
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPEED: SELECTIVE PREDICTION FOR EARLY EXIT
DNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Inference latency and trustworthiness of Deep Neural Networks (DNNs) are the
bottlenecks in deploying them in critical applications like autonomous driving.
Early Exit (EE) DDNs overcome the latency issues by allowing samples to exit
from intermediary layers if they attain ‘high’ confidence scores on the predicted
class. However, the DNNs are known to exhibit overconfidence, which can lead
to many samples exiting early and render EE strategies untrustworthy. We use
Selective Prediction (SP) to overcome this issue by checking the ‘hardness’ of
the samples rather than just relying on the confidence score alone. We propose
SPEED, a novel approach that uses Deferral Classifiers (DCs) at each layer to
check the hardness of samples before performing EEs. The DCs at each layer
identify if a sample is hard and either differ its inference to the next layer or
directly send it to an expert. Early detection of hard samples and using an
expert for inference prevents the wastage of computational resources and im-
proves trust. We also investigate the generalization capability of DCs trained
on one domain when applied to other domains where target domain data is not
readily available. We observe that EE aided with SP improves both accuracy
and latency. Our method minimizes the risk by 50% with a speedup of 2.05×
as compared to the final layer. The anonymized source code is available at
https://anonymous.4open.science/r/SPEED-35DC/README.md

1 INTRODUCTION

The demand for Artificial Intelligence (AI) systems to automate decision-making is growing. How-
ever, their high memory, computational resource requirements, and the associated inference latency
are bottlenecks in the deployment. Also, in socially sensitive or mission-critical machine learn-
ing applications, their trustworthiness is a concern (Kaur et al., 2022). For instance, the ability to
know what you do not know and not get overconfident about it is essential. However, the issue of
overconfidence in DNNs makes them vulnerable to wrong decisions and needs to be addressed.

To address the first issue, various adaptive inference methods have been developed, including Early
Exit DNNs (EEDNNs) (Kaya et al., 2019; Zhou et al., 2020). EEDNNs use classifiers attached to
the intermediary layers to perform adaptive inference, allowing samples attaining good confidence
scores on the predicted class to exit at shallow layers with a label, thus reducing the average inference
latency. To address the second issue, Selective Prediction (SP) (Chow, 1970) can be used, which
allows a model to abstain from predictions when uncertain about its hardness. SP helps models
better understand what they may not know, preventing them from being wrongly overconfident.
We leverage SP to detect if a sample is hard for the shallow layers and decide either to defer the
prediction to deeper layers or send it to an expert. This increases the trust in the model as incorrect
decisions with high confidence are avoided.

The use of traditional SP methods Pugnana et al. (2024) for EEDNNs is challenging due to two
major issues: 1) Existing methods use the confidence score output by the model to decide whether
to abstain or not on each sample. However, the overconfidence issue hinders the purpose of the SP
methods in effectively abstaining from the hard samples. This is illustrated in Figure 2a for the SST-
2 dataset where we plot the average confidence of the samples in the true class across the layers using
the trained EEDNN backbone. The experiment shows that multiple samples gain fake confidence

1

https://anonymous.4open.science/r/SPEED-35DC/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Layer 1

Layer 2

Layer 3

Layer n

f1

f2

f3

fn

Source dataset

Layer 1

Layer 2

Layer 3

Layer n

d1

d2

d3

fn

f1

f2

dn

Source dataset

Layer 1

Layer 2

Layer 3

Layer n

fn

f1

f2

Training

Split based on overconfidence
in the EEDNN

(i) Training the EEDNN (ii) Creating easy and hard labels (iii) Training the DCs

Source dataset (easy)
Based on Avg. Conf.

Source dataset (hard)
Based on Avg. Conf.

Used to provide Supervision
signal for training DCs

Figure 1: Flowchart of SPEED: i) The EEDNN backbone is trained with attached exit classifiers. ii)
Split the dataset into easy and hard using the average confidence obtained from all the exit classifiers.
iii) The splits are then used to train the DCs using labels as easy or hard.

even at the intermediary layers, and the confidence in the true class is very low. If existing methods
are applied directly, they can get fooled by the model’s fake confidence in these intermediary layers.

2) Existing methods make the decision to abstain after the entire model has processed the sample,
which negates the speed benefits of EEDNNs. For example, in autonomous driving, if a decision to
hand control over to a human driver is delayed until the entire model has been computed, critical time
is lost. Thus, a more efficient approach is required to identify hard samples earlier in the process.

To overcome the issues, SP methods need to distinguish whether the model’s confidence in a sample
can be ‘fake’ or ‘true’ at the shallow layers and refer it to an expert instead of passing through higher
layers. If a sample attains high fake confidence at the shallow layer, it is unlikely that the model’s
predictions would be better at deeper layers (see Appendix A.3). Thus, early referral of samples to
experts saves crucial time and computation resources.

To address these issues, we propose a new framework named Selective Prediction for Early Exit
DNNs (SPEED). This framework introduces deferral classifiers (DCs) at each layer of an EEDNN
to detect if a sample is hard and the model can get overconfident, thus helping EEDNNs maintain
the speed advantage while avoiding making inferences on samples that it does not understand. To
train the DCs, we use samples that are labeled as ‘easy’ or ‘hard’ based on the average confidence
they attain across the layer of EEDNN (see Subsection 3.4 for more details).

During inference, at each layer, the attached DC classifier detects if a sample is easy or hard. If hard,
it exits the sample from DNN and send it to an expert. If found easy, it is sent to the EE classifier
attached to the same layer. If the EE classifier completes the inference, the sample exits with a label,
else it is sent to the next layer where the process repeats. Figure 1 shows the flowchart of SPEED.

Our method is also robust to the domain changes of the input samples. The reason for its better per-
formance across diverse domains with similar tasks is the domain shifts do not change the semantic
structure of the sentence. For instance, consider an IMDB review (source domain): “The movie
would have been good if there was a better climax!,” which has negative sentiment, but the model
can say it is positive with high confidence due to the occurrence of the word ‘good.’ A similar review
from an hotel review “The place would have been good if the food quality was better.” also achieves
fake confidence. Our framework, once trained on the source domain, can also handle similar fake
confidence issues on the target domain. This reduces the need for another round of training for the
same task but with a domain shift. In summary, our main contributions can are as follows:

• We introduce a new framework, SPEED, that uses Deferral Classifiers (DCs) at each layer
of EEDNNs to make the inference fast and efficient.

• We develop a new strategy to train DCs. Each training sample is labeled as easy and hard
utilizing its training dynamics across the layers of DNN.

• Our method generalizes well to various domains with minimal loss in performance making
it robust to domain shifts of incoming samples during inference.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

Early Exit (EE) techniques allow models to make early predictions based on input complexity,
have been widely applied across various domains, including image classification Teerapittayanon
et al. (2016); Huang et al. (2017); Kaya et al. (2019); Wang et al. (2019b); Wołczyk et al. (2021),
natural language processing (NLP) Xin et al. (2020); Zhu (2021); Zhou et al. (2020); Bajpai &
Hanawal (2024), and image captioning Fei et al. (2022); Tang et al. (2023). These methods are
known for their strong generalization capabilities, as demonstrated by models like CeeBERT (Bajpai
& Hanawal, 2024). A key differentiator among existing approaches lies in the choice of confidence
measures, such as prediction consistency Zhou et al. (2020), ensemble methods Sun et al. (2021),
and output entropy Liu et al. (2021). Additionally, different training strategies, including separate
training Xin et al. (2020) and joint training Zhou et al. (2020), have been explored to enhance the
efficiency of EE methods. EE techniques have also been applied in practical settings like distributed
inference Bajpai et al. (2024), where models are deployed across devices with varying computational
capacities, such as mobile, edge, and cloud environments.

Selective Prediction (SP), also referred to as selective classification or the reject option, has been
extensively explored across various domains. Chow (1970) introduced a cost-based rejection model,
analyzing the trade-off between errors and rejections. This concept has also been widely studied in
the context of Support Vector Machines (SVMs) Brinkrolf & Hammer (2018); Hendrickx et al.
(2024), nearest neighbors Hellman (1970), and boosting Cortes et al. (2016), demonstrating its ver-
satility across different classification paradigms. In the domain of neural networks, LeCun et al.
(1989) introduced a rejection strategy based on output logits, comparing the highest and second-
highest activated logits to guide rejection decisions. Geifman & El-Yaniv (2017) proposed a selec-
tive classification technique to achieve a target risk with a specified confidence-rate function, laying
the groundwork for risk-controlled predictions.

Recent advancements in SP have focused on architectural innovations Cortes et al. (2024) Geifman
& El-Yaniv (2019). Other approaches, such as Deep Gamblers Liu et al. (2019) and Self-Adaptive
Training Huang et al. (2020), incorporate an additional class for abstention. Feng et al. (2022) crit-
ically examined the selection mechanisms of these models and highlighted their limitations. Their
findings suggest that the improved performance of these models is largely due to the optimization
process leading to a more generalizable model, which in turn enhances SP performance.

Furthermore, several works have proposed deferral-based approaches, where the decision to predict
or defer is determined by a cost function. These methods either assign prediction costs equal to
model loss or defer predictions at a user-defined cost Okati et al. (2021); Mozannar et al. (2023);
Verma et al. (2023).

Our method differs from existing approaches in three main ways: (1) To the best of our knowledge,
we are the first to apply SP to EEDNNs. (2) We accelerate the deferral process by eliminating the
need for every sample to pass through the entire backbone. (3) Our method of deferral decision is
more accurate due to the integration of multiple DCs. (4) The separate training of these DCs does
not affect the optimality of the backbone and enables better generalization across different domains,
making our approach more robust to minor domain shifts during inference.

3 METHODOLOGY

We first motivate the issues of overconfidence in EEDNNs using the SST-2 dataset and discuss how
Defferal Classifiers (DCs) can improve their inference time and their trustworthiness

3.1 MOTIVATION

In Figure 2a, we show the average of confidence score and its variance for SST-2 samples recorded
across all the exits on the true class of the trained Early Exit BERT. The samples are classified into
three categories based on their confidence scores: 1) Confident/Easy: The model is confident over
the true class. 2) Confused: The model sees similar scores in both classes and is unsure about the
class. 3) Fake: the model is overconfident (fake confidence) in the false class of these samples.
Since most of the SP methods take this confidence score to decide to abstain, they end up accepting
the wrong prediction from the model.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Variance of True Class Confidence

0.0

0.2

0.4

0.6

0.8

1.0

M
e
a
n

 o
f

T
ru

e
 C

la
s
s
 C

o
n

fi
d

e
n

c
e

Confident
Confused
Fake Confidence

(a) Average confidence values on SST-2

Layer 1

Layer 2

Layer L

Layer 3

The movie was pretty good, especially the
climax!

Embed

Pos 0.91f3
d3

0.09

Layer 1

Layer 2

Layer L

Layer 3

The movie would have been pretty good if there was
a better climax!

Embed

 : Easy to predict

 : Hard enough to Defer

 : Hard sample

 : Easy sample

Pos 0.83f2
d2

0.15

Pos 0.83f1
d1

0.21

Pos 0.55f1
d1

0.45

d2

0.67

fn
dn

fn
dn

(b) Examples of fake and true confidence.

Figure 2: The left figure shows the average confidence on the SST-2 dataset on the EEBERT back-
bone. The right figure shows the effectiveness of our method during inference where an easy sample
is exited early with a prediction a sample with fake confidence is detected and the model defers. The
threshold for exiting is 0.90 and the threshold for the DC score is 0.65.

In our method, we explicitly train the DCs to catch such samples where the model has fake confi-
dence. Note that the samples with higher variance are the ones where the model is highly confused
and fluctuates between the true and false classes. A high DC score indicates that it is a hard sample,
while a high score of the exit classifier indicates it has high confidence in a class.

In Figure 2b, we contrast easy and fake samples and how the use of DCs helps in handling overcon-
fidence. The sample in the left figure is an easy sample. This is supported by low scores assigned by
DCs and high scores by ECs. In the right one, the sample is hard. The ECs assign high confidence
(fake), but the DCs give high scores, indicating that the confidence is fake. Thus with the use of DCs
the risk of accepting the fake confidence during the selective prediction is significantly reduced. We
add a discussion for such samples inA.3 and add more of these in Table 4.

The main challenge is training the DCs to identify the fake sample accurately. We use the Selective
Prediction framework to build DCs for the EEDNNs.

3.2 SELECTIVE PREDICTION SETTING

We begin with the general SP setting. Let X be the feature space of the dataset D and Y be the
label set. Let P (X ,Y) be the distribution over X × Y . A model f : X → Y is called a prediction
function and its true risk w.r.t. P is R(f) := EP (X,Y)[l(f(x), y)] where l : Y × Y → R+ is any
given loss such as the 0/1 loss. Given the labeled dataset D = {(xi, yi)}mi=1 ⊆ (X × Y) sampled
i.i.d. from P (X,Y), the empirical risk of classifier f is r̂ = 1

m

∑m
i=1 l(f(xi), yi).

A selective model is a pair (f, d) where f is a prediction function and d : X → {0, 1} is the deferral
function that serves as the binary qualifier for f as follows:

(f, d)(x) :=

{
f(x) if d(x) = 1
defer if d(x) = 0

(1)

This equation shows the general setting of the selective models. The performance of a selective
prediction model is quantified using coverage and risk. Coverage is defined as ϕ(g) := EP [d(x)]
and the selective risk of (f, d) is defined as:

R(f, d) :=
EP [l(f(x), y)(d(x))]

ϕ(d)
(2)

Their empirical counterparts are given as ϕ̂(d|D) := 1
m

∑m
i=1 d(xi) and

r̂(f, d|D) :=
∑m

i=1 l(f(xi), yi)(d(xi))

ϕ̂(d|D)
, (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

respectively. The goal is to find a pair (f, d) such that r̂(f, d|D) is minimized.

We adapt this setting to our case with EEDNNs. We attached a Deferral Classifier (DC) in addition
to the Early Exit classifier (EC) at each layer of DNN. Let di and fi denote the DC and EC at the
ith layers. Their predictions are based on the confidence scores described as follows. For x ∼ D,
let Pi(c) denote class probability that x belongs to class c ∈ C by the EC atlayer i. We define
confidence score, denoted Ci, as the maximum over the class probability, i.e. Ci := maxc∈C P̂i(c).
The decision to exit with a prediction at the ith layer is made based on the value of Ci. For a given
threshold, α (exit threshold), if Ci ≥ α the sample will be assigned a label ŷ = argmaxc∈C(P̂i(c))
and the sample is not further processed. α models the accuracy-efficiency trade-off.

For DCs, the confidence score is obtained as the output of the linear layer, which takes hidden
representations of the intermediary layer as input. Let Si denote the confidence score at the ith DC.
For a given threshold β (deferral threshold), a sample is deferred at the ith layer if Si ≥ β. β models
the risk-coverage trade-off. A higher value of β will have a lower risk with lower coverage and vice
versa. We define the function di(x) as:

di(x) :=

{
1 if Si < β
0 otherwise (4)

Hence at every layer the tasks of the pair (fi, di) could be written as:

(fi, di)(x) :=

{ defer if di(x) = 0
fi(x) if di(x) = 1, Ci ≥ α
i← i+ 1 if di(x) = 1, Ci < α

(5)

where α is the threshold that decides the early exiting of samples and β named as the risk threshold
is the hyperparameter that models the risk-coverage trade-off, the higher value of the risk factor
increases the risk as well as coverage and vice versa.

When a sample is deferred it is exited from the DNN and assigned to an expert for prediction. The
coverage for the pair (fi, di) could be defined as ϕ(di) := EP [di(x)|Ci ≥ α] and the total coverage
across all the layers could be defined as ϕ(G) =

∑n
i=1 ϕ(di|Ci ≥ α) The selective risk of (fi, di)

and the over all risk are defined as

Ri(fi, di) :=
EP [l(fi(x), y)(di(x))|Ci ≥ α]

ϕ(di)
and R =

n∑
i=1

Ri(fi, di). (6)

Similar to 3, we can define the empirical selective risk, and our goal is to minimize it over the
possible values of (α, β). Note that the total risks discourage sending all samples to an expert and
the pair (α, β) together decide the overall risk-accuracy trade-off of the model.

Our framework starts with a pre-trained DNN and obtained an EEDNNs with DCs using the the
following three steps. 1) Trains the ECs attached at each layers with frozen back-bone parameters.
2) Prepare the samples with appropriate labels to to train the DCs. 3) Trains the DCs attached to
each layer with frozen back-bone and EC parameters. We next discuss each of these steps.

3.3 TRAINING EXIT CLASSIFIERS

Let D represent the data distribution with label space C used for training the backbone. The layers
of the DNN are denoted as L1, L2, . . . , Ln, with EC fi attached to layer Li. For a given layer Li,
the hidden state hi is computed as hi = Li(hi−1), where h0 = embedding(x). Each EC maps the
hidden representations to class probabilities, i.e., yi = fi(hi). The loss for the ith exit classifier
could be written as:

Li = LCE(fi(hi), y
∗) (7)

where y∗ is the true label and LCE denotes the cross-entropy loss. We learn the parameters for all
the ECs simultaneously following the approach outlined by Kaya et al. (2019), with the overall loss
function defined as L =

∑n
i=1 i·Li∑n

i=1 i where n is the number of layers in the backbone. The weighted
average considers the relative inference cost of each EC. Subsequently, the backbone parameters
along with all the EC parameters.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.4 TRAINING DATA FOR DCS

We perform supervised training of DCs using samples that are labeled as easy and hard. To obtain
the labels, we leverage the confidence score of ECs attached to the backbone.

For a sample x with label y∗, let Pi(y
∗|x) denote the class probability fi assigns to x on

class y∗. The average true class probability score of the sample across all the layers is µ̂x =
1
n

∑n
i=1 Pi(y

∗|x), and the variability is σ̂x =
∑n

i=1(Pi(y
∗|xi)−µ̂x)

2

n . We sort the samples as per
their scores µ̂x and label first-33% of the sorted samples as hard and the remaining as easy ones.
We do not use the variance as a metric since high variance is only for the samples that fluctuate and
might not include the samples where the model is highly confident on the wrong class. However,
in the split, most of the high variance samples are included as hard samples as samples with high
variance often exhibit low overall confidence.

The rationale behind creating these labels for DC training is rooted in the observation that hard
samples across similar tasks share structural patterns, with semantic differences that are less relevant
to the model. This allows our approach to generalize effectively across different domains.

3.5 TRAINING THE DCS

We attach the DCs at every layer of EEDNN whose parameters are frozen. The DCs can be any
neural nets whose task is to map the hidden representations at every layer to a score of hardness in
the range of 0 and 1 where a higher score means a harder sample. The loss for the ith DC is:

LDC
i = LCE(DCi(hi), zi) (8)

where zi is the binary label of the sample with 0 denoting and 1 denoting hard sample. We learn
the parameters of all the DCs simultaneously. The overall loss function could be written as LDC =∑n

i=1 i·LDC
i∑n

i=1 i . The higher weight to deeper layers is based on the intuition that the deeper layer’s
hidden representations have high-level knowledge of the sample providing more critical information
to the DC at that layer.

Once the DC training is complete, its parameters are frozen. Using the validation data, the parame-
ters (α, β) are chosen that minimize the overall empirical risk defined in (6).

3.6 INFERENCE

For a test input x ∼ D̃ where D̃ = D when the source and target domain are the same, and for the
given thresholds α and β, let the sample is processed till the ith layer. At the ith layer, its Si value
is calculated using DC. If Si ≥ β, the sample is deferred and sent to an expert. If Si < β, then the
sample is referred to EC in the same layer, and its confidence score Ci is checked. If Ci ≥ α, then
the sample exits with a label completing the inference, else the sample is taken into the next layer,
and the process continues till the sample reaches the last layer.

If the sample reaches the final layer, then the decision to infer or defer depends only on the confi-
dence score of EC. If Ci ≥ α, then the sample is assigned a label. Otherwise, it defers the sample
irrespective of the confidence of the DC. Hence, at every layer (except the final layer) of the back-
bone, every sample is either inferred, deferred, or passed on to the next layer.

4 EXPERIMENTS

In this section, we provide details of the experimental setup, key findings and analysis of our work.

4.1 DATASET

We utilized most of the GLUE Wang et al. (2019a) and the ELUE Liu et al. (2021) datasets. We
evaluated SPEED on different datasets covering four types of classification tasks. The datasets used
for evaluation are:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model BERT BERT-SR SelNet Cal-RF PABEE-SR Ours
Data Risk/Coverage
SST2 06.3/100 04.7/91.8 04.1/91.5 04.6/94.5 05.0/95.6 03.5/95.4
IMDB 10.4/100 05.2/86.4 04.8/85.3 04.1/85.1 05.5/86.7 03.9/87.2
Yelp 07.2/100 02.1/80.0 01.9/79.2 01.9/78.9 02.1/81.4 01.7/81.9
SciTail 09.7/100 03.3/84.5 03.5/84.0 03.1/83.8 03.7/85.2 03.1/85.9
MRPC 14.5/100 08.6/72.7 08.2/73.2 07.2/70.8 10.7/75.3 06.5/74.1
QQP 10.7/100 06.4/87.4 05.8/86.8 06.1/87.9 06.6/88.5 05.6/89.2
MNLI 15.5/100 09.3/86.3 08.9/85.2 08.8/84.7 09.7/87.0 08.3/87.2
SNLI 10.7/100 07.9/82.4 07.5/81.8 07.3/80.3 08.2/83.1 06.5/83.8
Avg. Risk/Cov. 10.6/100 06.3/84.2 05.9/83.4 05.8/83.7 06.8/85.7 05.2/86.1
Avg.Speed 1.00x 1.00x 1.00x 1.00x 1.71x 2.05x

Table 1: In-Domain results: Results on the BERT backbone where the test and train set have the
same distribution. We report the risk, coverage, average risk (Avg. Risk), average coverage (Avg.
Cov.) and average speedup (Avg. Speed).

1) Sentiment classification: IMDB is a movie review classification dataset and Yelp consists of
reviews from various domains such as hotels, restaurants etc. iii) SST-2 is also a similar type of
dataset with the sentiment analysis task.

2) Entailment classification: We have used the SciTail dataset created from multiple questions
from science exams an web sentences. MRPC (Microsoft Research Paraphrase Corpus) dataset
which also has a semantic equivalence classification task of a sentence pair extracted from online
news sources. We also perform experiment on the QQP (Quora Question Pair) dataset used to

3) Natural Language Inference task: We have used the MNLI and SNLI datasets for NLI tasks.
SNLI is a collection of human-written English sentence pairs manually labeled for balanced classi-
fication with labels entailment, contradiction and neutral.

In the Appendix 5, we also include the image datasets such as CIFAR-10 and Caltech-256 for im-
age classification where CIFAR-10 has objects from 10 different categories while Caltech-256 has
objects from 257 different categories.

4.2 EXPERIMENTAL SETUP

We have three parts in our experimental setup that are as follows:

i) Training the EE backbone on the source dataset: Initially, we train the backbone on the source
dataset. We add a linear output layer after each intermediate layer of the BERT/RoBERTa model
whose task is to map the hidden representation to class probabilities. We run the model for 5 epochs.
We perform a grid search over batch size of {8, 16, 32} and learning rates of {1e-5, 2e-5, 3e-5, 4e-
5 5e-5} with Adam Kingma & Ba (2014) optimizer. We apply an early stopping mechanism and
select the model with the best performance on the development set. The experiments are conducted
on NVIDIA RTX 2070 GPU with an average runtime of ∼ 3 hours and a maximum run time of
∼ 10 hours for the MNLI dataset.

ii) Creating the dataset for DC training: After training the EE backbone, we freeze the parameters
of the backbone and then calculate the average confidence and variance of confidence across all the
exit points. The dataset is then sorted in ascending order of confidence. The top-33% samples are
provided the hard label and the remaining samples are treated as the easy ones. After creating the
dataset, we attach the DCs i.e., a single linear layer mapping the hidden representations to hardness
score. A hard sample will have a score closer to 1 and an easier sample will have a score close to 0.

The training for DCs is performed for additional 3 epochs. After training the DCs, the model can
classify or defer early at each layer. For training the hyperparameters α we perform a grid search
over the set {0.75, 0.8, 0.85, 0.9, 0.95} and for β, we choose the set as {0.55, 0.6, 0.65, 0.7, 0.75}.
The thresholds could be chosen based on the user requirements of risk and coverage. We set the
thresholds as the ones that show similar trade-offs for comparison with existing baselines. We also
plot the risk-coverage trade-off and discuss in the Appendix A.1 (see Figure 3a, 3b).

iii) Inference: We perform the inference on the test split of the source dataset and to show the
generalization capabilities of our model, we also perform inference on a target domain dataset.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Data/Model BERT BERT-SR SelNet Cal-RF PABEE-SR Ours
Src. - Tgt. Risk/Cov.
SST-IMDB 19.8/100 14.9/86.0 14.2/85.1 14.6/87.0 14.8/86.4 12.8/87.2
SST-Yelp 17.9/100 11.0/78.3 11.4/79.0 11.9/80.4 13.7/81.7 09.0/82.0
IMDB-SST 18.1/100 15.5/85.2 14.8/86.0 15.1/85.5 16.2/86.2 13.8/85.9
IMDB-Yelp 24.3/100 15.2/81.5 15.0/79.8 14.6/80.8 15.5/80.1 13.5/82.1
Yelp-IMDB 22.8/100 13.2/73.4 12.6/72.7 12.9/72.7 14.8/73.9 09.5/74.5
Yelp-SST 25.1/100 13.8/71.5 14.0/72.1 13.6/70.6 14.2/73.8 12.0/75.3
SNLI-MNLI 25.1/100 14.9/80.7 14.5/79.2 13.9/78.5 15.2/81.6 12.3/82.8
MNLI-SNLI 19.8/100 11.4/76.8 10.8/74.8 11.3/76.2 12.6/77.9 09.5/77.4
MRPC-SciTail 35.7/100 25.6/74.2 24.1/71.6 25.9/75.4 21.5/72.8 18.8/73.5
SciTail-MRPC 29.9/100 23.3/69.9 22.7/67.8 23.1/69.2 24.7/70.3 21.4/70.9
Avg. Risk/Cov. 21.3/100 15.8/77.7 15.4/76.8 15.7/77.6 16.3/78.4 13.2/79.1
Avg.Speed 1.00x 1.00x 1.00x 1.00x 1.57x 1.98x

Table 2: Out-Of-Domain results: Results on the BERT backbone where the test set has a different
distribution from the training set (Src. (source)- Tgt. (target)). We report the risk, coverage, average
risk (Avg. Risk), average coverage (Avg. Cov.) and average speedup (Avg. Speed).

Also, to maintain consistency with previous methods, we use the speed-up ratio as the metric to
assess our model’s improvement in speed as compared to existing methods. The speed-up ratio
could be written as:

∑n
i=1 n×xi∑n
i=1 i×xi

where xi denotes the number of samples exiting from the ith layer
and n denotes the number of layers in the backbone. Note that the xi consists of the samples that
either get an early inference or early deferral.

4.3 BASELINES

In this section, we detail the various baselines that we consider:

1) BERT: This baseline is where we perform vanilla BERT inference, where there is no se-
lective prediction or early exiting. Hence the coverage in this case will always be full.

Data/Mdl RBTa RBTa-SR PBEE-SR Ours
Risk/Coverage

SST2 7.8/100 6.2/92.7 6.8/93.8 4.5/94.1
Yelp 5.9/100 5.1/93.2 5.4/94.0 4.2/93.9
IMDB 10.1/100 7.5/91.5 7.1/92.1 6.8/92.6
SciTail 8.5/100 7.0/90.2 6.8/89.4 5.7/89.7
MRPC 13.3/100 9.6/87.5 10.1/88.6 9.0/88.6
QQP 9.8/100 8.4/91.9 8.1/93.2 7.5/93.7
Avg. 9.23/100 7.3/91.6 7.3/91.8 6.2/92.1
Avg. Spd. 1.00x 1.00x 1.73x 2.19x

Table 3: Results over the RoBERTa backbone.

2) BERT-SR: It uses softmax-
response where at the final output of
the BERT model, the softmax layer
is added after the final layer of the
BERT and if the model is confident
enough on the prediction, then it
infers the sample, else it abstains.

3) SelectiveNet: In this there is an
additional loss component to lower
the risk of the model, however the
criteria to abstain is similar to the
BERT-SR method.

4) Calibrator model: This baseline considers a calibrator i.e., the output of the model is passed to a
different smaller model, in our case, we use a random forest to decide about abstaining the sample.

5) PABEE SR: We attach the softmax-response to the PABEE model, where the exits are attached,
and there is a softmax layer at the final layer used to decide to abstain or perform inference.

All the parameters are kept the same as given in the codebases of the respective baselines. For a
fair comparison, the risk-coverage trade-off hyperparameter was chosen based on the values that
minimize the risk over the validation dataset for all the baselines.

4.4 EXPERIMENTAL RESULTS

In Table 1, Table 3, we present the results of the test split of the training set on the BERT and
RoBERTa backbone respectively. Each experiment is performed five times and the average results
are reported (we put the stability of our results in Appendix 6). We can observe that our method
outperforms the existing baselines. the justification for lower risk is due to the fact that our method

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

IMDB
Example True lbl. Fake Avg. Conf. DC
I was really excited about this film, but I was wrong. negative 0.96 0.87
His last film was better than this. negative 0.89 0.82
Low budget, but creepy enough to hold your interest positive 0.91 0.84
Don’t judge it by bad cover picture. positive 0.88 0.89

SST-2
mysterious and brutal nature positive 0.90 0.91
the under-7 crowd negative 0.89 0.79
seems endless negative 0.85 0.86
a movie with two stars positive 0.83 0.85

Table 4: Examples of samples achieving fake confidence, the table shows an example, its true label
(True lbl.), the confidence of the model on the wrong class (Fake Avg. Conf.) and the deferral
classifier score that abstains the sample early.

catches the samples that have fake confidence early and abstains from predicting them while existing
methods predict such samples. A few examples of such samples are given in Table 4 where the model
starts gaining fake confidence but the DCs identify them and force them to defer (more discussion
in Appendix A.3). There is also significant speedup in our method, which comes from the early
exiting of easier samples and early detection of the hard samples. The combined speedup is 2.05x
the vanilla BERT inference saves crucial time and significantly reduces the computational cost. The
coverage of PABEE-SR is sometimes higher than our method and other baselines, the reason being
the early classifiers that infer the sample and it is not processed till the final layer. However, it has a
higher risk as compared to the existing methods.

In Table 2, we show the results of the different domains i.e., the model is tested on a different domain.
Here we can show the generalization capabilities of our method as compared to the existing ones.
Observe that when the domain of the test dataset changes, our method has the least performance
drop i.e., the least increase in speedup. The improvement in risk values of our method is more
significant when the domain changes as compared to the existing methods. This comes as the effect
of training the DCs using the easy and hard samples that help them generalize well to other domains
with similar tasks.

BERT-SR, PABEE-SR and Cal-RF use the confidence values available at the final layer to decide
to abstain from a sample. Since the confidence could be fake, the risk of these models goes high.
The lower performance of the SelectiveNet model is due to the fact that it optimizes the abstaining
process using the backbone parameter which affects the optimality of the backbone.

Note that the better coverage of our method is due to the reduction of the overthinking issue. Over-
thinking is caused when the model loses confidence in an easy sample when it is processed deeper
into the backbone due to the extraction of overly complex features Kaya et al. (2019); Zhou et al.
(2020). In such cases, our method early infers the sample improving the coverage and since exist-
ing only checks the confidence at the final layer that has dropped due to overthinking and end up
abstaining from predicting the sample. This improves the performance as well as coverage of our
method pushing multiple metrics simultaneously.

5 CONCLUSION

In this work, we introduced SPEED, a selective prediction tailored to improve inference latency and
overconfidence issues in EEDNNs. We introduce new classifiers named deferral classifiers (DCs) to
identify if a sample is hard for a given layer and if the model can get overconfident about its false
class. Thus, it helps the model to understand what it does not know, which is crucial to prevent the
model from making a false prediction with high confidence! We develop a method to train the DCs
to effectively identify if a sample is hard or easy to infer at a given layer.

Our experiments demonstrate that SPEED consistently outperforms existing baselines in both risk
reduction and speedup. Further, SPEED generalizes well across different domains, minimizing the
need for retraining and making it robust to domain shifts.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Divya Jyoti Bajpai and Manjesh Kumar Hanawal. Ceebert: Cross-domain inference in early exit
bert. In To appear in proceedings of the 62nd conference of the Association for computational
linguistics: Findings Volume, 2024.

Divya Jyoti Bajpai, Aastha Jaiswal, and Manjesh Kumar Hanawal. I-splitee: Image classification in
split computing dnns with early exits. arXiv preprint arXiv:2401.10541, 2024.

Johannes Brinkrolf and Barbara Hammer. Interpretable machine learning with reject option. at-
Automatisierungstechnik, 66(4):283–290, 2018.

C Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on information
theory, 16(1):41–46, 1970.

Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. Boosting with abstention. Advances in Neural
Information Processing Systems, 29, 2016.

Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. Theory and algorithms for learning with
rejection in binary classification. Annals of Mathematics and Artificial Intelligence, 92(2):277–
315, 2024.

Zhengcong Fei, Xu Yan, Shuhui Wang, and Qi Tian. Deecap: Dynamic early exiting for efficient
image captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12216–12226, 2022.

Leo Feng, Mohamed Osama Ahmed, Hossein Hajimirsadeghi, and Amir Abdi. Towards better
selective classification. arXiv preprint arXiv:2206.09034, 2022.

Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks, 2017. URL
https://arxiv.org/abs/1705.08500.

Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated reject
option. In International conference on machine learning, pp. 2151–2159. PMLR, 2019.

Martin E Hellman. The nearest neighbor classification rule with a reject option. IEEE Transactions
on Systems Science and Cybernetics, 6(3):179–185, 1970.

Kilian Hendrickx, Lorenzo Perini, Dries Van der Plas, Wannes Meert, and Jesse Davis. Machine
learning with a reject option: A survey. Machine Learning, 113(5):3073–3110, 2024.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. Multi-scale dense networks for resource efficient image classification. arXiv preprint
arXiv:1703.09844, 2017.

Lang Huang, Chao Zhang, and Hongyang Zhang. Self-adaptive training: beyond empirical risk
minimization. Advances in neural information processing systems, 33:19365–19376, 2020.

Davinder Kaur, Suleyman Uslu, Kaley J Rittichier, and Arjan Durresi. Trustworthy artificial intelli-
gence: a review. ACM computing surveys (CSUR), 55(2):1–38, 2022.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding and
mitigating network overthinking. In International conference on machine learning, pp. 3301–
3310. PMLR, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hubbard,
and Lawrence Jackel. Handwritten digit recognition with a back-propagation network. Advances
in neural information processing systems, 2, 1989.

Xiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao,
Xuanjing Huang, and Xipeng Qiu. Towards efficient NLP: A standard evaluation and A strong
baseline. 2021. URL https://arxiv.org/abs/2110.07038.

10

https://arxiv.org/abs/1705.08500
https://arxiv.org/abs/2110.07038

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ziyin Liu, Zhikang Wang, Paul Pu Liang, Russ R Salakhutdinov, Louis-Philippe Morency, and
Masahito Ueda. Deep gamblers: Learning to abstain with portfolio theory. Advances in Neural
Information Processing Systems, 32, 2019.

Hussein Mozannar, Hunter Lang, Dennis Wei, Prasanna Sattigeri, Subhro Das, and David Sontag.
Who should predict? exact algorithms for learning to defer to humans. In International conference
on artificial intelligence and statistics, pp. 10520–10545. PMLR, 2023.

Nastaran Okati, Abir De, and Manuel Rodriguez. Differentiable learning under triage. Advances in
Neural Information Processing Systems, 34:9140–9151, 2021.

Andrea Pugnana, Lorenzo Perini, Jesse Davis, and Salvatore Ruggieri. Deep neural network bench-
marks for selective classification. arXiv preprint arXiv:2401.12708, 2024.

Tianxiang Sun, Yunhua Zhou, Xiangyang Liu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing
Huang, and Xipeng Qiu. Early exiting with ensemble internal classifiers. arXiv preprint
arXiv:2105.13792, 2021.

Shengkun Tang, Yaqing Wang, Zhenglun Kong, Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi Wang,
Yi Liang, and Dongkuan Xu. You need multiple exiting: Dynamic early exiting for accelerating
unified vision language model. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10781–10791, 2023.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
via early exiting from deep neural networks. In 2016 23rd International Conference on Pattern
Recognition (ICPR), pp. 2464–2469. IEEE, 2016.

Rajeev Verma, Daniel Barrejón, and Eric Nalisnick. Learning to defer to multiple experts: Consis-
tent surrogate losses, confidence calibration, and conformal ensembles. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 11415–11434. PMLR, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. 2019a.
In the Proceedings of ICLR.

Meiqi Wang, Jianqiao Mo, Jun Lin, Zhongfeng Wang, and Li Du. Dynexit: A dynamic early-exit
strategy for deep residual networks. In 2019 IEEE International Workshop on Signal Processing
Systems (SiPS), pp. 178–183. IEEE, 2019b.

Maciej Wołczyk, Bartosz Wójcik, Klaudia Bałazy, Igor T Podolak, Jacek Tabor, Marek Śmieja,
and Tomasz Trzcinski. Zero time waste: Recycling predictions in early exit neural networks.
Advances in Neural Information Processing Systems, 34:2516–2528, 2021.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
accelerating bert inference. arXiv preprint arXiv:2004.12993, 2020.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses pa-
tience: Fast and robust inference with early exit. Advances in Neural Information Processing
Systems, 33:18330–18341, 2020.

Wei Zhu. Leebert: Learned early exit for bert with cross-level optimization. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 2968–2980,
2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 RISK-COVERAGE TRADE-OFF

In Figure 3a and 3b, we show the risk-coverage trade-off, where the values are obtained by changing
the risk hyperparameter in our case and for the existing baselines, we use the hyperparameters used
in their codebases to obtain the results. Figure 3a shows the in-domain trade-off where the model
is trained in the SST2 dataset and tested on the test split of the same dataset while in Figure 3b we
plot the trade-off when the model is trained on the SST2 dataset and tested on the IMDB. We can
observe that our method has a significantly smaller drop in coverage, and the risk decreases. The
drop in coverage is lower when the domain of the dataset changes for our method. Note that better
performance of our method comes as multiple DCs help to effectively catch the samples where the
model can gain fake confidence or is unable to gain confidence. Also, mitigation of overthinking
issues through early exits helps improve coverage pushing multiple metrics simultaneously.

A.2 RESULTS FOR THE IMAGE TASKS

In table 5, we show the results of our model on the Cifar10 and Caltech-256 datasets on the Mo-
bileNet model. We attach exit classifiers in a similar fashion. In this setup, we first train the model
with early exits and then the DCs are trained. After this step, the clean test set images are used for
inference (shown as pristine). Then we add noise to the images of the test split and consider that
as a domain change, where the noise added is the Gaussian blur. The level of Blur depends on the
value of σ, higher the value of σ, the more blur the image is. This translates to the scenarios of
domain change in autonomous driving where the environment factor might change the distribution
of incoming samples.

The performance of our method is similar in the image domain as well where our method outper-
forms all the existing baselines with a significant margin. This further proves the effectiveness of
our method.

A.3 SOME EXAMPLES OF FAKE CONFIDENCE

In table 4, we list some examples where the model gains fake confidence i.e., it is confident over
the wrong class. For instance, consider the example a movie with two stars with confidence across
12 layers as [0.47, 0.21, 0.03, 0.01, 0.03, 0.06, 0.42, 0.26, 0.22, 0.13, 0.09, 0.11], this sample is even
confusing for humans as it has two meanings one is a movie that consists of two-star actors or it
means a movie which can be rated with only two stars out of five, due to which the model gains fake
confidence over the wrong class. Note that the DCs catch the hard samples as the threshold for DCs
is kept smaller, and at every layer before checking the confidence of the prediction, we check the
score of hardness given by the DC at that layer.

Samples such as Don’t judge it by bad cover picture give the model an overall negative impact that
makes it overconfident towards the negative class as the model focuses on some keywords which
could be bad in this case making a negative impact on the model. The confidence over the true class
is [0.47, 0.20, 0.08, 0.05, 0.10, 0.07, 0.09, 0.01, 0.03, 0.02, 0.01, 0.008].

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

3.0 3.5 4.0 4.5 5.0 5.5 6.0
Risk (%)

70

75

80

85

90

95

100

Co
ve

ra
ge

 (
%

)

BERT-SR
PABEE-SR
SelectiveNet
Calibration-RF
Ours

(a) Risk-coverage trade-off for SST2-SST2.

12 13 14 15 16 17 18 19 20
Risk (%)

75

80

85

90

95

100

Co
ve

ra
ge

 (
%

)

BERT-SR
PABEE-SR
SelectiveNet
Calibration-RF
Ours

(b) Risk-coverage trade-off for SST2-IMDB.

Data/Model MNet MNet-SR SelNet PABEE-SR Ours
Caltech-256 Risk/Coverage

Pristine 21.7/100 16.5/89.8 15.3/87.7 15.9/88.5 14.8/89.3
σ = 0.5 24.8/100 17.2/86.0 16.8/85.4 16.3/85.1 15.9/85.9
σ = 0.75 26.2/100 19.8/84.6 18.5/82.6 19.0/84.9 17.1/85.1
σ = 1.0 28.4/100 21.2/82.3 20.9/81.9 20.4/81.3 18.5/81.8

Cifar10 - Risk/Coverage
Pristine 7.5/100 4.8/93.4 3.9/92.2 4.9/95.8 4.1/95.3
σ = 0.5 10.1/100 8.3/91.9 6.2/89.6 7.6/92.6 5.9/93.5
σ = 0.75 14.9/100 10.7/89.0 9.4/88.1 9.8/88.9 8.5/89.4
σ = 1.0 21.7/100 16.2/83.9 14.5/82.4 15.2/84.8 13.8/85.2

Table 5: Results on CIFAR10 and Caltech-256 datasets with different levels of noise on the Mo-
bileNet backbone.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Variance of True Class Confidence

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
of

 T
ru

e
Cl

as
s

Co
nf

id
en

ce

Confident
Confused
Fake Confidence

(a) Average confidence values on IMDB dataset.

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Variance of True Class Confidence

0.2

0.4

0.6

0.8

M
ea

n
of

 T
ru

e
Cl

as
s

Co
nf

id
en

ce

Confident
Confused
Fake Confidence

(b) Average confidence values on SciTail dataset.

Figure 4: Average confidence values on SciTail and IMDB datasets on the EEBERT backbone

BERT-SR SelNet Cal-RF PABEE-SR Ours
Risk/Coverage

SST2 4.7±0.07 4.1±0.03 4.6±0.02 5.0±0.06 3.2±0.04
IMDB 8.2±0.09 7.8±0.05 8.1±0.06 9.5±0.10 6.9±0.03
Yelp 2.1±0.04 1.9±0.02 1.9±0.03 2.1±0.03 1.7±0.02
SciTail 3.3±0.06 3.5±0.03 3.1±0.05 3.7±0.04 3.1±0.02
MRPC 8.6±0.10 8.2±0.05 7.2±0.09 10.7±0.09 6.5±0.03

Table 6: Stability of our method as compared to others.

13

	Introduction
	Related works
	Methodology
	Motivation
	Selective Prediction Setting
	Training Exit Classifiers
	Training data for DCs
	Training the DCs
	Inference

	Experiments
	Dataset
	Experimental setup
	Baselines
	Experimental results

	Conclusion
	Appendix
	Risk-coverage trade-off
	Results for the Image tasks
	Some examples of Fake Confidence

