
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOGIT-KL FLOW MATCHING: NON-AUTOREGRESSIVE
TEXT GENERATION VIA SAMPLING-HYBRID INFER-
ENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Non-autoregressive (NAR) language models offer notable efficiency in text gen-
eration by circumventing the sequential bottleneck of autoregressive decoding.
However, accurately modeling dependencies in discrete sequences remains chal-
lenging in this paradigm. In this work, we advance the field of NAR generation
by applying conditional flow matching (CFM) methods grounded in geometrically
principled interpolation, specifically leveraging Kullback-Leibler (KL) divergence
geodesics, which correspond to linear interpolation in logit space. We rigorously
establish that maximizing conditional likelihood in this setting precisely recovers
the flow matching velocity field, supplying the theoretical justification for this ap-
proach in sequence modeling. To address practical performance gaps of basic in-
ference, we propose a novel empirical sampling strategy that iteratively denoises
and re-noises, along with a hybrid scheme that integrates our sampling method
with basic procedure. Across unconditional and conditional text and code infill-
ing, the approach improves perplexity and downstream metrics over prior NAR
baselines under matched settings.

1 INTRODUCTION

Non-autoregressive (NAR) language models have emerged as efficient alternatives to traditional
autoregressive models in NLP by generating all tokens simultaneously. However, capturing complex
dependencies in discrete textual data remains challenging without sequential modeling.

We investigate conditional flow matching (CFM) methods for text generation, building on recent
advances such as Discrete Flow Matching (DFM) Gat et al. (2024), Dirichlet Flow Matching Stärk
et al. (2024), and Fisher-Flow Davis et al. (2024), which represent tokens as one-hot vectors in
a V − 1-dimensional simplex. These methods interpolate a sequence of distributions ρt from an
initial ρ0 to a data distribution ρ1; for text, the latter is sampled as discrete sequences in the simplex.
Prior work identifies issues with naive linear interpolation in simplex space Stärk et al. (2024).
We propose instead using KL-geodesics, equivalent to linear interpolation in logit space, to better
capture the underlying geometry.

Our CFM framework leverages this interpolation, training with a denoiser maximizing the condi-
tional likelihood pθ(x1 | xt), enabling tractable approximation of the joint distribution. While
theoretical guarantees previously existed only for single-token predictions, we show that maximiz-
ing this conditional likelihood still exactly recovers the flow matching velocity field in logit space
for sequence modeling, lending theoretical support to our approach.

Standard inference procedures with this framework yield suboptimal results, so we introduce a novel
sampling strategy: given a state xt, we sample x1 from p(x1 | xt) and re-noise it to xt+h, iterating
this process. Despite the lack of full theoretical analysis, this method yields stronger empirical
results. We further propose a hybrid inference scheme blending our basic and sampling strategies,
yielding improved performance on tasks such as text generation, conditional question answering,
and code infilling (see Figure 1).

Our contributions are:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Simplex

Denoiser network

(a) Training Phase

Simplex

Denoiser network

(b) Basic inference

Simplex

Denoiser network

(c) Sampling inference

Figure 1: Overview of the Proposed Approach: Training: Sample x0 ∼ p0 (uniform distribution
on simplex), x1 ∼ p1 (target distribution represented by samples); interpolate to obtain xt. The
denoiser network predicts log pθ(x1|xt), trained via log-probability maximization. Inference: For
basic inference, numerically solve an ODE with vector field: Ex1∼pθ(x1|xt)[v(xt, t |x1)] using Euler
method with N steps and a step size of h = 1/N . Alternatively, in sampling inference, interpolate
between x0 ∼ p0 and x1 ∼ p(x1|xt) at each step.

• Using KL-geodesic (logit-space linear) interpolation for flow matching in discrete se-
quences.

• Theoretical analysis showing conditional likelihood maximization exactly recovers the flow
matching velocity field for logit-space interpolation.

• A novel sampling and hybrid inference strategy with strong empirical results.
• Empirical improvements: at least 27% lower perplexity for unconditional generation (Fine-

FineWeb), and at least 17%, 26% BLEU boosts for conditional tasks (Lamini Instruction,
WMT 14 de-en); plus 56% and 14% gains in Pass@1 and Pass@10 for code infilling where
10% of the code lines were omitted. Prior methods are trained and evaluated under the same
setup to ensure a fair comparison.

2 BACKGROUND

Flow matching Lipman et al. (2023) constructs a deterministic transport from a simple base distri-
bution ρ0 (e.g.,N (0, I)) to an unknown data distribution ρ1 given by samples. It introduces a time-
dependent density ρ(x, t) and velocity field v(x, t) for t ∈ [0, 1] that satisfy the mass-conservation
(Liouville) equation

∂tρ(x, t) = −∇ ·
(
ρ(x, t) v(x, t)

)
, (1)

with boundary conditions ρ(·, 0) = ρ0 and ρ(·, 1) = ρ1. Once v is known, samples are generated by
integrating the characteristic ODE

dxt

dt
= v(xt, t), xt=0 ∼ ρ0, (2)

and taking xt=1 as a draw from ρ1.

Learning the velocity field (conditional flow matching). Because v is unknown, it is approxi-
mated with a neural network vθ(x, t) using interpolation between initial and target data samples. Let
γt(x0, x1) be any interpolation with γ0 = x0 and γ1 = x1; draw t ∼ U [0, 1], x0 ∼ ρ0, and x1 ∼ ρ1,
and set xt = γt(x0, x1). Define the vector field v(xt, t |x0, x1) := d

dtγt(x0, x1). The conditional
flow matching objective is

LCFM(θ) = Et,x0,x1

[
∥ vθ(γt(x0, x1), t)− v(γt(x0, x1), t |x0, x1)∥22

]
. (3)

At inference, we integrate the ODE with vθ from t=0 to t=1 to obtain samples.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

x0

x1
Linear vs KL-Flow

Linear
KL-Flow

x0

x1
Fisher-Rao vs KL-Flow
Fisher-Rao
KL-Flow

0 1
t

KL
(x

1||
x t

)

Simplex dim = 10
Linear
Fisher-Rao
KL-Flow

0 1
t

KL
(x

1||
x t

)

Simplex dim = 10000
Linear
Fisher-Rao
KL-Flow

Figure 2: Qualitative and quantitative comparison of three distinct classes of geodesics on the prob-
ability simplex: Linear, Fisher–Rao, and KL–Flow. The first two panels juxtapose the trajectories of
the Linear and Fisher–Rao interpolations against the KL–Flow interpolation. The rightmost panels
depict the temporal evolution of the divergence KL(x1∥xt) for two different simplex dimensions,
|V| = 10 and |V| = 10 000.

Table 1: Perplexity (lower is better) obtained by 150M–parameter language models trained on the
FineFineWeb corpus under the Linear, Fisher–Rao, KL-Flow geodesics.

Geodesic Llama 2 GPT 3 GPT 2
Linear 1344 15418 13881

Fisher–Rao 192 298 379
KL-Flow 41 53 62

3 CONDITIONAL FLOW MATCHING FOR DISCRETE SEQUENCES

In language modelling, the terminal random variable x1 is a one–hot vector (a vertex of the
(V−1)–simplex). Following Stärk et al. (2024), we take the initial distribution ρ0 to be the uni-
form (Dirichlet(1)) measure on the simplex, so x0 ∼ ρ0 is a strictly positive probabilistic token
mixture. A central design choice in flow matching is the interpolation between x0 and x1.

KL geodesic on the simplex. While linear interpolation in probability space is possible, its draw-
backs for discrete data have been documented (Stärk et al., 2024); Fisher–Rao geodesics have also
been proposed (Davis et al., 2024). We instead use the geodesic induced by the Kullback–Leibler
(KL) divergence—the canonical information–theoretic discrepancy on the simplex.
Definition 3.1 (KL geodesic). For t ∈ [0, 1], the KL–geodesic joining x0 and x1 is

xt =
x 1−t
0 x t

1∑V
i=1 x

1−t
0,i x t

1,i

≡ Ct x
1−t
0 x t

1 , (4)

where Ct normalizes xt onto the simplex.

It is linear in logits, lt = (1− t) log x0 + t log x1 with xt = Softmax(lt). Moreover, KL–geodesics
preserve a usable learning signal: as shown in Fig. 2, KL(x1∥xt) decays substantially more
slowly along the KL path—especially for large vocabularies (|V|=10,000)—whereas Linear and
Fisher–Rao paths collapse KL(x1∥xt) near zero too early (for t close to 0), effectively turning the
transport into a one–shot step and depriving the model of informative gradients over most of the
time horizon. Empirically, Table 1 shows that training with Linear or Fisher–Rao objectives yields
markedly worse perplexity, consistent with this geometric analysis.

Logit parameterization Write l0 = log x0 and l1 = log x1, and define the logit–linear interpo-
lation lt = (1 − t)l0 + t l1, so that xt = Softmax(lt). Because log is undefined at zero, we use a
standard β–smoothed target for the one–hot x1,

x1 = (1− β) δi +
β

V
1, β ∈ (0, 1),

where δi is the canonical basis vector of the realized token and 1 is the all–ones vector. Equivalently,
in logit space we could write linear ODE:

dlt
dt

= l1 − l0, (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

so the KL path is a straight line in logits whose image under Softmax remains intrinsic to the
simplex.

3.1 DENOISING OBJECTIVE

Single–token case. Consider the special case in which the sequence length equals one. The en-
tire input is then represented by a single vector whose dimensionality matches the vocabulary size.
As introduced in Definition 3.1 the KL-geodesic reproduces the conditional flow–matching objec-
tive equation 3:

LCFM(θ) = Et,x0,x1

∥∥vθ(xt, t)− (l1 − l0)
∥∥2, (6)

where xt = Softmax(lt) denotes the intermediate point obtained by applying the softmax map to
the logit vector lt = (1− t) l0 + t l1. The quantities l0 and l1 are, respectively, the logits generating
the initial state x0 and the target state x1 after projection onto the probability simplex. Both the
conditional vector field v(xt, t | x0, x1) = l1 − l0 and its learnable counterpart vθ(xt, t) admit the
following reparametrisation in terms of lt:

l1 − l0 =
l1 − lt
1− t

, vθ(xt, t) =
v̂θ(xt, t)− lt

1− t
, (7)

Substituting the identities in equation 7 into the loss equation 6 transforms the original objective
into a denoising-style regression problem in which the model must recover the clean target logit
l1 = log x1 from the corrupted observation xt:

LCFM(θ) = Et,x0,x1 ∥v̂θ(xt, t)− l1∥2 . (8)

Proposition 3.2. Let LCFM(θ) be defined as in equation 8. For every t ∈ (0, 1) and every xt the
function

v̂⋆θ(xt, t) = Ex1∼p(x1|xt) l1 (9)

is the (almost surely) unique minimiser of the loss equation 8.

Corollary 3.3. Suppose we approximate the true conditional p(x1 | xt) with a parametric model
pθ(x1 | xt). Then an estimate of the vector field compatible with equation 7 is

v(xt, t) =
1

1− t

(
Ex1∼pθ(x1|xt) l1 − lt

)
. (10)

The subscript θ is omitted in v(xt, t) to emphasise that learning proceeds through the conditional
density pθ(x1 | xt), rather than through direct parametrisation of the vector field itself.

Sequences of length S We now extend the analysis from the single-token setting to sequences
that contain exactly S tokens. As a prior over sequences we assume S independent Dirichlet distri-
butions, each defined on the (V − 1)–simplex associated with the vocabulary of size V . In contrast,
the “clean” or target distribution p1 is supported on the vertices of the Cartesian product of sim-
plices. Following the prescriptions in Stärk et al. (2024); Gat et al. (2024), we interpolate each token
independently along the KL–geodesic. Consequently, the logit representation becomes an S × V

matrix lt whose k-th row l
(k)
t corresponds to token k.

Fixing an index k ∈ {1, . . . , S} and specialising Equation equation 9 to the present context yields

v̂
(k)
θ (xt, t) = Ex1∼p(x1|xt) l

(k)
1 , (11)

where l
(k)
1 denotes the logits that would generate the clean token x

(k)
1 .

Proposition 3.4. For the KL–geodesic described above, the expression in equation 11 factorises
over individual tokens, and the optimal vector field for the k-th coordinate can be written as

v̂
(k)
θ (xt, t) = E

x
(k)
1 ∼p(x

(k)
1 |xt)

l
(k)
1 , (12)

where p(x
(k)
1 | xt) is the marginal conditional distribution associated with the k-th token.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Consequently, under the KL–geodesic, computing the optimal velocity field reduces to evaluating
the exact marginal posteriors p(x

(k)
1 | xt) for each token k independently. In practice we approx-

imate these posteriors with a parametric model pθ(x
(k)
1 | xt). We draw x1 ∼ p1 (from the data

distribution) and t ∼ U(0, 1), set x0 ∼ p0, and form xt = Softmax
(
(1− t) log x0 + t log x1

)
. The

model outputs token-wise conditionals pθ(x
(k)
1 | xt), for which we minimize the sequence-level

NLL:

L = −Et,x1∼p(x1),xt∼p(xt|x1)

S∑
k=1

log pθ
(
x
(k)
1 | xt

)
, (13)

A practical realisation of the conditional model pθ(x
(k)
1 | xt) can be obtained by adapting a Trans-

former architecture: the standard causal attention is replaced with bidirectional attention so that the
representation of each token has access to the entire sequence xt, and an additional conditioning
mechanism is introduced to incorporate the continuous time variable t.

4 INFERENCE: ITERATIVE SAMPLING SCHEME

We present three complementary inference procedures under the KL–geodesic interpolation intro-
duced earlier: a deterministic KL–flow integrator, a stochastic iterative sampler, and a hybrid routine
that combines both. Unless stated otherwise, logits evolve along the logit–linear path

lt = (1− t) l0 + t l1, xt = Softmax(lt).

4.1 DETERMINISTIC INFERENCE VIA KL–FLOW

Within classical flow matching, samples are generated by numerically integrating the ODE associ-
ated with the KL–geodesic. For the interpolation in Definition 3.1, the logit vector obeys the linear
ODE

dlt
dt

=
l1 − lt
1− t

. (14)

Algorithm 1 implements an explicit scheme (Euler with step size h = 1/N) that advances t from 0
to 1. In experiments we refer to this baseline as KL–flow (basic).

4.2 STOCHASTIC INFERENCE BY DIRECT SIMULATION

An alternative is to simulate the one–step transport induced by a small time increment h > 0.
Conditioning on the current iterate xt, the next iterate admits the Markov factorization

p(xt+h | xt) =

∫
p(xt+h | x1) p(x1 | xt) dx1. (15)

The exact posterior p(x1 | xt) is intractable at the sequence level. The optimization of objective
from equation 13 gives the product of tokenwise marginals produced by the denoiser:

pθ(x1 | xt) =

S∏
k=1

pθ
(
x
(k)
1 | xt

)
.

Because the KL–geodesic interpolation also factorizes across tokens we obtain the tractable kernel

pθ(xt+h | xt) =

S∏
k=1

pθ(x
(k)
t+h | xt) =

S∏
k=1

∫
p
(
x
(k)
t+h | x

(k)
1

)
pθ
(
x
(k)
1 | xt

)
dx

(k)
1 . (16)

Iterating these kernels defines an implicit model distribution over terminal states,

pθ(x1) = p(x0) pθ(xh | x0) · · · pθ(x1 | x1−h). (17)

This construction underpins the sampling routine summarized below; see Algorithm 2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Corollary 4.1 (Iterative sampler). To draw x1 ∼ pθ(x1), initialize x0 ∼ p0 and iterate for t =
0, h, 2h, . . . :
(i) For each token k = 1, . . . , S, sample x

(k)
1 ∼ pθ(x

(k)
1 | xt).

(ii) For each token k, advance along the KL–geodesic by sampling x
(k)
t+h ∼ p

(
x
(k)
t+h | x

(k)
1

)
.

(iii) Set t← t+ h and repeat while t < 1.
This KL–flow (sampling) procedure requires one forward pass of the denoiser model pθ(x

(k)
1 | xt)

per iteration and thus matches the complexity of the ODE solver.

4.3 LIMITATIONS AND HYBRID SOLVER

The denoiser trained with the sequence–level NLL equation 13 furnishes only token–wise marginals
pθ(x

(k)
1 | xt). Treating these as conditionally independent yields p(x1 | xt) ≈

∏
k pθ(x

(k)
1 | xt).

This surrogate is exact at t = 1 but may degrade as t decreases due to emerging inter–token de-
pendencies. To balance the stability of early–time deterministic transport, we adopt a KL–flow
(hybrid) procedure: integrate the ODE of Algorithm 1 from t = 0 up to a threshold t⋆, then switch
to the sampler of Algorithm 2 for the remaining horizon. Empirically, this combination improves
perplexity/entropy trade–offs relative to either component alone (see Appendix D for selection of t⋆
and top-k settings).

5 RELATED WORK

Non-autoregressive text generation methods can be divided into those operating in continuous la-
tent spaces Li et al. (2023); Ye et al. (2023); Gong et al. (2022); Strudel et al. (2022) and those
working directly with discrete token representations, as considered in this work. Among the latter,
Campbell et al. (2024) proposed Discrete Flow Models, which combine Continuous-Time Markov
Chains and normalising flows to model both discrete and continuous variables, achieving state-of-
the-art results on protein generation. Gat et al. (2024) introduced Discrete Flow Matching, defining
sample paths between distributions via learned posterior approximations such as probability denois-
ers. Stärk et al. (2024) extended this line by proposing Dirichlet Flow Matching, limiting paths to
Dirichlet mixtures for tractable density calculations. Davis et al. (2024) developed Fisher-Flow, util-
ising the Fisher–Rao Riemannian metric to transport mass between categorical distributions along
hypersphere geodesics. Alternatively, Lou et al. (2024) presented a diffusion-based approach, gen-
eralising score matching to discrete spaces for the construction of discrete diffusion models. These
advances collectively demonstrate the strength of flow matching and diffusion methods for discrete
generative modelling (see Appendix F for further discussion).

6 EXPERIMENTS

We evaluated KL-Flow on diverse text generation tasks, spanning unconditional language modeling,
conditional sequence generation, and code infilling. All models used a bidirectional Transformer
backbone (adapted from modded-NanoGPT1), with continuous time embeddings as in DiT Peebles
& Xie (2023) and logit interpolation fixed at β = 0.01; top-k sampling (k = 1) was used for
sampling inference scheme (see Appendix D). We employed two model sizes: a 150M-parameter
configuration for TinyStories and a 1.5B-parameter setup for other data domains, following the
architectural and hyperparameter details of the original repository. Further hyperparameters and
ablation results are provided in Appendix E. KL-Flow was compared with DFM Gat et al. (2024),
GPT-2 Jordan et al. (2024), and SEDD Lou et al. (2024). All models taken for comparison were
trained from scratch in the same setup and on the same data subset as our proposed KL-Flow model
to force comparison validity. All training was conducted on 4 NVIDIA H100 GPUs (80GB each).

6.1 DATASETS

Unconditional generation. The TinyStories dataset Eldan & Li (2023) consists of synthetically
generated short narratives authored by GPT-3.5 and GPT-4. All models were trained on 4B tokens
with the maximum sequence length capped at 512.

1https://github.com/KellerJordan/modded-nanogpt

6

https://github.com/KellerJordan/modded-nanogpt

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Comparison of unconditional text generation models trained on the Tiny Stories dataset.
The results of the best-performing models are indicated in bold, while the instances where our
approach matches or exceeds the performance of alternative Non-Autoregressive (NAR) methods
are highlighted in blue.

Method Grammar ↑ Creativity ↑ Consistency ↑ Plot ↑ Perplexity ↓
GPT 2 5.3 6.4 4.9 4.9 15.4
DFM 3.5 5.7 3.6 3.5 20.8
SEDD 4.2 6.1 4.0 3.8 20.7

KL-Flow 4.4 6.1 4.0 3.7 19.0

To verify the scalability of KL-Flow, we further considered 10B tokens sampled from the Fine-
FineWeb dataset M-A-P et al. (2024), which contains deduplicated and quality-filtered English
web documents. Each training instance was truncated or padded to a uniform length of 1 024 to-
kens. Models trained on this source served as the initialization (pre-training) for all subsequent
conditional-generation experiments.

Conditional text generation was evaluated on two sequences-to-sequence datasets. (i) The Lamini
Instruction benchmark Wu et al. (2023). (ii) The WMT14 German–English translation dataset Bojar
et al. (2014). In both cases the concatenation of the prompt and the ground-truth response was
restricted to 512 tokens. Total training exposure was fixed at 4B tokens.

For the code infilling task we curated an open-source Python corpus2. Only files comprising fewer
than 1 024 tokens were retained. During training, for each example a uniformly random proportion
between 10% and 90% of the lines was masked, and the model was instructed to reconstruct the
elided span. Generalization was quantified on the MBPP benchmark Austin et al. (2021b).

To ensure the validity of comparisons, all baseline models were trained on the identical data subsets,
using the same dataset shuffles and number of tokens to train on.

6.2 EVALUATION TECHNIQUES

The quality of unconditional text generation was evaluated using generative perplexity–measured by
scoring generated samples with large language models (GPT-2 Radford et al. (2019), GPT-3 Brown
et al. (2020), and Llama-2 Touvron et al. (2023))–and diversity was assessed via empirical entropy
(values above 5 indicated substantial lexical variety). For the Tiny Stories dataset, we additionally
reported grammar, creativity, consistency, and plot coherence, as in Eldan & Li (2023). When
scoring with external LMs (GPT-2/3, Llama-2), we use their tokenizers for perplexity evaluation.

Sequence-to-sequence outputs were measured using ROUGE-L (longest common subsequence over-
lap) Lin (2004), BERTScore (semantic similarity via contextual embeddings) Zhang et al. (2020),
and BLEU (clipped n-gram precision with brevity penalty, n ≤ 4) Papineni et al. (2002).

Code infilling was evaluated by Pass@k (fraction of synthesized functions passing all unit tests
out of k samples) and Compiles@k (fraction of code snippets compiling/executing without syntax
errors), for k ∈ {1, 10}.

6.3 UNCONDITIONAL LANGUAGE MODELING

The experimental evaluation of the proposed framework was carried out with the KL-Flow (hybrid)
inference strategy that was introduced in Section 4. The numerical evidence summarised in Table 2
demonstrates that KL-Flow consistently surpasses all alternative non-autoregressive baselines across
the majority of metrics, although the traditional autoregressive GPT-2 model retains an overall lead
on this relatively simple dataset. In contrast, the FineFineWeb dataset imposes a significantly higher
level of linguistic and semantic difficulty. Table 3 reports perplexity values measured for a range of
numbers of function evaluations (NFE). Before analysing comparative performance, we verified that
every model under consideration preserves sufficient output variability by computing the empirical
entropy of produced token distributions; all entropy scores exceeded the threshold of 5, thereby con-

2https://huggingface.co/datasets/jtatman/python-code-dataset-500k

7

https://huggingface.co/datasets/jtatman/python-code-dataset-500k

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Generative perplexity on unconditional text generation compared to prior work. Models
were trained on FineFineWeb dataset. The best results are highlighted in bold.

Method NFE Llama 2 GPT 3 GPT 2
Data - 9.2 15.8 31.4

GPT 2 1024 48.7 84.9 97.2
DFM 256/512/1024 150.6/107.3/75.0 312.8/198.9/125.9 381.4/245.8/157.2
SEDD 256/512/1024 70.8/57.7/47.6 123.8/95.7/74.8 145.8/114.2/90.2

KL-flow
(150M) 256/512/1024 61.0/47.1/35.1 101.7/75.8/54.1 117.3/88.1/62.9

KL-flow
(1.5B) 256/512/1024 51.5/41.7/32.7 81.1/63.7/48.4 96.6/76.2/58.5

Table 4: Evaluation of conditional text generation on test set compared to prior works. The best
results are highlighted in bold.

Dataset Method BLEU Score ROUGE-L BERT Score
Top-5 Avg Top-5 Avg Top-5 Avg

Lamini Instruction

GPT 2 7.8 3.1 28.9 18.2 63.8 56.4
DFM 8.1 3.6 30.0 19.2 61.6 53.6
SEDD 5.4 2.1 25.9 15.8 61.0 53.7

KL-flow
(hybrid) 9.5 4.3 34.5 23.9 67.9 61.1
KL-flow

(sampling) 7.7 4.1 31.3 21.5 66.6 60.1

WMT14 De-En

GPT 2 19.7 9.8 48.3 36.7 78.1 71.0
DFM 21.3 11.2 50.0 38.8 77.1 69.6
SEDD 14.6 6.5 44.9 34.5 74.2 68.2

KL-flow
(hybrid) 23.8 13.7 53.5 44.7 82.1 77.7

KL-flow
(sampling) 27.0 18.1 56.9 49.4 84.5 81.2

firming generation diversity. When the NFE parameter is kept at its default value 1024, KL-Flow in
the intermediate 150M configuration already establishes a clear advantage over both diffusion-based
and flow-based non-autoregressive competitors. Reducing the computational budget by a factor of
two (NFE equal to 512) does not alter this observation: KL-Flow maintains a comfortable margin.
Even under an aggressive four-fold reduction to 256 evaluations, the model preserves performance
that is comparable to or superior to GPT-2, underscoring the method’s capacity for substantial gen-
eration acceleration without sacrificing linguistic plausibility. Scaling the architecture from 150M
to 1.5B parameters further accentuates these gains. In the larger setting, KL-Flow attains the best
perplexities across all three reference language models (Llama 2, GPT-3, and GPT-2) and for every
NFE level examined.

6.4 CONDITIONAL LANGUAGE MODELING

The empirical evaluation of the conditional generation framework was carried out on two com-
plementary benchmarks, namely the Lamini Instruction and the WMT14 German–English trans-
lation datasets. Performance was quantified through the standard metrics BLEU, ROUGE-L, and
BERTScore; the corresponding results, reported in Table 4, include both the maximum value ob-
tained among the top 5 decoded responses and the mean over this candidates, thereby providing
simultaneous insight into peak quality and output stability. Inspection of the numerical results re-
veals that the KL-Flow consistently surpasses all prior works. When the conditional distribution
admits multiple plausible continuations, as in the Lamini Instruction scenario, the hybrid inference
strategy achieves the highest scores across all metrics. By contrast, in the lower-entropy setting of
deterministic machine translation, the purely sampling based variant exhibits a clear advantage.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

def move_num(test_str):

res = ''

dig = ''

for ele in test_str:

if ele.isdigit():

dig += ele

else:

res += ele

res += dig

return (res)

(a) KL-flow

def move_num(test_str):

res = ''

en = ''

for ele in test_str:

if ele.isdigit():

dig += ele

else:

res += ele

res += dig

return (res)

(b) DFM

def move_num(test_str):

res = ''

for test_str, ele:

uid, dig = test_str

if ele.isdigit():

dig += ele

else:

res += ele

res += dig

return (res)

(c) GPT 2

def move_num(test_str):

res = ''

Convert given string

for ele in (test_str)):

if ele.isdigit():

dig += ele

else:

res += ele

res += dig

return (res)

(d) SEDD

Figure 3: An illustrative example of code infilling. The highlighted lines were generated by the
model. Lines highlighted in green indicate correct infilling, while those highlighted in red denote
incorrect infilling.

Table 5: Quantitative comparison of several code–infilling approaches on the MBPP benchmark.
For each masking ratio the two quality indicators Pass@ k and Compiles@ k are reported for k ∈
{1, 10}. The highest value in every column appears in bold.

Method
Infilling 10% Infilling 50% Infilling 90%

Pass@ Compiles@ Pass@ Compiles@ Pass@ Compiles@
1 10 1 10 1 10 1 10 1 10 1 10

GPT-2 8.8 20.1 54.2 92.8 0.7 3.4 27.5 67.6 0.1 0.6 15.7 56.2
DFM 11.1 25.5 39.7 88.8 2.6 8.0 15.7 59.3 0.1 1.1 7.0 33.2
SEDD 9.2 22.1 51.7 93.7 1.8 6.6 30.3 77.9 0.1 0.3 16.8 60.2

KL-Flow 17.4 29.2 73.7 92.0 4.4 11.2 58.1 87.4 0.2 1.7 60.4 90.8

6.5 CODE INFILLING

The code–infilling problem requires a model to reconstruct those program lines that have been re-
moved, using both the surrounding source context and the natural-language task description. In the
present study the network must generate a replacement of arbitrary length, up to 40 tokens. During
training and evaluation we conceal a randomly chosen fraction of the original lines; this fraction is
drawn uniformly between 10% and 90% of code lines. Figure 3 illustrates infilling example. For
completeness we adapted GPT-2 baseline to the same setting. Each masked line is replaced by the
specified token and the transformer is trained autoregressively so that, after producing the unmasked
part of the program, it appends the content of every hidden line in order.

Table 5 summarises the outcomes for three representative masking regimes: 10%, 50%, and 90% of
the code are removed. Across all regimes KL-Flow model with hybrid inference scheme surpasses
prior approaches in both functional correctness and syntactic validity. Detailed curves covering the
entire masking spectrum appear in Appendix C.

7 CONCLUSIONS AND FUTURE WORK

In this work, we propose using Kullback-Leibler (KL) divergence geodesics—equivalent to linear
interpolation in logit space—as a principled approach to flow matching in discrete sequence model-
ing. Our theoretical analysis shows that the likelihood maximizer precisely matches the exact flow
matching velocity, establishing a strong foundation for our method. We also introduce a new em-
pirical sampling algorithm which, despite limited theoretical guarantees, consistently outperforms
baselines in conditional text modeling on benchmarks such as WMT14 de-en translation and code
infilling. Additionally, our hybrid inference approach combines both basic and sampling proce-
dures, achieving strong results in unconditional and conditional generation tasks, including Lamini
Instruction dataset. Our findings show that larger models further improve performance, though cur-
rent progress is limited by computational resources. Therefore, future work should focus on scaling
model size and training to unlock further gains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or any sensitive
data. All datasets used are publicly available and widely used in prior research. We are not aware of
any ethical issues or potential negative societal impacts related to the methods or results presented
in this paper.

9 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. Theoretical claims
are supported with formal derivations and proofs provided in Sections 3, 4, and Appendix A. The
main inference scheme is described in Section 4 and further detailed in Algorithms 1 and 2 in the
Appendix. Model architectures, dataset descriptions, training procedures, and hyperparameters are
provided in Section 6 and Appendix E. An anonymous implementation of our method, including
training and sampling scripts, is also provided in the supplementary submission.

REFERENCES

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces, 2021a. URL https://arxiv.org/abs/
2107.03006.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models, 2021b. URL https://arxiv.org/abs/2108.07732.

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Ales Tamchyna. Findings of the 2014 workshop on statistical machine transla-
tion. In Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 12–58,
Baltimore, Maryland, USA, 2014. Association for Computational Linguistics. URL https:
//aclanthology.org/W14-3302.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models, 2022. URL
https://arxiv.org/abs/2205.14987.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design,
2024. URL https://arxiv.org/abs/2402.04997.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11305–11315, 2022.

Oscar Davis, Samuel Kessler, Mircea Petrache, Ismail Ilkan Ceylan, Michael M. Bronstein, and
Avishek Joey Bose. Fisher flow matching for generative modeling over discrete data, 2024. URL
https://arxiv.org/abs/2405.14664.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi
Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data, 2022. URL
https://arxiv.org/abs/2211.15089.

10

https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2108.07732
https://aclanthology.org/W14-3302
https://aclanthology.org/W14-3302
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2205.14987
https://arxiv.org/abs/2402.04997
https://arxiv.org/abs/2405.14664
https://arxiv.org/abs/2211.15089

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english?, 2023. URL https://arxiv.org/abs/2305.07759.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi,
and Yaron Lipman. Discrete flow matching, 2024. URL https://arxiv.org/abs/2407.
15595.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2019.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence
to sequence text generation with diffusion models, 2022. URL https://arxiv.org/abs/
2210.08933.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-based
diffusion language model for text generation and modular control. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL), 2022.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, fernbear, Boza Vlado, You Jiacheng, Franz
Cesista, Braden Koszarsky, and Grad62304977. modded-nanogpt: Speedrunning the nanogpt
baseline. https://github.com/KellerJordan/modded-nanogpt, 2024.

Junyi Li, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Glyphdiffusion: Text generation as
image generation, 2023. URL https://arxiv.org/abs/2304.12519.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
lm improves controllable text generation, 2022. URL https://arxiv.org/abs/2205.
14217.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text Summarization
Branches Out: Proceedings of the ACL-04 Workshop, pp. 74–81, Barcelona, Spain, 2004. Asso-
ciation for Computational Linguistics. URL https://aclanthology.org/W04-1013.

Zhenghao Lin, Yeyun Gong, Yelong Shen, Tong Wu, Zhihao Fan, Chen Lin, Nan Duan, and Weizhu
Chen. Text generation with diffusion language models: A pre-training approach with continuous
paragraph denoise, 2023. URL https://arxiv.org/abs/2212.11685.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In Proceedings of the Eleventh International Conference on
Learning Representations (ICLR), 2023. URL https://openreview.net/forum?id=
PqvMRDCJT9t.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution, 2024. URL https://arxiv.org/abs/2310.16834.

Justin Lovelace, Varsha Kishore, Chao gang Wan, Eliot Shekhtman, and Kilian Q. Weinberger.
Latent diffusion for language generation, 2022. URL https://arxiv.org/abs/2212.
09462.

M-A-P, Ge Zhang, Xinrun Du, Zhimiao Yu, Zili Wang, Zekun Wang, Shuyue Guo, Tianyu Zheng,
Kang Zhu, Jerry Liu, Shawn Yue, Binbin Liu, Zhongyuan Peng, Yifan Yao, Jack Yang, Ziming
Li, Bingni Zhang, Minghao Liu, Tianyu Liu, Yang Gao, Wenhu Chen, Xiaohuan Zhou, Qian
Liu, Taifeng Wang, and Wenhao Huang. Finefineweb: A comprehensive study on fine-grained
domain web corpus. Dataset on Hugging Face, 2024. URL https://huggingface.co/
datasets/m-a-p/FineFineWeb. Version v0.1.0.

11

https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2210.08933
https://arxiv.org/abs/2210.08933
https://github.com/KellerJordan/modded-nanogpt
https://arxiv.org/abs/2304.12519
https://arxiv.org/abs/2205.14217
https://arxiv.org/abs/2205.14217
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2212.11685
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=PqvMRDCJT9t
https://arxiv.org/abs/2310.16834
https://arxiv.org/abs/2212.09462
https://arxiv.org/abs/2212.09462
https://huggingface.co/datasets/m-a-p/FineFineWeb
https://huggingface.co/datasets/m-a-p/FineFineWeb

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA, 2002. Association
for Computational Linguistics. URL https://aclanthology.org/P02-1040.

William S. Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4172–4182, 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI Technical Report,
2019. URL https://cdn.openai.com/better-language-models/language_
models_are_unsupervised_multitask_learners.pdf.

Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and Aaron van den Oord. Step-
unrolled denoising autoencoders for text generation, 2022. URL https://arxiv.org/abs/
2112.06749.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Proceedings
of the International Conference on Learning Representations (ICLR), 2021. URL https://
openreview.net/forum?id=PxTIG12RRHS.

Robin Strudel, Corentin Tallec, Florent Altché, Yilun Du, Yaroslav Ganin, Arthur Mensch, Will
Grathwohl, Nikolay Savinov, Sander Dieleman, Laurent Sifre, and Rémi Leblond. Self-
conditioned embedding diffusion for text generation, 2022. URL https://arxiv.org/
abs/2211.04236.

Hannes Stärk, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design, 2024. URL
https://arxiv.org/abs/2402.05841.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernan-
des, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony S. Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Ma-
dian Khabsa, Isabel M. Kloumann, Alexei V. Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mi-
haylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi
Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned
chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muhammad Abdul-Mageed, and Alham Fikri Aji.
Lamini-lm: A diverse herd of distilled models from large-scale instructions, 2023. URL https:
//arxiv.org/abs/2304.14402.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Mingxuan Wang. Dinoiser: Diffused con-
ditional sequence learning by manipulating noises, 2023. URL https://arxiv.org/abs/
2302.10025.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
ating text generation with bert. In Proceedings of the International Conference on Learning Rep-
resentations (ICLR), 2020. URL https://openreview.net/forum?id=SkeHuCVFDr.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zheng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jianyun Nie, and Ji rong
Wen. A survey of large language models, 2023. URL https://arxiv.org/abs/2303.
18223.

12

https://aclanthology.org/P02-1040
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2112.06749
https://arxiv.org/abs/2112.06749
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://arxiv.org/abs/2211.04236
https://arxiv.org/abs/2211.04236
https://arxiv.org/abs/2402.05841
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2304.14402
https://arxiv.org/abs/2304.14402
https://arxiv.org/abs/2302.10025
https://arxiv.org/abs/2302.10025
https://openreview.net/forum?id=SkeHuCVFDr
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alon Ziv, Itai Gat, Gael Le Lan, Tal Remez, Felix Kreuk, Alexandre Défossez, Jade Copet, Gabriel
Synnaeve, and Yossi Adi. Masked audio generation using a single non-autoregressive transformer,
2024. URL https://arxiv.org/abs/2401.04577.

13

https://arxiv.org/abs/2401.04577

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOFS OF PROPOSITIONS

Proposition A.1. Let LCFM(θ) be defined as in equation 8. For every t ∈ (0, 1) and every xt the
function

v̂⋆θ(xt, t) = Ex1∼p(x1|xt) l1 (18)

is the (almost surely) unique minimiser of the loss equation 8.

Proof. Fix an arbitrary pair (xt, t). Since equation 8 is quadratic in v̂θ(xt, t), its minimiser is ob-
tained by differentiating the integrand with respect to the candidate value and equating the derivative
to zero. Concretely,

v̂⋆θ(xt, t) =
1

p(xt)

∫
l1 p(xt | x0, x1) p(x0, x1) dx0 dx1. (19)

Assuming an independent coupling p(x0, x1) = p0(x0)p1(x1) and carrying out the integral with
respect to x0 yields

v̂⋆θ(xt, t) =
1

p(xt)

∫
l1 p(xt | x1) p1(x1) dx1. (20)

By Bayes’ theorem, p(x1 | xt) =
p(xt|x1) p1(x1)

p(xt)
. Substituting this identity into equation 20 imme-

diately furnishes equation 9, completing the argument.

Proposition A.2. For the KL–geodesic described above, the expression in equation 11 factorises
over individual tokens, and the optimal vector field for the k-th coordinate can be written as

v̂
(k)
θ (xt, t) = E

x
(k)
1 ∼p(x

(k)
1 |xt)

l
(k)
1 , (21)

where p(x
(k)
1 | xt) is the marginal conditional distribution associated with the k-th token.

Proof. Because l
(k)
1 is a deterministic function of x(k)

1 alone, one may integrate out all remaining
coordinates to obtain

v̂
(k)
θ (xt, t) =

∫
l
(k)
1 p(x1 | xt) dx1 =

∫
l
(k)
1 p(x

(k)
1 | xt) dx

(k)
1 ,

which coincides with equation 12. While, in principle, the geodesic interpolation could introduce
dependencies among tokens through the joint kernel p(xt | x0, x1), empirical findings reported in
Stärk et al. (2024); Gat et al. (2024) indicate that treating the coordinates independently suffices
for practical purposes. Hence, the optimal vector field for each token depends solely on its own
marginal posterior.

B ALGORITHMS OF INFERENCE SCHEMES

Here, we present algorithms for basic and sampling inference schemes, see Algorithms 1 and 2.

C ADDITIONAL CODE INFILLING EXPERIMENT

In this section we present full comparison of code infilling task for an arbitrary amount of masked
lines. The results were summarized in Figure 4. For most cases the KL-Flow outperforms other
approaches across all considered metrics. The most noticeable advantage could be seen in Com-
piles@1 metric, where for any portion of missed code lines the difference from closest competitor
is above 10%.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 1 Inference scheme (basic)

1: Input: Initial distribution p0; denoiser model pθ(x1|xt); parameter N (number of iterations);
parameter h (time step size, default 1/N).

2: Set t = 0
3: Sample xt ∼ p0
4: for i = 1 to N do
5: Compute w = pθ(x1|xt)

6: Compute smoothed target logits l1 = w log
(
1− β + β

V

)
+ (1− w) log

(
β
V

)
7: Compute lt ← lt +

h
1−t (l1 − lt)

8: Update xt ← Softmax(lt)
9: Update t← t+ h

10: end for
11: Return xt

Algorithm 2 Inference scheme (sampling)

1: Input: Initial distribution p0; denoiser model pθ(x1|xt); parameter N (number of iterations);
parameter h (time step size, default 1/N).

2: Set t = 0
3: Sample xt ∼ p0
4: for i = 1 to N do
5: Sample x

(k)
1 ∼ pθ(x

(k)
1 |xt) for k ∈ [1, ..., S]

6: Sample x0 ∼ p0
7: Compute lt+h = (1− t− h) log(x0) + (t+ h) log(x1)
8: Update xt = Softmax(lt+h)
9: Update t← t+ h

10: end for
11: Return xt

D COMPARISON OF INFERENCE SCHEMES WITH ANALYSIS OF TOP-K
SAMPLING EFFECTS

In this section, we systematically examine the effects of inference hyperparameter selection on
model performance, focusing on perplexity (as evaluated by the Llama-2 model) and token-level
entropy. Two principal factors are considered. The first corresponds to the threshold parameter t⋆,
which determines the relative proportion of basic and sampling steps in the hybrid inference process.
The results displayed in Figure 5 indicate that an optimal compromise between token entropy and
perplexity of generated sequences is achieved at t⋆ = 0.28. Notably, at this value, entropy remains
above the established diversity threshold of 5. Deviations from the optimal value result in significant
reductions in either entropy or perplexity, thus impairing generative quality or diversity.

The second factor concerns the role of top-k sampling during the sampling phase of the hybrid in-
ference scheme. The impact of varying the k parameter is also explored in Figure 5. An incremental
increase in k initially enhances entropy; however, further increases tend to adversely affect text qual-
ity as measured by perplexity. Based on these observations, utilizing k = 1 is recommended, since
it facilitates the generation of sufficiently diverse (entropy > 5) and high-quality texts.

For completeness, Table 6 provides a summary of the performance metrics for all examined infer-
ence strategies, specifically comparing the basic, sampling, and hybrid configurations. It can be
observed that the sampling scheme yields notably lower entropy, a limitation previously discussed
in Section 3.2, paragraph Approximation of the conditional p(x1|xt). Conversely, the basic ap-
proach is deficient in producing high-quality texts as indicated by elevated perplexity values. The
hybrid inference strategy, by integrating both approaches, achieves superior overall performance
relative to the alternatives.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8
Percentage of removed lines

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pa
ss

@
1

GPT-2
DFM
SEDD
KL-Flow

0.2 0.4 0.6 0.8
Percentage of removed lines

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
m

pi
le

s@
1 GPT-2

DFM
SEDD
KL-Flow

0.2 0.4 0.6 0.8
Percentage of removed lines

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pa
ss

@
10

GPT-2
DFM
SEDD
KL-Flow

0.2 0.4 0.6 0.8
Percentage of removed lines

0.4

0.5

0.6

0.7

0.8

0.9

Co
m

pi
le

s@
10

GPT-2
DFM
SEDD
KL-Flow

Figure 4: Comparison of the performance of prior models against KL-Flow on the code infilling task

Table 6: Quantitative comparison of inference methodologies with respect to perplexity and entropy.

Method Perplexity Entropy
KL-Flow (basic) 154.2 5.6

KL-Flow (sampling) 3.8 1.9
KL-Flow (hybrid) 41.4 5.2

E OPTIMAL TRAINING CONFIGURATION

In this section, we discuss several critical aspects and technical strategies for addressing the Flow
Matching (FM) problem. The foundational code and architecture employed for training were derived
from an open-source GitHub repository featuring an efficient implementation of the GPT-2 model,
designed for standard language modeling tasks. However, our investigation revealed that the initially
suggested optimal configuration is not truly optimal for the FM problem.

A key factor influencing convergence is the selection of an appropriate learning rate. In Figure 6, we
present a comparison of various learning rate values, alongside an assessment of how the integration
of the Muon optimizer–proposed in the original repository–affects model performance. We found
that the standard learning rate of (lr = 0.0036) is not optimal. A learning rate reduced by a factor
of ten significantly accelerates convergence and mitigates the risk of stagnation during the initial
phases of training. Furthermore, we determined that the ratio of learning rates between the Adam
optimizer and the Muon optimizer yields optimal results. Additionally, the application of the Muon

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

100 101 102 103

k

40

50

60

70

80

90

100

Pe
rp

le
xi

ty

Perplexity

0

1

2

3

4

5

6

En
tro

py

Entropy
Entropy threshold

(a) Comparison across different top-k values

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Entropy

0

20

40

60

80

100

120

140

160

Pe
rp

le
xi

ty

t = 0.28

(b) Determination of the optimal t⋆

Figure 5: Qualitative evaluation of inference hyperparameter selection on model performance. (a)
Evaluation of the influence of the top-k parameter within the sampling inference scheme. Per-
formance is assessed through perplexity computed via the Llama 2 model and token distribution
entropy, with the entropy threshold associated with diverse text generation also indicated. (b) Anal-
ysis of the impact of the t⋆ hyperparameter in the hybrid inference approach, identifying the optimal
t⋆ = 0.28.

optimizer for specific model parameters enhances convergence, even when employing a non-optimal
learning rate.

Another critical consideration is the method of incorporating temporal information into the model
architecture. We identified three primary strategies for this purpose:

• Time Token: Transform the time value into an embedding vector and incorporate it as a
separate token within the sequence.

• Layer Normalization: Employ a method akin to that used in the DiT architecture, where
the time embedding is utilized to adjust the mean and standard deviation of the data within
the layer normalization module.

• Standard Addition: Simply append the time embedding to each token embedding.

Our findings, as presented in Figure 7, indicate that the Layer Normalization strategy is the most
effective approach, as it provides better convergence and achieves a lower loss value after 200k
training steps.

F RELATED WORK FULL DISCUSSION

In this section, we review the literature on modeling discrete sequences. The authors in Campbell
et al. (2024) present Discrete Flow Models (DFMs) that combine discrete and continuous data using
Continuous Time Markov Chains, improving traditional diffusion methods for protein co-design and
achieving state-of-the-art results in protein structure generation.

Additionally, Song et al. (2021) propose a stochastic differential equation (SDE) for transforming
complex data distributions using neural networks for accurate score estimation. The work by Camp-
bell et al. (2022) introduces a continuous time framework for denoising diffusion models of discrete
data, resulting in high-performance samplers that surpass traditional methods.

Research by Gat et al. (2024) introduces Discrete Flow Matching, focusing on generating high-
dimensional discrete data, such as language, while enhancing generative perplexity. Meanwhile,
Ghazvininejad et al. (2019) use masked language modeling to predict target words based on input
text, and Austin et al. (2021a) improve multinomial diffusion models. Finally, Hoogeboom et al.
(2021) provide extensions for categorical data, demonstrating high efficacy in text modeling and
image segmentation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 25k 50k 75k 100k 125k 150k 175k 200k
Iteration

4

5

6

7

8

Lo
ss

lr Adam = 0.00018
lr Adam = 0.000036
lr Adam = 0.00036
lr Adam = 0.0036, no Muon optimizer
lr Adam = 0.0036

Figure 6: Comparison of the impact of learning rate values on training a GPT-like model for the
Flow Matching problem. The base implementation utilizes the Muon optimizer for certain model
parameters, while the tag ”no Muon optimizer” indicates that the Muon optimizer has been replaced
with the Adam optimizer.

Recent advancements have focused on applying continuous space diffusion methods to discrete
datasets Dieleman et al. (2022); Li et al. (2022); Han et al. (2022). Notable contributions from Lin
et al. (2023) improve diffusion flow modeling, while new Continuous Flow Matching techniques are
introduced by Lovelace et al. (2022) and Stärk et al. (2024).

Autoregressive models have been crucial in natural language processing Zhao et al. (2023), exem-
plified by the GPT-2 model Radford et al. (2019), which showcased the potential of autoregres-
sive approaches in generating coherent text. Research highlights the effectiveness of autoregressive
methods in addressing complex linguistic challenges.

Masked generative modeling has emerged as a promising area, utilizing techniques to generate con-
tent by obscuring parts of input data Ghazvininejad et al. (2019). Studies by Savinov et al. (2022)
refined traditional masking methods, leading to innovations like MaskGIT, which employs advanced
techniques for high-resolution image synthesis Chang et al. (2022). Furthermore, Ziv et al. (2024)
demonstrated the effectiveness of a text-to-music model, showing that the MaskGIT framework sig-
nificantly improves the quality of generated outputs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 25k 50k 75k 100k 125k 150k 175k 200k
Iteration

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Lo
ss

Time token
Layer norm
Standard

Figure 7: Comparison of various strategies for time insertion within model architecture.

19

	Introduction
	Background
	Conditional Flow Matching for Discrete Sequences
	Denoising Objective

	Inference: Iterative Sampling Scheme
	Deterministic inference via KL–flow
	Stochastic inference by direct simulation
	Limitations and Hybrid solver

	Related work
	Experiments
	Datasets
	Evaluation Techniques
	Unconditional Language Modeling
	Conditional Language Modeling
	Code infilling

	Conclusions and Future Work
	Ethics Statement
	Reproducibility Statement
	Proofs of propositions
	Algorithms of inference schemes
	Additional code infilling experiment
	Comparison of Inference Schemes with Analysis of Top-k Sampling Effects
	Optimal training configuration
	Related work full discussion

