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ABSTRACT

Fixed environment rewards can lead to miscalibrated gradients, instability, and in-
efficient learning when signals are poorly scaled relative to the agent’s updates.
We introduce Rational Reward Shaping (RRS), a reward transformation that
converts raw rewards into normalized signals aligned with the agent’s experience.
RRS combines experience-normalized scaling with a monotone rational activation
to reshape sensitivity and curvature while preserving reward order. It adapts auto-
matically to changing reward regimes and integrates seamlessly into standard ac-
tor–critic updates–simply replacing the immediate reward in the target–requiring
minimal code changes and no task-specific reward engineering. Across DDPG,
TD3, and SAC on six MuJoCo benchmarks, RRS consistently improves average
returns in both noiseless and perturbed-reward settings, with larger gains under
noise, while incurring only 6% average wall-clock overhead. RRS provides a gen-
eral, plug-and-play method to produce better-calibrated reward signals, strength-
ening learning without modifying environment design. Source code is available
at: https://github.com/anonymouszxcv16/RRS

1 INTRODUCTION

Deep reinforcement learning (DRL) faces the persistent challenge of exploration–exploitation trade-
off Sutton & Barto (2018). On one hand, exploration focuses on investigating new states and actions
in order to expand the agent’s knowledge (Dabney et al., 2020; Russo et al., 2018; Sekar et al., 2020).
On other hand, exploitation emphasizes the use of the agent’s current knowledge to select actions
that maximize immediate rewards (Pomerleau, 1989; Fujimoto & Gu, 2021; Fujimoto et al., 2019;
Haarnoja et al., 2018; Chen et al., 2021). Although exploration and exploitation pursue seemingly
opposing goals, they ultimately share the same objective: maximize long-term cumulative reward.
Successfully navigating this trade-off requires a guiding mechanism that fosters cooperation be-
tween the two goals over time, leading to effective decision making Konda & Tsitsiklis (1999).

A critical aspect of this trade-off lies in the agent’s experiences. Each agent collects and reuses
a distinct set of experiences through its replay buffer, which directly shapes its learning dynamics
and policy formation. These stored experiences determine how effectively the agent can transform
environmental signals into actionable decisions Lin (1992). Imbalance in replayed experiences can
restrict generalization and adaptability, whereas excessive or poorly structured replay can increase
computational cost and reduce sample efficiency without meaningful learning gains.

Against this backdrop, reward shaping has emerged as a widely adopted strategy to balance explo-
ration and exploitation by guiding the learning process toward more effective behaviors Ng et al.
(1999a). By modifying the reward signal, reward shaping enhances performance in sparse-reward
environments. However, environment-provided rewards are typically fixed and uninformed by an
agent’s experiential characteristics. This misalignment interacts directly with the diversity and
quality of the agent’s collected experiences. Agents trained on low-quality but high-diversity data
(e.g., from broad D4RL datasets Fu et al. (2020)) are prone to bias and instability due to the presence
of out-of-distribution (OOD) actions Fujimoto & Gu (2021), while agents trained on high-quality but
low-diversity data risk overfitting to narrow behavioral patterns and failing to generalize effectively.

In this study, we propose Rational Reward Shaping (RRS), a method that transforms external re-
wards into an internal reward signal aligned with the agent’s experiences. RRS applies a monotonic
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transformation to raw rewards using rational activation functions Delfosse et al. (2021a;b) and nor-
malization of stored experiences, reshaping the reward curvature and gradient behavior according to
the agent’s experience distribution and task structure. This enables the agent to exploit memory more
effectively, refine internal representations, and improve both sample efficiency and computational
utilization. RRS is also adaptive: the shaping parameter is adjusted online based on reward vari-
ability, progressively flattening the transformation as the reward distribution stabilizes to emphasize
finer reward differences while limiting bias.

We evaluated RRS on continuous control benchmarks using the DDPG, TD3 and SAC algorithms.
Our results demonstrate consistent improvements across all configurations in noiseless and noisy
environments, with the latter showing a larger gain for RRS. These improvements are consistent
across all evaluated algorithms, indicating that RRS is generic and robust. Our contributions are
twofold:

1. Rational Reward Shaping (RRS): we present the RRS algorithm along with empirical
validation on standard MuJoCo continuous control tasks, demonstrating its effectiveness
through experience-based performance improvements.

2. Open-source implementation: we provide publicly available RRS source code to facilitate
transparency, reproducibility, and ease of integration into existing reinforcement learning
pipelines.

2 RELATED WORK

Reward shaping Ng et al. (1999b); Zou et al. (2019); Ng et al. (1999a); Serban et al. (2017) has
long been used to adjust reward signals for faster learning and more stable convergence. It provides
a principled way of injecting domain knowledge into reinforcement learning systems, which can
lower sample complexity when done without altering the underlying objective Gupta et al. (2022).
A central approach is potential-based reward shaping Grzes & Kudenko (2010), which directs explo-
ration by adding differences of potentials across state transitions while still preserving the optimal
policy Wiewiora (2003). Classic work shows that potential-based shaping is equivalent to certain Q-
value initializations, highlighting how it speeds up early training by biasing initial estimates toward
more informative parts of the state space Wiewiora (2003). More recent surveys situate shaping
within broader design strategies, combining it with exploration bonuses, intrinsic motivation, and
preference-based signals. These works stress approaches that avoid specification gaming while still
maintaining asymptotic correctness Ibrahim et al. (2024).

Extensions of shaping target challenges like sparse-reward domains and complex credit assignment
Andrychowicz et al. (2017b); Sutton (1984). Some methods use structured schedules or exploration-
guided shaping, where intrinsic signals are learned to guide behavior when external rewards are de-
layed or noisy Devidze et al. (2022). Analytical studies also help clarify when and why engineered
rewards improve learning efficiency–typically by reducing exploration demands and identifying fa-
vorable conditions Gupta et al. (2022). Another related direction is human-in-the-loop shaping,
where evaluative feedback is integrated directly as reward signals. Systems like TAMER and Deep
TAMER treat human input as shaping signals, enabling interactive reward design that can outper-
form demonstration-only strategies in high-dimensional problems Warnell et al. (2018).

Beyond making rewards denser, researchers have tackled temporal credit assignment by redistribut-
ing returns rather than adding auxiliary shaping terms Pignatelli et al. (2023). RUDDER is one
key method, decomposing returns to shift delayed signals back to earlier decisions that caused
them, thereby aligning immediate feedback with causal actions and improving long-horizon training
Arjona-Medina et al. (2019). Temporal Value Transport follows a similar logic, but uses attention
mechanisms over episodic memory to propagate value to distant, causally relevant events, again
without changing the task objective Hung et al. (2019). Another structural approach is Reward
Machines, which encode automata-like structures over rewards. This representation supports au-
tomated shaping, decomposition, and counterfactual relabeling, strengthening performance in both
single-task and multi-task settings Icarte et al. (2018).

While effective, most reward shaping and redistribution methods rely on predefined strategies that
do not adapt to task difficulty. An alternative approach focuses on curriculum design and task
selection, where adjusting training difficulty can accelerate learning without costly manual reward
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engineering Portelas et al. (2020); Bengio et al. (2009). Empirical results in automatic curriculum
learning indicate that strategies requiring little or no expert knowledge can be competitive, offering
a practical option when explicit reward design is expensive or risky Romac et al. (2021).

Another refinement is reward shuttering, where shaped signals are gradually reduced or gated dur-
ing training. This approach captures the early efficiency benefits of shaping while ensuring that
the agent ultimately relies on the true objective Ng et al. (1999a). Conceptually, it ties back to
the policy-invariance guarantees of potential-based shaping and analyses that attribute efficiency
gains to early-stage value biases Wiewiora (2003); Hu et al. (2020). In practice, shuttering typically
involves scaling down shaping coefficients or potentials over time, often based on measures like
progress, uncertainty, or performance thresholds. It can also be combined with dynamic shaping for
robustness when agent representations shift during training Devlin & Kudenko (2012). Recent work
with language-model-assisted pipelines suggests that text-to-reward techniques can support shutter-
ing by permitting automated, auditable, and progressively refined shaping as the agent’s competence
improves Xie et al. (2023).

Novelty. Our work advances reward shaping by introducing a dynamically adaptive mechanism
that directly links reward design to the agent’s experiences. Unlike prior approaches, we integrate
rational activation over normalized rewards with an auto-tuned curvature parameter α, which adapts
online to the reward distribution’s variance. This design ensures sensitivity under noisy conditions
and sharper guidance as convergence improves.

3 METHODOLOGY

The Rational Reward Shaping (RRS) framework extends the Actor-Critic family of algorithms
Konda & Tsitsiklis (1999); Lillicrap et al. (2015); Fujimoto et al. (2018); Haarnoja et al. (2018)
and is compatible with continuous control environments (Brockman, 2016; Todorov et al., 2012;
Fu et al., 2020) in both online and offline settings. RRS aims to transform the environment’s raw
reward signal into a form better aligned with the agent’s experience distribution, facilitating more
effective learning and generalization. The approach is grounded in two established principles: (1)
reward normalization, which has been shown to improve stability and credit assignment in RL
(Naik et al., 2024), and (2) rational activation functions, which enhance gradient flow and learning
efficiency in deep RL (Delfosse et al., 2021a). Accordingly, RRS consists of two main components:
Normalization and Activation.

3.1 NORMALIZATION

The rewards provided by the environment can vary wildly in scale and are often unbounded. This
makes learning more difficult, especially for agents with limited memory. We aim to address this by
normalizing the reward signal using statistics from the agent’s replay buffer D. Given a raw reward
r, we normalize it as follows:

r =
r − Er′∈D(r

′)

maxr′∈D(r′)
(1)

where Er′∈Dt(r
′) denotes the current mean experience replay rewards and maxr′∈D(r

′) denotes
the current the maximum experience replay rewards.

This transformation ensures that the rewards the agent receives remain within a a bounded range,
making it easier for the agent to interpret them. Intuitively, our normalization is similar to computing
an advantage function, at the level of the reward.

3.2 RATIONAL ACTIVATION

Following the reward normalization, we apply a non-linear transformation by using a rational ac-
tivation function Delfosse et al. (2021a). This step adds useful curvature to the reward, which we
hypothesize will enable the agent to learn more reliably:
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rshaped =
1

α
· 1

1 + e−αr
· log (1 + eαr) (2)

This function is smooth, always positive, and controlled by a single parameter α. Lower α results in
more gradual shaping, while higher values create sharper distinctions between high and low rewards.
This shaped reward preserves each experience value with regard to its neighbors, but adjusts its scale
and curvature to better match the agent’s experiences. Moreover, since the RRS transformation is
both positive and monotonic (being the composition of two monotonic functions), it preserves
policy optimality in accordance with the theoretical framework established by Ng et al. (1999b).

3.3 ADAPTIVE TUNING OF THE RATIONAL FUNCTION

While fixing α in Eq. 2 already improves the performance our DRL baselines (see Section 5), keep-
ing this hyperparameter static can be unstable across different environments. To address this, we
enable the agent to adapt α automatically. In high-variance reward regimes, RRS will tend to select
smaller α to stabilize learning and remain sensitive to fine differences, whereas low-variance settings
will lead to larger α to accentuate informative signals and yield more decisive gradients for policy
improvement. The auto-tuning mechanism uses observed reward statistics to steer α accordingly,
requiring no manual intervention.

WINDOW-BASED UPDATE RULE

We use the inverse of the reward signal’s standard deviation to guide α selection. Intuitively, a high
reward standard deviation is more distinguishable on the flat region of the RRS function, favoring
a lower α, while a low standard deviation is better distinguished on the steep region, favoring a
higher α. To stabilize updates, we employ a window-based averaging mechanism controlled by a
user-defined parameter w ∈ [1, T ] (T is the terminal step), which accumulates the inverse reward
dispersion over time and updates α periodically. At each step t, we define the instantaneous inverse
reward dispersion:

ξt =
1

stdr∈Dt
(r)

(3)

We accumulate this value over a moving window of size w:

Ξt =

t∑
i=t−w+1

ξi (4)

Then, at every window interval, we update the shaping parameter using the average inverse standard
deviation:

α← scaled sigmoid(
1

w
· Ξt) (5)

where:

scaled sigmoid(x) = αmin +
αmax − αmin

1 + e−x
(6)

After the update, the accumulator Ξt is reset. This adaptive approach is effective because it enables
RRS to adapt both to the environment and to changes in the DRL agent’s exploration preferences.

3.4 INTEGRATION INTO CRITIC UPDATE

Our proposed reward shaping approach can be easily integrated in any DRL algorithm with a critic
update step. All that is required is to replace the original reward rt with our reshaped reward rshaped

t :
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Table 1: The properties of the evaluated MuJoCo tasks.

Task dim(S) dim(A) std(R)
|mean(R)|

Continuous

Hopper 11 3 0.63
Cheetah 17 6 2.28
Walker 17 6 1.18
Ant 27 8 1.92
Humanoid 376 17 0.04
Standup 376 17 0.16

Task Difficulty Interpretation: Cheetah and Ant exhibit higher reward variability and lower coordination
demands, making them comparatively easier locomotion tasks. Hopper and Walker require more structured

balance, reflected in lower reward dispersion. Humanoid and Standup are the most challenging: both operate
in a high-dimensional action–state space with dense reward signals (low normalized std), requiring

fine-grained stability and coordinated control.

yt = rshaped
t + γQtarget(st+1, at+1) (7)

where Qtarget is the output of target critic network.

The simplicity by which RRS can be integrated into existing algorithms is a significant advantage,
as it requires minimal adaptation. Moreover, the inclusion of RRS does not prevent the use of
other methods that are designed to boost the performance of DRL algorithms such as Hindsight
Experience Replay Andrychowicz et al. (2017a) or Intrinsic Curiosity Module Pathak et al. (2017).

4 EXPERIMENTAL SETUP

Baselines. We evaluate three variants of our proposed RRS approach. The first is RRS(auto), which
uses the automatic tuning of the α parameter. The two other variants are RRS(0.5) and RRS(1), that
use fixed α values of 0.5 and 1, respectively.

We integrate our approach into three widely-used DRL algorithms: Deep Deterministic Policy Gra-
dient (DDPG) Lillicrap et al. (2015), Twin Delayed DDPG (TD3) Fujimoto et al. (2018), and Soft
Actor-Critic (SAC) (Haarnoja et al., 2018). For DDPG and TD3, we additionally apply Reward
Centering (RC) Naik et al. (2024), implemented on top of the single-critic (DDPG) and double-
critic (TD3) actor-critic architectures.

We compare the performance of the RRS-enhanced version of each baseline to its original version.

Evaluation metric. Performance is measured using the standard average cumulative reward met-
ric in continuous-control RL (Lillicrap et al., 2015; Fujimoto et al., 2018; Haarnoja et al., 2018).
For each episode, cumulative reward is computed as the sum of all rewards from the initial state
until termination, and the final score is obtained by averaging across evaluation episodes to reduce
variance and improve statistical stability. Statistical significance follows conventional notation: *

for (p < 0.05), ** for (p < 0.01), and *** for (p < 0.001). For experiments involving noisy re-
wards, improvements are computed relative to each algorithm’s corresponding non-noise baseline
to ensure consistent comparison across evaluation settings.

Evaluation environments. We evaluated RRS across six standard MuJoCo continuous-control tasks
(Table 1). All algorithms were trained for 1 million time-steps and repeated across five fixed random
seeds for reproducibility and fair comparison. The normalized reward standard deviation reported in
the table was estimated using a fully random, non-learning DDPG rollout over 1 million time-steps
sampled from the final replay buffer distribution. All experiments were executed on a GPU cluster
equipped with NVIDIA RTX 6000 Ada-Generation hardware.

Noiseless and noisy rewards. We use our evaluation environments in two settings: noiseless and
noisy. In the noiseless (normal) setting, the agent observes all reward signals correctly. In the noisy
setup, the agent receives a perturbed reward signal that affects the latter’s perception of its perfor-
mance. We model the noisy environment as a perturbed-reward MDP M̃ = (S,A, R, C, P, γ),

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: The results of our proposed approach under the non-noisy reward setting. The reported
improvement (%) represents the average of the per-environment gains, computed as: competitormax

baselinemax
−1.

where the baseline corresponds to the standard version of each algorithm without RRS.
Environment DDPG RC RRS (0.5) RRS (1) RRS (Auto)

Hopper 2,144 ± 1,092 1,296 ± 505 3,187 ± 406 3,378 ± 276 3,020 ± 831
Cheetah 12,512 ± 390 12,442 ± 785 12,389 ± 212 12,961 ± 331 12,751 ± 283
Walker 3,221 ± 1,894 3,136 ± 1,057 1,721 ± 843 2,521 ± 1,160 1,553 ± 1,199
Ant 1,796 ± 1,683 1,679 ± 1,771 4,274 ± 1,130 3,121 ± 1,242 3,143 ± 1,791
Humanoid 820 ± 370 2,003 ± 1,252 772 ± 569 1,040 ± 699 844 ± 442
Standup 178,559 ± 58,188 124,978 ± 66,409 184,474 ± 42,421 154,741 ± 32,990 172,709 ± 76,766

Improvement – 10.8%* 22.7% 21.1%* 10.9%*

Environment TD3 RC RRS (0.5) RRS (1) RRS (Auto)

Hopper 3,580 ± 70 1,096 ± 78 3,358 ± 140 3,450 ± 128 3,352 ± 142
Cheetah 9,603 ± 5,721 10,882 ± 3,377 12,297 ± 401 13,323 ± 116 12,255 ± 385
Walker 5,147 ± 901 3,233 ± 2,669 2,014 ± 485 3,952 ± 746 4,237 ± 835
Ant 3,890 ± 4,105 6,499 ± 652 6,510 ± 122 6,936 ± 74 6,450 ± 381
Humanoid 5,248 ± 2,775 5,869 ± 5,256 3,398 ± 3,034 4,604 ± 2,450 5,652 ± 233
Standup 155,053 ± 10,140 157,777 ± 62,497 174,073 ± 28,530 215,734 ± 51,695 180,013 ± 22,043

Improvement – -2.1% 0.9%* 19.5%** 15.5%***

Environment SAC RRS (0.5) RRS (1) RRS (Auto)

Hopper 3,113 ± 910 3,420 ± 133 3,384 ± 36 3,423 ± 126
Cheetah 9,229 ± 5,506 10,694 ± 1,224 11,866 ± 1,310 11,653 ± 1,266
Walker 4,998 ± 640 2,979 ± 1,450 4,818 ± 860 4,844 ± 76
Ant 3,627 ± 3,898 917 ± 14 5,469 ± 1,459 4,768 ± 2,505
Humanoid 5,117 ± 2,768 4,419 ± 2,354 5,553 ± 168 5,477 ± 303
Standup 135,948 ± 18,740 163,563 ± 15,855 158,272 ± 4,360 200,669 ± 39,711

Improvement – -13.8%*** 18.2%** 19.9%**

where, at each time step t, the true reward rt ∈ R is not observed directly Wang et al. (2020). The
agent receives a perturbed version of the reward r̃t ∈ R̃, generated by the function C : S ×R→ R̃.

In our experiments, we focus on the state-independent corruption case, where the noisy reward is
obtained via multiplicative perturbations of the form:

r̃ = r + η, where η = sign · r · ξ · β
ξ ∼ U(0, 1), sign ∈ {−1,+1} (8)

Here, β ∈ [0, 1] is the maximum noise fraction (noise frac max), and ξ is a uniformly sampled
scalar controlling the perturbation magnitude. The random sign produces unbiased noise, ensuring
that the expected corruption is zero. This formulation naturally extends to continuous-reward envi-
ronments and can simulate diverse real-world conditions where sensor readings, feedback loops, or
evaluative signals are inconsistent or unreliable. In all noisy setting experiments, we used β = 0.01.

The goal of the noisy setting is to evaluate the DRL algorithms in a more challenging and realistic
scenario. Perturbed rewards are common in the real world: inaccurate sensor readings, delayed
transmissions, accidental mouse clicks, etc. This setup stresses the importance of robustness in
DRL algorithms.

5 RESULTS

Noiseless setting. Table 2 presents results under noiseless rewards. For each baseline (DDPG, TD3,
SAC), we compare the standard implementation to three RRS variants: RRS(0.5), RRS(1), and
RRS(auto). Across all algorithms, RRS(1) and RRS(auto) consistently achieve the strongest gains,
with overall improvements of 18.2%–21.1% and 10.9%–19.9%, respectively. These improvements
are statistically significant: DDPG with RRS(1) gains +21% (p < 0.05), TD3 with RRS(auto)
+15% (p < 0.001), and SAC with RRS(auto) +20% (p < 0.01). As hypothesized in Section 3.3, in
low-variance reward settings, stronger reward curvature (larger α) enhances signal separability and
accelerates policy learning, while lower α may under-differentiate rewards, reducing efficiency.
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Table 3: The results of our proposed approach under noisy reward conditions. The reported im-
provement (%) is computed as the average of the per-environment gains, defined by: competitormax

baselinemax
−1,

where the baseline corresponds to the same algorithm trained in the non-noisy setting.
Environment DDPG RRS (0.5) RRS (1) RRS (auto)

Hopper 21 ± 11 2,690 ± 785 2,580 ± 765 3,373 ± 271
Cheetah -18 ± 6 13,040 ± 318 12,073 ± 380 12,534 ± 250
Walker 2 ± 11 2,321 ± 800 1,425 ± 580 1,787 ± 990
Ant 965 ± 17 3,043 ± 2,807 4,101 ± 1,095 3,821 ± 1,559
Humanoid 193 ± 135 891 ± 359 968 ± 405 944 ± 645
Standup 66,331 ± 13,804 224,847 ± 52,278 227,355 ± 19,174 220,324 ± 29,961

Improvement -80.8% 22.5% 17.6% 27.4%

Environment TD3 RRS (.5) RRS (1) RRS (Auto)

Hopper 3,375 ± 135 3,365 ± 1,461 3,399 ± 95 3,406 ± 85
Cheetah 12,732 ± 736 11,916 ± 2,470 12,657 ± 325 12,403.0 ± 496.7
Walker 4,520 ± 2,476 2,975 ± 1,448 4,218 ± 1,248 4,157 ± 977
Ant 5,305 ± 2,275 6,324 ± 1,947 6,777 ± 174 6,694 ± 197
Humanoid 6,488 ± 330 4,462 ± 2,534 5,605 ± 103 4,437 ± 2,386
Standup 148,427 ± 40,057 200,252 ± 70,016 172,770 ± 19,452 214,702 ± 48,414

Improvement 11.7% 8.8% 19.5% 16.7%

Environment SAC RRS (.5) RRS (1) RRS (Auto)

Hopper 3,115 ± 860 2,870 ± 1,757 3,384 ± 36 3,486 ± 198
Cheetah 12,457 ± 2,209 11,158 ± 4,523 11,866 ± 1,310 11,423 ± 433
Walker 5,584 ± 598 1,919 ± 1,145 4,818 ± 860 3,631 ± 2,615
Ant 3,386 ± 2,142 916 ± 793 5,469 ± 1,459 3,631 ± 2,615
Humanoid 4,798 ± 2,196 4,399 ± 2,464 5,553 ± 168 4,499 ± 2,372
Standup 149,151.5 ± 13,651 160,617 ± 47,130 158,272 ± 4,360 126,001 ± 71,957

Improvement 7.3% -19.9% 18.2% -0.1%

Notably, applying Reward Centering (RC) yields mixed results. RC performs best on Humanoid–
the task with the most complex reward structure, lowest normalized reward standard deviation, and
largest state and action spaces–achieving roughly +10% over standard DDPG. However, RC wins
only 1 out of 6 tasks overall and even slightly underperforms on TD3 (-2.1%), indicating that while
it can help in very complex environments, its benefits are limited compared to RRS, which provides
more consistent improvements across tasks.

Noisy setting. Table 3 reports results when stochastic noise is injected into the reward signal (Equa-
tion 8), with improvements measured relative to each baseline’s noiseless performance. TD3 and
SAC are relatively robust to noise, sometimes even exceeding noiseless performance (+11.7% and
+7.3%, respectively), whereas DDPG suffers substantial degradation. Importantly, RRS mitigates
noise effects: for DDPG, RRS(0.5) maintains its improvement, RRS(1) drops slightly to +17.6%,
and RRS(auto) nearly triples its gain to +27.4%, highlighting the effectiveness of adaptive α in
unstable regimes. Even for robust learners like TD3 and SAC, RRS(1) and RRS(auto) provide
additional gains.

Specifically, when noise is applied to the reward signal, setting α = 1 results in an average perfor-
mance gain of 18%, whereas α = 0.5 yields only a 4% improvement under the same conditions.
This further highlights that stronger or adaptively tuned reward shaping is crucial for maintaining
learning efficiency in stochastic environments.

Summary. Across both noiseless and noisy rewards, RRS consistently improves performance for
all evaluated DRL baselines. Notably, the adaptive α variant delivers the most reliable enhancement
across tasks, achieving an average gain of 15% compared to 11% for fixed α, demonstrating that
adaptive tuning consistently boosts learning, rather than serving as an environment-specific heuristic.
While lower shaping strength (α = 0.5) may occasionally be optimal for sensitive algorithms like
DDPG, robust learners generally benefit most from higher or adaptively tuned α.
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Figure 1: The changes in the α value of RSS(auto) throughout its training.

Table 4: Wall-clock runtime comparison (in minutes) between DDPG, TD3, and SAC, and their
RRS-based variants. Results are reported as the mean ± standard deviation over five random seeds.

Environment DDPG RRS (Auto) TD3 RRS (Auto) SAC RRS (Auto)

Hopper 143.1 ± 5.1 154.3 ± 49.1 170.3 ± 9.3 185.5 ± 53.4 132.4 ± 3.4 164.6 ± 3.3
Cheetah 152.9 ± 19.0 142.5 ± 3.4 176.5 ± 7.2 162.1 ± 3.3 145.8 ± 3.3 162.1 ± 3.9
Walker 138.2 ± 7.0 154.3 ± 52.0 178.3 ± 2.1 160.7 ± 4.8 141.3 ± 3.7 161.0 ± 4.1
Ant 149.8 ± 6.9 173.0 ± 67.1 179.8 ± 10.8 172.0 ± 2.1 146.6 ± 2.5 172.7 ± 2.8
Humanoid 155.7 ± 5.5 177.2 ± 51.9 200.2 ± 12.0 222.9 ± 46.8 165.0 ± 0.6 185.5 ± 0.6
Standup 219.3 ± 3.5 192.1 ± 7.7 243.1 ± 5.7 210.5 ± 2.4 192.8 ± 2.6 211.8 ± 1.3

Improvement – 4.9% – -2.6% – 14.9%

6 ANALYSIS & DISCUSSION

6.1 ANALYZING THE AUTOMATIC TUNING PROCESS

To better understand the behavior of RRS(auto), we tracked the evolution of its α values during
training, shown in Figure 1. We set the hyperparameters αmin = 0.5 and αmax = 1, based on
their practical effectiveness in our experiments. Across all tasks, α gradually decreases over time,
reflecting adaptation to the growing reward standard deviation as the agent explores more complex
states.

Furthermore, in all tasks except Ant–a simpler environment with the second-highest normalized re-
ward standard deviation–the α values in noisy conditions are equal to or lower than in the noiseless
setting. This is expected: adding noise increases the reward standard deviation, making the environ-
ment effectively more complex, and our adaptive scheme assigns lower α values in response. This
behavior aligns with our design (see Sections 3.2 and 3.3), confirming that higher reward variance
in more challenging conditions leads to appropriately reduced shaping strength.

6.2 ANALYZING THE REWARD DISTRIBUTION

We now analyze the consistency of the obtained rewards throughout the baselines’ training. For each
5,000 training steps, we calculated the standard deviation of the obtained rewards. We then plotted
these values for each algorithms’ entire training process. The results, presented in Figure 2, show
that for every baseline, its RSS(auto) version has lower standard deviation, than the original algo-
rithm. These results support our hypothesis that our proposed approach stabilizes the data collection
policy.
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Figure 2: The temporal evolution of reward standard deviation for the three evaluated DRL algo-
rithms and their corresponding RRS-augmented variants.

6.3 RUNTIME ANALYSIS

Table 4 presents a wall-clock runtime comparison between the baseline DRL algorithms (DDPG,
TD3, SAC) and their RRS-augmented counterparts. The results show that RRS introduces only a
minor computational overhead in most cases. Specifically, for TD3, the RRS (Auto) variant achieves
a modest 2.6% reduction in average runtime, demonstrating that the adaptive reward shaping can
even streamline learning dynamics. For DDPG, RRS incurs only a small overhead of approximately
4.9%, reflecting efficient integration with minimal additional cost. Although SAC with RRS shows
a runtime increase of roughly 14.9%, this overhead is justified by the substantial performance gains
observed in the corresponding learning curves, highlighting a favorable trade-off between efficiency
and effectiveness.

7 CONCLUSION

Rational Reward Shaping (RRS) aligns environment rewards with agent experiences by normalizing
replay-based rewards and applying a monotonic rational activation with adaptively tuned curvature.
Across six MuJoCo tasks and three actor-critic backbones, RRS consistently improves performance,
achieving an average gain of 15% on DDPG and TD3 (including α = 0.5, α = 1, and αauto) under
noiseless conditions–substantially higher than Reward Centering (RC), which yields only +4% on
average.

These benefits come with minimal cost, incurring only 6% overall wall-clock overhead, and integrate
seamlessly into existing DRL algorithms.
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A APPENDIX

LLM USAGE STATEMENT

In accordance with the policy on large language model (LLM) usage, we acknowledge that LLMs
were used as general-purpose assistive tools in this research. Specifically:

1. We used ChatGPT and Perplexity AI to identify and surface relevant literature during the
preparation of the related work section. These tools were employed to perform preliminary
web-based searches and generate concise summaries to aid our understanding of recent and
historical research.

2. We also used both tools to help reformulate and improve the clarity of individual sentences
across multiple sections of the paper. The core ideas, structure, and technical content were
developed independently by the authors.

LLMs were not used to generate or fabricate any experimental data, analysis, or novel technical
content. All outputs from the models were critically reviewed and verified by the authors. We take
full responsibility for the content and claims made in this paper.

LLM Tools Cited:

1. ChatGPT Achiam et al. (2023)
2. Perplexity AI Team (2025)
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