs IF-weighted sampling on data points from
each data domain to produce data mixture samples (Eq. 5) constrained to a data mixing ratio r. Each
data mixture sample is then used to train an ML model before obtaining a feedback on how well it
has performed on the unseen evaluation task. Hence, this feedback on each data mixture sample is
also a sampling distribution that we can empirically observe. Fig. 6a shows the sampling distribution
of the evaluation task performance obtained from each data mixture. Empirically, we see that the
negative of this distribution is similar to a truncate exponential distribution mentioned in Theorem
3.2 (We consider the negative of this random variable because our paper considers the evaluation task
loss, but empirically we consider maximizing the evaluation task accuracy instead). In addition, the
truncated exponential distribution is appropriate because it implies the unseen evaluation task loss is
upper bounded at y∗r + c for a non-negative constant c; this is reasonable for many real-world settings
(e.g., user rating is bounded).

Next, we plot the empirical distribution of the IF-driven estimator introduced in Eq. 5 in Fig. 6b. The
distribution coincides with the estimator’s distribution (formally, y∗r + ϵ) introduced in Theorem 3.2.
From the estimator’s distribution, we see that the IF-driven estimator (green histogram) has the lower
bias and variance as compared to other estimators.

B PROOFS

B.1 PROOF OF THEOREM 3.1

Theorem 3.1. X ∗, the optimal set of data points from D, is the solution of the original problem (2)
iff r∗ = ratio(X ∗) is the optimal mixing ratio solution of the reparameterized problem:

min
r∈RN

min
X∈Sr

Leval(θX ), (3)

where Sr ≜ {X : X ∈ D, ratio(X ) = r, |X | = M} and ratio(X ) = r means that the data points in
X satisfies the given ratio r ∈ RN from N data domains and ∥r∥2 = 1.

Proof. Theorem 3.1 can be proven in two steps. First, we restate the theoretical results from (Chen
et al., 2024b) in Lemma B.1. This Lemma reparameterizes any optimization problem minx f(x)
(while retaining the solution set exactly) under some regular assumptions:

Lemma B.1. Let x ∈ Rd and y ∈ Rn. Also, consider well-defined functions f over Rd −→ R and g
over Rd −→ Rn. Then x∗ is a solution of argminx f(x) if and only if y∗ = g(x∗) is a solution of the
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second optimization problem over domain {y | ∃x, g(x) = y} :

min
y

min
x

f(x)

s.t. g(x) = y

The proof of Lemma B.1 can be found in Lemma C.1 of (Chen et al., 2024b). Next, we show that the
objective function of problem 3 introduced in our optimization problem satisfies these assumptions,
allowing us to apply the Lemma B.1 directly.

In our setting, we set x ≜ X , f(x) ≜ Leval(θX ) and g(x) ≜ ratio(X ). We can see that both functions
are well-defined, where for any chosen input X , there certainly exists an observed evaluation task
loss Leval(θX ) and mixing ratio ratio(X ). Lastly, by setting y ≜ r, our optimization problem in
problem (3) is of the identical form of the optimization problem shown in Lemma B.1. Therefore,
our reparameterization process is valid.

B.2 PROOF OF THEOREM 3.2

Theorem 3.2. Let {X IF
1 , . . . ,X IF

k } be k samples of data mixtures drawn from Sr using IF-weighted
sampling. Furthermore, assume each independent sample Leval(θX IF

i
) follows the shifted truncated

exponential distribution y∗r +expt(λ, c), for i = 1, 2, . . . , k where expt(λ, c) is a truncated exponen-
tial distribution governed by rate parameter λ and truncated at c > 0. Then, the IF-driven estimator
ỹ∗r defined in Eq. 5 is a random variable: y∗r + ϵ, where y∗r is the true inner problem solution of Eq. 4
and ϵ is a random noise variable with probability density function:

pdfϵ(u) =
λke−λu

1− e−λc

(
e−λu − e−λc

1− e−λc

)k−1

on u ∈ [0, c] .

Proof. Let X1, X2, . . . , Xk be k samples randomly drawn from a sampling distribution and Xmin =
min{X1, X2, . . . , Xk}. This scenario mirrors the setting in Theorem 3.2. Our goal is to derive
the distribution of Xmin and show that it is exactly the same as the distribution of ỹ∗r shown in the
Theorem 3.2.

If each random sample Xi ∼ expt(λ, c), we first use a commonly known result Chen et al. (2024b)
that the CDF of any truncated distribution on [0, c] is F (u)−F (0)

F (c)−F (0) where F is the CDF of the original
distribution. Also, we note that for the untruncated exponential distribution, F (u) = 1 − e−λu.
Hence, The CDF of Xmin is

cdf(Xmin)(u) = 1− P(Xmin ≥ u)

= 1− P(X1 ≥ u,X2 ≥ u, . . . ,Xk ≥ u)

= 1−
(
1− 1− e−λu

1− e−λc

)k

, 0 ≤ u ≤ c.

and so the PDF of Xmin can be computed as

pdf(Xmin)
(u) =

∂

∂u
F(Xmin)(u)

=
λke−λu

1− e−λc

(
e−λu − e−λc

1− e−λc

)k−1

, 0 ≤ u ≤ c.

In the original theorem, each sample Xi follows the shifted truncated exponential distribution
y∗r + expt(λ, c) where y∗r is a constant. Hence, we can see that our estimator has the distribution of
y∗r + Xmin where Xmin has the PDF above. Hence, the Theorem is proven by setting the random
variable ϵ = Xmin.
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B.3 PROOF OF THEOREM 4.1

Theorem 4.1. Let f be the outer problem objective defined in Eq. 6 with bounded RKHS norm:
||f ||κ =

√
⟨f, f⟩κ. Also, let our IF-driven estimator for the inner problem solution be governed by the

error distribution introduced in Theorem 3.2 with constant c and λ = 1. Let Ac,k =
c2(1−e−c− c

2 )
k−1

(1−e−c)k
,

where k is a fixed predecided sampling size. Then, running DUET over f using the LCB acquisition
function found in (Chowdhury & Gopalan, 2017) at each BO iteration t = 1, . . . , T yields the
following attained average regret Chen et al. (2024b) upper bound with probability at least 1− δ:

lim
T−→∞

R̃T

T
≤ 6( 4

√
δ +

√
k)

4
√
δk

+ 2Ac,k +

√
2Ac,k

4
√
δ

.

Proof. We provide the proof of the sub-linear R̃T growth of DUET in Theorem 4.1 by establishing
upper bounds of |µt(x)− f(x)| and ϵt separately at each BO iteration t and use the independence
rule to bound their sum. To do so, we introduce the following two Lemmas.

Our first Lemma is taken from from known literature on Kernelized Bandits Chowdhury & Gopalan
(2017) and provides the upper bound on difference between f(xt) and µt(x) at each BO iteration t.

Lemma B.2. Let ||f ||κ =
√
⟨f, f⟩κ ≤ B. Also, assume that the observation noise associated with

each BO iteration is R-sub-Gaussian with R > 0. Then with probability at least 1− δ, the following
holds for BO iteration t ≤ T :

|µt(x)− f(x)| ≤
(
B +R

√
2(γt + 1 + ln(1/δ)

)
σt(x) (8)

where γt is the maximum information gain after t observations and µt(x), σ
2
t (x) are mean and

variance of posteror distribution of GP defined in Equation 1, with λ = 1 + 2/T .

Our second Lemma attempts to bound the expectation and variance of ϵt, the non-negative observation
noise (in our case, it corresponds to the estimation error involved in solving the inner problem) at
each BO iteration t. These expectation and variance will be used later to bound our cumulative regret.

Lemma B.3. Let each observation noise ϵt of BO iteration t follow the same probability dis-
tribution as ϵ defined in Theorem 3.2 with sampling size k probability density function fϵt(u) =

λke−λu

1−e−λc

(
e−λu−e−λc

1−e−λc

)k−1

with 0 < c ≤ 1, λ = 1 and u ∈ [0, c], then E(ϵt) ≤ 6
k+

2c2((1−e−c)− c
2 )

k−1

(1−e−c)k

and Var(ϵt) ≤ E(ϵt).

Proof. For λ = 1, we have that fϵt(u) = ke−u

1−e−c

(
e−u−e−c

1−e−c

)k−1

with 0 < c < 1 and u ∈ [0, c].
Then, the expectation:
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E(ϵt) =
∫ c

0

ufϵt(u) du

=

∫ c

0

uke−u

1− e−c

(
e−u − e−c

1− e−c

)k−1

du

=
k

(1− e−c)k

∫ c

0

ue−u
(
e−u − e−c

)k−1
du

(1)

≤ k

(1− e−c)k

∫ c

0

u
(
e−u − e−c

)k−1
du

(2)

≤ k

(1− e−c)k

∫ c

0

u
((

1− u

2

)
− e−c

)k−1

du

(3)

≤ k

(1− e−c)k

(
(u− 2(1− e−c))((1− e−c)− u

2 )
k−1(2(1− e−c) + (k − 1)u+ u)

k(k + 1)

)∣∣∣∣∣
u=c

u=0

(4)
=

1

(1− e−c)k

(
(c− 2(1− e−c))((1− e−c)− c

2 )
k−1(2(1− e−c) + kc) + 4(1− e−c)k+1

k + 1

)
(5)

≤ 4(1− e−c)k+1

(k + 1)(1− e−c)k
+

2kc2((1− e−c)− c
2 )

k−1

(k + 1)(1− e−c)k
+

2((1− e−c)− c
2 )

k−1(1− e−c)

(k + 1)(1− e−c)k

(6)

≤ 6

k
+

2c2((1− e−c)− c
2 )

k−1

(1− e−c)k

(9)

where
(1)

≤ makes use of the fact that e−λu ≤ 1 for u ∈ [0, c] with c > 0,
(2)

≤ uses the inequality

e−u ≤ 1 − u
2 for u ∈ [0, c], and c ≤ 1,

(3)
= uses the fact that e−λc < 1,

(4)
= is derived by solving

the definite integral by parts and substitution and
(4)
= simplifies the upper bound with algebraic

manipulation.

Next, the upper bound of the variance of ϵt can be derived by

Var(ϵt) =

∫ c

0

u2fϵt(u) du

(1)

≤ c

∫ c

0

ufϵt(u) du

(2)

≤
∫ c

0

ufϵt(u) du

= E(ϵt)

(10)

where
(1)

≤ makes use of the fact that ϵt lies in [0, c] and
(2)

≤ makes use of the fact that 0 < c ≤ 1. This
completes the proof on the bounds on E(ϵt) and Var(ϵt).

Next, we observe that xt at each BO iteration t is chosen via the IGP-LCB acquisition function
(i.e., xt = argminx µt−1(x) − βtσt−1(x) and βt = B + R

√
2(γt−1 + 1 + ln(1/δ1)) where the

observation noise associated with each BO iteration is R-sub Gaussian). Thus, we can see that at
each iteration t ≥ 1, we have −µt−1(xt) + βtσt−1(xt) ≥ −µt−1(x

∗) + βtσt−1(x
∗). It then follows
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that for all t ≥ 1 and with probability at least 1− δ1,

|f(xt)− f(x∗)|
(1)

≤ f(xt)− µt−1(x
∗)− βtσt−1(x

∗)

(2)

≤ f(xt)− µt−1(xt) + βtσt−1(xt)

≤ βtσt−1(xt) + |µt−1(xt)− f(xt)|
≤ 2βtσt−1(xt)

(11)

Therefore, by setting δ1 = δ2 =
√
δ, it follows that with probability 1− δ (this follows by rule of

independence applied to the upper bound of events
∑T

t=1 |f(xt) − f(x∗)| and
∑T

t=1 ϵt) that our
attained cumulative regret can be bounded as

R̃T =

T∑
t=1

|ỹt − f(x∗)|

=

T∑
t=1

|f(xt)− f(x∗) + ϵt|

(1)
=

T∑
t=1

|f(xt)− f(x∗)|+
T∑

t=1

ϵt

(2)

≤ 2βT

T∑
t=1

σt−1(xt) +

T∑
t=1

ϵt

(3)
= 2

(
B +R

√
2(γT + 1 + ln(1/

√
δ))

) T∑
t=1

σt−1(xt) +

T∑
t=1

ϵt

(4)

≤ 2

(
B +R

√
2(γT + 1 + ln(1/

√
δ))

) T∑
t=1

σt−1(xt) +

T∑
t=1

E(ϵt) +
T∑

t=1

√
Var(ϵt)

δ2

(5)
= 2

(
B +R

√
2(γT + 1 + ln(1/

√
δ))

)
O(
√

TγT ) +

T∑
t=1

E(ϵt) +
T∑

t=1

√
Var(ϵt)

δ2

= O
(√

T (B
√
γT +RγT )

)
+

T∑
t=1

E(ϵt) +
T∑

t=1

√
Var(ϵt)

δ2

(6)
= O

(√
T (B

√
γT +

c2γT
4

)

)
+

T∑
t=1

E(ϵt) +
T∑

t=1

√
Var(ϵt)

δ2

(12)

where we have followed the attained cumulative regret proof in Chen et al. (2024b) closely and used
the following facts:

•
(1)
= uses the fact that ϵt is non-negative in our problem setting (Theorem 3.2).

•
(2)

≤ is derived from Eq. equation 11.

•
(3)
= uses the definition of βT in IGP-LCB acquisition function Chowdhury & Gopalan (2017)
w.r.t. δ1 =

√
δ

•
(4)

≤ uses Chebyshev’s inequality over ϵt with probability at least 1− δ2.

•
(5)
= uses

∑T
t=1 σt−1(xt) ≤ O(

√
TγT ) as shown in Lemma 4 by Chowdhury & Gopalan

Chowdhury & Gopalan (2017).
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•
(6)
= uses the fact that ϵt is bounded on [0, c] and all bounded random variables are R-sub-
Gaussian with R = c2

4 Arbel et al. (2019).

Next, we need to derive the upper bound of
∑T

t=1 E(ϵt) +
∑T

t=1

√
Var(ϵt)

δ2
w.r.t. T . This can be done

by using the upper bound of the expectation and variance of ϵt proven in Lemma B.3:

T∑
t=1

E(ϵt) +
T∑

t=1

√
Var(ϵt)

δ2

(1)

≤
T∑

t=1

(
6

k
+

2c2((1− e−c)− c
2 )

k−1

(1− e−c)k

)
+

T∑
t=1

√
6

δ2k
+

2c2((1− e−c)− c
2 )

k−1

δ2(1− e−c)k

=
6T

k
+

2Tc2((1− e−c)− c
2 )

k−1

(1− e−c)k
+ T

√
6

δ2k
+

2c2((1− e−c)− c
2 )

k−1

δ2(1− e−c)k

(13)

where
(1)

≤ uses Lemma B.3 directly.

Then, it follows from Eq. 12 and 13 that with probability 1−δ and δ2 =
√
δ, the attained cumulative

regret R̃T at iteration T is upper bounded by:

R̃T ≤ O

(√
T (B

√
γT +

c2γT
4

)

)
+
6T

k
+
2Tc2((1− e−c)− c

2 )
k−1

(1− e−c)k
+T

√
6

δ2k
+

2c2((1− e−c)− c
2 )

k−1

δ2(1− e−c)k

(14)

Finally we set Ac,k =
c2(1−e−c− c

2 )
k−1

(1−e−c)k
. As T → ∞, with probability 1−δ and δ2 =

√
δ, the attained

average regret converges to:

lim
T→∞

R̃T

T

(1)

≤ 6

k
+

2((1− e−c)− c
2 )

k−1

(1− e−c)k
+

√
6

δ2k
+

2((1− e−c)− c
2 )

k−1

δ2(1− e−c)k

(2)

≤ 6

k
+

√
6

δ2k
+ 2Ac,k +

√
2Ac,k

δ2

≤ 6( 4
√
δ +

√
k)

4
√
δk

+ 2Ac,k +

√
2Ac,k

δ2

(15)

where
(1)

≤ divides Eq. 14 by T throughout, eliminating the O expression and
(2)

≤ uses the subsitition of
Ac,k and triangle inequality. This completes our proof for the attained average regret in Theorem
4.1.

B.4 EXTENDING THEORETICAL ANALYSIS BASED ON DIFFERENT DATA SELECTION METHODS

Readers might be interested in how different data selection methods used to create different estimators
affect our theoretical analysis. Here, we provide details on how one could replicate our paper’s
theoretical analysis to different estimators.

Step 1. Establish the sampling distribution of Leval(θX ). Using a particular data selection
method, one obtains k data mixture samples {X1, . . . ,Xk} (in our paper, these samples are obtained
via weighted sampling based on each data point’s IF values). Then, one trains an ML model
for each data mixture and obtain the evaluation task loss for each resulting ML model, yielding
{Leval(θX1), . . . ,LevalθXk

}. From this set, one can empirically derive the sampling distribution of
each sample Leval(θXi). In Theorem. 3.2, we assumed that each sample Leval(θXi) follows the
truncated exponential distribution. However, different data selection methods would certainly lead to
different empirical sampling distributions.

Step 2. Derive an estimator’s empirical distribution. Next, we need to theoretically derive the
1st-order statistic Arnold et al. (2008) of the empirical sampling distribution from Step 1, since we
use the 1st-order statistic as our estimator. The procedure to do so is shown in App. B.2 and uses a
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fairly standard procedure to derive the distribution of order statistics. For subsequent analysis to be
tractable, the PDF of the 1st-order statistic should have a closed form (hence, a simpler sampling
distribution in Step 1 is preferred). More importantly, the estimator’s empirical distribution should
be R-sub-gaussian for a fixed R > 0. This is because for the regret-analysis proof in Eq. 12 to
hold true, the observation noise in the BO process should be R-sub-Gaussian. Fortunately, a large
family of random distributions, including our IF-driven estimator introduced in this paper, are all
R-sub-Gaussian (e.g., exponential family, all bounded random variables).

Step 3. Derive the upper bound of estimator’s expectation and variance. Next, we derive the
upper bound of the 1st-order statistic’s expectation and variance as shown in Lemma. B.3.

Step 4. Derive attainable cumulative regret. Lastly, we analyze the convergence rate of our
algorithm using the growth of attained cumulative regret Chen et al. (2024b) R̃T =

∑T
t=1 |ỹ∗rt −

f(rt)| =
∑T

t=1 |f(r∗) + ϵt − f(rt)| for T BO iterations. Since the error term ϵt has the same
expectation and variance of our estimator, we can use the results from Step 3 to derive our regret
bound (as shown in Eq. 12).
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C ADDITIONAL EXPERIMENTAL RESULTS AND DISCUSSIONS

C.1 ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

In this section, we provide additional details in our experiments for ease of reproduceability. Through-
out our experiments, we used the SE kernel with lengthscale parameters learnt from historical
observations via maximum-likelihood Williams & Rasmussen (2006). In our LCB acquisition func-
tion Greenhill et al. (2020), we set βt = 0.1 (see Alg. 1) throughout our experiments. Furthermore,
we need to perform constrained BO Gardner et al. (2014) in our experiments because the inputs to
our optimization problem is a data mixing ratio r whose sum of entries is constrained to 1. BoTorch
allows us to implement such constraints (botorch.org/docs/constraints) easily. We used
an exploration parameter of βt = 0.5 in our BO acquisition step. For the image classification task,
we purposely flip 10 percent of the training image labels to make our datasets noiser. Lastly, all
evaluation for language tasks is done on llm-harness Gao et al. (2024) with default 0-shot settings.
Hence, it is possible some of our paper’s results differ from those reported in other papers (due to
different prompting and inference settings). However, our paper’s emphasis is on improving the ML
model’s performance with a few rounds refinement on the training data mixture. Hence, we expect
DUET to work well even in other inference settings.

C.2 ADDITIONAL EXPERIMENTAL RESULTS ON DIFFERENT COMBINATION OF EVALUATION
TASK DOMAINS

We also conducted experiments with different combinations of evaluation task domains for the image
classification task. From the results, we can see DUET-IF with the IF-driven estimator (green plot)
consistently outperforms other baselines that use different data selection methods (introduced in
Sec. 5.2).

(a) bag, boots (b) bag, dog (c) bag, sandals (d) bag, shirt (e) bag, sneakers

(f) boots, dogs (g) boots, sandals (h) boots, shirt (i) boots, sneakers (j) dog, sandals

(k) dog, shirt (l) dog, sneakers (m) sandals, shirt (n) sandal, sneakers (o) shirt, sneakers

Figure 7: Results on different combination of image classification evaluation tasks to demonstrate
the performance of DUET to refine the training data mixture as compared to other estimators and
uniform weights. To reduce plot clutter, we have removed DoReMi Xie et al. (2023) because we
found that it does not perform better than DUET across different combinations.
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C.3 ADDITIONAL ABLATION STUDIES WITH DIVERSITY-DRIVEN DATA SELECTION AND
DIFFERENT SAMPLING SIZE k

Comparison with diversity-driven data selection methods While our paper introduced IF values
as a data selection method to solve the inner problem (see Alg. 2 in App. A.3), other data selection
methods can be used to approximately solve the inner problem (4) as well. One class of work is
diversity-driven subset selection Wang et al. (2024b) that selects a subset of data that is the most
diverse and representative of the original dataset. This is done by finding a data mixture with the
largest log-determinant for its data-feature kernel. We use this method as an estimator to estimate
the solution of our inner problem (4) and compare its performance with our IF-driven estimator
in Fig. 8(a), under the same out-of-domain gsm8k setting as that in Fig. 5.2. Due to the large
computational complexity of computing matrix determinants, we restricted the total number of data
points to M = 1000 (instead of 10000 used in our main results). This large complexity arises because
practical methods to calculate the determinant of a n × n matrix typically have a O(n3) runtime
complexity. On top of this, the greedy implementation Chen et al. (2018) to find the data mixture with
highest log-determinant data features has a runtime of O(mn), where m is the number of data points
we need to retrieve at each BO iteration. Hence, this results in a runtime complexity of O(mn4),
which is too slow for larger datasets. Some implementation tricks (such as caching) can be used to
speed up the computation of, but we still find diversity-driven data selection methods too slow to be
practical in DUET. In fact, computing a single round of inner problem approximation took around
14 hours when computing the log-determinant (since we need to iterate through all data points and
recompute the determinant of data feature matrix repeatedly). On the other hand, computing the
IF-driven estimator only took less than 1 hour.

Ablation study with varying sampling size k Theorem 3.2 & 4.1 have highlighted how sampling
size k could theoretically affect the performance of DUET. In our main result, we showed that using
a sampling size k = 1 is sufficient for us to achieve better data mixtures than other baselines. In
Fig. 8(b), we evaluated DUET with increasing number of sampling size k when using the IF-estimator.
Our results show that DUET with larger sampling size k (green plot) leads to an ML model with
better performance than that with a smaller sampling size. This agrees with our theory that larger k
can reduce the estimation error of our estimator for the inner optimization problem (4) and also leads
to a smaller attained cumulative regret (Theorem 4.1).

(a) DUET vs. log-det Wang et al.
(2024b)

(b) Ablation study w.r.t. sampling size
k

Figure 8: (a): Comparison of DUET paired with diversity-driven data selection methods Wang
et al. (2024b) (marked as log-det in our plots) and DUET paired with IF-estimator (DUET-IF). (b):
Ablation study of DUET-IF on sampling size k.
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