Under review as a conference paper at ICLR 2026

LOGIT-KL FLOW MATCHING: NON-AUTOREGRESSIVE
TEXT GENERATION VIA SAMPLING-HYBRID INFER-
ENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Non-autoregressive (NAR) language models offer notable efficiency in text gen-
eration by circumventing the sequential bottleneck of autoregressive decoding.
However, accurately modeling dependencies in discrete sequences remains chal-
lenging in this paradigm. In this work, we advance the field of NAR generation
by applying conditional flow matching (CFM) methods grounded in geometrically
principled interpolation, specifically leveraging Kullback-Leibler (KL) divergence
geodesics, which correspond to linear interpolation in logit space. We rigorously
establish that maximizing conditional likelihood in this setting precisely recovers
the flow matching velocity field, supplying the theoretical justification for this ap-
proach in sequence modeling. To address practical performance gaps of basic in-
ference, we propose a novel empirical sampling strategy that iteratively denoises
and re-noises, along with a hybrid scheme that integrates our sampling method
with basic procedure. Across unconditional and conditional text and code infill-
ing, the approach improves perplexity and downstream metrics over prior NAR
baselines under matched settings.

1 INTRODUCTION

Non-autoregressive (NAR) language models have emerged as efficient alternatives to traditional
autoregressive models in NLP by generating all tokens simultaneously. However, capturing complex
dependencies in discrete textual data remains challenging without sequential modeling.

We investigate conditional flow matching (CFM) methods for text generation, building on recent
advances such as Discrete Flow Matching (DFM) (Gat et al.| (2024)), Dirichlet Flow Matching |Stéirk
et al.| (2024), and Fisher-Flow Davis et al| (2024), which represent tokens as one-hot vectors in
a V — 1-dimensional simplex. These methods interpolate a sequence of distributions p; from an
initial pg to a data distribution p;; for text, the latter is sampled as discrete sequences in the simplex.
Prior work identifies issues with naive linear interpolation in simplex space Stirk et al.| (2024).
We propose instead using KL-geodesics, equivalent to linear interpolation in logit space, to better
capture the underlying geometry.

Our CFM framework leverages this interpolation, training with a denoiser maximizing the condi-
tional likelihood py(x1 | x:), enabling tractable approximation of the joint distribution. While
theoretical guarantees previously existed only for single-token predictions, we show that maximiz-
ing this conditional likelihood still exactly recovers the flow matching velocity field in logit space
for sequence modeling, lending theoretical support to our approach.

Standard inference procedures with this framework yield suboptimal results, so we introduce a novel
sampling strategy: given a state x;, we sample x; from p(x; | z;) and re-noise it to z;,, iterating
this process. Despite the lack of full theoretical analysis, this method yields stronger empirical
results. We further propose a hybrid inference scheme blending our basic and sampling strategies,
yielding improved performance on tasks such as text generation, conditional question answering,
and code infilling (see Figure).

Our contributions are:

Under review as a conference paper at ICLR 2026

Simplex Zo ~ Po

i

Denoiser network Denoiser network

pe) . Pl)
xN

[11+h = log(¢) + h - Epy mp(ay |2 0(1 ‘\il‘l)]

¢ = interpolate(xo, x1)

ﬁIhIﬁI
«I

Simplex
Simplex
L ~ ol
[.’th = interpolate(xg, x1, t + h)]

log p(z1|z¢)

(a) Training Phase (b) Basic inference (c) Sampling inference

41 = Softmax(ly1p)

Figure 1: Overview of the Proposed Approach: Training: Sample z(~ po (uniform distribution
on simplex), 1 ~ p; (target distribution represented by samples); interpolate to obtain x;. The
denoiser network predicts log pg(x1|x¢), trained via log-probability maximization. Inference: For
basic inference, numerically solve an ODE with vector field: Eq, <p, (a,|«,) [V (¢, t | 21)] using Euler
method with IV steps and a step size of h = 1/N. Alternatively, in sampling inference, interpolate
between xg ~ pg and 21 ~ p(x1|z;) at each step.

» Using KL-geodesic (logit-space linear) interpolation for flow matching in discrete se-
quences.

* Theoretical analysis showing conditional likelihood maximization exactly recovers the flow
matching velocity field for logit-space interpolation.

* A novel sampling and hybrid inference strategy with strong empirical results.

» Empirical improvements: at least 27% lower perplexity for unconditional generation (Fine-
FineWeb), and at least 17%, 26% BLEU boosts for conditional tasks (Lamini Instruction,
WMT 14 de-en); plus 56% and 14% gains in Pass@ 1 and Pass @ 10 for code infilling where
10% of the code lines were omitted. Prior methods are trained and evaluated under the same
setup to ensure a fair comparison.

2 BACKGROUND

Flow matching [Lipman et al.| (2023) constructs a deterministic transport from a simple base distri-
bution pg (e.g., N'(0, I)) to an unknown data distribution p; given by samples. It introduces a time-
dependent density p(z, t) and velocity field v(z, t) for t € [0, 1] that satisfy the mass-conservation

(Liouville) equation
atp(xat) = -V (p(x,t) ’U(.’[,t)), (1)

with boundary conditions p(-,0) = pg and p(-,1) = p;. Once v is known, samples are generated by
integrating the characteristic ODE

dzy
dt
and taking x;—; as a draw from p; .

= ’U(l’t, t)a Tt=0 ™~ PO, (2)

Learning the velocity field (conditional flow matching). Because v is unknown, it is approxi-
mated with a neural network vg (, t) using interpolation between initial and target data samples. Let
vt (20, 1) be any interpolation with y9 = ¢ and v, = x1; draw ¢t ~ U[0, 1], ¢ ~ po, and x1 ~ p1,

and set 2; = ;(zo, z1). Define the vector field v(z¢,t | g, 21) = ~;(20,1). The conditional
flow matching objective is
Lorm(0) = Eizgan [||U9(%($0,$1),t) —7)(%(960,561)7?5|3307$1)||3 . 3)

At inference, we integrate the ODE with vy from t=0 to t=1 to obtain samples.

Under review as a conference paper at ICLR 2026

Linear vs KL-Flow Fisher-Rao vs KL-Flow Simplex dim = 10 Simplex dim = 10000
X1 X1
-~ Fisher-Rao
=== KiFlow /- -=- KL-Flow

--- Linear &

—— Linear —— Linear

—— Fisher-Rao
—— KL-Flow

N —— Fisher-Rao
[\ \ — KL-Flow

KL(xaxe)
KL 1xe)

Figure 2: Qualitative and quantitative comparison of three distinct classes of geodesics on the prob-
ability simplex: Linear, Fisher—Rao, and KL-Flow. The first two panels juxtapose the trajectories of
the Linear and Fisher—Rao interpolations against the KL-Flow interpolation. The rightmost panels

depict the temporal evolution of the divergence KL(z1||z;) for two different simplex dimensions,
V| = 10 and |V| = 10 000.

Table 1: Perplexity (lower is better) obtained by 150M—parameter language models trained on the
FineFineWeb corpus under the Linear, Fisher—Rao, KL-Flow geodesics.

Geodesic Llama2 GPT3 GPT?2

Linear 1344 15418 13881
Fisher—Rao 192 298 379
KL-Flow 41 53 62

3 CONDITIONAL FLOW MATCHING FOR DISCRETE SEQUENCES

In language modelling, the terminal random variable x; is a one-hot vector (a vertex of the
(V—1)-simplex). Following [Stirk et al. (2024), we take the initial distribution pg to be the uni-
form (Dirichlet(1)) measure on the simplex, so xg ~ po is a strictly positive probabilistic token
mixture. A central design choice in flow matching is the interpolation between x(and x1.

KL geodesic on the simplex. While linear interpolation in probability space is possible, its draw-
backs for discrete data have been documented (Stérk et al., [2024)); Fisher—Rao geodesics have also
been proposed (Davis et al.,|2024). We instead use the geodesic induced by the Kullback—Leibler
(KL) divergence—the canonical information—theoretic discrepancy on the simplex.
Definition 3.1 (KL geodesic). Fort € [0, 1], the KL—geodesic joining xo and x1 is

v af
Zz"/:l xol,;txlt,i

where C; normalizes x; onto the simplex.

Ty = = Ct .’L'Olit.’Iflt, (4)

It is linear in logits, I, = (1 —t) log xo + t log 1 with z; = Softmax(l;). Moreover, KL—geodesics
preserve a usable learning signal: as shown in Fig. 2| KL(z1|/z;) decays substantially more
slowly along the KL path—especially for large vocabularies (|V|=10,000)—whereas Linear and
Fisher—-Rao paths collapse KL(z1 ||;) near zero too early (for ¢ close to 0), effectively turning the
transport into a one—shot step and depriving the model of informative gradients over most of the
time horizon. Empirically, Table |1|shows that training with Linear or Fisher—Rao objectives yields
markedly worse perplexity, consistent with this geometric analysis.

Logit parameterization Write [j = logzy and I; = logx, and define the logit-linear interpo-

lation I; = (1 — t)lg + t1y, so that z; = Softmax(l;). Because log is undefined at zero, we use a
standard S—smoothed target for the one-hot x4,

no= (-f)+ 01 Be),

where §; is the canonical basis vector of the realized token and 1 is the all-ones vector. Equivalently,

in logit space we could write linear ODE:

dl;
i Iy —lo,)

Under review as a conference paper at ICLR 2026

so the KL path is a straight line in logits whose image under Softmax remains intrinsic to the
simplex.

3.1 DENOISING OBJECTIVE

Single—token case. Consider the special case in which the sequence length equals one. The en-
tire input is then represented by a single vector whose dimensionality matches the vocabulary size.
As introduced in Definition [3.1] the KL-geodesic reproduces the conditional flow—matching objec-
tive equation 3}

Lorn(0) = Ev oo |[vo(ze,t) — (b = 1o)||, ©6)

where 2; = Softmax(l;) denotes the intermediate point obtained by applying the softmax map to
the logit vector [; = (1 — t) lo + t I;. The quantities o and [; are, respectively, the logits generating
the initial state g and the target state x; after projection onto the probability simplex. Both the
conditional vector field v(zy,t | 2o, 1) = I — lp and its learnable counterpart vy (z;,t) admit the
following reparametrisation in terms of [;:

h—1
1—t’

f)g(xt,t) — lt
1—t ’

li—lp= vg(wy,t) = (7
Substituting the identities in equation [7] into the loss equation [6] transforms the original objective
into a denoising-style regression problem in which the model must recover the clean target logit

ly = log z; from the corrupted observation x;:

Lerm(0) = Binga, [00(ze,t) — 1] ®)

Proposition 3.2. Let Lopn(0) be defined as in equation|8) For every t € (0,1) and every x; the
function

0§(xtat) = Exlrwp(ml\xt) ll (9)
is the (almost surely) unique minimiser of the loss equation§]

Corollary 3.3. Suppose we approximate the true conditional p(x1 | x;) with a parametric model
po(x1 | 2¢). Then an estimate of the vector field compatible with equation[?] is

1
U(wtvt) = ﬁ (ErlNPG(OﬁﬂIt) h— lt)' (10)

The subscript 0 is omitted in v(x,t) to emphasise that learning proceeds through the conditional
density pg(x1 | x¢), rather than through direct parametrisation of the vector field itself.

Sequences of length S We now extend the analysis from the single-token setting to sequences
that contain exactly S tokens. As a prior over sequences we assume .S independent Dirichlet distri-
butions, each defined on the (V' — 1)-simplex associated with the vocabulary of size V. In contrast,
the “clean” or target distribution p; is supported on the vertices of the Cartesian product of sim-
plices. Following the prescriptions in |Stirk et al.| (2024); |Gat et al.| (2024), we interpolate each token

independently along the KL—geodesic. Consequently, the logit representation becomes an S x V

)

matrix [; whose k-th row lgk corresponds to token k.

Fixing an index k € {1,..., S} and specialising Equation equation@]to the present context yields

@(Sk)(l’t,t) = Emlwp(mﬂmt) lgk), (11)
where z§’“> denotes the logits that would generate the clean token xgk).

Proposition 3.4. For the KL-geodesic described above, the expression in equation (I 1| factorises
over individual tokens, and the optimal vector field for the k-th coordinate can be written as

o (@) = By 1) (12)

e 1

where p(myﬂ | 1) is the marginal conditional distribution associated with the k-th token.

Under review as a conference paper at ICLR 2026

Consequently, under the KL—geodesic computing the optimal velocity field reduces to evaluating
the exact marginal posteriors p(z; (k) | ;) for each token k independently. In practice we approx-
imate these posteriors with a parametric model pg (xl k) | ;). We draw z; ~ p; (from the data
distribution) and ¢ ~ 2(0, 1), set ¢ ~ po, and form z; = Softmax ((1 — t) log zo + tlog x1). The

model outputs token-wise conditionals pg(x; (k) | x), for which we minimize the sequence-level
NLL:

L= —E; ,x1~vp(e),ze~p(ze|x1) ZlogPG " |xt) (13)
k=1

A practical realisation of the conditional model py (zgk) | 2¢) can be obtained by adapting a Trans-
former architecture: the standard causal attention is replaced with bidirectional attention so that the
representation of each token has access to the entire sequence x;, and an additional conditioning
mechanism is introduced to incorporate the continuous time variable t.

4 INFERENCE: ITERATIVE SAMPLING SCHEME

We present three complementary inference procedures under the KL—geodesic interpolation intro-
duced earlier: a deterministic KL—flow integrator, a stochastic iterative sampler, and a hybrid routine
that combines both. Unless stated otherwise, logits evolve along the logit-linear path

Il = (1=t)lp+tl, x¢ = Softmax(ly).

4.1 DETERMINISTIC INFERENCE VIA KL-FLOW

Within classical flow matching, samples are generated by numerically integrating the ODE associ-
ated with the KL—geodesic. For the interpolation in Definition 3.1, the logit vector obeys the linear
ODE
dly Iy —1
a — 1—t’
Algorithmimplements an explicit scheme (Euler with step size h = 1/N) that advances ¢ from 0
to 1. In experiments we refer to this baseline as KL—flow (basic).

(14)

4.2 STOCHASTIC INFERENCE BY DIRECT SIMULATION

An alternative is to simulate the one—step transport induced by a small time increment h > 0.
Conditioning on the current iterate x;, the next iterate admits the Markov factorization

P(Tepn| ze) = /p($t+h| r1) p(21 | 24) dy. (15)

The exact posterior p(x; | x¢) is intractable at the sequence level. The optimization of objective
from equation T3] gives the product of tokenwise marginals produced by the denoiser:

po(x1| o) |$t

||:jm

Because the KL—geodesic interpolation also factorizes across tokens we obtain the tractable kernel

Po(Tin| xe) = Hpe(xii)ﬂ z¢) H/P(xgi)h (k) e "]) dz{". (16)

195)

Iterating these kernels defines an implicit model distribution over terminal states,

po(x1) = p(zo) po(zn| o) - po(x1| x1-p). (17)

This construction underpins the sampling routine summarized below; see Algorithm 2}

Under review as a conference paper at ICLR 2026

Corollary 4.1 (Iterative sampler). To draw x1 ~ pg(x1), initialize xo ~ po and iterate for t =
0,h,2h,...:

(i) For each token k = 1,...,S, sample xgk) ~ pg(azgk) |).
(ii) For each token k, advance along the KL-geodesic by sampling xgi)h ~ p(aigi)h | scgk)).
(iii) Set t < t + h and repeat while t < 1.

This KL—flow (sampling) procedure requires one forward pass of the denoiser model pg(atgk) | 2¢)
per iteration and thus matches the complexity of the ODE solver.

4.3 LIMITATIONS AND HYBRID SOLVER

The denoiser trained with the sequence—level NLL equation[I3]|furnishes only token—wise marginals

pg(xgk) | ;). Treating these as conditionally independent yields p(x; | x;) = [], pg(l’gk) | x¢).
This surrogate is exact at t = 1 but may degrade as ¢ decreases due to emerging inter—token de-
pendencies. To balance the stability of early—time deterministic transport, we adopt a KL—flow
(hybrid) procedure: integrate the ODE of Algorithm [I|from ¢ = 0 up to a threshold ¢*, then switch
to the sampler of Algorithm [2] for the remaining horizon. Empirically, this combination improves
perplexity/entropy trade—offs relative to either component alone (see Appendix [D]for selection of ¢*
and top-k settings).

5 RELATED WORK

Non-autoregressive text generation methods can be divided into those operating in continuous la-
tent spaces |Li et al. (2023); |Ye et al.| (2023); (Gong et al.| (2022); Strudel et al.| (2022)) and those
working directly with discrete token representations, as considered in this work. Among the latter,
Campbell et al.| (2024) proposed Discrete Flow Models, which combine Continuous-Time Markov
Chains and normalising flows to model both discrete and continuous variables, achieving state-of-
the-art results on protein generation. |Gat et al.| (2024) introduced Discrete Flow Matching, defining
sample paths between distributions via learned posterior approximations such as probability denois-
ers. Stark et al.[(2024) extended this line by proposing Dirichlet Flow Matching, limiting paths to
Dirichlet mixtures for tractable density calculations. [Davis et al.| (2024) developed Fisher-Flow, util-
ising the Fisher—Rao Riemannian metric to transport mass between categorical distributions along
hypersphere geodesics. Alternatively,|Lou et al.[(2024) presented a diffusion-based approach, gen-
eralising score matching to discrete spaces for the construction of discrete diffusion models. These
advances collectively demonstrate the strength of flow matching and diffusion methods for discrete
generative modelling (see Appendix [F] for further discussion).

6 EXPERIMENTS

We evaluated KL-Flow on diverse text generation tasks, spanning unconditional language modeling,
conditional sequence generation, and code infilling. All models used a bidirectional Transformer
backbone (adapted from modded—NanoGPTﬂ), with continuous time embeddings as in DiT |Peebles
& Xie| (2023) and logit interpolation fixed at 5 = 0.01; top-k sampling (k = 1) was used for
sampling inference scheme (see Appendix [D)). We employed two model sizes: a 150M-parameter
configuration for TinyStories and a 1.5B-parameter setup for other data domains, following the
architectural and hyperparameter details of the original repository. Further hyperparameters and
ablation results are provided in Appendix [E| KL-Flow was compared with DFM [Gat et al.| (2024),
GPT-2 Jordan et al.[(2024), and SEDD |Lou et al.| (2024). All models taken for comparison were
trained from scratch in the same setup and on the same data subset as our proposed KL-Flow model
to force comparison validity. All training was conducted on 4 NVIDIA H100 GPUs (80GB each).

6.1 DATASETS

Unconditional generation. The TinyStories dataset |[Eldan & Li| (2023) consists of synthetically
generated short narratives authored by GPT-3.5 and GPT-4. All models were trained on 4 B tokens
with the maximum sequence length capped at 512.

'https://github.com/KellerJordan/modded—-nanogpt

https://github.com/KellerJordan/modded-nanogpt

Under review as a conference paper at ICLR 2026

Table 2: Comparison of unconditional text generation models trained on the Tiny Stories dataset.
The results of the best-performing models are indicated in bold, while the instances where our
approach matches or exceeds the performance of alternative Non-Autoregressive (NAR) methods
are highlighted in blue.

Method ~ Grammar 1 Creativity T Consistency T PlotT Perplexity |

GPT 2 5.3 6.4 4.9 4.9 154
DFM 3.5 5.7 3.6 35 20.8
SEDD 4.2 6.1 4.0 3.8 20.7
KL-Flow 4.4 6.1 4.0 3.7 19.0

To verify the scalability of KL-Flow, we further considered 10 B tokens sampled from the Fine-
FineWeb dataset M-A-P et al.|(2024), which contains deduplicated and quality-filtered English
web documents. Each training instance was truncated or padded to a uniform length of 1024 to-
kens. Models trained on this source served as the initialization (pre-training) for all subsequent
conditional-generation experiments.

Conditional text generation was evaluated on two sequences-to-sequence datasets. (i) The Lamini
Instruction benchmark Wu et al.|(2023)). (ii) The WMT14 German—English translation dataset Bojar
et al.| (2014). In both cases the concatenation of the prompt and the ground-truth response was
restricted to 512 tokens. Total training exposure was fixed at 4 B tokens.

For the code infilling task we curated an open-source Python corpusﬂ Only files comprising fewer
than 1024 tokens were retained. During training, for each example a uniformly random proportion
between 10 % and 90 % of the lines was masked, and the model was instructed to reconstruct the
elided span. Generalization was quantified on the MBPP benchmark |Austin et al.| (2021b).

To ensure the validity of comparisons, all baseline models were trained on the identical data subsets,
using the same dataset shuffles and number of tokens to train on.

6.2 EVALUATION TECHNIQUES

The quality of unconditional text generation was evaluated using generative perplexity—measured by
scoring generated samples with large language models (GPT-2 Radford et al.[(2019), GPT-3 |Brown
et al|(2020), and Llama-2 [Touvron et al.| (2023)))-and diversity was assessed via empirical entropy
(values above 5 indicated substantial lexical variety). For the Tiny Stories dataset, we additionally
reported grammar, creativity, consistency, and plot coherence, as in |[Eldan & Lif (2023). When
scoring with external LMs (GPT-2/3, Llama-2), we use their tokenizers for perplexity evaluation.

Sequence-to-sequence outputs were measured using ROUGE-L (longest common subsequence over-
lap) Lin| (2004)), BERTScore (semantic similarity via contextual embeddings) Zhang et al.| (2020),
and BLEU (clipped n-gram precision with brevity penalty, n < 4) Papineni et al.|(2002).

Code infilling was evaluated by Pass@k (fraction of synthesized functions passing all unit tests
out of k£ samples) and Comp1i les@k (fraction of code snippets compiling/executing without syntax
errors), for k € {1,10}.

6.3 UNCONDITIONAL LANGUAGE MODELING

The experimental evaluation of the proposed framework was carried out with the KL-Flow (hybrid)
inference strategy that was introduced in Section[d The numerical evidence summarised in Table
demonstrates that KL-Flow consistently surpasses all alternative non-autoregressive baselines across
the majority of metrics, although the traditional autoregressive GPT-2 model retains an overall lead
on this relatively simple dataset. In contrast, the FineFineWeb dataset imposes a significantly higher
level of linguistic and semantic difficulty. Table [3|reports perplexity values measured for a range of
numbers of function evaluations (NFE). Before analysing comparative performance, we verified that
every model under consideration preserves sufficient output variability by computing the empirical
entropy of produced token distributions; all entropy scores exceeded the threshold of 5, thereby con-

https://huggingface.co/datasets/jtatman/python-code-dataset-500k

https://huggingface.co/datasets/jtatman/python-code-dataset-500k

Under review as a conference paper at ICLR 2026

Table 3: Generative perplexity on unconditional text generation compared to prior work. Models
were trained on FineFineWeb dataset. The best results are highlighted in bold.

Method NFE Llama 2 GPT 3 GPT 2
Data - 9.2 15.8 314
GPT 2 1024 48.7 84.9 97.2

DFM 256/512/1024 150.6/107.3/75.0 312.8/198.9/125.9 381.4/245.8/157.2
SEDD 256/512/1024 70.8/57.7/47.6 123.8/95.7/74.8 145.8/114.2/90.2

KL-flow
(150M) 256/512/1024 61.0/47.1/35.1 101.7/75.8/54.1 117.3/88.1/62.9
K(If?é))w 256/512/1024 51.5/41.7/32.7 81.1/63.7/48.4 96.6/76.2/58.5

Table 4: Evaluation of conditional text generation on test set compared to prior works. The best
results are highlighted in bold.

Dataset Method BLEU Score ROUGE-L BERT Score
Top-5 Avg Top-5 Avg Top-5 Avg
GPT 2 7.8 3.1 289 182 638 564

Lamini Instruction DFM 81 36 300 192 616 536
u SEDD 54 21 259 158 610 537
KL-flow
(hybrid) 95 43 345 239 679 611
KL-Alow 5,1 313 215 666 601
(sampling)

GPT 2 19.7 9.8 483 367 78.1 71.0
DFM 213 112 500 388 771 69.6

WMT14 De-En SEDD 146 65 449 345 742 682
KL-flow
(twbrigy 238 137 535 447 821 777
KL-Aflow 0 181 569 494 845 812
(sampling)

firming generation diversity. When the NFE parameter is kept at its default value 1024, KL-Flow in
the intermediate 150M configuration already establishes a clear advantage over both diffusion-based
and flow-based non-autoregressive competitors. Reducing the computational budget by a factor of
two (NFE equal to 512) does not alter this observation: KL-Flow maintains a comfortable margin.
Even under an aggressive four-fold reduction to 256 evaluations, the model preserves performance
that is comparable to or superior to GPT-2, underscoring the method’s capacity for substantial gen-
eration acceleration without sacrificing linguistic plausibility. Scaling the architecture from 150M
to 1.5B parameters further accentuates these gains. In the larger setting, KL-Flow attains the best
perplexities across all three reference language models (Llama 2, GPT-3, and GPT-2) and for every
NFE level examined.

6.4 CONDITIONAL LANGUAGE MODELING

The empirical evaluation of the conditional generation framework was carried out on two com-
plementary benchmarks, namely the Lamini Instruction and the WMT14 German—English trans-
lation datasets. Performance was quantified through the standard metrics BLEU, ROUGE-L, and
BERTScore; the corresponding results, reported in Table 4] include both the maximum value ob-
tained among the top 5 decoded responses and the mean over this candidates, thereby providing
simultaneous insight into peak quality and output stability. Inspection of the numerical results re-
veals that the KL-Flow consistently surpasses all prior works. When the conditional distribution
admits multiple plausible continuations, as in the Lamini Instruction scenario, the hybrid inference
strategy achieves the highest scores across all metrics. By contrast, in the lower-entropy setting of
deterministic machine translation, the purely sampling based variant exhibits a clear advantage.

Under review as a conference paper at ICLR 2026

def move_num(test_str): def move_num(test_str): def move_num(test_str): def move_num(test_str):

res = "' res = "' res = "' res = "'
dig = "' en = '' for test_str, ele: Convert given string
for ele in test_str: for ele in test_str: uid, dig = test_str for ele in (test_str)):
if ele.isdigit(): if ele.isdigit(): if ele.isdigit(): if ele.isdigit():
dig += ele dig += ele dig += ele dig += ele
else: else: else: else:
res += ele res += ele res += ele res += ele
res += dig res += dig res += dig res += dig
return (res) return (res) return (res) return (res)
(a) KL-flow (b) DFM (c) GPT 2 (d) SEDD

Figure 3: An illustrative example of code infilling. The highlighted lines were generated by the
model. Lines highlighted in green indicate correct infilling, while those highlighted in red denote
incorrect infilling.

Table 5: Quantitative comparison of several code—infilling approaches on the MBPP benchmark.
For each masking ratio the two quality indicators Pass@ k and Compiles@ k are reported for k €
{1, 10}. The highest value in every column appears in bold.

Infilling 10% Infilling 50% Infilling 90%
Method Pass@ Compiles @ Pass@ Compiles @ Pass@ Compiles @
1 10 1 10 1 10 1 10 1 10 1 10
GPT-2 88 20.1 542 928 |07 34 275 676 |01 06 157 562
DFM 11.1 255 397 888 |26 80 157 59301 1.1 70 332
SEDD 92 221 517 937 |18 66 303 77901 03 168 602
KL-Flow | 174 29.2 73.7 920 |44 112 581 874 |02 17 604 90.8

6.5 CODE INFILLING

The code-infilling problem requires a model to reconstruct those program lines that have been re-
moved, using both the surrounding source context and the natural-language task description. In the
present study the network must generate a replacement of arbitrary length, up to 40 tokens. During
training and evaluation we conceal a randomly chosen fraction of the original lines; this fraction is
drawn uniformly between 10% and 90% of code lines. Figure [3|illustrates infilling example. For
completeness we adapted GPT-2 baseline to the same setting. Each masked line is replaced by the
specified token and the transformer is trained autoregressively so that, after producing the unmasked
part of the program, it appends the content of every hidden line in order.

Table [5|summarises the outcomes for three representative masking regimes: 10%, 50%, and 90% of
the code are removed. Across all regimes KL-Flow model with hybrid inference scheme surpasses
prior approaches in both functional correctness and syntactic validity. Detailed curves covering the
entire masking spectrum appear in Appendix [C]

7 CONCLUSIONS AND FUTURE WORK

In this work, we propose using Kullback-Leibler (KL) divergence geodesics—equivalent to linear
interpolation in logit space—as a principled approach to flow matching in discrete sequence model-
ing. Our theoretical analysis shows that the likelihood maximizer precisely matches the exact flow
matching velocity, establishing a strong foundation for our method. We also introduce a new em-
pirical sampling algorithm which, despite limited theoretical guarantees, consistently outperforms
baselines in conditional text modeling on benchmarks such as WMT14 de-en translation and code
infilling. Additionally, our hybrid inference approach combines both basic and sampling proce-
dures, achieving strong results in unconditional and conditional generation tasks, including Lamini
Instruction dataset. Our findings show that larger models further improve performance, though cur-
rent progress is limited by computational resources. Therefore, future work should focus on scaling
model size and training to unlock further gains.

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or any sensitive
data. All datasets used are publicly available and widely used in prior research. We are not aware of
any ethical issues or potential negative societal impacts related to the methods or results presented
in this paper.

9 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. Theoretical claims
are supported with formal derivations and proofs provided in Sections [3| f] and Appendix [A] The
main inference scheme is described in Section] and further detailed in Algorithms [T]and [2]in the
Appendix. Model architectures, dataset descriptions, training procedures, and hyperparameters are
provided in Section [6| and Appendix [E| An anonymous implementation of our method, including
training and sampling scripts, is also provided in the supplementary submission.

REFERENCES

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces, 2021a. URL https://arxiv.org/abs/
2107.03006.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models, 2021b. URL https://arxiv.org/abs/2108.07732.

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Ales Tamchyna. Findings of the 2014 workshop on statistical machine transla-
tion. In Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 12-58,
Baltimore, Maryland, USA, 2014. Association for Computational Linguistics. URL https:
//aclanthology.org/W14-3302.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models, 2022. URL
https://arxiv.org/abs/2205.14987.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design,
2024. URL https://arxiv.org/abs/2402.04997.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11305-11315, 2022.

Oscar Davis, Samuel Kessler, Mircea Petrache, Ismail Ilkan Ceylan, Michael M. Bronstein, and
Avishek Joey Bose. Fisher flow matching for generative modeling over discrete data, 2024. URL
https://arxiv.org/abs/2405.14664.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi
Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data, 2022. URL
https://arxiv.org/abs/2211.15089.

10

https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2108.07732
https://aclanthology.org/W14-3302
https://aclanthology.org/W14-3302
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2205.14987
https://arxiv.org/abs/2402.04997
https://arxiv.org/abs/2405.14664
https://arxiv.org/abs/2211.15089

Under review as a conference paper at ICLR 2026

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english?, 2023. URL https://arxiv.org/abs/2305.07759.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi,
and Yaron Lipman. Discrete flow matching, 2024. URL https://arxiv.org/abs/2407.
155951

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2019.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence
to sequence text generation with diffusion models, 2022. URL https://arxiv.org/abs/
2210.08933.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-based
diffusion language model for text generation and modular control. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL), 2022.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. In Advances in Neural Information
Processing Systems (NeurlPS), 2021.

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, fernbear, Boza Vlado, You Jiacheng, Franz
Cesista, Braden Koszarsky, and Grad62304977. modded-nanogpt: Speedrunning the nanogpt
baseline. https://github.com/KellerJordan/modded—-nanogpt, 2024.

Junyi Li, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Glyphdiffusion: Text generation as
image generation, 2023. URL https://arxiv.org/abs/2304.12519,

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
Im improves controllable text generation, 2022. URL https://arxiv.org/abs/2205.
14217.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text Summarization
Branches Out: Proceedings of the ACL-04 Workshop, pp. 74-81, Barcelona, Spain, 2004. Asso-
ciation for Computational Linguistics. URL https://aclanthology.org/W04-1013|

Zhenghao Lin, Yeyun Gong, Yelong Shen, Tong Wu, Zhihao Fan, Chen Lin, Nan Duan, and Weizhu
Chen. Text generation with diffusion language models: A pre-training approach with continuous
paragraph denoise, 2023. URL https://arxiv.org/abs/2212.11685/

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In Proceedings of the Eleventh International Conference on
Learning Representations (ICLR), 2023. URL https://openreview.net/forum?id=
PgvMRDCJT9t!

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution, 2024. URL https://arxiv.org/abs/2310.16834.

Justin Lovelace, Varsha Kishore, Chao gang Wan, Eliot Shekhtman, and Kilian Q. Weinberger.
Latent diffusion for language generation, 2022. URL https://arxiv.org/abs/2212.
09462.

M-A-P, Ge Zhang, Xinrun Du, Zhimiao Yu, Zili Wang, Zekun Wang, Shuyue Guo, Tianyu Zheng,
Kang Zhu, Jerry Liu, Shawn Yue, Binbin Liu, Zhongyuan Peng, Yifan Yao, Jack Yang, Ziming
Li, Bingni Zhang, Minghao Liu, Tianyu Liu, Yang Gao, Wenhu Chen, Xiaohuan Zhou, Qian
Liu, Taifeng Wang, and Wenhao Huang. Finefineweb: A comprehensive study on fine-grained
domain web corpus. Dataset on Hugging Face, 2024. URL https://huggingface.co/
datasets/m—a-p/FineFineWeb. Version v0.1.0.

11

https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2210.08933
https://arxiv.org/abs/2210.08933
https://github.com/KellerJordan/modded-nanogpt
https://arxiv.org/abs/2304.12519
https://arxiv.org/abs/2205.14217
https://arxiv.org/abs/2205.14217
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2212.11685
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=PqvMRDCJT9t
https://arxiv.org/abs/2310.16834
https://arxiv.org/abs/2212.09462
https://arxiv.org/abs/2212.09462
https://huggingface.co/datasets/m-a-p/FineFineWeb
https://huggingface.co/datasets/m-a-p/FineFineWeb

Under review as a conference paper at ICLR 2026

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pp. 311-318, Philadelphia, Pennsylvania, USA, 2002. Association
for Computational Linguistics. URL https://aclanthology.org/P02-1040.

William S. Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4172-4182, 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAl Technical Report,
2019. URL https://cdn.openai.com/better—-language-models/language_
models_are_unsupervised_multitask_learners.pdf.

Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and Aaron van den Oord. Step-
unrolled denoising autoencoders for text generation, 2022. URL https://arxiv.org/abs/
2112.06749.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Proceedings
of the International Conference on Learning Representations (ICLR), 2021. URL https://
openreview.net/forum?id=PxTIG12RRHS.

Robin Strudel, Corentin Tallec, Florent Altché, Yilun Du, Yaroslav Ganin, Arthur Mensch, Will
Grathwohl, Nikolay Savinov, Sander Dieleman, Laurent Sifre, and Rémi Leblond. Self-
conditioned embedding diffusion for text generation, 2022. URL https://arxiv.org/
abs/2211.04236.

Hannes Stéirk, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design, 2024. URL
https://arxiv.org/abs/2402.05841.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
Blecher, Cristian Cantén Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernan-
des, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony S. Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Ma-
dian Khabsa, Isabel M. Kloumann, Alexei V. Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mi-
haylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi
Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned
chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muhammad Abdul-Mageed, and Alham Fikri Aji.
Lamini-Im: A diverse herd of distilled models from large-scale instructions, 2023. URL https:
//arxiv.orqg/abs/2304.14402.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Mingxuan Wang. Dinoiser: Diffused con-
ditional sequence learning by manipulating noises, 2023. URL https://arxiv.org/abs/
2302.10025.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
ating text generation with bert. In Proceedings of the International Conference on Learning Rep-
resentations (ICLR), 2020. URL https://openreview.net/forum?id=SkeHuCVFDr.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zheng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jianyun Nie, and Ji rong
Wen. A survey of large language models, 2023. URL https://arxiv.org/abs/2303.
18223

12

https://aclanthology.org/P02-1040
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2112.06749
https://arxiv.org/abs/2112.06749
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://arxiv.org/abs/2211.04236
https://arxiv.org/abs/2211.04236
https://arxiv.org/abs/2402.05841
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2304.14402
https://arxiv.org/abs/2304.14402
https://arxiv.org/abs/2302.10025
https://arxiv.org/abs/2302.10025
https://openreview.net/forum?id=SkeHuCVFDr
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

Under review as a conference paper at ICLR 2026

Alon Ziv, Itai Gat, Gael Le Lan, Tal Remez, Felix Kreuk, Alexandre Défossez, Jade Copet, Gabriel
Synnaeve, and Yossi Adi. Masked audio generation using a single non-autoregressive transformer,
2024. URL https://arxiv.org/abs/2401.04577.

13

https://arxiv.org/abs/2401.04577

Under review as a conference paper at ICLR 2026

A PROOFS OF PROPOSITIONS

Proposition A.1. Let Lopyi(0) be defined as in equation ES’] For every t € (0,1) and every x; the
function

ﬁg(xtat) = Emyvp(xl\:vt) Iy (18)

is the (almost surely) unique minimiser of the loss equation§]

Proof. Fix an arbitrary pair (zy,t). Since equation (8|is quadratic in g (x4, t), its minimiser is ob-
tained by differentiating the integrand with respect to the candidate value and equating the derivative
to zero. Concretely,

b
p(It)

Assuming an independent coupling p(xg, z1) = po(zo)p1(z1) and carrying out the integral with
respect to x yields

Op(x¢,t) = /h p(x¢ | w0, 21) p(w0, 1) dzo d21. (19)

1
p(xt)

By Bayes’ theorem, p(z; | z;) = %' Substituting this identity into equationimme-

O (z4,1) = /h p(ze | 21) p1(z1) day. (20)

(Tt
diately furnishes equation[9] completing the argument. O

Proposition A.2. For the KL-geodesic described above, the expression in equation [l 1| factorises
over individual tokens, and the optimal vector field for the k-th coordinate can be written as

05 (@1,t) = B0, 1, Q1)

(@]2)

where p(xgk) | z¢) is the marginal conditional distribution associated with the k-th token.

Proof. Because lgk) is a deterministic function of argk) alone, one may integrate out all remaining

coordinates to obtain
ﬁék)(azt,t) = /lgk)p(xl | z¢) doy = /lgk)p(asgk) | ¢) d:cgk),

which coincides with equation While, in principle, the geodesic interpolation could introduce
dependencies among tokens through the joint kernel p(z; | o, 1), empirical findings reported in
Stark et al.| (2024); |Gat et al.| (2024) indicate that treating the coordinates independently suffices
for practical purposes. Hence, the optimal vector field for each token depends solely on its own
marginal posterior. O

B ALGORITHMS OF INFERENCE SCHEMES

Here, we present algorithms for basic and sampling inference schemes, see Algorithms[IJand[2]

C ADDITIONAL CODE INFILLING EXPERIMENT

In this section we present full comparison of code infilling task for an arbitrary amount of masked
lines. The results were summarized in Figure i} For most cases the KL-Flow outperforms other
approaches across all considered metrics. The most noticeable advantage could be seen in Com-
piles@1 metric, where for any portion of missed code lines the difference from closest competitor
is above 10%.

14

Under review as a conference paper at ICLR 2026

Algorithm 1 Inference scheme (basic)

1: Input: Initial distribution py; denoiser model py(x1|z:); parameter N (number of iterations);
parameter h (time step size, default 1/N).
Sett =0
Sample z; ~ pg
fori =1to N do
Compute w = pg(z1|x¢)

Compute smoothed target logits I; = w log (1 - B+ g) + (1 —w)log (g)

Compute l; < I; + %(ll — 1)
Update x; < Softmax(l;)
Updatet <t + h

end for

Return z;

TRYR R D LR

—_—

Algorithm 2 Inference scheme (sampling)

1: Input: Initial distribution pg; denoiser model py(x1|z:); parameter N (number of iterations);
parameter h (time step size, default 1/N).
Sett =0
Sample xz; ~ pg
fori =1to N do
Sample :vgk) ~ pg(xgk)|xt) fork €[1,..., 9]
Sample xy ~ pg
Compute Iy, = (1 —t — h)log(zg) + (¢ + h)log(z1)
Update z; = Softmax(l;11)
Updatet <t + h
end for
Return z;

TEYRRIIUNAELN

—_——

D COMPARISON OF INFERENCE SCHEMES WITH ANALYSIS OF TOP-K
SAMPLING EFFECTS

In this section, we systematically examine the effects of inference hyperparameter selection on
model performance, focusing on perplexity (as evaluated by the Llama-2 model) and token-level
entropy. Two principal factors are considered. The first corresponds to the threshold parameter ¢*,
which determines the relative proportion of basic and sampling steps in the hybrid inference process.
The results displayed in Figure |5|indicate that an optimal compromise between token entropy and
perplexity of generated sequences is achieved at t* = 0.28. Notably, at this value, entropy remains
above the established diversity threshold of 5. Deviations from the optimal value result in significant
reductions in either entropy or perplexity, thus impairing generative quality or diversity.

The second factor concerns the role of top-k sampling during the sampling phase of the hybrid in-
ference scheme. The impact of varying the k parameter is also explored in Figure[5} An incremental
increase in k initially enhances entropy; however, further increases tend to adversely affect text qual-
ity as measured by perplexity. Based on these observations, utilizing £ = 1 is recommended, since
it facilitates the generation of sufficiently diverse (entropy > 5) and high-quality texts.

For completeness, Table [6] provides a summary of the performance metrics for all examined infer-
ence strategies, specifically comparing the basic, sampling, and hybrid configurations. It can be
observed that the sampling scheme yields notably lower entropy, a limitation previously discussed
in Section 3.2, paragraph Approximation of the conditional p(x;|x;). Conversely, the basic ap-
proach is deficient in producing high-quality texts as indicated by elevated perplexity values. The
hybrid inference strategy, by integrating both approaches, achieves superior overall performance
relative to the alternatives.

15

Under review as a conference paper at ICLR 2026

0.175 A — i
o | o
0.150
—— SEDD 0.6 -
0.125 - ——— KL-Flow
. ® 9357 — GPT22
® 0.100 1 E DEM
@ 3 047 —— SEDD
£ 0.0751 § —— KL-FI
So3l -Flow
0.050 A
0.2 1
0.025 A
0.1+
0.000 A
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Percentage of removed lines Percentage of removed lines
0.30 1 — GPT-2
DFM 0.9 \\
0.25 A —— SEDD 0.8
—— KL-Flow '
0.20 9
= "@' 0.7 -
'@ I
@ 0.15 =
4 g 0.6
e o
0.10 A o
0.59 — GPT-2
0.05 - DFM
0.4 —— SEDD
0.00 - —— KL-Flow
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Percentage of removed lines Percentage of removed lines

Figure 4: Comparison of the performance of prior models against KL-Flow on the code infilling task

Table 6: Quantitative comparison of inference methodologies with respect to perplexity and entropy.

Method Perplexity Entropy
KL-Flow (basic) 154.2 5.6
KL-Flow (sampling) 3.8 1.9
KL-Flow (hybrid) 41.4 5.2

E OPTIMAL TRAINING CONFIGURATION

In this section, we discuss several critical aspects and technical strategies for addressing the Flow
Matching (FM) problem. The foundational code and architecture employed for training were derived
from an open-source GitHub repository featuring an efficient implementation of the GPT-2 model,
designed for standard language modeling tasks. However, our investigation revealed that the initially
suggested optimal configuration is not truly optimal for the FM problem.

A key factor influencing convergence is the selection of an appropriate learning rate. In Figure[6] we
present a comparison of various learning rate values, alongside an assessment of how the integration
of the Muon optimizer—proposed in the original repository—affects model performance. We found
that the standard learning rate of (Ir = 0.0036) is not optimal. A learning rate reduced by a factor
of ten significantly accelerates convergence and mitigates the risk of stagnation during the initial
phases of training. Furthermore, we determined that the ratio of learning rates between the Adam
optimizer and the Muon optimizer yields optimal results. Additionally, the application of the Muon

16

Under review as a conference paper at ICLR 2026

100 — Perplexity — Entropy
--- Entropy threshold

——— — 3

Perplexity
Perplexity
®
8

60

40

20

404 0
10° 10t 10? 10° 2.0 25 3.0 35 4.0 4.5 5.0 55
k Entropy

(a) Comparison across different top-k values (b) Determination of the optimal ¢*

Figure 5: Qualitative evaluation of inference hyperparameter selection on model performance. (a)
Evaluation of the influence of the top-k parameter within the sampling inference scheme. Per-
formance is assessed through perplexity computed via the Llama 2 model and token distribution
entropy, with the entropy threshold associated with diverse text generation also indicated. (b) Anal-
ysis of the impact of the t* hyperparameter in the hybrid inference approach, identifying the optimal
t* = 0.28.

optimizer for specific model parameters enhances convergence, even when employing a non-optimal
learning rate.

Another critical consideration is the method of incorporating temporal information into the model
architecture. We identified three primary strategies for this purpose:

* Time Token: Transform the time value into an embedding vector and incorporate it as a
separate token within the sequence.

* Layer Normalization: Employ a method akin to that used in the DiT architecture, where
the time embedding is utilized to adjust the mean and standard deviation of the data within
the layer normalization module.

 Standard Addition: Simply append the time embedding to each token embedding.

Our findings, as presented in Figure [/] indicate that the Layer Normalization strategy is the most
effective approach, as it provides better convergence and achieves a lower loss value after 200k
training steps.

F RELATED WORK FULL DISCUSSION

In this section, we review the literature on modeling discrete sequences. The authors in |Campbell
et al.[(2024) present Discrete Flow Models (DFMs) that combine discrete and continuous data using
Continuous Time Markov Chains, improving traditional diffusion methods for protein co-design and
achieving state-of-the-art results in protein structure generation.

Additionally, |Song et al.[| (2021) propose a stochastic differential equation (SDE) for transforming
complex data distributions using neural networks for accurate score estimation. The work by Camp-
bell et al.|(2022) introduces a continuous time framework for denoising diffusion models of discrete
data, resulting in high-performance samplers that surpass traditional methods.

Research by |Gat et al.| (2024) introduces Discrete Flow Matching, focusing on generating high-
dimensional discrete data, such as language, while enhancing generative perplexity. Meanwhile,
Ghazvininejad et al.| (2019) use masked language modeling to predict target words based on input
text, and |Austin et al.| (2021a) improve multinomial diffusion models. Finally, [Hoogeboom et al.
(2021) provide extensions for categorical data, demonstrating high efficacy in text modeling and
image segmentation.

17

Under review as a conference paper at ICLR 2026

8 m
7 .
—— |r Adam = 0.00018
N 6 - —— |r Adam = 0.000036
8 —— Ir Adam = 0.00036
— —— Ir Adam = 0.0036, no Muon optimizer
—— |Ir Adam = 0.0036

'M» ,'m Y
44 ,H Aw\ \‘f*"v m

0 25k 50k 75k 100k 125k 150k 175k 200k
Ilteration

Figure 6: Comparison of the impact of learning rate values on training a GPT-like model for the
Flow Matching problem. The base implementation utilizes the Muon optimizer for certain model
parameters, while the tag “no Muon optimizer” indicates that the Muon optimizer has been replaced
with the Adam optimizer.

Recent advancements have focused on applying continuous space diffusion methods to discrete
datasets [Dieleman et al| (2022)); [Li et al.| (2022)); [Han et al|(2022)). Notable contributions from [Lin|
(2023) improve diffusion flow modeling, while new Continuous Flow Matching techniques are

introduced by |[Lovelace et al.| (2022) and |Stérk et al.|(2024).

Autoregressive models have been crucial in natural language processing (2023), exem-
plified by the GPT-2 model Radford et al.| (2019), which showcased the potential of autoregres-
sive approaches in generating coherent text. Research highlights the effectiveness of autoregressive
methods in addressing complex linguistic challenges.

Masked generative modeling has emerged as a promising area, utilizing techniques to generate con-
tent by obscuring parts of input data|Ghazvininejad et al| (2019). Studies by [Savinov et al.| (2022)
refined traditional masking methods, leading to innovations like MaskGIT, which employs advanced
techniques for high-resolution image synthesis [Chang et al| (2022). Furthermore,
demonstrated the effectiveness of a text-to-music model, showing that the MaskGIT framework sig-
nificantly improves the quality of generated outputs.

18

Under review as a conference paper at ICLR 2026

972
973
974
975
976
977
978
979
980
981
982
983
984 . . .
985 7.0 Time token -
986 —— Layer norm

987 —— Standard
988 6.5

989

990

o 6.0
992
993
994
995
996
997
998
999
1000
1001 4.5
1002

1003

1004 4.0 -
1005
1006
1007 3.5]
1008
1009

1010 0 25k 50k 75k 100k 125k 150k 175k 200k

1011 :
o Iteration

1013
1014 Figure 7: Comparison of various strategies for time insertion within model architecture.
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

5.5 1

Loss

5.0

19

	Introduction
	Background
	Conditional Flow Matching for Discrete Sequences
	Denoising Objective

	Inference: Iterative Sampling Scheme
	Deterministic inference via KL–flow
	Stochastic inference by direct simulation
	Limitations and Hybrid solver

	Related work
	Experiments
	Datasets
	Evaluation Techniques
	Unconditional Language Modeling
	Conditional Language Modeling
	Code infilling

	Conclusions and Future Work
	Ethics Statement
	Reproducibility Statement
	Proofs of propositions
	Algorithms of inference schemes
	Additional code infilling experiment
	Comparison of Inference Schemes with Analysis of Top-k Sampling Effects
	Optimal training configuration
	Related work full discussion

