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Abstract

We study the problem of designing procurement auctions for the strategic unca-
pacitated facility location problem: a company needs to procure a set of facility
locations in order to serve its customers and each facility location is owned by
a strategic agent. Each owner has a private cost for providing access to their fa-
cility (e.g., renting it or selling it to the company) and needs to be compensated
accordingly. The goal is to design truthful auctions that decide which facilities
the company should procure and how much to pay the corresponding owners,
aiming to minimize the total cost, i.e., the monetary cost paid to the owners and the
connection cost suffered by the customers (their distance to the nearest facility).
We evaluate the performance of these auctions using the frugality ratio.
We first analyze the performance of the classic VCG auction in this context and
prove that its frugality ratio is exactly 3. We then leverage the learning-augmented
framework and design auctions that are augmented with predictions regarding the
owners’ private costs. Specifically, we propose a family of learning-augmented
auctions that achieve significant payment reductions when the predictions are
accurate, leading to much better frugality ratios. At the same time, we demonstrate
that these auctions remain robust even if the predictions are arbitrarily inaccurate,
and maintain reasonable frugality ratios even under adversarially chosen predictions.
We finally provide a family of “error-tolerant” auctions that maintain improved
frugality ratios even if the predictions are only approximately accurate, and we
provide upper bounds on their frugality ratio as a function of the prediction error.

1 Introduction

When government agencies, retail chains, or banking institutions need to open new facilities or
branches to better serve their customers, they face a challenging optimization problem: they want
customers to be as close as possible to a facility, but opening new facilities can be very costly, and the
cost can vary significantly by location. Deciding which locations to open therefore requires balancing
the customers’ connection costs (their distance to the nearest facility) against the facilities’ opening
costs. This optimization problem is known as the uncapacitated facility location (UFL) problem and
it has received a lot of attention in prior work (e.g., [14, 21, 29, 36, 36, 40, 47]).

However, the vast majority of this prior work assumes that the designer has full information regarding
both the connection and the opening costs, which is often unrealistic in practice. For example, each
location may be owned by a different strategic agent who would need to be appropriately compensated
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for the agency to open a facility there. Negotiating this compensation (i.e., the opening cost) is itself
a strategic problem: the owner wishes to maximize it, while the agency wishes to minimize it. This
additional obstacle is captured by the strategic UFL problem, where the opening cost of each location
is private information held by the agent who own it [3, 19, 35, 48].

From the agency’s perspective, rather than negotiating compensation separately with each owner, a
more effective approach is to run a procurement auction. This encourages competition, leading to more
efficient and cost-effective outcomes, which is one primary reason why the US government routinely
uses procurement auctions [44]. To prevent manipulation, prior work on strategic UFL has focused
on designing truthful auctions that incentivize agents to reveal their true opening costs [3, 19, 35, 48].
Our work continues in this direction.

Evaluating the performance of a procurement auction is complicated by the lack of a suitable
benchmark. If there is little competition, the agency may have to pay higher compensation, whereas
greater competition can reduce costs. The frugality literature [4, 48] addresses this by proposing
the cost of the “second-best” solution as a benchmark (see Section 2). When this second-best
cost is much higher than the optimum, the instance resembles a monopoly, and the agency must
pay more. Conversely, if the second-best is close to the optimum, a well-designed auction can
leverage competition for better outcomes. The frugality ratio quantifies how closely the auction’s
cost approaches this benchmark, and our main technical results are new frugality ratio bounds.

Despite its appeal, most prior work in frugal mechanism design is restricted to the adversarial
framework, analyzing the auctions’ performance under worst-case instances and assuming they have
no information regarding the private costs. While this provides robust guarantees, it can be overly
pessimistic, especially in practice, where agencies often have access to predictions regarding opening
costs, derived from historical data, expert estimates, or data-driven models. This naturally raises the
question: can we design mechanisms that exploit such predictions to improve frugality, while still
remaining robust if the predictions turn out to be inaccurate?

Motivated by this, our work leverages the learning-augmented framework, which has recently spurred
significant research on “algorithms with predictions” [37, 42], and more recently, on the design
of truthful auctions and mechanisms augmented with predictions [1, 49]. In this framework, the
designer is given an unreliable prediction (potentially from machine learning or historical data),
and the goal is to achieve improved guarantees when the prediction is accurate (consistency), while
maintaining strong guarantees even when the prediction is arbitrarily inaccurate (robustness).

1.1 Our Results

Our first result is a tight analysis of the frugality ratio of the classic truthful VCG auction (without
predictions) for the strategic UFL problem. Prior to this result, the best known upper bound was 4 by
Talwar [48], and there were no known lower bounds. Using a tighter analysis and a matching lower
bound, we prove that its frugality ratio is exactly 3.

Then, rather than assuming that the auction has no information regarding the private opening cost oℓ
at each location ℓ, we consider learning-augmented auctions that are provided with a prediction ôℓ
regarding this cost. Crucially, this prediction is unreliable and can be arbitrarily inaccurate.

Our second result is a new truthful procurement auction that takes a parameter ϵ ∈ (0, 2] as input and
guarantees a frugality ratio of 1 + ϵ whenever the prediction is accurate (the consistency guarantee),
while simultaneously guaranteeing a frugality ratio of at most max

(
5, 3 + 2

ϵ

)
, irrespective of how

inaccurate the prediction may be (the robustness guarantee). Note that choosing a small constant ϵ
allows us to guarantee a near-optimal frugality (arbitrarily close to 1) when the prediction is accurate,
while simultaneously guaranteeing a constant frugality even for adversarially chosen predictions. To
achieve this guarantee, our learning-augmented auction uses the VCG mechanism on input that is
scaled using the predictions. Specifically, if the opening cost reported by the owner at some location
ℓ is exceeds the prediction ôℓ, then it is scaled up even higher, reducing their chance of being selected.
When the prediction is accurate, this limits the agents’ ability to manipulate, leading to reduced costs.

For our third result, we design a learning-augmented procurement auction that is “error tolerant.” We
first define the prediction error as η = maxℓ∈L max (ôℓ/oℓ, oℓ/ôℓ), i.e., the largest ratio between
the predicted opening cost and the actual opening cost. Our auction is then provided with an error
tolerance parameter, λ > 1, as input (as well as the parameter ϵ ∈ (0, 2]), and as long as the error η of
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the prediction is at most λ, it guarantees a frugality ratio of η(1 + λ) + 2ϵ. Even if the error exceeds
the error tolerance threshold, i.e., η > λ, the frugality ratio is at most max{ 2λ4 + 3λ2, 3 + 2

ϵ }.

1.2 Related Work

The strategic UFL problem was first studied by Archer and Tardos [3], who analyzed the structure of
truthful mechanisms for this problem. The frugality of truthful mechanisms for the strategic UFL
problem was studied by Talwar [48], who showed that the VCG auction has a frugality ratio of at
most 4. Chen et al. [19] considered different social cost objectives for the special case where the
facility locations coincide with the locations of the agents (i.e., each agent has a “dual-role” as a
customer or facility operator). Chen et al. [19] and Li et al. [35] also considered the budget-feasible
version of this problem, where the overall payment cannot exceed a budget. For related work on the
non-strategic version of the UFL problem, see Appendix A.

The study of frugal mechanism design is motivated by the challenge of minimizing unnecessary
overpayment while preserving truthfulness in procurement auctions and combinatorial team selection
problems. This perspective has been applied across a variety of classic optimization settings. In
network design, Archer and Tardos [4] and Talwar [48] initiated the investigation for path auctions,
demonstrating that VCG mechanisms can incur large overpayments and establishing tight frugality
bounds under the frugal solution benchmark. For coverage problems such as vertex cover and set
cover, Elkind et al. [24] and subsequent works developed truthful mechanisms with frugality ratios
that depend on structural parameters like graph degree or spectral properties, and also provided
matching lower bounds in several cases. Frugality in k-flow and cut problems has also been explored,
with mechanisms achieving constant-competitive frugality ratios relative to various benchmarks,
including both disjoint-alternative and equilibrium-based definitions [17, 33, 34]. In some settings,
such as matroid and spanning tree auctions, VCG mechanisms are provably frugal, achieving optimal
or near-optimal frugality ratios [33, 48].

The design of learning-augmented mechanisms for settings involving strategic agents was initiated
by Agrawal et al. [1] and Xu and Lu [49]. This line of work spans strategic facility location
[1, 8, 12, 18, 31, 46, 49], strategic scheduling [7, 20, 49], auction design [9, 15, 16, 28, 38, 41, 49],
bicriteria mechanism design for welfare and revenue trade-offs [6], graph problems with private input
[22], distortion [13, 25], and equilibrium analysis [27, 32]. The work most closely related to this
paper is [49], which studied frugal mechanism design with predictions in the context of path auctions.
See Appendix A for a more extensive discussion on the line of work on algorithms with predictions.

2 Preliminaries

In the Uncapacitated Facility Location (UFL) problem, there is a set U of users and a set L of facilities.
Each facility ℓ ∈ L has an opening cost oℓ. Each user u ∈ U and facility ℓ ∈ L have a connection
cost d(u, ℓ). The connection costs are assumed to form a metric space, i.e., d(x, y) is defined for any
x, y ∈ U ∪ L and satisfies d(x, x) = 0, d(x, y) ≥ 0 (non-negativity), d(x, y) = d(y, x) (symmetry),
and d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality) for all x, y, z ∈ U ∪ L. The cost of connecting
a user u ∈ U to a set of facilities S ⊆ L is minℓ∈S d(u, ℓ), i.e., it is its distance to its closest facility
in S. Given facilities S ⊆ L, we say that a user u is assigned to facility ℓ if ℓ = argminℓ∈S d(u, ℓ).
The total connection cost incurred by a set of facilities S ⊆ L is

d(U, S) =
∑
u∈U

min
ℓ∈S

d(u, ℓ),

and its total cost c(S) is the sum of its opening cost and total connection cost, i.e.,

c(S) =
∑
ℓ∈S

oℓ + d(U, S).

The goal is to open a set of facilities S ⊆ L that minimizes the total cost. Given U, d, and o = (oℓ)ℓ∈L,
the optimal facility set is OPT(U,o, d) = argminS⊆L c(S).

Strategic UFL. In the strategic version of the UFL problem, each facility ℓ ∈ L is owned by a
strategic agent and its opening cost oℓ is private (the connection costs are public information). An
auction M(U,b, d) for strategic UFL takes as input the set of users U and the connection costs d,
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and it asks the owner of each location ℓ ∈ L to report an opening cost bℓ (which we refer to as a
bid), leading to a bid vector b = (bℓ)ℓ∈L. For simplicity, we write M(b) and OPT(o) when U and
d are clear from context. We also use b−ℓ to refer to the vector of all bids excluding bℓ. We say
that a facility ℓ misreports if its reported cost is not its true cost, i.e., bℓ ̸= oℓ. The output (S,p) of
an auction consists of a set S ⊆ L of facilities to open and a payment pℓ to each facility ℓ ∈ S for
opening. The utility of a facility from output (S,p) is

uℓ(S,p) =

{
pℓ − oℓ if ℓ ∈ S

0 otherwise
.

An auction is truthful if it is a dominant strategy for every facility ℓ to report its true opening cost,
i.e., bℓ = oℓ, irrespective of what the other facilities report. That is, for every oℓ, bℓ,b−ℓ, U, d,

uℓ(M(oℓ,b−ℓ)) ≥ uℓ(M(bℓ,b−ℓ)).

An auction M for UFL is monotone if for any facility ℓ ∈ L and any bid profile b−ℓ of the other
facilities, the probability that ℓ ∈ S, where S is the facilities chosen by M(bℓ,b−ℓ), is non-increasing
in its bid bℓ. In single-parameter environments such as strategic UFL, Myerson’s Lemma characterizes
truthful auctions:
Lemma 2.1 (Myerson’s Lemma). An auction is truthful if and only if it is monotone. For any
monotone auction, there exists a unique payment rule that ensures truthfulness, which can be
computed explicitly.

Frugality and Efficiency. The total cost incurred by an auction for outputting (S,p) is the sum of
the payments and the total connection cost, i.e.,

p(S,p) =
∑
ℓ∈S

pℓ + d(U, S).

The frugal facility set is the second-best solution, i.e.,

F (U,o, d) = argmin
S⊆L\OPT(U,o,d)

c(S).

The efficiency of an auction is evaluated by its frugality ratio, which is the worst-case ratio between
its total cost and the cost of the frugal solution:

frugality(M) = max
U,o,d

p(M(U,o, d))

c(F (U,o, d))
.

Learning-Augmented Framework. In the learning-augmented setting, the auction is given predic-
tions ô about the opening costs o. We evaluate the performance of M using two metrics.

Consistency: The frugality ratio when the predictions are accurate (ô = o):

consistency(M) = max
U,o,d

p(M(U,o, d, ô = o))

c(F (U,o, d))
.

Robustness: The frugality ratio when the predictions can be arbitrarily wrong:

robustness(M) = max
U,o,d,ô

p(M(U,o, d, ô))

c(F (U,o))
.

3 Tight Frugality Bounds for the Vickrey-Clarke-Groves Auction

Our first main result establishes an improved frugality ratio of 3 for the VCG auction, which we start
by describing in the context of the strategic UFL problem.

The VCG auction. Given an instance (U,o, d) of UFL, the set of facilities opened by the VCG
auction is the optimal facility set OPT(o). The VCG payment, also called threshold payment, to each
opened facility ℓ ∈ OPT(o) is

pℓ = c
(
OPT(∞, o−ℓ)

)
− c

(
OPT(0,o−ℓ)

)
,
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i.e., it is the difference between the total cost of the optimal solution when facility ℓ is infeasible
(oℓ = ∞) and when ℓ is free (oℓ = 0). This payment can be alternatively defined as

pℓ = max
{
b ≥ 0 : ℓ ∈ OPT(b,o−ℓ)

}
,

i.e., the largest bid that facility ℓ can declare and remain in the optimal set OPT selected by VCG.
Theorem 3.1. The frugality ratio of the VCG auction for the metric uncapacitated facility location
problem is exactly 3.

We first argue an upper bound of 3. At a high level, the proof bounds the total cost incurred by the
VCG auction by (1) bounding the payments by twice the total cost of the frugal solution and (2)
observing that the total connection cost of the optimal solution is bounded by its own total cost, which
is in turn bounded by the total cost of the frugal solution. Combining these two facts immediately
yields a 3-approximation. The payment bound is achieved by a “rerouting” argument: for each facility
in the optimal set, we show how to reassign its users to other facilities, either within the optimal
set itself or to those in the frugal solution, thereby upper-bounding its threshold payment by the
corresponding rerouting cost.

Proof of Theorem 3.1. Let OPT and F be the optimal and frugal solutions. We denote by Uℓ ⊆ U the
users assigned to facility ℓ according to OPT. We first note that for any set of facilities Oℓ ⊆ L \ {ℓ}
that does not contain facility ℓ, we must have

pℓ +
∑
u∈Uℓ

d(u, ℓ) ≤
∑

f∈Oℓ\OPT

of +
∑
u∈Uℓ

min
f ′∈Oℓ

d(u, f ′), (1)

otherwise Oℓ would have a smaller total cost than OPT when facility ℓ reports opening cost pℓ, which
would imply pℓ > max

{
b ≥ 0 : ℓ ∈ OPT(b,o−ℓ)

}
and would contradict the alternative definition of

VCG.

The central part of the proof consists of defining some alternative solution Oℓ and to reassign and
reroute the users in Uℓ to facilities in Oℓ to bound

∑
u∈Uℓ

minf ′∈Oℓ
d(u, f ′). To define Oℓ and this

reassignment, we first need to introduce some notation. For each pair (ℓ ∈ OPT, f ∈ F ), we let
Uℓ,f ⊆ U be the set of users assigned to ℓ in the optimal solution OPT and to f in the frugal solution
F . For each f ∈ F , let OPTf = {ℓ ∈ OPT : |Uℓ,f | > 0} and xf (ℓ) be the ranking of ℓ ∈ OPTf
among all other facilities in OPTf in terms of the size of |Uℓ,f |, where ties are broken arbitrarily
but consistently. This definition implies that x−1

f (j) ∈ OPTf is the facility ℓ with the jth smallest
non-negative |Uℓ,f | and we thus have 0 < |Ux−1

f (1),f | ≤ · · · ≤ |Ux−1
f (|OPTf |),f |.

We define the alternate solution to be Oℓ = OPT \ {ℓ} ∪ {f ∈ F : xf (ℓ) = |OPTf |}. In this
solution, facility ℓ is removed from OPT and the facilities f ∈ F such that |Uℓ,f | is largest among
{|Uℓ′,f |}ℓ′∈OPT are added. We then define a mapping πf : OPTf → OPTf ∪{f} that reassigns users in
Uℓ,f that are assigned to facility ℓ according to OPT to a new facility in OPTf ∪{f}. This reassignment
is defined as

πf (ℓ) =

{
x−1
f (xf (ℓ) + 1) if xf (ℓ) < |OPTf |

f if xf (ℓ) = |OPTf |
.

In words, πf (ℓ) maps facility ℓ to the facility ranked immediately after ℓ with respect to f ; if ℓ is
ranked last, then πf (ℓ) = f . Since ∪f :ℓ∈OPTfUℓ,f = Uℓ, we have that∑

u∈Uℓ

min
f ′∈Oℓ

d(u, f ′) ≤
∑

f :ℓ∈OPTf

min
f ′∈Oℓ

d(Uℓ,f , f
′) ≤

∑
f :ℓ∈OPTf

d(Uℓ,f , πf (ℓ)). (2)

Next, if xf (ℓ) < |OPTf |, then |Uℓ,f | ≤ |Uπf (ℓ),f | by the definition of πf . Thus, combined with the
triangle inequality, we get that if xf (ℓ) < |OPTf |, then

d(Uℓ,f , πf (ℓ)) ≤
∑

f :ℓ∈OPTf

d(Uℓ,f , f) + d
(
f, Uπf (ℓ),f

)
+ d
(
Uπf (ℓ),f , πf (ℓ)

)
. (3)

Informally, this last inequality corresponds to rerouting the users in Uℓ,f to πf (ℓ) by going through f
and then Uπf (ℓ),f . This rerouting is the key component of this proof, see Figure 1 for an illustration.
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Facility ℓ

Uℓ,f

Facility πf (ℓ)

Uπf (ℓ),f

Facility f

Figure 1: Illustration of how users in Uℓ,f are rerouted to facility πf (ℓ). Each color (and line pattern)
denotes the path taken by a distinct user u ∈ Uℓ,f . The total connection-cost along each set of colored
edges gives an upper bound on the payment to facility ℓ for serving that subset of users.

We obtain that

p(OPT) =
∑
ℓ∈OPT

(
pℓ +

∑
u∈Uℓ

d(u, ℓ)

)
by def. of p

≤
∑
ℓ∈OPT

 ∑
f :xf (ℓ)=|OPTf |

of +
∑
u∈Uℓ

min
f ′∈Oℓ

d(u, f ′)

 by (1)

≤
∑
ℓ∈OPT

 ∑
f :xf (ℓ)=|OPTf |

of +
∑

f :ℓ∈OPTf

d(Uℓ,f , πf (ℓ))

 by (2)

=
∑
f∈F

of +
∑

ℓ∈OPTf

d(Uℓ,f , πf (ℓ))


=
∑
f∈F

of + d
(
Ux−1

f (|OPTf |),f , f
)
+

|OPTf |−1∑
j=1

d
(
Ux−1

f (j),f , x
−1
f (j + 1)

)
≤
∑
f∈F

(
of + d

(
Ux−1

f (|OPTf |),f , f
)

+

|OPTf |−1∑
j=1

(
d(Ux−1

f (j),f , f) + d(f, Ux−1
f (j+1),f )

+ d(Ux−1
f (j+1),f , x

−1
f (j + 1))

))
by (3)

≤
∑
f∈F

of +
∑

ℓ∈OPTf

(d(Uℓ,f , f) + d(f, Uℓ,f ) + d(Uℓ,f , ℓ))


=

∑
f∈F

of + 2
∑
f∈F

∑
ℓ∈OPTf

d(Uℓ,f , f)

+
∑
ℓ∈OPT

∑
f :ℓ∈OPTf

+d(Uℓ,f , ℓ)

≤ 2 · c(F ) + c(OPT)
≤ 3 · c(F ).

We show that this upper bound of 3 is tight for VCG by providing a simple tree-metric instance. Due
to space limitations, we defer its analysis to Appendix B.
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4 Learning-Augmented Frugal Auction

We now consider the strategic UFL problem within the learning-augmented framework, where the
auction has access to potentially inaccurate predictions about the true opening costs of the facilities.
Specifically, for each facility ℓ ∈ L, a prediction ôℓ is provided for its true opening cost oℓ. Our
objective is to leverage this unreliable information to design truthful auctions that minimize the
frugality ratio while remaining robust against inaccurate predictions.

To achieve this, we propose PREDICTEDLIMITS, described in Auction 1. This auction first identifies
the optimal solution based on the predicted costs, denoted by ˆOPT. It then modifies the cost function by
scaling the actual opening costs of facilities in ˆOPT when their true costs exceed the predicted opening
costs. Finally, the auction selects the solution that minimizes this scaled cost function. We note that,

Auction 1: PREDICTEDLIMITS

Input: Set of clients U , set of facilities L, parameter ϵ, predicted opening costs ôℓ for all ℓ ∈ L
Output: Selected facility subset S∗ and threshold payments for each facility ℓ ∈ S∗

Compute ˆOPT← argminS⊆L

(
d(U, S) +

∑
l∈S ôℓ

)
;

Define the modified cost function for any subset S ⊆ L:

o′ℓ(S)←

{
2
ϵ
· oℓ, if S = ˆOPT and oℓ > ôℓ

oℓ, otherwise

Compute:

S∗ ← arg min
S⊆L

(
d(U, S) +

∑
ℓ∈S

o′ℓ(S)

)
return S∗ and threshold payments for each ℓ ∈ S∗;

to achieve the claimed results, our auction only needs access to the membership of the predicted
optimal solution ˆOPT and to the opening costs of those facilities. We show that PREDICTEDLIMITS
can achieve near-optimal consistency (arbitrarily close to 1) while still maintaining competitive
robustness.

Theorem 4.1. Given any ϵ ∈ [0, 2] as input, PREDICTEDLIMITS is truthful, (1 + ϵ)-consistent, and
max

(
5, 3 + 2

ϵ

)
-robust.

At first glance, this auction may seem counterintuitive and differs from existing mechanisms that also
use predictions to scale costs (e.g, [7, 49]). Instead of scaling down the opening costs of facilities in
the predicted optimal solution, a set that would normally be favored for minimizing the overall social
cost, the auction scales these costs upwards, making the predicted optimal solution less appealing.
The primary rationale for this upward scaling is to restrict the potential overbidding the bidder can
claim while remaining in the optimal solution, which leads to a high threshold price. By amplifying
any over-reported opening costs over the predicted ones, the auction gains tighter control over facility
payments, which can lead to a lower frugality ratio when the predictions are accurate.

Importantly, the scaling applied by our auction is solution-dependent rather than facility-dependent.
Specifically, the opening cost scaling is activated only when evaluating the predicted optimal solution
ˆOPT as a complete set. For any other subset, the opening costs of individual facilities remain

unscaled. This distinction is crucial for our robustness analysis, as it ensures that the adverse effects
of inaccurate predictions are confined to the evaluation of the single predicted optimal solution,
leaving alternative solutions unaffected. We defer the truthfulness proof to Appendix C.1. We first
provide the consistency analysis of Auction PREDICTEDLIMITS. We then provide the robustness
guarantee of the auction, which holds regardless of the quality of the predictions.

Lemma 4.2. Given any ϵ ∈ [0, 2] as input, PREDICTEDLIMITS achieves a consistency of 1 + ϵ.

Proof. Recall that consistency analysis assumes the predictions are correct, i.e., ôℓ = oℓ for all
facilities ℓ ∈ L. By the definition of Auction 1, if predictions are accurate, the condition oℓ > ôℓ for
ℓ ∈ OPT (which equals ˆOPT here) is never met. Therefore, no costs are scaled, and the auction selects
the true optimal solution, i.e., S∗ = OPT. We adopt the same definitions of OPTf and πf (ℓ) as in the
analysis of VCG (proof of Theorem 3.1).
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We now provide an upper bound for the payment pℓ to the agent controlling facility ℓ ∈ OPT. Similarly
to VCG, we will upper-bound the payment by considering the cost of rerouting. The difference is
that when the reported bid exceeds ôℓ, the scaling would apply. Formally, for any set of facilities
Oℓ ⊆ L \ {ℓ} not containing ℓ:

2

ϵ
pℓ +

∑
u∈Uℓ

d(u, ℓ) ≤
∑

f ′∈Oℓ\OPT

of ′ +
∑
u∈Uℓ

min
f ′∈Oℓ

d(u, f ′). (4)

Note that the scaling affects only the opening costs of the facilities in ˆOPT. Hence the right-hand
side of (4) remains unchanged for all (ℓ, f) pairs relative to the VCG analysis, as it represents
cost of alternative solutions not involving ℓ’s potentially scaled cost. Therefore, the bounds from
Equations (2) and (3) continue to hold. Following the same steps as in the VCG proof (Theorem 3.1),
we obtain:

∑
ℓ∈OPT

(
2

ϵ
pℓ +

∑
u∈Uℓ

d(u, ℓ)

)
≤

∑
f∈F

of + 2
∑
f∈F

∑
ℓ∈OPTf

d(Uℓ,f , f)

+
∑
ℓ∈OPT

∑
f :ℓ∈OPTf

d(Uℓ,f , ℓ)

⇒ 2

ϵ

∑
ℓ∈OPT

pℓ ≤ 2
∑
f∈F

of + 2
∑
f∈F

∑
ℓ∈OPTf

d(Uℓ,f , f) ⇒
∑
ℓ∈OPT

pℓ ≤ ϵ · c(F ).

Together with the fact that the connection cost of the optimal solution is at most c(F ), we conclude
that the total auction cost

∑
ℓ∈OPT pℓ + d(U, OPT) is at most (1 + ϵ) c(F ).

We now move on to the robustness analysis. We begin with the simpler case in which the auction still
outputs the optimal solution of the instance, i.e., S∗ = OPT. All missing proofs of the section can be
found in Appendix C.2.
Lemma 4.3. Given any instance (U,o, d) and any ϵ ≤ 2, let OPT and F be the optimal solution and
frugal solution, respectively. If auction 1 outputs S∗ = OPT, then we have:∑

ℓ∈S∗

pℓ + d(U, S∗) ≤
(
1 +

2

ϵ

)∑
ℓ∈F

oℓ + 3 d(U,F )

The proof is deferred to Appendix C.2.1. We now address the case where scaling alters the output
set, i.e., S∗ ̸= OPT. This case is particularly challenging because S∗ may contain facilities belonging
to both the frugal solution and the optimal solution, making it difficult to bound the payment. To
tackle this, we need a different accounting argument than the ones used for the VCG and consistency
analyses. Specifically, we will analyze payments for facilities in the output solution S∗ differently,
based on whether they are part of the frugal solution F . We begin by establishing a bound for
payments to non-frugal facilities in S∗ (i.e., those in S∗ \ F ) with the following lemma.
Lemma 4.4. Given any instance (U,o, d), and any ϵ ≤ 2, let OPT and F be the optimal solution and
frugal solution, respectively. Let S∗ ̸= OPT be the output of Auction 1, and let S = S∗ \ F . Then:∑

ℓ∈S

pℓ ≤
∑
ℓ∈F

oℓ + 2d(U,F ).

The proof is deferred to Appendix C.2.2. Then, we bound the payment to the output solution that is
also part of the frugal solution.
Lemma 4.5. Given any instance (U,o, d), and any ϵ ≤ 2, let OPT and F be the optimal solution and
frugal solution, respectively. Let S∗ ̸= OPT be the output of Auction 1, and Sf = S∗ ∩ F . Then:∑

ℓ∈Sf

pℓ ≤ max

(
2,

2

ϵ

)
·

[∑
ℓ∈F

oℓ + d(U,F )

]
.

Proof. The approach considers rerouting users currently assigned to a facility f ∈ Sf back to
their corresponding facility ℓ in the true optimal solution OPT. This facility j ∈ OPT might not be
included in the output set S∗, and if ℓ ∈ OPT = ˆOPT, its opening cost oℓ might be effectively scaled

8



upwards to o′j in the auction’s payment calculation if it was under-predicted (oℓ > ôℓ). The analysis
mirrors the VCG structure but with the roles of the chosen solution (Sf ) and the alternative (OPT)
flipped. Define Uℓ, Uf,ℓ, and πℓ(f) as in the proof of Theorem 3.1, replacing OPT with Sf . Define
Sf
ℓ = {ℓ ∈ Sf : |Uf,ℓ| > 0}.

Case 1: The optimal facility ℓ /∈ S∗. By the same rerouting argument as VCG, inequalites (2) and (3)
hold with OPT replaced by Sf and the opening cost replaced by the scaled opening cost.

Case 2: The optimal facility ℓ ∈ S∗. Here, users Uf,ℓ can be rerouted directly to ℓ within the output
set S∗, so the cost associated with rerouting users Uf,ℓ, denoted obeys

pℓ +
∑
u∈Uℓ

d(u, ℓ) ≤ d(Uf,ℓ, ℓ).

This bound is better than inequalities (2) and (3) from Case 1.

Summing over all agents f ∈ Sf and assuming the worst-case where every cost gets scaled we get:∑
ℓ∈Sf

(
pℓ +

∑
u∈Uℓ

d(u, ℓ)

)
=
∑
ℓ∈OPT

∑
f∈Sf

ℓ

(
pℓ +

∑
u∈Uℓ

d(u, ℓ)

)

≤
∑
ℓ∈OPT

2

ϵ
oℓ + 2

∑
f∈Sf

ℓ

d(Uℓ,f , f)

+
∑
ℓ∈OPT

∑
f :ℓ∈OPTf

d(Uℓ,f , ℓ)

⇒
∑
ℓ∈Sf

pℓ ≤
∑
ℓ∈OPT

2

ϵ
oℓ + 2

∑
ℓ∈OPT

∑
f∈Sf

ℓ

d(Uℓ,f , f)

⇒
∑
ℓ∈OPT

pℓ ≤ max

(
2

ϵ
, 2

)
c(F ) = max

(
2

ϵ
, 2

)[∑
ℓ∈F

oℓ + d(U,F )

]
.

By combining Lemma 4.3, Lemma 4.4, and Lemma 4.5, we get the robustness of Auction PREDICT-
EDLIMITS. The proof is deferred to Appendix C.2.3.
Lemma 4.6. Given any ϵ ∈ [0, 2] as input, PREDICTEDLIMITS achieves a robustness of
max

(
5, 3 + 2

ϵ

)
.

5 The Error-Tolerant Scaled VCG

Auction PREDICTEDLIMITS achieves (1 + ϵ)-consistency in its frugality ratio when provided with
perfect predictions of opening costs, and maintains a max

(
5, 3 + 2

ϵ

)
-robustness guarantee in adver-

sarial scenarios. These existing bounds, however, capture only the extremes of prediction quality. In
this section, we extend the auction from the previous section to achieve an improved frugality ratio,
not only for accurate predictions but also for approximately accurate predictions, thereby offering a
more granular performance characterization.

We denote the prediction error as η ≥ 1, where η is defined as the largest ratio between the predicted
opening cost and the actual opening cost, i.e.,

η = max
ℓ∈L

max

(
ôℓ
oℓ
,
oℓ
ôℓ

)
.

The auction, ERRORTOLERANT, formally defined in Auction 2, extends PREDICTEDLIMITS by
incorporating an error-tolerance parameter λ ≥ 0. Recall that the original auction selects the
predicted-optimal facility set ˆOPT and, whenever a facility’s true opening cost exceeds its prediction,
inflates that cost by a factor of 2/ϵ; otherwise, it leaves opening costs unchanged.

ERRORTOLERANT is designed to preserve this behavior not only under exact predictions but also
when predictions are accurate up to a factor of λ, with one key enhancement. To ensure that ˆOPT
remains the chosen set under low prediction error, we replace the overscaling threshold ôℓ with λ ôℓ.
In addition, if every facility in ˆOPT reports a true cost below this new threshold, we apply a uniform
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Auction 2: ERRORTOLERANT

Input: Clients U , facilities L, predicted costs ôℓ for all ℓ ∈ L, parameter ϵ ≤ 2, error-tolerance λ ≥ 0
Output: Chosen facilities S∗ and threshold payments for each ℓ ∈ S∗

ˆOPT ← argminS⊆L

(
d(U, S) +

∑
ℓ∈S ôℓ

)
;

if ∀ℓ ∈ ˆOPT, oℓ ≤ λôℓ then

Define cλ(S) =


1

λ2

(
d(U, S) +

∑
ℓ∈S

oℓ
)
, S = ˆOPT,

d(U, S) +
∑
ℓ∈S

oℓ, otherwise.

else

Define for each ℓ and S o′ℓ(S) =

{
2
ϵ
oℓ, S = ˆOPT and oℓ > λôℓ,

oℓ, otherwise,

and let cλ(S) = d(U, S) +
∑
ℓ∈S

o′ℓ(S).

S∗ ← arg min
S⊆L

cλ(S),

return S∗ and threshold payments for each ℓ ∈ S∗;

down-scaling to the entire solution cost (both opening and connection costs). This extra adjustment
guarantees that, when the prediction error is at most λ, the auction outputs ˆOPT. Aside from these two
modifications, ERRORTOLERANT follows PREDICTEDLIMITS exactly. It achieves an approximation
guarantee of η (1+λ)+2ϵ when η ≤ λ, and maintains a frugality bound of max(2λ4+3λ2, 3+2/ϵ)
for arbitrary error η.
Theorem 5.1. Auction ERRORTOLERANT is truthful, and given parameters ϵ ∈ (0, 2] and λ > 1, it
achieves the following frugality ratio, where η is the error of the prediction:

η(1 + λ) + 2ϵ, if η ≤ λ,

max
{
2λ4 + 3λ2, 3 + 2

ϵ

}
, if η > λ.

Due to space limitations, we defer the analysis to Appendix E.

6 Conclusion and Open Problems

In this work, we studied the design of frugal procurement auctions for the strategic uncapacitated
facility location problem. We first established a tight frugality ratio of 3 for the classic VCG auction.
Prior to our work, the best known upper bound for VCG was 4 [48] and there was no known lower
bound. We then considered the problem in the learning-augmented framework where the auction
is provided with predictions regarding the costs of the facilities. We designed a novel truthful
auction that achieves a frugality ratio of 1 + ϵ when the predictions are accurate, while maintaining a
constant-factor robustness guarantee even when the predictions are arbitrarily wrong.

Although the focus of our work is on the information-theoretic limitations of truthful auctions, we note
that our proposed mechanisms can be formulated as integer programs (IPs). Please see Appendix F
for the IP implementation.

Our work leaves several exciting directions open. In the classic setting, while we show that VCG’s
frugality ratio is exactly 3, the optimal frugality ratio achievable by a truthful auction remains
unknown. An important question is whether VCG is optimal, or if another design can achieve
a better frugality ratio. Thus, establishing a tight lower bound for this problem is a key next
step. In the learning-augmented setting, an open problem is to determine the optimal trade-off
between consistency and robustness, thereby characterizing the Pareto-optimal frontier. Furthermore,
exploring more nuanced definitions of prediction error beyond magnitude—such as the number
of mispredictions or the recent "mostly and approximately correct" (MAC) framework [12]—is a
promising direction. Analyzing mechanisms under such models could lead to auctions that degrade
more gracefully given imperfect, yet informative, predictions.
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A Extended Related Work

Algorithms with Predictions. In recent years, the learning-augmented framework has become
a leading paradigm for algorithm design and analysis. For an overview of its early developments,
see [43], and for a comprehensive, up-to-date survey, consult [37]. By incorporating (potentially
imperfect) predictions, this framework overcomes the limitations of classical worst-case analyses.
Indeed, over the past five years, hundreds of papers have revisited core algorithmic problems through
this lens, with prominent examples including online paging [39], scheduling [45], covering and
knapsack-constrained optimization [10, 30], Nash social welfare maximization [11], variations of the
secretary problem [2, 23, 26], and a variety of graph-based challenges [5].

UFL. The metric Uncapacitated Facility Location (UFL) problem is a fundamental NP-hard op-
timization problem, widely studied due to its theoretical significance and practical relevance in
operations research and algorithmic game theory. Early foundational results established the APX-
hardness of the problem, showing that it cannot be approximated within a factor better than 1.463
unless P = NP [29]. The first constant-factor approximation was provided by Shmoys et al. [47],
who achieved a ratio of approximately 3.16 . Subsequent improvements significantly narrowed the
approximation gap, with notable progress by Chudak and Shmoys [21] to 1.736 and Mahdian et al.
[40] to 1.52-approximation via sophisticated linear-programming techniques. Byrka and Aardal [14]
later improved this bound to a 1.50-approximation using a novel bifactor algorithm . The current
state-of-the-art algorithm, due to Li [36], achieves an approximation ratio of 1.488, leaving a small
gap relative to the known hardness bound.

B Tightness of the Frugality Bound for VCG

We now show that the frugality ratio of 3 for VCG is tight by exhibiting the following instance.

Theorem B.1. The frugality ratio of VCG auction is at least 3− 6
|L|+1 , even for tree metrics. Hence,

in the worst case (as |L| → ∞), the frugality ratio approaches 3.

Proof. Consider the tree metric defined by facilities L = {ℓ0, . . . , ℓk}, users U = {u1, . . . , uk}, and
edges E = {{ℓ, ui}}ki=1∪{{ui, ℓ0}}ki=1 (see Figure B for an illustration). Facility ℓ0 has an opening
cost oℓ0 = 2 and the other facilities have an opening cost of 0. The distance of from the central
facility ℓ0 to any other facility ℓ is 2 and d(ℓ, ℓj) = 4 for all pairs of distinct i, j > 0. Finally, we
have one user ui in the midway of ℓ and ℓ0.

For the given instance, the optimal solution OPT(U,o, d) is to open all of the peripheral facilities
{ℓ1, . . . , ℓk} for a total cost of k. Consequently, the frugal solution F (U, o) = {ℓ0} is to open the
central facility for a total cost of k + 2.

Now consider the payment made by VCG. Note that for all i ∈ {1, . . . , k}, if the opening cost of ℓ is
oℓ = ∞ (and the other opening costs do not change), then user ui must connect either to the central
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Figure 2: Illustration of the lower bound instance where each square represents a facility location
with its opening cost, and the circles represent users.

facility ℓ0 (which has opening cost 2) or to another peripheral facility (which increases the connection
cost of ui by 2), so the solution OPT(∞,o−l) is either {ℓ0} or {ℓ1, . . . , ℓi−1, ℓi+1, . . . , ℓk} and
c(OPT(∞,o−l)) = k+2. Thus, for each peripheral facility ℓ with i ∈ {1, . . . , k}, the VCG payment
is

pℓi = c(OPT(∞,o−l))− c(OPT(0,o−l)) = (k + 2)− k = 2.

Therefore, the total payments by the VCG auction to the facilities OPT(U,o) = {ℓ1, . . . , ℓk} that
it selects is 2k which, combined with a total user connection costs of k, leads to a total cost of 3k.
Therefore, the frugality ratio for this instance is

3k

c(F (U, o))
=

3k

k + 2
=

3(|L| − 1)

|L|+ 1
=

3(|L|+ 1)− 6)

|L|+ 1
= 3− 6

|L|+ 1
.

C Missing Proofs from Section 4

C.1 Truthfulness of PREDICTEDLIMITS

We first prove that the auction is truthful. By Myerson’s Lemma (Lemma 2.1), it suffices to prove the
monotonicity of the allocation rule.
Lemma C.1. For any ϵ ≤ 2, the PREDICTEDLIMITS auction is truthful.

Proof. We show that the allocation rule of Auction 1 is monotone, and then invoke Myerson’s lemma
to conclude truthfulness.

Fix a facility ℓ̃ ∈ L, and hold constant the true opening costs c−ℓ̃ of all other facilities as well as all
predictions ĉ. It suffices to prove that if ℓ̃ belongs to the winning set when it reports cost a ≥ 0, then
it still belongs to the winning set when it reports any lower cost b ≤ a.

Recall that the auction uses the modified cost function

c′ℓ(S) =

{
2
ϵ cℓ, if S = ˆOPT and cℓ > ĉℓ,

cℓ, otherwise.

We slightly abuse notation and use o′
ℓ̃
(S, a) and o′

ℓ̃
(S, b) to denote the scaled cost when facility ℓ̃

reports a and b, respectively. Since lowering ℓ̃’s reported cost can only (weakly) decrease its scaled
cost in every candidate set, and since the event “S = ˆOPT” depends only on the prediction, not on the
reported bid, we have

c′
ℓ̃
(S, b) ≤ c′

ℓ̃
(S, a) for all S.

Let S∗ be the winning set when ℓ̃ bids a, and let S′ be the winning set when it instead bids b, keeping
everything else fixed. If S′ = S∗ then ℓ̃ ∈ S′ immediately. Otherwise the only cost that changed is
c′
ℓ̃
, so in order for the auction to switch to a different optimal set S′, it must still include ℓ̃. Hence

in all cases ℓ̃ remains selected, proving monotonicity. Finally by Myerson’s lemma, a monotone
allocation rule induces truthful payments, so the auction is truthful.
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C.2 Missing Proofs from Section 4

C.2.1 Proof of Lemma 4.3

Proof. By definition of the auction, at most one subset, ˆOPT, can have its costs scaled. Therefore, it
suffices to consider the relationship between ˆOPT and OPT (the true optimal solution). We also note
that since ϵ ≤ 2, any set that is scaled can only increase its total cost relative to other solutions. The
proof structure closely follows the VCG analysis. The main idea is to handle the two cases depending
on whether the predicted optimal set ˆOPT matches the true optimal set OPT.

Case one: ˆOPT ̸= OPT. In this case, the true optimum OPT was not the set subject to potential
scaling. Since S∗ = OPT is the output, OPT must remain the optimal solution even in the modified
(potentially scaled) instance. We apply the same VCG analysis structure as in Theorem 3.1 and
Lemma 4.2.

Define OPTf and πf (ℓ) as in Theorem 3.1. The bounds from (2) and (3) hold, so we get

∑
ℓ∈OPT

pℓ + ∑
f :ℓ∈OPTf

d(Uℓ,f , ℓ)

 ≤
∑
f∈F

o′f (F ) + 2
∑
f∈F

∑
ℓ∈OPTf

d(Uℓ,f , f) +
∑
ℓ∈OPT

∑
f :ℓ∈OPTf

d(Uℓ,f , ℓ)

≤ 2

ϵ

∑
ℓ∈F

oℓ + 2d(U,F ) +
∑
ℓ∈OPT

∑
f :ℓ∈OPTf

d(Uℓ,f , ℓ)

≤ 2

ϵ

∑
ℓ∈F

oℓ + 2d(U,F ) +

(∑
ℓ∈F

oℓ + d(U,F )

)

=

(
2

ϵ
+ 1

)∑
ℓ∈F

oℓ + 3 d(U,F ), (5)

where the second inequality assumes the worst case for o′f (F ), which occurs if F = ˆOPT and the
opening costs of facilities in F were under-predicted. The third inequality uses the fact that the
connection cost of the true optimal solution is weakly less than the total cost of the frugal solution.

Case two: ˆOPT = OPT. Since S∗ = OPT, the consistency analysis from Lemma 4.2 applies directly,
and we have:∑

ℓ∈OPT

pℓ +
∑
ℓ∈OPT

∑
f :ℓ∈OPTf

d(Uℓ,f , ℓ) ≤ (1 + ϵ) · c(F ) = (1 + ϵ)

[∑
ℓ∈F

oℓ + d(U,F )

]
.

The lemma statement follows by taking the maximum of the bounds from the two cases

C.2.2 Proof of Lemma 4.4

Proof. The proof is very similar to the VCG analysis, replacing the facilities in the optimal solution
with the facilities in S = S∗ \ F . In addition, we also need to consider the case where the
corresponding frugal facility f is included in S∗, which turns out to be an easier case for bounding
rerouting costs.

Consider the case where S∗ ̸= OPT. First, we note that ˆOPT = OPT, otherwise OPT would be output
since scaling a solution only makes it worse. Therefore, both S∗ and F are unscaled. Let S = S∗ \F .

Define Uℓ, Uℓ,f , xf (ℓ) and πf (ℓ) as in Theorem 3.1, but replacing OPT with S. If f ∈ S∗, then
rerouting users from ℓ ∈ S to f is bounded by just connecting the users to f . Therefore, in the worst
case, all facilities f ∈ F are not in S∗. Then, inequalities (2) and (3) hold when replacing OPT with
S. Therefore, our total payment is bounded by

∑
ℓ∈S

(
pℓ +

∑
u∈Uℓ

d(u, ℓ)

)
≤

∑
f∈F

of + 2
∑
f∈F

∑
ℓ∈Sf

d(Uℓ,f , f)

+
∑
ℓ∈S

∑
f :ℓ∈Sf

d(Uℓ,f , ℓ)

=
∑
f∈F

[2d(Uj , f) + of ] +
∑
ℓ∈S

∑
f :ℓ∈Sf

d(Uℓ,f , ℓ).

16



Cancelling the total connection cost term
∑

ℓ∈S

∑
u∈Uℓ

d(u, ℓ) =
∑

ℓ∈S

∑
f :ℓ∈Sf

d(Uℓ,f , ℓ) from
both sides: ∑

ℓ∈S

pℓ ≤
∑
f∈F

[2d(Uj , f) + of ] ≤
∑
ℓ∈F

oℓ + 2d(U,F ). .

C.2.3 Proof of Lemma 4.6

Proof. Consider any instance (U,o, d) and any ϵ ≤ 2. Let OPT and F be the optimal solution and
frugal solution of the given instance. Let S∗ be the output of Auction 1.

Case one: S∗ = OPT. If S∗ = OPT, by Lemma 4.3 we have:∑
ℓ∈S∗

pℓ + d(U, S∗) ≤
(
2

ϵ
+ 1

)∑
ℓ∈F

oℓ + 3d(U,F ).

Case two: S∗ ̸= OPT. We now consider the case where S∗ ̸= OPT. First, note that the connection
cost of S∗ is weakly less than or equal to the total cost of any solution K, including the frugal solution
F . We have:

d(U, S∗) ≤
∑
ℓ∈F

o′ℓ(F ) + d(U,F ) =
∑
ℓ∈F

oℓ + d(U,F ), (6)

where the equality is due to the fact that OPT is the solution that is scaled, by the fact that S∗ ̸= OPT.

Let S = S∗ \ F and Sf = S∗ ∩ F . Putting together Lemma 4.4 and Lemma 4.5, we get:∑
ℓ∈S∗

pℓ + d(U, S∗) ≤
∑
ℓ∈S

pℓ +
∑
ℓ∈Sf

pℓ + d(U, S∗)

≤
∑
ℓ∈F

oℓ + 2d(U,F ) +
∑
ℓ∈Sf

pℓ + d(U, S∗) (by Lem. 4.4)

≤ max

(
3,

2

ϵ
+ 1

)∑
ℓ∈F

oℓ +max

(
4,

2

ϵ
+ 2

)
d(U,F ) + d(U, S∗)

(by Lem. 4.5)

≤ max

(
4,

2

ϵ
+ 2

)∑
ℓ∈F

oℓ +max

(
5,

2

ϵ
+ 3

)
d(U,F ) (by (6))

Taking the worst case of the two scenarios we get that∑
ℓ∈S∗

pℓ + d(U, S∗) ≤ max

(
5,

2

ϵ
+ 3

)[∑
i∈F

oi + d(U,F ).

]

D Proof of Theorem 4.1

Proof of Theorem 4.1. Auction PREDICTEDLIMITS is truthful by Lemma C.1, (1 + ϵ)-consistent by
Lemma 4.2, and max

(
5, 2

ϵ + 3
)
-robust by Lemma 4.6.

E Missing Proofs from Section 5

E.1 Truthfulness of ERRORTOLERANT

We first prove the truthfulness of Auction ERRORTOLERANT. The proof is very similar to Theo-
rem C.1.

Lemma E.1. For any ϵ ≤ 2, the PREDICTEDLIMITS auction is Truthful.

Proof. We show that the allocation rule of Auction 2 is monotone.
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Fix a facility ℓ̃ ∈ L, and o−ℓ̃ of all other facilities as well as all predictions ô. Let ℓ̃’s reported cost be
a ≥ 0, and suppose that when it bids a the auction selects S∗

a ∋ ℓ̃. We must show that if it instead
reports any lower cost b ≤ a, it remains selected.

Denote by cλ(S ; x) the total cost of set S under report x ∈ {a, b}, according to Auction 2. Note that
in either branch (the “whole-solution downscaling” or the “per-facility inflation”), lowering ℓ̃’s cost
from a to b weakly decreases its contribution to cλ(S) for every S. We consider two cases:

Case 1: Whole-solution downscaling applies at report a. That is,

∀ ℓ′ ∈ ˆOPT, oℓ′ ≤ λ ôℓ′ under x = a.

Since b ≤ a, the same test holds at x = b, so the auction remains in the downscaling branch. In that
branch

cλ(S ; x) =

{
1
λ2

(
d(U, S) +

∑
ℓ∈S oℓ

)
, S = ˆOPT,

d(U, S) +
∑

ℓ∈S oℓ, otherwise,

and reducing ℓ̃’s cost from a to b multiplies its term by at most b/a ≤ 1 in every candidate set. Hence

cλ(S ; b) ≤ cλ(S ; a) for all S,

Since solution that got a reduced cost must contain ℓ̃, any new minimizer S∗
b must still contain ℓ̃.

Case 2: Per-facility inflation applies at report a. Then there is some ℓ′ ∈ ˆOPT with oℓ′ > λôℓ′
under x = a. Two subcases arise:

- If ℓ̃ /∈ ˆOPT. Lowering its bid does not affect the branch test, so we stay in the inflation branch. But in
that branch each facility’s scaled cost (whether inflated by 2/ϵ or not) is a nondecreasing function of
its report, so the argument from the original auction applies verbatim to show monotonicity.

- If ℓ̃ ∈ ˆOPT. Then a > λôℓ̃ but b ≤ λôℓ̃, so at x = b the auction flips into the downscaling branch. In
that branch it will choose ˆOPT (since we uniformly downscale its cost), and ˆOPT ∋ ℓ̃. Thus ℓ̃ remains
selected.

In all cases, lowering ℓ̃’s bid can only weakly decrease its cost in every candidate set including it, and
any switch of the minimizer continues to include ℓ̃. Therefore the allocation rule is monotone, and by
Myerson’s lemma the resulting payments make the auction truthful.

E.2 Performance analysis for ERRORTOLERANT

We now provide the performance as a function of the error η and the error tolerance parameter λ.

E.2.1 Performance when η ≤ λ

We first consider the case where η ≤ λ, we start by showing the claim that ˆOPT is always outputted
when η ≤ λ. The result of this case is summarized in Lemma E.8. We first show that under the
condition η ≤ λ, the prediction optimal is always returned.
Lemma E.2. If η ≤ λ, then Auction 2 always selects ˆOPT; that is, S∗ = ˆOPT.

We now provide an upper bound of the connection cost of the output solution.

Proof. Let
ĉ(S) = d(U, S) +

∑
ℓ∈S

ôℓ,

be the predicted total cost. First note that since η ≤ λ, we have oℓ ≤ λôℓ for all ℓ the auction will set

cλ(S) =

{ 1

λ2
c( ˆOPT), S = ˆOPT,

c(S), S ̸= ˆOPT.

Since ˆOPT minimizes the predicted cost,

ĉ( ˆOPT) ≤ ĉ(S) ∀S ⊆ L. (7)
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By η ≤ λ we have oℓ ≤ λ ôℓ for all ℓ ∈ ˆOPT, so

c( ˆOPT) =
∑
u

d(u, ˆOPT) +
∑
ℓ∈ ˆOPT

oℓ ≤
∑
u

d(u, ˆOPT) + λ
∑
ℓ∈ ˆOPT

ôℓ ≤ λ ĉ( ˆOPT),

On the other hand, since ôℓ ≤ η oℓ for all ℓ, we get

ĉ(S) =
∑
u

d(u, S) +
∑
ℓ∈S

ôℓ ≤
∑
u

d(u, S) + η
∑
ℓ∈S

oℓ = η c(S),

Combining the above inequality with (7) we have,

c( ˆOPT) ≤ λĉ(S) ≤ λη c(S) =⇒ 1

λ2
c( ˆOPT) ≤ c(S) =⇒ cλ( ˆOPT) ≤ cλ(S), ∀S ̸= ˆOPT.

Since the auction output the set that minimizr cλ, we therefore have S∗ = ˆOPT.

Observation E.3. For any set S ̸= ˆOPT, let ĉ(S) = d(U, S) +
∑

ℓ∈S ôℓ, we have

ĉ(S) ≤ ηc(S).

Proof. η ≤ λ implies ôℓ ≤ λ oℓ for every ℓ, so

ĉ(S) = d(U, S) +
∑
ℓ∈S

ôℓ ≤ d(U, S) + η
∑
ℓ∈S

oℓ = η
(
d(U, S) +

∑
ℓ∈S

oℓ

)
.

We now provide an upper bound of the connection cost of the output solution.
Lemma E.4. If η ≤ λ, then for any S ⊆ L,

d
(
U, ˆOPT

)
≤ η

(
d(U, S) +

∑
ℓ∈S

oℓ

)
.

Proof. Since d
(
U, ˆOPT

)
≤ ĉ( ˆOPT), combining with the fact that ˆOPT minimizes ĉ, we have gives

d
(
U, ˆOPT

)
≤ ĉ( ˆOPT) ≤ ĉ(S) ≤ η

(
d(U, S) +

∑
ℓ∈S

oℓ

)
,

where the last inequality is by Observation E.3.

We now move on to upper bound the payment to the facilities in the output solution, i.e., ˆOPT. In
particular, we will partition ˆOPT based on the threshold they applied, and whether it is a member of
F , the true frugal solution. We first analyze the low-threshold facilities.
Lemma E.5. Under the condition η ≤ λ, let S1 =

{
ℓ ∈ ˆOPT : pℓ ≤ λ ôℓ

}
. Then∑

ℓ∈S1

pℓ ≤ λ η c(F ),

where F is the frugal solution.

Proof. Since pℓ ≤ λ ôℓ for every ℓ ∈ S1,∑
ℓ∈S1

pℓ ≤ λ
∑
ℓ∈S1

ôℓ ≤ λ
∑
ℓ∈ ˆOPT

ôℓ ≤ λ ĉ( ˆOPT) ≤ λ ĉ(F ), ≤ λ η c(F ),

where the last inequality is by Observation E.3.

Lemma E.6. Assume η ≤ λ, and let

S2 =
{
ℓ ∈ ˆOPT : pℓ > λ ôℓ, ℓ /∈ F

}
.

Then ∑
ℓ∈S2

pℓ ≤ ϵ c(F ),

where F is the frugal solution.
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Proof. We follow the rerouting argument of Lemma 4.4, with the additional fact that when the
reported bid is more than λôℓ, the opening cost is scaled up. specialized to the output ˆOPT.

Define Uℓ,f and πf (ℓ) as in Theorem 3.1, but replacing OPT with S2. If f ∈ S∗, then the cost of
rerouting users from ℓ ∈ S2 to f is bounded by just connecting the users to f . Therefore, in the worst
case, all facilities f ∈ F are not in S∗. Then, inequalities (2) and (3) hold when replacing OPT with
S. For ℓ ∈ S2, payments are scaled by 2

ϵ . Following a similar argument as Lemma 4.4, our total
payment is bounded by

2

ϵ

∑
ℓ∈S2

pℓ +
∑
ℓ∈S2

∑
f :ℓ∈S2

f

d(Uℓ,f , ℓ) ≤
∑
f∈F

2 ∑
ℓ∈S2

f

d(Uℓ,f , f) + of +
∑
ℓ∈S2

f

d(Uℓ,f , ℓ)


=
∑
f∈F

[2 d(Uf , f) + of ] +
∑
ℓ∈S2

∑
f :ℓ∈S2

f

d(Uℓ,f , ℓ).

Cancelling the total connection cost term
∑

ℓ∈S2

∑
f :ℓ∈S2

f
d(Uℓ,f , ℓ) from both sides gives

2

ϵ

∑
ℓ∈S2

pℓ ≤
∑
f∈F

[2 d(Uf , f) + of ] ,

we therefore get ∑
ℓ∈S2

pℓ ≤
ϵ

2

∑
f∈F

of + ϵ
∑
f∈F

d(Uf , f) ≤ ϵ · c(F ).

Lemma E.7. Under the condition η ≤ λ, let

S3 =
{
ℓ ∈ ˆOPT : pℓ > λ ôℓ, ℓ ∈ F

}
.

Then ∑
ℓ∈S3

pℓ ≤ ϵ · c(OPT).

Proof. For ℓ ∈ S3, ℓ ∈ F and pℓ > λ ôℓ. An argument analogous to Lemma 4.5 shows that
inflating the opening cost of any facility in the frugal solution beyond its predicted cost by up
to a 2/ϵ factor bounds its threshold payment by ϵ times the cost of the true optimum. Hence∑

ℓ∈S3 pℓ ≤ ϵ c(OPT).

Lemma E.8. Assume η ≤ λ. Let F be the frugal solution, and let S∗ and {pℓ}ℓ∈S∗ be the output of
Auction 2. Then

d(U, S∗) +
∑
ℓ∈S∗

pℓ ≤
(
η(1 + λ) + 2ϵ

)
· c(F ).

Proof. By Lemma E.2, under η ≤ λ the auction selects S∗ = ˆOPT. We partition the payments over
ˆOPT into three parts S1, S2, S3 as in LemmasE.5, Lemma E.6 and Lemma E.7. since c(OPT) ≤ c(F ).

Summing connection cost and all payments gives

d(U, S∗) +
∑
ℓ∈S∗

pℓ = d(U, ˆOPT) +
∑
ℓ∈S1

pℓ +
∑
ℓ∈S2

pℓ +
∑
ℓ∈S3

pℓ

≤ η c(F ) +
∑
ℓ∈S1

pℓ +
∑
ℓ∈S2

pℓ +
∑
ℓ∈S3

pℓ (by Lem. E.4)

≤ η c(F ) + λη c(F ) +
∑
ℓ∈S2

pℓ +
∑
ℓ∈S3

pℓ (by Lem. E.5)

≤ η c(F ) + λη c(F ) + ϵ c(F ) +
∑
ℓ∈S3

pℓ (by Lem. E.6)

≤ η c(F ) + λη c(F ) + ϵ c(F ) + ϵ c(F ) (by Lem. E.7)

=
(
η(1 + λ) + 2ϵ

)
· c(F ).
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E.2.2 Performance for general error η

We now analyze performance for arbitrary η by breaking the proof into two dimensions: (a) which
scaling rule the auction applies: either whole-solution downscaling or per-facility inflation—and (b)
which set is ultimately selected. In each of the resulting subcases, we separately bound the connection
cost and the total payment using rerouting arguments and the appropriate scaling factor; combining
these four analyses yields the unified frugality guarantee stated in Lemma E.11. We start by consider
the case where whole-solution scaling is applied and the ˆOPT is outputed.
Lemma E.9. Let S∗ be the output of Auction 2, if S∗ = ˆOPT, for any S ̸= ˆOPT,

d (U, S∗) ≤ λ2 c(S).

Proof. By the scaling scehem of the auction we have d
(
U, ˆOPT

)
≤ λ2cλ( ˆOPT), combining with the

fact that S∗ minimizes cλ, we have gives

d (U, S∗) ≤ λ2 · cλ(S∗) ≤ λ2 · cλ(S) ≤ λ2 · c(S)

where the last inequality is since S ̸= ˆOPT.

Lemma E.10. Let S∗ be the output of Auction 2. If S∗ = ˆOPT and the whole-solution-scaling is
applied, then ∑

ℓ∈S∗

pℓ ≤ (2λ4 + 2λ2) c(F ),

Proof. We follow the rerouting argument of Lemma 4.4. Partition ˆOPT into

S = S∗ \ F and Sf = ˆOPT ∩ F.

Define Uℓ,f and πf (ℓ) as in Theorem 3.1 but replace OPT with S∗

Since the auction applies a 1/λ2 down-scaling to ˆOPT, no profitable deviation implies

1

λ2

(
pi +

∑
j: ℓ∈Sf

d(Uℓ,f , ℓ)
)

≤
∑

j: ℓ∈Sf

rℓ,f , (8)

for each ℓ ∈ S, where rℓ.f is the cost to reroute Uℓ,f to πf (ℓ).

By the standard charging argument,∑
ℓ∈Sf

rℓ,f ≤ 2
∑
ℓ∈Sf

d(Uℓ,f , f) + of +
∑
ℓ∈Sf

d(Uℓ,f , ℓ). (9)

Summing (8) over all ℓ ∈ S and then using (9) together with Lemma E.9 (
∑

f d(Uf , f) ≤ d(U,F ))
yields

1

λ2

∑
ℓ∈S

pi ≤ 2 c(F ) +
(
1− 1

λ2

)∑
ℓ∈S

∑
j:ℓ∈Sf

d(Uℓ,f , ℓ) ≤ 2c(F ) + (λ2 − 1) c(F ).

Hence ∑
ℓ∈S

pℓ ≤ (λ4 + λ2) c(F ).

The case f ∈ S∗ gives the even better bound rℓ,f ≤ d(Uℓ,f , f), so it cannot increase the total.

Applying the identical rerouting argument to Sf (with F replaced by OPT) yields the same upper
bound (λ4 + λ2)c(F ). Summing over both parts,∑

ℓ∈S∗

pℓ =
∑
ℓ∈S

pℓ +
∑
ℓ∈Sf

pℓ ≤ (2λ4 + 2λ2) c(F ).

Lemma E.11. The Auction 2 achieves a frugality ratio

max
{
2λ4 + 3λ2, 3 + 2

ϵ

}
.
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Proof. The auction uses exactly one of two branches:

(i) Whole-solution downscaling:

Cλ(S) =

{
1
λ2

(
d(U, S) +

∑
ℓ∈S oℓ

)
, S = ˆOPT,

d(U, S) +
∑

ℓ∈S oℓ, S ̸= ˆOPT.

(ii) Per-facility inflation:
Cλ(S) = d(U, S) +

∑
ℓ∈S

o′ℓ(S),

where o′ℓ(S) =
2
ϵ oℓ if S = ˆOPT and oℓ > λôℓ, and o′ℓ(S) = oℓ otherwise.

Case 1: Whole-solution downscaling applies.

Case 1.1: If the auction still outputs S∗ = ˆOPT, then by Lemma E.9,

d(U, S∗) ≤ λ2 c(F ).

Combined with Lemma E.10, which gives
∑

ℓ∈S∗ pℓ ≤ (2λ4 + 2λ2) c(F ), we obtain

d(U, S∗) +
∑
ℓ∈S∗

pℓ ≤ (2λ4 + 3λ2) c(F ).

Case 1.2: Otherwise S∗ ̸= ˆOPT. In this subcase, ˆOPT was downscaled but not chosen, and all other
candidate sets remain unscaled. Thus from the winners’ perspective the outcome is no worse than
standard VCG, so

d(U, S∗) +
∑
ℓ∈S∗

pℓ ≤ 3 c(F ).

Case 2: Per-facility inflation applies. In this branch the analysis of Section 4.3 carries over
unchanged: the exact triggering condition (oℓ > ôℓ vs. oℓ > λôℓ) does not affect the worst-case
bound. By the robustness proof of Theorem 4.1,

d(U, S∗) +
∑
ℓ∈S∗

pℓ ≤ max
{
5, 3 + 2

ϵ

}
c(F ).

Taking the maximum over all branches and subcases yields

max
{
2λ4 + 3λ2, 5, 3 + 2

ϵ

}
= max

{
2λ4 + 3λ2, 3 + 2

ϵ

}
c(F ).

Putting the findings together gives up the performance of ERRORTOLERANT.

Proof of Theorem 5.1. If η ≤ λ, by Lemma E.8 have the first statement and Lemma E.11 proves the
other bound, for arbitrary η values.

F Computational Complexity

The standard IP formulation for UFL uses binary variables xℓ ∈ {0, 1} to denote whether facility
ℓ ∈ L is opened and variables yuℓ ∈ [0, 1] for assigning user u ∈ U to facility ℓ.

The implementation of Auction 1 proceeds as follows:

1. Determine the Predicted Optimal Set: First, we solve a classic UFL integer program using
the predicted opening costs, {ôℓ}ℓ∈L, to find the predicted optimal set, ˆOPT .

2. Find the Best Alternative Solution: After identifying ˆOPT , its modified cost according to
the auction rules is calculated directly. To find the best alternative, we solve a second UFL
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integer program using the true opening costs, {oℓ}ℓ∈L. A linear constraint is added to this
IP to make the set ˆOPT an infeasible solution:∑

ℓ∈ ˆOPT

xℓ ≤ | ˆOPT | − 1

This inequality ensures that at least one facility from the set ˆOPT remains unopened,
allowing the IP to find the optimal solution among all other feasible sets.

3. Select the Winning Set: The auction’s final output, S∗, is determined by comparing the
modified cost of ˆOPT with the cost of the best alternative solution found in the previous
step. The set with the lower cost is chosen.

4. Compute Payments: Finally, for each facility ℓ in the winning set S∗, its threshold payment
is computed. This is done by solving one additional UFL integer program per winning
facility to find the critical cost at which that facility would no longer be part of the optimal
solution.
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Guidelines:
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made in the paper.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Answer: [Yes]
Justification: we have clearly stated our mathematical model and the assumptions we make
about the model, including the metric space, types of predictions and explicitly explained
that the results hold under the given model.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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and how they scale with dataset size.
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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provided in the paper are stated with appropriate assumptions and justified with a complete
proof.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: The paper does not include experiments. All results are entirely theoretical.
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• The answer NA means that the paper does not include experiments.
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well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper does not include any experiments, nor does it use on data or code.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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versions (if applicable).
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paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not include experiments.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include experiments.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the Code of Ethics and concluded that the research
conforms with all guidelines listed.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper presents purely theoretical results (e.g., mathematical theorems
and performance bounds) without proposing deployable systems, datasets, or algorithms.
Consequently, we do not anticipate any direct positive or negative societal impacts that
warrant further discussion.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not use models or data.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not use LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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