Under review as a conference paper at ICLR 2025

A REOPTIMIZATION FRAMEWORK FOR MIXED INTE-
GER LINEAR PROGRAMMING WITH DYNAMIC PARAM-
ETERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many real-world applications, such as logistics, routing, scheduling, and produc-
tion planning, involve dynamic systems that require continuous updates to solu-
tions for new Mixed Integer Linear Programming (MILP) problems. These en-
vironments often require rapid responses to slight changes in parameters, with
time-critical demands for solutions. While reoptimization techniques have been
explored for Linear Programming (LP) and specific MILP problems, their effec-
tiveness in general MILP is limited. In this work, we propose a two-stage re-
optimization framework for efficiently identifying high-quality feasible solutions.
Specifically, we first utilize the historical solving process information to predict
the high confidence solving space for modified MILPs to contain high-quality so-
lutions. Based on the prediction results, we fix a part of variables to apply the
prediction intervals and use the Thompson Sampling algorithm to determine the
set of variables to fix by updating the Beta distributions based on solutions ob-
tained from the solver. Extensive experiments across nine reoptimization datasets
show that our VP-OR outperforms the state-of-the-art methods, achieving higher-
quality feasible solutions under strict time limits and demonstrating faster conver-
gence with smaller primal gaps in the early stages of solving.

1 INTRODUCTION

Traditional combinatorial optimization problems require finding solutions for a single instance.
However, many real-world scenarios, such as system control (Marcucci & Tedrakel [2020), railway
scheduling (Zhang et al.| |2020) and production planning (Dunke & Nickel, [2023; |Cedillo-Robles
et al., [2020), involve systems that change dynamically over time. Thus, throughout the continuous
operation of such systems, it is required to compute solutions for new Mixed Integer Linear Program-
ming (MILP) problems, which are similar to the previous instances but differ in some parameters
in specific model elements such as objective functions, constraints, and variable bounds. Tradition-
ally, each of these new MILP instances is solved from scratch, which overlooks the opportunity to
leverage valuable information from the previously solved instances. This can be computationally
expensive on resource and it is usually a challenging task to make a high-quality operation plan in a
short period for time-critical applications.

Reoptimization techniques have been well-studied for the LP case (John & Yildiriml, [2008)) and
heuristic algorithms for some special MILP problems, e.g., the railway planning problem (Blair,
1998)), general assignment problems (NAUSS| [1974) and other combinatorial problems (Libura,
1996 |1991; Sotskov et al., [1995). However, the functionality of these techniques for general
MILPs is very limited. The earliest reoptimization methods |Ralphs & Giizelsoy| (2006); |[Ralphs
et al.[(2010) were primarily based on duality theory and focused on sequences of MIPs where only
the right-hand side changes. These approaches leveraged dual information obtained through primal
algorithms to enable “warm starting”, accelerating the resolution of subsequent problems. Later
research (Gamrath et al., |2015) extended these methods to broader scenarios, incorporating tech-
niques like reusing branch-and-bound trees. In such methods, the modified problem is treated as a
subproblem of the base problem, or if only the objective function changes, the search can “contin-
ued” from the last known search boundary. Specifically, these methods use the leaf nodes of the
base problem’s branch-and-bound tree as starting points for solving the modified problem. Build-

Under review as a conference paper at ICLR 2025

ing on this, more recent work (Patel, 2024)) addressed even more complex reoptimization scenarios,
where, apart from the number of variables and constraints, all other parameters can undergo upward
or downward perturbations, including the objective function, variable bounds, matrix coefficients,
and constraint right-hand side values. Their approach centers on reoptimization methods built on
the SCIP solver (Bestuzheva et al.,[2021), where a series of past solutions is preserved, allowing the
method to assess whether portions of these solutions can be reused for the new problem. They also
explore reusing branching strategies and adjust parameters related to the invocation of cutting planes
and heuristic algorithms, fine-tuning the solver’s behavior to better tackle the modified problem. The
limitations of their approach are twofold. Firstly, the optimal solution from the original problem may
no longer be valid for the new problem. This is because the range of variable values for the optimal
solution can shift significantly, even with small modifications (Guzelsoy, 2009). Secondly, reusing
branching strategies and adjusting parameters mainly saves time on selecting variables, generating
heuristics and cutting planes but does not reduce the overall size or complexity of the problem.

Inspired by recent work on end-to-end problem solving (Han et al., [2023; Khalil et al.| 2022; |Ye
et al.| [2023; 2024} Nair et al., [2020), we aim to leverage GNNs to predict how optimal solutions
change when MIP parameters vary. However, reoptimization presents unique challenges: Firstly,
in many real-world scenarios that rely on reoptimization techniques, integer and continuous vari-
ables are common and natural representations. For example, production quantities in manufacturing
are integers (Cedillo-Robles et al.,|2020), while power levels in energy optimization problems are
continuous variables (Yokoyama et al.,|2002). However, most existing end-to-end machine learning-
based methods primarily focus on predicting solutions for binary variables (Han et al.| |2023; [Khalil
et al.| |2022) and only use the optimal solution from the previous problem without leveraging the
intermediate solving process. Secondly, In reoptimization scenarios, there is a pressing real-world
need for quickly obtaining high-quality feasible solutions (Marcucci & Tedrake), 2020;|Zhang et al.,
2020). While current end-to-end methods handle inaccuracies in variable predictions using tech-
niques like Large Neighborhood Search (LNS) (Han et al.| 2023} |Ye et al., 2024)), which explores
solutions near the predicted values. Although LNS intuitively narrows the search space by focus-
ing on the neighborhood of predicted values, the pure LNS method without the fix strategy does
not actually decrease the problem’s variable size. In fact, if the search range is not well-tuned, the
added constraints can increase the complexity of the problem, leading to additional computational
overhead (Carchrae & Beck, [2009)).

In this paper, we propose a two-stage reoptimization framework designed to solve near-optimal
solutions for modified large-scale MILP instances in dynamic parameter scenarios. The framework
consists of a Variable Prediction model and an Online Refinement module (VP-OR). The variable
prediction model employs a Graph Neural Network (GNN) to analyze changes in problem structure
and historical branch-and-bound processes. It predicts a marginal probability of each binary variable
and the feasible ranges of integer and continuous variables. The online refinement module utilize
Thompson Sampling to iteratively select the variable to apply the prediction interval, gradually
improving the overall solution quality. The overall framework is outlined in Figure[T]

Large-scale MILP Initial Variable Prediction Iterative Online Refinement
Unsolved MILP Bipartite Graph (GNN Model Update o « f3
max e Bin. v | Solution
! i—
st. Az >V, zeRY l
;€LY €T
INT.
- Solver ([
max L‘TE X
st Az >baeRY CONT. B Output
z; €LV €T .
Update . 3

Figure 1: Illustration of our proposed two-stage reoptimization framework. Our approach first pre-
dicts a marginal probability of each binary variable and the feasible ranges of integer and continuous
variables utilizing a graph neural network (GNN), and then employs the Thompson Sampling algo-
rithm to iteratively select the variable to apply the interval to solved for near optimal solutions.

We compare VP-OR against the leading reoptimization method (Patel, 2024), two end-to-end ma-
chine learning-based baselines (Nair et al. |2020; |[Han et al.l |2023)), and the open-source solver
SCIP (Bestuzheva et al.,[2021)) across nine reoptimization datasets. The results indicate that VP-OR
outperforms the other methods in delivering highly accurate solutions under strict time limits. In

Under review as a conference paper at ICLR 2025

addition, we evaluate the performance over a longer duration, revealing that VP-OR converges more
rapidly, achieving smaller primal gaps compared to the other methods.

2 PRELIMINARIES

2.1 MIXED INTEGER LINEAR PROGRAMMING(MILP)

A general MILP problem is defined by a set of decision variables, where a subset or all variables
are required to be integers. For simplicity, we assume that the objective of our MILP problems is to

seek the minimum value, and a MILP instance can be formulated as formulated below:
T

min c¢c'x
st. Az >b,xe{0,1}P xZI x R" P71 (1)
[<zx<u

Here, x represents the n decision variables, where ¢, I, u € R"™ are the objective coefficients, and
the lower and upper bounds, respectively. The matrix A € R™*" is the coefficient matrix of the
constraints, and b € R™ is the right-hand side vector.

2.2 MODIFIED MILP PROBLEM

We consider scenarios similar to those described by |Patel (2024), involving a series of MILP in-
stances based on an MILP (base instance) taken from a specific application. Each subsequent in-
stance (modified instance) is modified from the previous one with random perturbations and rota-
tions to parameters such as the objective vector, constraints, and variable bounds. The previous
instances has been solved to optimality. They provide not only the optimal solution but also detailed
records of intermediate computational steps, such as selected branches and basis variables at each
node’s LP relaxation. These records can be strategically leveraged in the reoptimization algorithm
to accelerate the solving process for the modified instances.

2.3 BIPARTITE GRAPH FOR MILP

An MILP problem can be effectively represented as a weighted bipartite graph G = (VUC, F) (Nair
et al.| [2020; |Gasse et al.| [2019). Each vertex in V' corresponds to a variable of the MILP, and each
vertex in C' represents a constraint. An edge (v;, ¢;) connects a variable vertex v; with a constraint
vertex c; if the variable is involved in the constraint. The edge set £ € R"*"*¢ represents the
edge features, where m and n denote the number of constraints and variables, respectively, and e
indicates the dimension of the edge attributes.

2.4 ONLINE CONTEXTUAL THOMPSON SAMPLING

Thompson Sampling is a heuristic strategy used in decision-making scenarios like the multi-
armed bandit (MAB) problem (Zhaol [2022)). This method is used for choosing actions accord-
ing to their expected rewards, which are continuously updated using Beta probability distributions
Beta(a, $) (Gupta & Nadarajahl 2004). The Beta distribution forms a family of continuous proba-
bility distributions over the interval (0, 1). The probability density function (pdf) of a Beta(c, 3)

distribution, where « > 0 and 8 > 0, is given by: f(z;, 8) = I};%;ﬁfg) (1 — 2)#~1, where

I'(-) is the Gamma function. The mean of the Beta(a, 3) distribution is 5, and as the parameters
« and 3 increase, the distribution becomes more concentrated around the mean. The beta distri-
bution is useful for Bernoulli rewards because if the prior is a Beta(, 3) distribution, then after
observing a Bernoulli trial, the posterior distribution is simply Beta(« + 1, 8) or Beta(a, 8 + 1),

depending on whether the trial resulted in a success or failure, respectively.

3 INITIAL VARIABLE PREDICTION

In this section, our goal is to train a GNN model to predict a feasible interval containing the modified
problem’s optimal solution by utilizing the subproblem containing the optimal solution of the base
problem and analyzing how the parameters of the MILP change.

3.1 GRAPH REPRESENTATION

The feature extraction process is divided into two parts: the base instance and the modified instance.
For the modified instance, we represent it using a classic bipartite graph structure (Gasse et al.,

Under review as a conference paper at ICLR 2025

2019). For the base instance, we aim to extract additional historical solving information to predict
how the optimal solution may change under small perturbations in the MILP.

In MILP, integer variables are often relaxed to continuous values to apply duality concepts. How-
ever, the dual problem from the relaxed problem may not directly reflect the relationship between
the optimal solution and constraints under integer restrictions. We address this challenge by lever-
aging a key property of branch-and-bound trees: the final leaf node that yields the MILP optimal
solution has the characteristic that its LP relaxation solution is also an integer solution. The leaf
node represents a subproblem of the original MILP, distinguished by the addition of a series of
branching constraints. We include the feasible basic variables and dual solutions of the leaf node as
features, which are commonly applied in LP sensitivity analysis (Higle & Wallace, 2003)), aiming
to capture which variables and constraints are sensitive to parameter changes. This approach sig-
nificantly improves the accuracy of binary variable predictions compared to traditional end-to-end
solving methods, which rely solely on modeling the problem as a bipartite graph and optimal so-
lution values. In Appendix we present the comparison results between the reuse of historical
solving information and the traditional vanilla bipartite graph predictions. A list of the features used
in our graph representation is detailed in Table[5]in Appendix [A]

3.2 GNN-BASED INITIAL VARIABLE PREDICTION

Classic end-to-end approaches (Khalil et al., 2022 Han et al} 2023)) are specifically designed for
binary variables and predict a n-dimension vector (pg(x1 = 1; M), ..., pg(x, = 1; M)) to repre-
sent the conditional probability of p binary variables. However, these methods can not work well
in many real-world scenarios, which mainly contain integer and continuous variables. For instance,
in the dataset named “vary_matrix_rhs_bounds” in the MIP Workshop 2023 Computational Compe-
tition (Bolusani et al., 2023), there are 27,710 variables but only 400 binary variables. Therefore,
VP-OR proposes a confidence threshold method specifically designed for integer and continuous
variables. Specifically, we represent these values with binary bits and hope to predict the condi-
tional probability of each bit, however there a new challenge arises: representing variable values
through high-dimensional binary bits is computationally prohibitive (Nair et al.,|2020). A common
technique is to decompose the high-dimensional distribution into lower-dimensional ones. This is
suitable for our problem because we only focus on the prediction interval to reduce problem scales
but do not need to predict an accurate value for continuous and integer variables.

To reduce the dimensionality of integer variables, we apply a logarithmic transformation before
converting the integer values into binary representations. In this process, the integer values can po-
tentially be negative. While two’s complement is typically used to represent negative numbers in
binary form (Baugh & Wooleyl |[1973)), it is less intuitive for tasks that involve magnitude interpreta-
tion, such as logarithmic transformations. Instead, we introduce a sign bit s € {0, 1} to separately
capture the sign of the variable, making the magnitude and sign easier to handle. Specifically, we
record the optimal value v; of the variable x; in the base instance, we calculate its logarithmic scale
and binary sign bit s as follows:

0 ifv; <1075,
1 otherwise.

be:) = bin Lo il + 1)), 5= {

where the vector b(v;) represents the binary representation of the logarithmic value of v;, prefixed
by the sign bit s, and bin(-) denotes the binary conversion of the logarithmic value.

Based on the predicted initial variable vector b(v;), we apply the confidence threshold
method (Yoon, 2022) to filter the predicted probabilities and distinguish between confident and
uncertain predictions. For the binary digits with high confidence, the binary digits are fixed to their
predicted values. For uncertain binary digits (i.e., those with probabilities between 0.1 and 0.9), we
allow them to vary between 0 and 1. Specifically, we establish the upper and lower bounds of the
predicted binary encoding b(v;) by setting the uncertain binary digit to its maximum value 1 for the
upper bound and its minimum value 0 for the lower bound.

To further determine the variables’ feasible range, the upper and lower bound are converted back
into their corresponding integer forms, denoted as k,; and k. For positive variables (s = 1), we
represent the variable’s value of the optimal solution in the form 2k + m, where k > 0,0 < m <
2% — 1. From the inequality k < [logy(|v;| +1)] < k + 1, the predicted range for the variable

Under review as a conference paper at ICLR 2025

Table 1: Comparison of variable prediction accuracy for different datasets. This table presents the
number of variables and mispredicted variables across different types (binary, integer, and contin-
uous) when using GNN-based predictions. Mispredicted variables represent those whose predicted
bounds or values differ from the optimal solution.

Var. num. bnd.1 mat1l obj1l obj2 rhs1 rhs 2
binary var. 2993.0 500.0 360.0 355.0 12510.0 500.0
mispredicted binary var. 8.2 374 5.6 0.2 64.3 0.0
integer var. 124.0 0.0 0.0 150.0 0.0 0.0
mispredicted integer var. 17.4 0.0 0.0 5.0 0.0 0.0
continuous var. 0.0 302 0.0 240.0 250.0 500.0
mispredicted continuous var. 0.0 0.0 0.0 16.8 0.0 1.6

lies between 2¥* — 1 and 2*«»*!. For negative variables (s = 0), the ranges are symmetrically
calculated, spanning from —2kurtl to _9k 4 1. For continuous variables, we first round them to
the nearest integer and then process them similarly to integer variables.

4 ITERATIVE ONLINE REFINEMENT

Due to the potential distance between the initial predicted solution and the optimal solution, the
initial prediction of variable confidence probabilities may be biased. However, by leveraging the
feasible range predictions for variables, as described in Sec. 3| we can significantly reduce the prob-
lem’s variable scale and search space, thereby substantially lowering the computation time. This
reduction creates the opportunity for iterative solution refinement.

In this section, we first introduce our observation that only a very small number of variable predic-
tions are inaccurate. However, identifying these inaccurately predicted variables is challenging due
to their presence within a large variable space. To address this, we employ the Thompson Sampling
algorithm to refine the solving space by selecting the predicted variable ranges to apply and adjust-
ing the marginal probabilities of the binary variables. Based on the results from each iteration, we
update the fixed variables for the next round of optimization, ensuring that the search focuses on the
most promising regions of the solution space.

4.1 OBSERVATION

We aim to understand the prediction accuracy of the binary, integer and continuous variables. We
test the prediction accuracy of GNN-based models on a variety of datasets, which were carefully
selected to represent different types of parameters, including variable bounds, objective function
coefficients, matrix parameters, and right-hand side constraints. Table [T provides the number of
variables and the mispredicted variables for each dataset.

From the results, we observe that the inaccuracies in predicted variable ranges and values are typi-
cally concentrated in a small subset of the variables. This is particularly evident in the integer and
continuous variables, where only a few ranges deviate from the true feasible regions. Similarly,
for binary variables, the majority of predictions are accurate, with only a limited number of cases
where the predicted value differs from the optimal solution. However, these inaccurately predicted
variables can still significantly affect the solution quality if not properly identified and addressed.

With this observation, it is reasonable to accelerate the solving process for MILP problems by fixing
variables in the partial solution. To simplify the formulation, we denote the constraint space of the
modified instance as: S = {x € {0,1}? X ZI x R" P~ 7: (A+ AA)x > (b+ Ab), (I + Al) <
x < (u+ Au)}. Specifically, the sub-problem of an instance using the fixing strategy with the
predicted binary value &, the predicted lower bound I and upper bound @ can be formulated as:

min (c+Ac) Tz (2)
z€8(,1)NS

where the learning-based constraint set S(Z, I) is defined as: S(Z,I) = {x € {0,1}P x Z9 x

R P 4:x; =241 € {1,2,...,p}ﬂ[,lj <=uz; <=1uj,j € {p+ 1,p+2,...,n}ﬂ[}, and T;
represents the predicted probability for binary variables x;, and [; and 1; are the predicted lower and

Under review as a conference paper at ICLR 2025

upper bounds for integer or continuous variables x ;. Here, I isasubsetof {1,2,...,n}, representing
the set of selected related variables in the constraint set. However, for ¢ € I, if £; # =} orif [; > 1:]*
or u; < x%, where x} denotes the optimal value of the variable x; in the modified problem, the
fixing strategy may lead to suboptimal solutions or even infeasible sub-problems. Identifying the
appropriate set I to avoid these inaccurate predictions is challenging, particularly when handling
large-scale problems where the search space is vast, and the number of variables is substantial.

Interestingly, through a number of experimental tests, as shown in the Table[2] we found that when
fixing a portion of the variables, the solution time of the problem can become very short. For com-
parison, we included the solving times of SCIP without reoptimization and those obtained by large
neighborhood search (LNS) methods. In cases where incorrect variable fixing caused infeasibility,
we randomly select variables multiple times and compute the average time taken to find feasible
solutions across these selections. The results show the average solving time across all instances
within each dataset. When we add the estimated integer and continuous variables, we can increase
the problem solving efficiency to 3-10 times by fixing only the binary variables, which motivates us
to choose more accurate variables based on the feedback of each solution, and gradually update the
initial values of predictions based on the solution values of the binary variables.

Table 2: Comparison of solving times under different percentages of fixed variables (50% and 70%)
for binary and all variable types.

Solving time bndsl1 matsl objsl objs2 rhssl rhss2

SCIP original solving time 356.09 541.78 570.69 200.10 546.40 68.67
LNS (50% binary variables) 32850 111.54 12371 306.21 28791 59.85
LNS (70% binary variables) 33551 49724 703.86 307.78 24745 81.27

Fix 50% variables (only binary) 17.61 0.60 4269 5.71 9.99 29.00
Fix 70% variables (only binary) 4.92 0.38 2.18 3.08 5.42 13.78

Fix 50% variables (all) 3.87 0.57 5496 0.24 9.62 3.97
Fix 70% variables (all) 0.71 0.37 243 0.23 4.83 3.53

4.2 ONLINE VARIABLE FIXING STRATEGY

Algorithm 1 Overall Thompson Sampling Framework

1: Input:
2: Predicted marginal probabilities p; for binary variables x;,
3: Predicted bounds for continuous/integer variables x ;.
4: Initialize prior distributions:
5: ay, B ~ Beta(p; + 1075, 1 — p; + 1075) for binary variables,
6: o, ; ~ Beta(1, 1) for continuous/integer variables.
7: for each time stept = 1,2,... do
8: Sample p; ~ Beta(a;, 8;) for all binary variables x;
9: Sample u; ~ Beta(a;, 3;) for all continuous/integer variables z;
10: Select Variables:
11: Rank and select the top a% for binary and continuous/integer variables
12: Fix Selected Variables:
13: For binary variables, fix values using Bernoulli distribution with probability 1;
14: For continuous/integer variables, apply predicted bounds
15: Solve subproblem with selected variable values to obtain solution x; and objective z;
16: Update Parameters:
17: if 2, is better than the best objective value z* from previous iterations then
18: Update values of «, 3 for variables (detailed in Algorithm[2]in Appendix [B])
19: 25—z
20: end if
21: if solution becomes infeasible then
22: Apply relaxation mechanism (detailed in Algorithm [3|in Appendix
23: end if
24: end for

Under review as a conference paper at ICLR 2025

In scenarios where the prediction results of certain variables may be inaccurate, existing methods
primarily pre-screen binary variables using metrics such as model-predicted probability scores (Han
et al| 2023} [Khalil et all 2022). However, as illustrated in Table[T] relying solely on machine learn-
ing predictions is unreliable, as even high-probability binary variables can be misclassified. This
misclassification can degrade the quality of the solution or, in some cases, result in an unsolvable
problem. Furthermore, while integer and continuous variables are represented in binary form, av-
eraging the confidence scores across these binary representations is not a meaningful criterion for
selection. This is because we are not concerned with the accuracy of individual bits within the bi-
nary encoding. Instead, our primary objective is to ensure that the predicted range encompasses the
optimal solution.

Problem Statement. To alleviate these issues, we model the problem as a stochastic multi-armed
bandit (MAB) problem, where an algorithm must decide which arm to play at each time step ¢,
based on the outcomes of the previous ¢ — 1 plays. For binary variables, we select a fixed set of
2% X p binary variables, where p represents the total number of binary variables, and a% is a
predetermined probability threshold. For each binary variable in this selected set, we fix its value to

. a% . . .
either O or 1. As a result, we have 9C; Y possible arms, where C’;f%“’ denotes the combination
(binomial coefficient) (z%{;p)' For integer and continuous variables, the setup is similar, but instead
of selecting variable values directly, we focus on whether or not to apply upper and lower bound

constraints based on predictions. We select a fixed set of 2% x (n — p) variables, where (n —
p) represents the number of integer and continuous variables, and a% remains the predetermined

threshold. This yields C’JN_A},X (n=r) possible arms. At each time step ¢ = 1,2,3, ..., one of the N
arms must be chosen. After selecting an arm, the values of the corresponding variable set are fixed
to their predicted values, thereby reducing the original problem to a subproblem. We then solve this
subproblem and obtain a reward r,, € {0,1}. If the solution obtained in this iteration improves
upon all previous solutions, we set r,, = 1; otherwise, r,, = 0. The objective is to discover better
solutions with as few iterations as possible, approaching the optimal solution efficiently. This aligns
with the typical MAB goal of maximizing the expected total reward over a time horizon T, i.e.,

E {Zthl rat} , where a, represents the arm played at time ¢, and the expectation is taken over the
random choices of a; made by the algorithm.

We do not use the seemingly more intuitive approach of directly using the solution’s objective value
as the reward, as the reward could cause the model to favor solutions that are “good but not optimal”,
reducing the motivation for exploration. By rewarding only when the current solution is better
than all previous ones, we can more clearly distinguish which arms lead to true improvements.
Additionally, aiming for the best possible objective value in every round is unnecessary, as our main
concern is the overall speed of convergence.

We base our approach on a simplifying assumption commonly used in prior work (Nair et al.|, |2020;
Han et al.| 2023) that treats each variable as independent of others. This assumption enables us to
update the values of « and (3 separately for each variable. Inspired by |Patel (2024)), in the initial step,
we provided the solutions from previous instances as hints for the “completesol” heuristic method
during the presolve phase, effectively using the base solution as a warm start.

Update «, 3 for binary variables. For binary variables x;,i € {1,2,...,p}, we initialize the prior
distribution Beta(p; +107°,1 —p; +10~5) , where p; represents the marginal predicted probability
of the variable being fixed to 1. The value u;, sampled from the Beta distribution, represents the
probability that fixing binary variable z; to 1 will lead to a better solution (i.e., obtaining r = 1).
We rank variables based on min(u;, 1 — 1), selecting the lowest a%, and sample fixed values from
the Bernoulli distribution with probability p;. At each iteration ¢, the priors for unselected binary
variables are updated based on their observed outcomes: For unselected binary variables, we set
«; = a; + 1 when z; = 1, and set 5; = 8; + 1 when x; = 0. For selected binary variables, if the
current solution z; is better than the previous best x;_; , compare the set of selected variables a;
with the previously best set a;_; . For variables where the current value is 1 but was 0 in a;_; (or
was not selected), we set a; = «; + 1. If the current value is 0 , and it was 1 in a;_; (or was not
selected), we set 3; = 3; + 1.

Update «, 5 for integer and continuous variables. For integer and continuous variables, we
initialize the prior distribution as Beta(1, 1), representing a uniform prior over the probability space.

Under review as a conference paper at ICLR 2025

The sampled value p; indicates the likelihood that imposing predicted bounds on variable z; will
lead to a better solution. We select the top a% of these variables based on their 1; values and
apply the predicted upper and lower bounds. The priors for continuous/integer variables are updated
as follows: For unselected variables, if the variable’s actual value in the solution falls within the
predicted bounds, we set a; = a5 + 1. If it does not satisfy the predicted bounds, we set 8; =
B; + 1. For selected variables, when the current solution x; is better than the previous best xy_,
(i.e., 7 = 1), we compare the set of selected variables a; and the previously best set ay_;. If x;
was unselected in a; but was selected in ay_;, we set ; = ; + 1. In contrast, if a variable x; was
selected in a; but not in a;_;, no immediate conclusion about its benefit can be drawn, since the
objective is to rule out incorrect bound predictions.

In our algorithm, we aim to avoid being trapped in local optima. To encourage exploration, no
penalty is given when the current solution performs worse than previous iterations. If the current
solution becomes infeasible, this is often due to incorrect predictions on the fixed variables. In such
cases, a relaxation mechanism is triggered. The variables that have been fixed are divided into 10
groups. We iteratively solve 10 subproblems, where in each subproblem, one group of variables is
relaxed (i.e., their bounds are loosened). This process continues until a feasible solution is found
by adjusting the bounds of variables. In our testing process, this relaxation is handled sequentially
to ensure fairness and accuracy. However, under conditions allowing parallelization, each group
could be processed concurrently to significantly reduce computational overhead. This would greatly
improve efficiency. We presents the details of our Thompson Sampling algorithm in Appendix

5 EXPERIMENTS

Our experiments consist of three main parts: Experiment 1: Evaluate different methods on nine
public reoptimization datasets, focusing on whether they can quickly find feasible solutions within
the 10-second time limit. Experiment 2: Assess the quality of the feasible solutions obtained within
the 10-second limit. Experiment 3: To provide a more intuitive comparison of solution convergence
speeds, we plot the relative primal gap over time under a larger time limit of 100-second.

5.1 EXPERIMENTAL SETUP

Benchmarks. We select 9 series of instances from the MIP Computational Competition 2023 (Bo-
lusani et al.| 2023)) to evaluate our approach. Each series has 50 similar instances with one or more
components changing across instances. These instances need SCIP to solve from 60 to 600 seconds.
Depending on the series, one of the following input can vary: (1) objective function coefficients
(obj_1, obj_2), (2) variable bounds (bnd_1, bnd_2, bnd_3), (3) constraint right-hand sides (rhs_1,
rhs_2, rhs_3), (4) constraint coefficients (mat_1). Most of these series are based on instances from
the MIPLIB 2017 benchmark library (Gleixner et al., [2021)) and some of others are collected from
the real-world industrial use case and traditional problems. Due to limited space, please see Ap-
pendix [C.T]for details of these datasets.

Baselines. We compared our approach against four baselines: the state-of-the-art open-source solver
SCIP (Bestuzheva et al.| [2021), the leading reoptimization method Re_Tuning (Patel, 2024), which
won first place at the MIP Workshop 2023 competition (Bolusani et al., 2023 and does not rely
on machine learning, and two GNN-based machine learning methods. Specifically, PS (Han et al.,
2023) is primarily based on the large neighborhood search (LNS) method, while ND (Nair et al.,
2020) utilizes a variable-fixing strategy for optimization. Please see Appendix [C.2]for implemen-
tation details of these baselines. We also provide results for SCIP using the base solution as a
warm-start strategy. This additional results is detailed in Appendix [C.7}

Training. Each dataset contains 50 instances. To facilitate the experiments, we pair the instances
in groups of two, resulting in 25 groups, including 20 groups in the training set and 5 groups in the
test set. The first instance in each group serves as the base instance, for which intermediate solving
information required for feature extraction is pre-recorded. The specific features are detailed in
Table 3] in the Appendix [A] All numerical results are reported for the test set. The model was
implemented in PyTorch (Paszke et al. 2019) and optimized using Adam (Kingma & Ba, [2014)
with training batch size of 16. The training process is conducted on a single machine that contains
eight GPU devices (NVIDIA GeForce RTX 4090) and two AMD EPYC 7763 CPUs.

Under review as a conference paper at ICLR 2025

Table 3: Number of solved problems within 10s time limit for each method across datasets.

Methods bnd.1 bnd2 bnd3 objl obj2 matl rhs1 rhs2 rhs3

SCIP 5/5 0/5 0/5 5/5 5/5 5/5 5/5 5/5 5/5
ND 0/5 0/5 0/5 5/5 5/5 0/5 0/5 0/5 0/5
PS 5/5 0/5 0/5 5/5 5/5 5/5 5/5 5/5 5/5

Re_Tuning 5/5 3/5 3/5 5/5 5/5 5/5 5/5 5/5 5/5
VP-OR(Ours) 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5

Evaluation Metrics. For each instance, we first solve the problem without a time limit and record
the optimal solution’s objective value as OPT'. Then, we apply a time limit of 10 seconds for each
method. The best objective value obtained within the time limit is denoted as O BJ. We define the
following performance metrics: (1) Solve Number: This is the most fundamental metric, tracking
the number of times a method successfully finds a feasible integer solution within the 10-second time
limit. (2) Gap: We define the absolute and relative primal gaps as: gap_abs = |OB.J — OPT| and
gap_rel = [OBJ — OPT|/(|OPT| + 10719), respectively, and use them as performance metrics.
Clearly, a smaller primal gap indicates a stronger performance. (3) Wins: This metric counts the
number of instances where each method achieved the closest solution to the optimal one within the
same time limit, relative to the total number of instances.

Throughout all experiments, we use SCIP 8.0.4 (Bestuzheva et al.| 2021)) as the backend solver,
which is the state-of-the art open source solver, and is widely used in research of machine learning
for combinatorial optimization (Chmiela et al.| 2021} [Khalil et al., 2022} |Gasse et al., 2019). We
keep all the other SCIP parameters to default and emphasize that all of the SCIP solver’s advanced
features, such as presolve and heuristics, are open.

5.2 EXPERIMENTAL RESULTS

In our experiments, we include only one parameter: the percentage of fixed variables P. In this sec-
tion, we present the results for P = 0.7. Results for other values of P are provided in Appendix[C.3]

Experiment 1. The results in Table [3| show how each method performs under the 10-second time
constraint to find an integer feasible solution, which reflects the real-world need for quickly ob-
taining high-quality reoptimization solutions (Marcucci & Tedrake, 2020; |[Zhang et al.| 2020). We
observe that only our method, VP-OR successfully found feasible solutions across all datasets within
the time limit. The reoptimization method, Re_Tuning, also performed relatively well compared to
other methods. This improved performance can be attributed to its use of warm-starting with solu-
tions from previous instances and parameter tuning using historical solving information.

Experiment 2. We evaluate the quality of the best feasible solutions found by different methods
within the 10-second time limit. The evaluation is conducted across various datasets, with perfor-
mance measured by absolute gap (gap_abs), relative gap (gap_rel), and the number of wins (wins),
where wins indicate the number of datasets for which a method achieves the best solution. The
results are shown in Table[d] where “-” represents cases where the method could not find a feasible
solution. In terms of wins and gap_rel, VP-OR surpasses all baseline methods. VP-OR performs
exceptionally well in scenarios involving changes to variable bounds, matrix coefficients, and con-
straint right-hand sides. Specifically, in datasets where variable bounds are altered (e.g., bnd_2, and
bnd_3), VP-OR achieves the average relative gap close to 0.1 in 10 seconds, while other methods
struggle to provide feasible solutions within 100 seconds. Additionally, Re_Tuning outperforms
both SCIP and end-to-end prediction-based methods on most datasets. ND and PS might be more
suitable for problems that are not time-sensitive and allow for longer solving times.

Experiment 3. To provide a more intuitive comparison of solution convergence speeds, we plot the
relative primal gap over time with a larger time limit of 100 seconds, highlighting how our approach
converges compared to other methods. We observe that VP-OR is more suitable for scenarios that
require rapidly obtaining high-quality solutions in the short term. It converges quickly to find high-
quality feasible solutions in the early stages of solving, but in the global scope, we also found that
our method may encounter the possibility of getting stuck at suboptimal solutions. While Re_Tuning
and LNS also show potential, it’s noteworthy that in certain cases, SCIP performs even better than
some of the optimization methods. Due to space constraints, we only present the results from three
datasets in this section, with additional results provided in Appendix

Under review as a conference paper at ICLR 2025

T3]

Table 4: Policy evaluation on the datasets, where

represents cases where the method could not

find a feasible solution. The best performance is marked in bold.

Methods bnd_1 bnd_2 bnd_3
gap_abs gaprel wins gap.abs gaprel wins gap.abs gaprel wins
SCIP 1974.20 0.16 1/5 - - - - - -
ND - - - - - - - - -
PS 9665.20 0.81 0/5 - - - - - -
Re_Tuning 1425.5 0.12 0/5 - - - - - -
VP-OR(Ours) 299.40 0.02 4/5 40.20 0.11 5/5 28.60 0.06 5/5
Methods mat_1 obj_1 obj_2
gap_.abs gap.rel wins gap.abs gaprel wins gap.abs gap.rel wins
SCIP 14.10 0.23 0/5 11.40 0.00 0/5 626.52 0.39 0/5
ND - - - 11.40 0.00 0/5 674.21 0.44 0/5
PS 14.10 0.23 0/5 13.40 0.00 0/5 397.53 0.51 0/5
Re_Tuning 30.06 0.48 0/5 10.25 0.00 0/5 74.10 0.09 1/5
VP-OR(Ours) 10.09 0.16 5/5 3.28 0.00 5/5 329.99 0.06 4/5
Methods rhs_1 rhs 2 rhs_3
gap_abs gap.rel wins gap.abs gaprel wins gap._abs gaprel wins
SCIP 173.08 0.50 0/5 12.29 0.00 0/5 15.01 0.00 0/5
ND - - - - - - - - -
PS 67090.50 193.04 0/5 22.25 0.00 0/5 18.00 0.00 0/5
Re_Tuning 6.40 0.02 0/5 2.24 0.00 0/5 0.40 0.00 0/5
VP-OR(Ours) 0.73 0.00 5/5 1.85 0.00 5/5 0.26 0.00 5/5
1.0 B 1.0 B 1.0 N -
~—— Re_Tuning ~—— Re_Tuning ~—— Re_Tuning
scip scip | scip
- 0.8 — PS - 0.8 —— PS - 0.8 ‘ —— PS
2 —— VP-OR(Ours) e ~—— VP-OR(Ours) 2 \‘ —— VP-OR(Ours)
0.6 a0.6 alo.6
[[(] ‘
o o o
504 504 504 |
> > > ‘
< < <
0.2 0.2 0.2 {
-l
0.0 o 20 40 60 80 100 0.0 1] 20 40 60 80 100 0.0 1] 20 40 60 80 100
time(s) time(s) time(s)

Figure 2: Performance comparisons in bnd_1, mat_1 and rhs_1, where the y-axis is average relative
primal gap; each plot represents one benchmark dataset.

6 CONCLUSION

This paper proposes VP-OR, a two-stage reoptimization framework for MILPs with dynamic param-
eters. VP-OR first trains a GNN model to predict the marginal probability of each binary variable
and the feasible ranges of integer and continuous variables in the modified MILP instance. Further,
the Thompson Sampling algorithm is employed to iteratively select which variables to apply the
predicted intervals, and adjust the marginal probability of each binary variable, ultimately solving
for near-optimal solutions. Experimental evaluations conducted on 9 MILP datasets demonstrate

that our framework outperforms four baselines.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Gustavo Angulo, Shabbir Ahmed, and Santanu S Dey. Improving the integer 1-shaped method.
INFORMS Journal on Computing, 28(3):483-499, 2016.

Charles R Baugh and Bruce A Wooley. A two’s complement parallel array multiplication algorithm.
IEEE Transactions on computers, 100(12):1045-1047, 1973.

Ksenia Bestuzheva, Mathieu Besancon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald,
Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst,
Thorsten Koch, Marco Liibbecke, Stephen J. Maher, Frederic Matter, Erik Miihmer, Benjamin
Miiller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska Schlosser, Felipe Serrano,
Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Well-
ner, Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 8.0. Technical report, Op-
timization Online, December 2021. URL http://www.optimization-online.org/DB_HTML/2021/
12/8728.html.

Charles Blair. Sensitivity analysis for knapsack problems: A negative result. Discrete Applied
Mathematics, 81(1-3):133-139, 1998.

Suresh Bolusani, Mathieu Besancon, Ambros Gleixner, Timo Berthold, Claudia D’ Ambrosio, Gon-
zalo Mufioz, Joseph Paat, and Dimitri Thomopulos. The MIP Workshop 2023 computational
competition on reoptimization, 2023. URL http://arxiv.org/abs/2311.14834|

Tom Carchrae and J Christopher Beck. Principles for the design of large neighborhood search.
Journal of Mathematical Modelling and Algorithms, 8(3):245-270, 2009.

Juan Antonio Cedillo-Robles, Neale R Smith, Rosa G Gonzalez-Ramirez, Julio Alonso-Stocker,
Joaquin Alonso-Stocker, and Ronald G Askin. A production planning milp optimization model
for a manufacturing company. In International Conference of Production Research-Americas,

pp- 85-96. Springer, 2020.

Antonia Chmiela, Elias Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta. Learning to
schedule heuristics in branch and bound. Advances in Neural Information Processing Systems,
34:24235-24246, 2021.

Fabian Dunke and Stefan Nickel. Exact reoptimisation under gradual look-ahead for operational
control in production and logistics. International Journal of Systems Science: Operations &
Logistics, 10(1):2141590, 2023.

Gerald Gamrath, Benjamin Hiller, and Jakob Witzig. Reoptimization techniques for mip solvers. In
Experimental Algorithms: 14th International Symposium, SEA 2015, Paris, France, June 29—July
1, 2015, Proceedings 14, pp. 181-192. Springer, 2015.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443-490, 2021.

Arjun K Gupta and Saralees Nadarajah. Handbook of beta distribution and its applications. CRC
press, 2004.

Menal Guzelsoy. Dual methods in mixed integer linear programming. Lehigh University PhD, 2009.
Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and Xi-

aodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
In The Eleventh International Conference on Learning Representations, 2023.

11

http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://arxiv.org/abs/2311.14834

Under review as a conference paper at ICLR 2025

Julia L Higle and Stein W Wallace. Sensitivity analysis and uncertainty in linear programming.
Interfaces, 33(4):53-60, 2003.

Asuncién Jiménez-Cordero, Juan Miguel Morales, and Salvador Pineda. Warm-starting constraint
generation for mixed-integer optimization: A machine learning approach. Knowledge-Based Sys-
tems, 253:109570, 2022.

Elizabeth John and E Alper Yildirim. Implementation of warm-start strategies in interior-point meth-
ods for linear programming in fixed dimension. Computational Optimization and Applications,
41(2):151-183, 2008.

Elias B Khalil, Christopher Motris, and Andrea Lodi. Mip-gnn: A data-driven framework for guid-
ing combinatorial solvers. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 10219-10227, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Marek Libura. Sensitivity analysis for minimum hamiltonian path and traveling salesman problems.
Discrete Applied Mathematics, 30(2-3):197-211, 1991.

Marek Libura. Optimality conditions and sensitivity analysis for combinatorial optimization prob-
lems. Control and cybernetics, 25:1165—-1180, 1996.

Tobia Marcucci and Russ Tedrake. Warm start of mixed-integer programs for model predictive
control of hybrid systems. IEEE Transactions on Automatic Control, 66(6):2433-2448, 2020.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

ROBERT MILTON NAUSS. PARAMETRIC INTEGER PROGRAMMING. University of California,
Los Angeles, 1974.

Lewis Ntaimo. Disjunctive decomposition for two-stage stochastic mixed-binary programs with
random recourse. Operations research, 58(1):229-243, 2010.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Krunal Kishor Patel. Progressively strengthening and tuning mip solvers for reoptimization. Math-
ematical Programming Computation, pp. 1-29, 2024.

TK Ralphs and Menal Giizelsoy. Duality and warm starting in integer programming. In The pro-
ceedings of the 2006 NSF design, service, and manufacturing grantees and research conference,
2006.

TK Ralphs, M Giizelsoy, and A Mahajan. Symphony 5.2. 3 user’s manual. Online: www. coin-or.
org/download/binary/SYMPHONY, 2010.

Yu N Sotskov, Vladimir K Leontev, and Evgenii N Gordeev. Some concepts of stability analysis in
combinatorial optimization. Discrete Applied Mathematics, 58(2):169-190, 1995.

Matthew W Tanner and Lewis Ntaimo. Iis branch-and-cut for joint chance-constrained stochas-
tic programs and application to optimal vaccine allocation. European Journal of Operational
Research, 207(1):290-296, 2010.

Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. Gnn&gbdt-guided fast opti-
mizing framework for large-scale integer programming. In International Conference on Machine
Learning, pp. 39864-39878. PMLR, 2023.

Huigen Ye, Hua Xu, and Hongyan Wang. Light-milpopt: Solving large-scale mixed integer linear
programs with lightweight optimizer and small-scale training dataset. In The Twelfth International
Conference on Learning Representations, 2024.

12

Under review as a conference paper at ICLR 2025

Ryohei Yokoyama, Yasushi Hasegawa, and Koichi Ito. A milp decomposition approach to large scale
optimization in structural design of energy supply systems. Energy Conversion and Management,
43(6):771-790, 2002.

Taehyun Yoon. Confidence threshold neural diving. arXiv preprint arXiv:2202.07506, 2022.

Yongxiang Zhang, Qingwei Zhong, Yong Yin, Xu Yan, and Qiyuan Peng. A fast approach for reopti-
mization of railway train platforming in case of train delays. Journal of advanced transportation,
2020(1):5609524, 2020.

Qing Zhao. Multi-armed bandits: Theory and applications to online learning in networks. Springer
Nature, 2022.

13

Under review as a conference paper at ICLR 2025

A MORE DETAILS OF GRAPH FEATURES.

The feature extraction process is split into two parts: base instance and modified instance. For the
base instance, we extract a richer set of graph features, including intermediate solving information.
For the modified instance, we focus on structural information as |Gasse et al.| (2019). A list of the
features used in our graph representation of the base instance is detailed in Table[5]

Table 5: Description of the constraint, variable and edge features in our graph representation of the
base instance.

Category Feature Description
b Original lower bound.
ub Original upper bound.

objective_coeff

Objective coefficient.

Type (binary, integer and

var-type continuous) as a one-hot encoding.
variable vertex Lower bound of the leaf node
leaf_1b which contains the optimal
solution.
Upper bound of the leaf node
leaf_ub which contains the optimal
solution.
depth Depth of the leaf node.
estimate Estimate value of the leaf node.

If the variable is a basic variable in

isBasic_var the LP relax of the leaf node.

Variable value in the optimal

optvalue solution.
constraint edge coef Constraint coefficient.
rhs Right-hand side of the constraint.
constraint vertex cons._type Constraint type feature (eq, geq) as

a one-hot encoding.

If the constraint is a basic vector in

isBasic_cons the LP relax of the leaf node.

B MORE DETAILS OF THOMPSON SAMPLING ALGORITHM

The Parameter Update Process algorithm is designed to update the parameters of the pior distribu-
tions for binary and continuous/integer variables based on the outcomes of the current solution. The
goal is to refine these parameters to improve the performance of the Thompson Sampling approach
in subsequent iterations. We adjust our fixing strategy using the Beta distribution parameters, « and

B. The mean of the Beta(c, 3) distribution is o%ﬁ As these parameters increase, the distribution

becomes more concentrated around the mean. With a prior of Beta(«, [3), the posterior updates to
Beta(a+ 1, 8) or Beta(a, 8+ 1).

In each iteration, we fix a percentage a% of the variables. When we find a better solution, we update
the Beta distribution for the remaining 1-a% of unfixed variables based on this new solution. We
also compare the current strategy to the one from the previous round that gave the best solution. If

14

Under review as a conference paper at ICLR 2025

a variable was fixed before but left unfixed in the current iteration, it indicates the previous strategy
limited the solution quality. We update the Beta distributions for these variables to reflect this. In
the next round, we resample the fixing strategy using these updated Beta distributions.

Algorithm 2 Parameter Update Process

1: Input: Current solution x;, Best solution z* from previous iterations, Best objective value z*
2: if z; is better than z* then
3: Set Ty = 1

4: Update the best solution x; = x4
5: Update priors for binary variables 4:
6: for each unselected binary variable i do
7: if z; = 1 then
8: o; — o+ 1
9: else
10: 57, — 67, +1
11: end if
12: end for
13: for each selected binary variable i do
14: if z; = 1 and z* = 0 then
15: a; —a; +1
16: else if z; = 0 and =™ = 1 then
17: Bi+ B;+1
18: end if
19: end for
20: Update priors for continuous/integer variables j:
21: for each unselected continuous/integer variable j do
22: if x; violates predicted bounds then
23: Bj < B;j+1
24: else
25: o $— (o7 +1
26: end if
27: end for
28: for each selected continuous/integer variable j do
29: if x; wasn’t selected in the previous best solution z;_; then
30: Bj+ Bj+1
31: end if
32: end for
33: else
34: Set Tt = 0
35: end if

When faced with infeasible instances, it typically indicates that some variable predictions are incor-
rect, resulting in conflicts with constraints. Our relaxation mechanism addresses this by dividing the
conflicting variables into G groups and subsequently solving each without these variable sets.

When a feasible solution cannot be found, we repeatedly apply the relaxation mechanism, building
upon previous relaxations. Each iteration of this mechanism reduces the number of fixed variables.
Therefore, theoretically, with enough iterations, we can ensure that the variables causing conflicts
with the constraints are filtered out. However, in practice, it usually takes only a few iterations to
obtain a feasible solution. For example, in the case of bnd_1, there are errors for only 8 for 2993
binary variables. By splitting these 8 erroneous variables into 10 groups, at least one group will
inevitably exclude the erroneous variables. Of course, when the number of erroneous variables is
greater, this is not guaranteed, but it is important to note that some variables, even if mispredicted,
do not affect the ability to find a feasible solution due to their limited impact on solution sensitivity.
We can easily filter out some variables that are highly sensitive to solution quality for each group.

15

Under review as a conference paper at ICLR 2025

Algorithm 3 Relaxation Mechanism

if solution becomes infeasible then
Divide fixed variables into G' groups.
for each groupg =1,2,...,G do
Relax fixed variables in group g back to their original bounds.
Solve the subproblem with these relaxed constraints.

Proceed to the next iteration.

end if
end for

10: end if

1:
2
3
4
5
6: if feasible solution found then
7.
8
9
0:

C MORE DETAILS OF EXPERIMENTS

C.1 DATASETS

We selected the datasets based on two key considerations: first, the varying components within the
instances, and second, the number of different variable types (integer, binary, continuous) present
in each dataset. We aim for our evaluation to cover a wide range of variable types and varying
components as comprehensively as possible.

The varying components of nine datasets are summarized in Table [6]

Table 6: The varying components of datasets.

Datasets Varying component Max Time
LO UP OBJ LHS RHS MAT (s)
bnd_1 v 600
bnd_2 v v 300
bnd_3 v oV 600
obj_1 v 400
obj_2 v 300
mat_1 v 300
rhs_1 v 400
rhs_2 v 60
rhs_3 v 60

We have shown the variable counts of some datasets in Table[I] and the remaining part is listed as
follows. The details of each dataset is as follows:

Table 7: Comparison of variable prediction accuracy for the remaining part of datasets.

Var. num. bnd2 bnd3 rhs3
binary var. 1457.0 1457.0 500.0
mispredicted binary var. 6.7 4.5 0.0
integer var. 0.0 0.0 0.0
mispredicted integer var. 0.0 0.0 0.0
continuous var. 301.0 301.0 500.0
mispredicted continuous var. 0.0 2.0 4.7

16

Under review as a conference paper at ICLR 2025

bnd_1: This dataset is from “bnd_s1” in the MIP Computational Competition 2023 (Bolusani et al.,
2023). The instance is based on the instance rococoC10-001000 from the MIPLIB 2017 benchmark
library (Gleixner et al. 2021). The instances were generated by perturbing the upper bounds of
general integer variables selected via a discrete uniform distribution up to +100% of the bound
value.

bnd_2: This dataset is from “bnd_s2” in the MIP Computational Competition 2023 (Bolusani
et al. [2023). This series is based on the instance csched007 from the MIPLIB 2017 benchmark
library (Gleixner et al., 2021). The instances were generated via random fixings of 15% to 25% of
the binary variables selected via a discrete uniform distribution w.r.t. the original instance.

bnd_3: This dataset is from “bnd_s3” in the MIP Computational Competition 2023 (Bolusani et al.,
2023). This series is also based on the instance csched007 from the MIPLIB 2017 benchmark
library (Gleixner et al., 2021). The instances were generated via random fixings of 5% to 20% of
the binary variables selected via a discrete uniform distribution w.r.t. the original instance. These
instances are relatively harder to solve as compared to the instances in bnd_2.

obj_1: This dataset is from “obj_s1” in the MIP Computational Competition 2023 (Bolusani et al.,
2023). This series is based on the stochastic multiple binary knapsack problem (Angulo et al.,
2016). The problem is modeled as a two-stage stochastic MILP and one-third of the objective vector
varying across instances.

obj_2: This dataset is from “obj_s2” in the MIP Computational Competition 2023 (Bolusani et al.,
2023). The instances are based on the instance ci-s4 from the MIPLIB 2017 benchmark li-
brary (Gleixner et al.|[2021)) with random perturbations and random rotations of the objective vector.

mat_1: This dataset is from “mat_s1” in the MIP Computational Competition 2023 (Bolusani et al.,
2023)). This series is based on the optimal vaccine allocation problem (Tanner & Ntaimo, |2010) and
generated with varying constraint coefficients in the inequality constraints.

rhs_1: This dataset is from “rhs_s1” in the MIP Computational Competition 2023 (Bolusani et al.,
2023)). This series is based on the stochastic server location problem (Ntaimo} 2010). The instances
is generated by the given dataset, and only the right-hand side vector of equality constraints varying
across instances.

rhs_2: This dataset is from “rhs_s2” in the MIP Computational Competition 2023 (Bolusani et al.,
2023)). This series is based on a synthetic MILP and the associated dataset proposed by Jiménez-
Cordero et al.|(2022). The instances are generated by taking a convex combination of two different
RHS vectors.

rhs_3: This dataset is from “rhs_s4” in the MIP Computational Competition 2023 (Bolusani et al.,
2023)). This series is also based on the synthetic MILP (Jiménez-Cordero et al.,|2022). The instances
are generated by taking a convex combination of two different RHS vectors(different than the ones
used for generating rhs_2).

C.2 IMPLEMENTATION DETAILS OF THE BASELINES

All baselines that provided open-source implementations, including PS and Re_Tuning, were tested
using their official code. Since ND did not provide open-source code, we reproduced their method
to the best of our ability based on their paper (Nair et al.l |2020) and fine-tuned the parameters
accordingly.

SCIP. We use SCIP 8.0.4 (Bestuzheva et al.,[2021), which is the state-of-the art open source solver.
We keep all the other SCIP parameters to default and emphasize that all of the SCIP solver’s ad-
vanced features, such as presolve and heuristics, are open.

Re_Tuning. Re_Tuning is a state-of-the-art heuristic reoptimization framework (Patel,2024)), which
does not utilize machine learning models. This framework, developed for the MIP 2023 workshop’s
computational competition (Bolusani et al., [2023)), earned the first prize. It is primarily based on
reusing historical branches and fine-tuning SCIP’s parameters for more effective reoptimization.
Our investigation revealed that Re_Tuning adjusts its configurations based on the previous instances
it solves. Specifically, it may disable modules such as presolving or generating cutting planes for
subsequent instances. While these adjustments have been shown to potentially improve overall solv-

17

Under review as a conference paper at ICLR 2025

ing time on certain datasets, they inevitably make it more challenging to find high-quality feasible
solutions quickly in the early stages. To address this, we ensured these modules remained enabled
for all instances, striving to achieve the best possible results with their code.

Predict-and-Search(PS). PS is an end-to-end machine learning-based approach (Han et al., [2023)
which employs large neighborhood search (LNS) combined with GNN predictions. In practice, we
do not know how many variables may be predicted incorrectly, and selecting an appropriate radius &
for the neighborhood in LNS can be time-consuming. To better demonstrate the performance of the
PS method, we select the radius § based on the average number of binary prediction errors observed
during our preliminary tests, as shown in Table[T]

Neural Diving(ND). Another notable method we compared against is Neural Diving (ND) frame-
work with Selective Net (Nair et al., 2020), which is also based on a variable-fixing strategy. Since
ND focuses on fixing variables to accelerate the solving process, it serves as a relevant baseline to
evaluate alongside our approach.

18

Under review as a conference paper at ICLR 2025

C.3 MORE RESULTS WITH DIFFERENT PARAMETERS

In this section, we present a comprehensive evaluation of policy performance across various syn-
thetic and real-world datasets, using different time and fix parameters. Each table below illustrates
the impact of varying these parameters on the performance metrics, namely the absolute and rela-
tive gaps. The methods examined include SCIP, Re_Tuning, ND, and PS, alongside our proposed
method, VP-OR, under different time constraints and fixed parameter ratios.

Table [§]illustrates the performance of various methods under different boundary conditions (bnd_1,
bnd_2, bnd_3). After reoptimizing with adjusted boundary parameters, the VP-OR method consis-
tently shows lower absolute and relative gaps compared to SCIP and other comparative methods
under different time constraints (T=10 and T=20).

Table 8: Policy evaluation on the synthetic and real-world datasets with different time and fix
parameters. We report the arithmetic mean of gap_abs and gap_rel.

Methods bnd_1 bnd_2 bnd_3

gap_abs gap.rel gap.abs gaprel gap_abs gap._rel
SCIP (T=10.0) 1974.20 0.16 - - - -
Re_Tuning (T=10.0) 1425.5 0.12 - - - -
ND (T=10.0, P=0.5) - - - - - -
PS (T=10.0, P=0.5) 9439.60 0.79

VP-OR(Ours) (T=10.0, P=0.5) 279.20 0.02 40.20 0.11 31.20 0.09

ND (T=10.0, P=0.6) - -
PS (T=10.0, P=0.6) 9439.60 0.79 - - - -
VP-OR(Ours) (T=10.0, P=0.6) 528.80 0.04 39.40 0.11 37.40 0.11

ND (T=10.0, P=0.7) - -
PS (T=10.0, P=0.7) 966520 0.81 - - - -
VP-OR(Ours) (T=10.0, P=0.7) 299.40 0.02 40.20 0.11 28.60 0.06

ND (T=10.0, P=0.8) - -
PS (T=10.0, P=0.8) 1216.80 0.10

VP-OR(Ours) (T=10.0, P=0.8) 973.80 0.08 38.80 0.11 34.80 0.10
SCIP (T=20.0) 921.00 0.08 - - - -
Re_Tuning (T=20.0) 40225 0.03 26.0 0.06 - .
ND (T=20.0, P=0.5) - - - - - -
PS (T=20.0, P=0.5) 2483.00 0.20

VP-OR(Ours) (T=20.0, P=0.5) 313.20 0.03 48.60 0.14 33.80 0.10

ND (T=20.0, P=0.6) - -
PS (T=20.0, P=0.6) 2408.00 0.19 - - - -
VP-OR(Ours) (T=20.0, P=0.6) 264.60 0.02 40.40 0.12 37.40 0.11

ND (T=20.0, P=0.7) - -
PS (T=20.0, P=0.7) 262740 021 - - - -
VP-OR(Ours) (T=20.0, P=0.7) 299.40 0.02 39.80 0.11 23.40 0.07

ND (T=20.0, P=0.8) - -
PS (T=20.0, P=0.8) 1007.20 0.08 - - - -
VP-OR(Ours) (T=20.0, P=0.8) 1409.40 0.12 41.40 0.12 23.40 0.07

19

Under review as a conference paper at ICLR 2025

Table O] evaluates performance under different matrix and objective function settings (mat_1, obj_1,
obj_2). With these adjustments, the VP-OR method maintains significant suppression of gap_abs
and gap_rel, particularly excelling in objective function cases (obj_1 and obj_2).

Table 9: Policy evaluation on the synthetic and real-world datasets with different time and fix
parameters. We report the arithmetic mean of gap_abs and gap_rel.

Methods mat_1 obj_1 obj_2
gap_.abs gap.rel gap_abs gaprel gap.abs gap_rel

SCIP (T=10.0) 14.10 0.23 11.40 0.00 626.52 0.39
Re_Tuning (T=10.0) 30.06 0.48 10.25 0.00 74.10 0.09
ND (T=10.0, P=0.5) - - 11.40 0.00 634.70 0.39
PS (T=10.0, P=0.5) 14.10 0.23 13.40 0.00 387.89 0.51
VP-OR(Ours) (T=10.0, P=0.5) 9.09 0.15 - - 7783.94 1.53
ND (T=10.0, P=0.6) - - 11.40 0.00 634.70 0.39
PS (T=10.0, P=0.6) 14.10 0.23 13.40 0.00 397.53 0.51
VP-OR(Ours) (T=10.0, P=0.6) 11.62 0.19 - - 6854.66 0.75
ND (T=10.0, P=0.7) - - 11.40 0.00 674.21 0.44
PS (T=10.0, P=0.7) 14.10 0.23 13.40 0.00 397.53 0.51
VP-OR(Ours) (T=10.0, P=0.7) 10.09 0.16 3.28 0.00 329.99 0.06
ND (T=10.0, P=0.8) - - 11.40 0.00 - -
PS (T=10.0, P=0.8) 14.10 0.23 13.40 0.00 702.68 0.41
VP-OR(Ours) (T=10.0, P=0.8) 11.77 0.19 338.60 0.04 8287.57 3.01
SCIP (T=20.0) 11.66 0.19 10.40 0.00 285.99 0.14
Re_Tuning (T=20.0) 18637.00 0.42 8.25 0.00 1.61 0.01
ND (T=20.0, P=0.5) - - 10.40 0.00 285.99 0.14
PS (T=20.0, P=0.5) 13.17 0.21 13.40 0.00 243.40 0.30
VP-OR(Ours) (T=20.0, P=0.5) 7.69 0.12 - - 6855.85 0.75
ND (T=20.0, P=0.6) - - 10.40 0.00 268.18 0.13
PS (T=20.0, P=0.6) 13.17 0.21 13.40 0.00 243.40 0.30
VP-OR(Ours) (T=20.0, P=0.6) 9.94 0.16 19.40 0.00 6058.61 0.50
ND (T=20.0, P=0.7) - - 10.40 0.00 285.99 0.14
PS (T=20.0, P=0.7) 13.17 0.21 13.40 0.00 239.79 0.28
VP-OR(Ours) (T=20.0, P=0.7) 10.09 0.16 3.28 0.00 322.85 0.01
ND (T=20.0, P=0.8) - - 10.40 0.00 - -
PS (T=20.0, P=0.8) 13.17 0.21 13.40 0.00 202.44 0.16
VP-OR(Ours) (T=20.0, P=0.8) 11.61 0.19 142.40 0.02 322.85 0.01

20

Under review as a conference paper at ICLR 2025

Table [T0] shows the response of each method when adjusting the parameters on the right-hand side
of constraints (rhs_1, ths_2, rhs_3). In these scenarios, the VP-OR method achieves gaps close to
Zero.

Table 10: Policy evaluation on the synthetic and real-world datasets with different time and fix
parameters. We report the arithmetic mean of gap_abs and gap_rel.

Methods rhs_1 rhs_2 rhs_3
gap_.abs gap.rel gap_abs gaprel gap.abs gap_rel

SCIP (T=10.0) 173.08 0.50 12.29 0.00 16.77 0.00
Re_Tuning (T=10.0) 6.40 0.02 2.24 0.00 0.40 0.00
ND (T=10.0, P=0.5) - - - - - -
PS (T=10.0, P=0.5) 57558.07 16541 13.23 0.00 12.46 0.00
VP-OR(Ours) (T=10.0, P=0.5) 0.27 0.00 1.85 0.00 0.26 0.00
ND (T=10.0, P=0.6) - - - - - -
PS (T=10.0, P=0.6) 62046.33 177.93 13.23 0.00 12.46 0.00
VP-OR(Ours) (T=10.0, P=0.6) 0.50 0.00 1.85 0.00 0.26 0.00
ND (T=10.0, P=0.7) - - - - - -
PS (T=10.0, P=0.7) 67090.50 193.04 22.25 0.00 17.98 0.00
VP-OR(Ours) (T=10.0, P=0.7) 0.73 0.00 1.85 0.00 0.26 0.00
ND (T=10.0, P=0.8) - - - - - -
PS (T=10.0, P=0.8) 66978.45 192.33 15.35 0.00 16.29 0.00
VP-OR(Ours) (T=10.0, P=0.8) 0.71 0.00 1.85 0.00 0.26 0.00
SCIP (T=20.0) 173.08 0.50 5.54 0.00 7.22 0.00
Re_Tuning (T=20.0) 2.85 0.01 0.00 0.00 0.00 0.00
ND (T=20.0, P=0.5) - - - - - -
PS (T=20.0, P=0.5) 38275.26 109.85 5.54 0.00 5.97 0.00
VP-OR(Ours) (T=20.0, P=0.5) 0.39 0.00 1.85 0.00 0.26 0.00
ND (T=20.0, P=0.6) - - - - - -
PS (T=20.0, P=0.6) 38275.26 109.85 5.47 0.00 5.97 0.00
VP-OR(Ours) (T=20.0, P=0.6) 0.26 0.00 1.85 0.00 0.26 0.00
ND (T=20.0, P=0.7) - - - - - -
PS (T=20.0, P=0.7) 65141.18 187.43 4.42 0.00 5.97 0.00
VP-OR(Ours) (T=20.0, P=0.7) 0.29 0.00 1.85 0.00 0.26 0.00
ND (T=20.0, P=0.8) - - - - - -
PS (T=20.0, P=0.8) 54004.10 155.03 3.30 0.00 2.16 0.00
VP-OR(Ours) (T=20.0, P=0.8) 0.40 0.00 1.85 0.00 0.26 0.00

21

Under review as a conference paper at ICLR 2025

C.4 MORE RESULTS OF THE RELATIVE GAP

In the main text, we presented results for the datasets bnd_1, mat_1, and rhs_1. Here, we extend
our analysis by providing additional results for the remaining datasets. This section focuses on
performance comparisons in terms of the average relative gap gap_rel.

"
"
"

~—— Re_Tuning —— Re_Tuning —— Re_Tuning

scip scip scip
- 0.8 PS - 0.8 PS - 0.8 PS
[—— VP-OR(Ours) [—— VP-OR(Ours) [—— VP-OR(Ours)
a'o.6 a'o.6 alo.6
g § i
g',o.4 g'.‘o.a g',o.xa
< < <

0.2 0.2 0.2

—

°
E
=]
c

) 20 40 60 80 100 7% 20 40 60 80 100 [) 20 40 60 80 100
time(s) time(s) time(s)

Figure 3: Performance comparisons in bnd_2, bnd_3 and obj_1, where the y-axis is average relative
primal gap; each plot represents one benchmark dataset.

1.0 1.0 1.0
~—— Re_Tuning —— Re_Tuning ~—— Re_Tuning
SCIP SsCIP scip

0.8 —— PS 0.8 —— PS 0.8 —— PS
[—— VP-OR(Ours) [—— VP-OR(Ours) [1] —— VP-OR(Ours)
hI ‘-I hI
0.0.6 0.0.6 0.0.6
[[]
=] o o
5',0.4 5-50'4 5',0.4
> > >
< < <

0.2 0.2 0.2

0.0 0.0 0.0

o 20 40 60 80 100 o 20 40 60 80 100 o 20 40 60 80 100
time(s) time(s) time(s)

Figure 4: Performance comparisons in obj_2, rhs_2 and rhs_3, where the y-axis is average relative
primal gap; each plot represents one benchmark dataset.

C.5 ABLATION STUDY OF PREDICTION.

The table below demonstrates the predictive performance of both traditional Graph Neural Networks
(GNN) and our approach in a reoptimization context(Re_GNN):

Table 11: Predictive performance of traditional Graph Neural Networks (GNN) and our prediction
method in a reoptimization context(Re_GNN).

bnd.1 bnd2 bnd3

Total binary var. 1457.0 1457.0 14570
mispredicted binary var. (GNN) 163.0 45.1 422
mispredicted binary var. (Re_GNN) 8.2 6.7 4.5
Total integer var. 124.0 0.0 0.0
mispredicted integer var. (GNN) 334 0.0 0.0
mispredicted integer var. (Re_GNN) 174 0.0 0.0
Total continuous var. 0.0 301.0 301.0
mispredicted continuous var. (GNN) 0.0 140.2 121.0
mispredicted continuous var. (Re_GNN) 0.0 0.0 2.0

22

Under review as a conference paper at ICLR 2025

C.6 COMPUTATIONAL COMPLEXITY ANALYSIS

The primary computational complexity of VP-OR arises from the Thompson Sampling process. In
the sampling phase of Thompson Sampling, we sample the probability p for binary variables and
select a certain percentage (a%) of variables based on the value of min(p, 1 — p) by sorting them.
For integer and continuous variables, we sample to determine whether they should be fixed and
select the top a% of variables based on this criterion. This step has a time complexity of O(nlogn),
where n is the number of variables.

In the parameter update phase of Thompson Sampling, we update the parameters for each variable
once. This step has a time complexity of O(n). We tested the sampling time and parameter update
time for each dataset, as presented in Table[T2}

Table 12: Variable Numbers, Sampling Time(Time_s), and Parameter Update Time(Time_u) for
Different Datasets

bnd 1 bnd2 bnd3 matl objl obj2 rhs1 rhs2 rhs3

Var. num 3117 1758 1758 802 360 745 12760 1000 1000
Times(s) 0.008 0.005 0.003 0.013 0.002 0.016 0.102 0.002 0.002
Time_u (s) 0.002 0.001 0.000 0.009 0.001 0.010 0.070 0.001 0.001

C.7 RESULTS FOR THE IMPACT OF INITIAL HINTS

We provided the initial solution as a hint for the “completesol” heuristic method during the presolve
phase, effectively employing the base solution as a warm start(WS). We observe that SCIP has
improvements in the quality of feasible solutions under these conditions. The results are shown in
Table [13] where “-” indicates cases where the method could not find a feasible solution within the
designated time limit.

Table 13: Performance Comparison Across SCIP, SCIP(WS) and VP-OR. We report the arithmetic
mean of the metric gap_rel.

bnd.1 bnd2 bnd3 matl obj.l obj2 rhs1 rhs2 rhs3

SCIP 0.16 - - 0.23 0.00 039 050 0.00 0.00
SCIP(WS) 0.10 - - 022 000 012 050 0.00 0.00
VP-OR(Ours) 0.02 0.11 0.06 016 0.00 006 0.00 0.00 0.00

C.8 MORE RESULTS FOR EXPANDED TEST SAMPLES

The publicly available dataset from the MIP Workshop 2023 Computational Competition on Reop-
timization (Bolusani et al.}, 2023)) is limited in size, providing only 50 examples per task. To further
increase the number of test samples, we attempt to generate similar datasets for testing by using a
method consistent with the one published by the competition organizers. This step proves to be very
time-consuming because random perturbations in the parameters often result in infeasible problems.
During the dataset generation process, we repeatedly generate instances randomly until we find one
that is feasible. Using the bnd_1 dataset as an example, we generate 100 additional instances. The
results presented in the table below are consistent with our previous tests.

C.9 MORE RESULTS FOR END-TO-END METHODS

Several end-to-end methods have been developed specifically for large-scale problems, such as

GNN&GBDT (Ye et al} 2023) and Light-MILPopt 2024). We conduct an experiment
on the latest approach, Light-MILPopt. We observe that Light-MILPopt uses a variable fixing strat-

egy, initially fixing k% of the variables based on predicted values (using the default setting k=20

23

Under review as a conference paper at ICLR 2025

Table 14: Policy evaluation on the bnd_1 dataset with 100 samples. We provide the metrics Average
Relative Gap (gap_rel) and Average Absolute Gap (gap-abs).

gap.rel gap_abs

SCIP 020 23542
PS 113 13213.0
VP-OR(Ours) 0.01 167.3

as per the authors’ code). However, in a reoptimization context, fixing these variables often led to
infeasibility in most instances. This is mainly because the model inaccurately predicts some vari-
ables, even when considered high-confidence. Consequently, we test the results with the variable
fixing module disabled. The final experimental results present the number of instances that can find
feasible solutions within a 10-second time limit in Table [T5] Although this method is not specifi-
cally designed for reoptimization scenarios, which often demand rapid responses to slight changes
in parameters with time-critical requirements for solutions, it does show some improvement over
SCIP on more challenging datasets like bnd_2 and bnd_3.

T3]

We provide the average relative gap (gap-rel) for comparison in Table[T6] where
where the method could not find a feasible solution within the time limit.

represents cases

Table 15: Number of Instances Finding Feasible Solutions within 10 Seconds.

bnd.1 bnd2 bnd3

SCIP 5/5 0/5 0/5
Light-MILPopt o5 05 05
Light-MILPopt (without fix strategy) 5/5 1/5 1/5
VP-OR (Ours) 5/5 5/5 5/5

Table 16: Average Relative Gap (gap_rel).

bnd_1 bnd2 bnd3
SCIP 0.16 - -

Light-MILPopt -
Light-MILPopt (without fix strategy) 0.22 - -

VP-OR (Ours) 0.02 0.11 0.06

24

	Introduction
	Preliminaries
	Mixed integer linear programming(MILP)
	Modified MILP Problem
	Bipartite graph for MILP
	Online Contextual Thompson Sampling

	Initial Variable Prediction
	Graph Representation
	GNN-Based Initial Variable Prediction

	Iterative Online Refinement
	Observation
	Online Variable Fixing Strategy

	experiments
	Experimental Setup
	Experimental Results

	conclusion
	More Details of Graph Features.
	More Details of Thompson Sampling Algorithm
	More Details of Experiments
	Datasets
	Implementation Details of the Baselines
	More Results with Different Parameters
	More Results of the Relative Gap
	Ablation study of prediction.
	computational complexity analysis
	Results for the Impact of Initial Hints
	More Results for Expanded test samples
	More Results for End-to-End Methods

