

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LOGIT-KL FLOW MATCHING: NON-AUTOREGRESSIVE TEXT GENERATION VIA SAMPLING-HYBRID INFERENCE

Anonymous authors

Paper under double-blind review

ABSTRACT

Non-autoregressive (NAR) language models offer notable efficiency in text generation by circumventing the sequential bottleneck of autoregressive decoding. However, accurately modeling dependencies in discrete sequences remains challenging in this paradigm. In this work, we advance the field of NAR generation by applying conditional flow matching (CFM) methods grounded in geometrically principled interpolation, specifically leveraging Kullback-Leibler (KL) divergence geodesics, which correspond to linear interpolation in logit space. We rigorously establish that maximizing conditional likelihood in this setting precisely recovers the flow matching velocity field, supplying the theoretical justification for this approach in sequence modeling. To address practical performance gaps of *basic* inference, we propose a novel empirical *sampling* strategy that iteratively denoises and re-noises, along with a *hybrid* scheme that integrates our *sampling* method with *basic* procedure. Across unconditional and conditional text and code infilling, the approach improves perplexity and downstream metrics over prior NAR baselines under matched settings.

1 INTRODUCTION

Non-autoregressive (NAR) language models have emerged as efficient alternatives to traditional autoregressive models in NLP by generating all tokens simultaneously. However, capturing complex dependencies in discrete textual data remains challenging without sequential modeling.

We investigate conditional flow matching (CFM) methods for text generation, building on recent advances such as Discrete Flow Matching (DFM) Gat et al. (2024), Dirichlet Flow Matching Stärk et al. (2024), and Fisher-Flow Davis et al. (2024), which represent tokens as one-hot vectors in a $V - 1$ -dimensional simplex. These methods interpolate a sequence of distributions ρ_t from an initial ρ_0 to a data distribution ρ_1 ; for text, the latter is sampled as discrete sequences in the simplex. Prior work identifies issues with naive linear interpolation in simplex space Stärk et al. (2024). We propose instead using KL-geodesics, equivalent to linear interpolation in logit space, to better capture the underlying geometry.

Our CFM framework leverages this interpolation, training with a denoiser maximizing the conditional likelihood $p_\theta(x_1 | x_t)$, enabling tractable approximation of the joint distribution. While theoretical guarantees previously existed only for single-token predictions, we show that maximizing this conditional likelihood still exactly recovers the flow matching velocity field in logit space for sequence modeling, lending theoretical support to our approach.

Standard inference procedures with this framework yield suboptimal results, so we introduce a novel sampling strategy: given a state x_t , we sample x_1 from $p(x_1 | x_t)$ and re-noise it to x_{t+h} , iterating this process. Despite the lack of full theoretical analysis, this method yields stronger empirical results. We further propose a hybrid inference scheme blending our basic and sampling strategies, yielding improved performance on tasks such as text generation, conditional question answering, and code infilling (see Figure 1).

Our contributions are:

Figure 1: **Overview of the Proposed Approach:** *Training*: Sample $x_0 \sim p_0$ (uniform distribution on simplex), $x_1 \sim p_1$ (target distribution represented by samples); interpolate to obtain x_t . The denoiser network predicts $\log p_\theta(x_1|x_t)$, trained via log-probability maximization. *Inference*: For *basic* inference, numerically solve an ODE with vector field: $\mathbb{E}_{x_1 \sim p_\theta(x_1|x_t)} [v(x_t, t | x_1)]$ using Euler method with N steps and a step size of $h = 1/N$. Alternatively, in *sampling* inference, interpolate between $x_0 \sim p_0$ and $x_1 \sim p(x_1|x_t)$ at each step.

- Using KL-geodesic (logit-space linear) interpolation for flow matching in discrete sequences.
- Theoretical analysis showing conditional likelihood maximization exactly recovers the flow matching velocity field for logit-space interpolation.
- A novel sampling and hybrid inference strategy with strong empirical results.
- Empirical improvements: at least 27% lower perplexity for unconditional generation (Fine-FineWeb), and at least 17%, 26% BLEU boosts for conditional tasks (Lamini Instruction, WMT 14 de-en); plus 56% and 14% gains in Pass@1 and Pass@10 for code infilling where 10% of the code lines were omitted. Prior methods are trained and evaluated under the same setup to ensure a fair comparison.

2 BACKGROUND

Flow matching Lipman et al. (2023) constructs a deterministic transport from a simple *base* distribution ρ_0 (e.g., $\mathcal{N}(0, I)$) to an unknown *data* distribution ρ_1 given by samples. It introduces a time-dependent density $\rho(x, t)$ and velocity field $v(x, t)$ for $t \in [0, 1]$ that satisfy the mass-conservation (Liouville) equation

$$\partial_t \rho(x, t) = -\nabla \cdot (\rho(x, t) v(x, t)), \quad (1)$$

with boundary conditions $\rho(\cdot, 0) = \rho_0$ and $\rho(\cdot, 1) = \rho_1$. Once v is known, samples are generated by integrating the characteristic ODE

$$\frac{dx_t}{dt} = v(x_t, t), \quad x_{t=0} \sim \rho_0, \quad (2)$$

and taking $x_{t=1}$ as a draw from ρ_1 .

Learning the velocity field (conditional flow matching). Because v is unknown, it is approximated with a neural network $v_\theta(x, t)$ using interpolation between initial and target data samples. Let $\gamma_t(x_0, x_1)$ be any interpolation with $\gamma_0 = x_0$ and $\gamma_1 = x_1$; draw $t \sim \mathcal{U}[0, 1]$, $x_0 \sim \rho_0$, and $x_1 \sim \rho_1$, and set $x_t = \gamma_t(x_0, x_1)$. Define the vector field $v(x_t, t | x_0, x_1) := \frac{d}{dt} \gamma_t(x_0, x_1)$. The conditional flow matching objective is

$$\mathcal{L}_{CFM}(\theta) = \mathbb{E}_{t, x_0, x_1} \left[\| v_\theta(\gamma_t(x_0, x_1), t) - v(\gamma_t(x_0, x_1), t | x_0, x_1) \|_2^2 \right]. \quad (3)$$

At inference, we integrate the ODE with v_θ from $t=0$ to $t=1$ to obtain samples.

Figure 2: Qualitative and quantitative comparison of three distinct classes of geodesics on the probability simplex: Linear, Fisher–Rao, and KL–Flow. The first two panels juxtapose the trajectories of the Linear and Fisher–Rao interpolations against the KL–Flow interpolation. The rightmost panels depict the temporal evolution of the divergence $\text{KL}(x_1\|x_t)$ for two different simplex dimensions, $|\mathcal{V}| = 10$ and $|\mathcal{V}| = 10\,000$.

Table 1: Perplexity (lower is better) obtained by 150M–parameter language models trained on the *FineFineWeb* corpus under the Linear, Fisher–Rao, KL–Flow geodesics.

Geodesic	Llama 2	GPT 3	GPT 2
Linear	1344	15418	13881
Fisher–Rao	192	298	379
KL–Flow	41	53	62

3 CONDITIONAL FLOW MATCHING FOR DISCRETE SEQUENCES

In language modelling, the terminal random variable x_1 is a one–hot vector (a vertex of the $(V-1)$ –simplex). Following Stärk et al. (2024), we take the initial distribution ρ_0 to be the uniform (Dirichlet(1)) measure on the simplex, so $x_0 \sim \rho_0$ is a strictly positive probabilistic token mixture. A central design choice in flow matching is the *interpolation* between x_0 and x_1 .

KL geodesic on the simplex. While linear interpolation in probability space is possible, its drawbacks for discrete data have been documented (Stärk et al., 2024); Fisher–Rao geodesics have also been proposed (Davis et al., 2024). We instead use the geodesic induced by the Kullback–Leibler (KL) divergence—the canonical information–theoretic discrepancy on the simplex.

Definition 3.1 (KL geodesic). For $t \in [0, 1]$, the *KL–geodesic* joining x_0 and x_1 is

$$x_t = \frac{x_0^{1-t} x_1^t}{\sum_{i=1}^V x_{0,i}^{1-t} x_{1,i}^t} \equiv C_t x_0^{1-t} x_1^t, \quad (4)$$

where C_t normalizes x_t onto the simplex.

It is *linear in logits*, $l_t = (1-t) \log x_0 + t \log x_1$ with $x_t = \text{Softmax}(l_t)$. Moreover, KL–geodesics preserve a *usable learning signal*: as shown in Fig. 2, $\text{KL}(x_1\|x_t)$ decays substantially more slowly along the KL path—especially for large vocabularies ($|\mathcal{V}|=10,000$)—whereas Linear and Fisher–Rao paths collapse $\text{KL}(x_1\|x_t)$ near zero too early (for t close to 0), effectively turning the transport into a one–shot step and depriving the model of informative gradients over most of the time horizon. Empirically, Table 1 shows that training with Linear or Fisher–Rao objectives yields markedly worse perplexity, consistent with this geometric analysis.

Logit parameterization Write $l_0 = \log x_0$ and $l_1 = \log x_1$, and define the logit–linear interpolation $l_t = (1-t)l_0 + tl_1$, so that $x_t = \text{Softmax}(l_t)$. Because \log is undefined at zero, we use a standard β –smoothed target for the one–hot x_1 ,

$$x_1 = (1-\beta) \delta_i + \frac{\beta}{V} \mathbf{1}, \quad \beta \in (0, 1),$$

where δ_i is the canonical basis vector of the realized token and $\mathbf{1}$ is the all–ones vector. Equivalently, in logit space we could write linear ODE:

$$\frac{dl_t}{dt} = l_1 - l_0, \quad (5)$$

162 so the KL path is a straight line in logits whose image under Softmax remains intrinsic to the
 163 simplex.
 164

165 **3.1 DENOISING OBJECTIVE**
 166

167 **Single-token case.** Consider the special case in which the sequence length equals one. The entire
 168 input is then represented by a single vector whose dimensionality matches the vocabulary size.
 169 As introduced in Definition 3.1 the KL-geodesic reproduces the conditional flow-matching objective
 170 equation 3:

$$171 \quad \mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t, x_0, x_1} \|v_\theta(x_t, t) - (l_1 - l_0)\|^2, \quad (6)$$

173 where $x_t = \text{Softmax}(l_t)$ denotes the intermediate point obtained by applying the softmax map to
 174 the logit vector $l_t = (1-t)l_0 + tl_1$. The quantities l_0 and l_1 are, respectively, the logits generating
 175 the initial state x_0 and the target state x_1 after projection onto the probability simplex. Both the
 176 conditional vector field $v(x_t, t \mid x_0, x_1) = l_1 - l_0$ and its learnable counterpart $v_\theta(x_t, t)$ admit the
 177 following reparametrisation in terms of l_t :

$$178 \quad l_1 - l_0 = \frac{l_1 - l_t}{1 - t}, \quad v_\theta(x_t, t) = \frac{\hat{v}_\theta(x_t, t) - l_t}{1 - t}, \quad (7)$$

180 Substituting the identities in equation 7 into the loss equation 6 transforms the original objective
 181 into a denoising-style regression problem in which the model must recover the clean target logit
 182 $l_1 = \log x_1$ from the corrupted observation x_t :

$$184 \quad \mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t, x_0, x_1} \|\hat{v}_\theta(x_t, t) - l_1\|^2. \quad (8)$$

186 **Proposition 3.2.** *Let $\mathcal{L}_{\text{CFM}}(\theta)$ be defined as in equation 8. For every $t \in (0, 1)$ and every x_t the
 187 function*

$$188 \quad \hat{v}_\theta^*(x_t, t) = \mathbb{E}_{x_1 \sim p(x_1 \mid x_t)} l_1 \quad (9)$$

189 is the (almost surely) unique minimiser of the loss equation 8.

190 **Corollary 3.3.** *Suppose we approximate the true conditional $p(x_1 \mid x_t)$ with a parametric model
 191 $p_\theta(x_1 \mid x_t)$. Then an estimate of the vector field compatible with equation 7 is*

$$193 \quad v(x_t, t) = \frac{1}{1 - t} \left(\mathbb{E}_{x_1 \sim p_\theta(x_1 \mid x_t)} l_1 - l_t \right). \quad (10)$$

195 The subscript θ is omitted in $v(x_t, t)$ to emphasise that learning proceeds through the conditional
 196 density $p_\theta(x_1 \mid x_t)$, rather than through direct parametrisation of the vector field itself.
 197

198 **Sequences of length S** We now extend the analysis from the single-token setting to sequences
 199 that contain exactly S tokens. As a prior over sequences we assume S independent Dirichlet
 200 distributions, each defined on the $(V - 1)$ -simplex associated with the vocabulary of size V . In contrast,
 201 the ‘‘clean’’ or target distribution p_1 is supported on the vertices of the Cartesian product of
 202 simplices. Following the prescriptions in Stärk et al. (2024); Gat et al. (2024), we interpolate each token
 203 independently along the KL-geodesic. Consequently, the logit representation becomes an $S \times V$
 204 matrix l_t whose k -th row $l_t^{(k)}$ corresponds to token k .
 205

206 Fixing an index $k \in \{1, \dots, S\}$ and specialising Equation equation 9 to the present context yields

$$207 \quad \hat{v}_\theta^{(k)}(x_t, t) = \mathbb{E}_{x_1 \sim p(x_1 \mid x_t)} l_1^{(k)}, \quad (11)$$

209 where $l_1^{(k)}$ denotes the logits that would generate the clean token $x_1^{(k)}$.
 210

211 **Proposition 3.4.** *For the KL-geodesic described above, the expression in equation 11 factorises
 212 over individual tokens, and the optimal vector field for the k -th coordinate can be written as*

$$213 \quad \hat{v}_\theta^{(k)}(x_t, t) = \mathbb{E}_{x_1^{(k)} \sim p(x_1^{(k)} \mid x_t)} l_1^{(k)}, \quad (12)$$

215 where $p(x_1^{(k)} \mid x_t)$ is the marginal conditional distribution associated with the k -th token.

Consequently, under the KL-geodesic, computing the optimal velocity field reduces to evaluating the exact marginal posteriors $p(x_1^{(k)} | x_t)$ for each token k independently. In practice we approximate these posteriors with a parametric model $p_\theta(x_1^{(k)} | x_t)$. We draw $x_1 \sim p_1$ (from the data distribution) and $t \sim \mathcal{U}(0, 1)$, set $x_0 \sim p_0$, and form $x_t = \text{Softmax}((1-t) \log x_0 + t \log x_1)$. The model outputs token-wise conditionals $p_\theta(x_1^{(k)} | x_t)$, for which we minimize the sequence-level NLL:

$$\mathcal{L} = -\mathbb{E}_{t, x_1 \sim p(x_1), x_t \sim p(x_t | x_1)} \sum_{k=1}^S \log p_\theta(x_1^{(k)} | x_t), \quad (13)$$

A practical realisation of the conditional model $p_\theta(x_1^{(k)} | x_t)$ can be obtained by adapting a Transformer architecture: the standard causal attention is replaced with bidirectional attention so that the representation of each token has access to the entire sequence x_t , and an additional conditioning mechanism is introduced to incorporate the continuous time variable t .

4 INFERENCE: ITERATIVE SAMPLING SCHEME

We present three complementary inference procedures under the KL-geodesic interpolation introduced earlier: a *deterministic KL-flow integrator*, a *stochastic iterative sampler*, and a *hybrid* routine that combines both. Unless stated otherwise, logits evolve along the logit-linear path

$$l_t = (1-t)l_0 + tl_1, \quad x_t = \text{Softmax}(l_t).$$

4.1 DETERMINISTIC INFERENCE VIA KL-FLOW

Within classical flow matching, samples are generated by numerically integrating the ODE associated with the KL-geodesic. For the interpolation in Definition 3.1, the logit vector obeys the linear ODE

$$\frac{dl_t}{dt} = \frac{l_1 - l_t}{1-t}. \quad (14)$$

Algorithm 1 implements an explicit scheme (Euler with step size $h = 1/N$) that advances t from 0 to 1. In experiments we refer to this baseline as **KL-flow (basic)**.

4.2 STOCHASTIC INFERENCE BY DIRECT SIMULATION

An alternative is to *simulate* the one-step transport induced by a small time increment $h > 0$. Conditioning on the current iterate x_t , the next iterate admits the Markov factorization

$$p(x_{t+h} | x_t) = \int p(x_{t+h} | x_1) p(x_1 | x_t) dx_1. \quad (15)$$

The exact posterior $p(x_1 | x_t)$ is intractable at the sequence level. The optimization of objective from equation 13 gives the product of tokenwise marginals produced by the denoiser:

$$p_\theta(x_1 | x_t) = \prod_{k=1}^S p_\theta(x_1^{(k)} | x_t).$$

Because the KL-geodesic interpolation also factorizes across tokens we obtain the tractable kernel

$$p_\theta(x_{t+h} | x_t) = \prod_{k=1}^S p_\theta(x_{t+h}^{(k)} | x_t) = \prod_{k=1}^S \int p(x_{t+h}^{(k)} | x_1^{(k)}) p_\theta(x_1^{(k)} | x_t) dx_1^{(k)}. \quad (16)$$

Iterating these kernels defines an implicit model distribution over terminal states,

$$p_\theta(x_1) = p(x_0) p_\theta(x_h | x_0) \cdots p_\theta(x_1 | x_{1-h}). \quad (17)$$

This construction underpins the sampling routine summarized below; see Algorithm 2.

270 Table 2: Summary of inference methods.
271

272 Method	273 Description	274 Update rule	275 Limitations
276 KL-Flow (basic)	277 Deterministic 278 integration of the 279 learned KL-flow vector 280 field on the simplex.	$\bar{l}_1 = \mathbb{E}_{p_\theta(x_1 x_t)} l_1$ $l_{t+\Delta t} = l_t + \frac{\bar{l}_1 - l_t}{1-t}$ $x_{t+\Delta t} = \text{Softmax}(l_{t+\Delta t})$	281 Higher perplexity (lower text quality); 282
283 KL-Flow (sampling)	284 Stochastic sampling 285 along the flow using 286 the factorised 287 conditional.	$x_1 \sim p_\theta(x_1 x_t)$ $x_0 \sim p(x_0)$ $x_{t+\Delta t} = \text{interpolate}(x_0, x_1)$	288 Assumes $p(x_1 x_t) \approx$ $\prod_i p(x_1^{(i)} x_t)$; low 289 entropy (reduced 290 diversity).
291 KL-Flow (hybrid)	292 Combination of basic 293 and sampling schemes 294 with a switching time 295 t^* .	296 Basic update for $t \leq t^*$, 297 sampling update for $t > t^*$.	298 Requires tuning t^*

299 **Corollary 4.1** (Iterative sampler). *To draw $x_1 \sim p_\theta(x_1)$, initialize $x_0 \sim p_0$ and iterate for $t = 0, h, 2h, \dots$:*

300 (i) *For each token $k = 1, \dots, S$, sample $x_1^{(k)} \sim p_\theta(x_1^{(k)} | x_t)$.*

301 (ii) *For each token k , advance along the KL-geodesic by sampling $x_{t+h}^{(k)} \sim p(x_{t+h}^{(k)} | x_1^{(k)})$.*

302 (iii) *Set $t \leftarrow t + h$ and repeat while $t < 1$.*

303 *This KL-flow (sampling) procedure requires one forward pass of the denoiser model $p_\theta(x_1^{(k)} | x_t)$ per iteration and thus matches the complexity of the ODE solver.*

297 4.3 LIMITATIONS AND HYBRID SOLVER

300 The denoiser trained with the sequence-level NLL equation 13 furnishes only token-wise marginals
301 $p_\theta(x_1^{(k)} | x_t)$. Treating these as conditionally independent yields $p(x_1 | x_t) \approx \prod_k p_\theta(x_1^{(k)} | x_t)$.
302 This surrogate is exact at $t = 1$ but may degrade as t decreases due to emerging inter-token dependencies.
303 To balance the stability of early-time deterministic transport, we adopt a **KL-flow**
304 (**hybrid**) procedure: integrate the ODE of Algorithm 1 from $t = 0$ up to a threshold t^* , then switch
305 to the sampler of Algorithm 2 for the remaining horizon. Empirically, this combination improves
306 perplexity/entropy trade-offs relative to either component alone. A concise overview of all inference
307 schemes is provided in Table 2, and a more detailed analysis is given in Appendix E.

309 5 RELATED WORK

311 Non-autoregressive text generation methods can be divided into those operating in continuous latent
312 spaces Li et al. (2023); Ye et al. (2023); Gong et al. (2022); Strudel et al. (2022) and those
313 working directly with discrete token representations, as considered in this work. Among the latter,
314 Campbell et al. (2024) proposed Discrete Flow Models, which combine Continuous-Time Markov
315 Chains and normalising flows to model both discrete and continuous variables, achieving state-of-
316 the-art results on protein generation. Gat et al. (2024) introduced Discrete Flow Matching, defining
317 sample paths between distributions via learned posterior approximations such as probability denoisers.
318 Stärk et al. (2024) extended this line by proposing Dirichlet Flow Matching, limiting paths to
319 Dirichlet mixtures for tractable density calculations. Davis et al. (2024) developed Fisher-Flow, util-
320 ising the Fisher–Rao Riemannian metric to transport mass between categorical distributions along
321 hypersphere geodesics. Alternatively, Lou et al. (2024) presented a diffusion-based approach, gen-
322 eralising score matching to discrete spaces for the construction of discrete diffusion models. These
323 advances collectively demonstrate the strength of flow matching and diffusion methods for discrete
324 generative modelling (see Appendix G for further discussion).

324

6 EXPERIMENTS

325
 326 We evaluated KL-Flow on diverse text generation tasks, spanning unconditional language modeling,
 327 conditional sequence generation, and code infilling. All models except GPT-2 used a bidirectional
 328 Transformer backbone (adapted from *modded-NanoGPT*¹), with continuous time embeddings as in
 329 DiT Peebles & Xie (2023) and logit interpolation fixed at $\beta = 0.01$; top- k sampling ($k = 1$) was
 330 used for *sampling* inference scheme (see Appendix E). We employed two model sizes: a 150M-
 331 parameter configuration for TinyStories and a 1.5B-parameter setup for other data domains, follow-
 332 ing the architectural and hyperparameter details of the original repository. Further hyperparameters
 333 and ablation results are provided in Appendix F. KL-Flow was compared with DFM Gat et al.
 334 (2024), GPT-2 Jordan et al. (2024), and SEDD Lou et al. (2024). All models taken for comparison
 335 were trained from scratch in the same setup and on the same data subset as our proposed KL-Flow
 336 model to force comparison validity. All training was conducted on 4 NVIDIA H100 GPUs (80GB
 337 each).

338
 339

6.1 DATASETS

340
 341 **Unconditional generation.** The TinyStories dataset Eldan & Li (2023) consists of synthetically
 342 generated short narratives authored by GPT-3.5 and GPT-4. All models were trained on 4 B tokens
 343 with the maximum sequence length capped at 512.

344 To verify the scalability of KL-Flow, we further considered 10 B tokens sampled from the *Fine-
 345 FineWeb* dataset M-A-P et al. (2024), which contains deduplicated and quality-filtered English
 346 web documents. Each training instance was truncated or padded to a uniform length of 1 024 to-
 347 kens. Models trained on this source served as the initialization (pre-training) for all subsequent
 348 conditional-generation experiments.

349 Conditional text generation was evaluated on two sequences-to-sequence datasets. (i) The *Lamini
 350 Instruction* benchmark Wu et al. (2023). (ii) The WMT14 German–English translation dataset Bojar
 351 et al. (2014). In both cases the concatenation of the prompt and the ground-truth response was
 352 restricted to 512 tokens. Total training exposure was fixed at 4 B tokens.

353 For the code infilling task we curated an open-source Python corpus². Only files comprising fewer
 354 than 1 024 tokens were retained. During training, for each example a uniformly random proportion
 355 between 10 % and 90 % of the lines was masked, and the model was instructed to reconstruct the
 356 elided span. Generalization was quantified on the MBPP benchmark Austin et al. (2021b).

357 To ensure the validity of comparisons, all baseline models were trained on the identical data subsets,
 358 using the same dataset shuffles and number of tokens to train on.

360
 361

6.2 EVALUATION TECHNIQUES

362 The quality of unconditional text generation was evaluated using generative perplexity—measured by
 363 scoring generated samples with large language models (GPT-2 Radford et al. (2019), GPT-3 Brown
 364 et al. (2020), and Llama-2 Touvron et al. (2023))—and diversity was assessed via empirical entropy
 365 (values above 5 indicated substantial lexical variety). For the Tiny Stories dataset, we additionally
 366 reported grammar, creativity, consistency, and plot coherence, as in Eldan & Li (2023). When
 367 scoring with external LMs (GPT-2/3, Llama-2), we use their tokenizers for perplexity evaluation.

368 Sequence-to-sequence outputs were measured using ROUGE-L (longest common subsequence over-
 369 lap) Lin (2004), BERTScore (semantic similarity via contextual embeddings) Zhang et al. (2020),
 370 and BLEU (clipped n -gram precision with brevity penalty, $n \leq 4$) Papineni et al. (2002).

371 Code infilling was evaluated by `Pass@ k` (fraction of synthesized functions passing all unit tests
 372 out of k samples) and `Compiles@ k` (fraction of code snippets compiling/executing without syntax
 373 errors), for $k \in \{1, 10\}$.

374
 375 ¹<https://github.com/KellerJordan/modded-nanogpt>

376
 377 ²<https://huggingface.co/datasets/jtatman/python-code-dataset-500k>

378 Table 3: Comparison of unconditional text generation models trained on the Tiny Stories dataset.
 379 The results of the best-performing models are indicated in **bold**, while the instances where our
 380 approach matches or exceeds the performance of alternative Non-Autoregressive (NAR) methods
 381 are highlighted in **blue**.

Method	Grammar \uparrow	Creativity \uparrow	Consistency \uparrow	Plot \uparrow	Perplexity \downarrow
GPT 2	5.3	6.4	4.9	4.9	15.4
DFM	3.5	5.7	3.6	3.5	20.8
SEDD	4.2	6.1	4.0	3.8	20.7
KL-Flow	4.4	6.1	4.0	3.7	19.0

388 Table 4: Generative perplexity on unconditional text generation compared to prior work. Models
 389 were trained on FineFineWeb dataset. The best results are highlighted in **bold**.

Method	NFE	Llama 2	GPT 3	GPT 2
Data	-	9.2	15.8	31.4
GPT 2	1024	48.7	84.9	97.2
DFM	256/512/1024	150.6/107.3/75.0	312.8/198.9/125.9	381.4/245.8/157.2
SEDD	256/512/1024	70.8/57.7/47.6	123.8/95.7/74.8	145.8/114.2/90.2
KL-flow (150M)	256/512/1024	61.0/47.1/35.1	101.7/75.8/54.1	117.3/88.1/62.9
KL-flow (1.5B)	256/512/1024	51.5/41.7/32.7	81.1/63.7/48.4	96.6/76.2/58.5

401 6.3 UNCONDITIONAL LANGUAGE MODELING

402 The experimental evaluation of the proposed framework was carried out with the *KL-Flow (hybrid)*
 403 inference strategy that was introduced in Section 4. The numerical evidence summarised in Table 3
 404 demonstrates that KL-Flow consistently surpasses all alternative non-autoregressive baselines across
 405 the majority of metrics, although the traditional autoregressive GPT-2 model retains an overall lead
 406 on this relatively simple dataset. In contrast, the FineFineWeb dataset imposes a significantly higher
 407 level of linguistic and semantic difficulty. Table 4 reports perplexity values measured for a range of
 408 numbers of function evaluations (NFE). Before analysing comparative performance, we verified that
 409 every model under consideration preserves sufficient output variability by computing the empirical
 410 entropy of produced token distributions; all entropy scores exceeded the threshold of 5, thereby con-
 411 firming generation diversity. When the NFE parameter is kept at its default value 1024, KL-Flow in
 412 the intermediate 150M configuration already establishes a clear advantage over both diffusion-based
 413 and flow-based non-autoregressive competitors. Reducing the computational budget by a factor of
 414 two (NFE equal to 512) does not alter this observation: KL-Flow maintains a comfortable margin.
 415 Even under an aggressive four-fold reduction to 256 evaluations, the model preserves performance
 416 that is comparable to or superior to GPT-2, underscoring the method’s capacity for substantial gen-
 417 eration acceleration without sacrificing linguistic plausibility. Scaling the architecture from 150M
 418 to 1.5B parameters further accentuates these gains. In the larger setting, KL-Flow attains the best
 419 perplexities across all three reference language models (Llama 2, GPT-3, and GPT-2) and for every
 420 NFE level examined.

421 6.4 CONDITIONAL LANGUAGE MODELING

422 The empirical evaluation of the conditional generation framework was carried out on two com-
 423plementary benchmarks, namely the Lamini Instruction and the WMT14 German–English trans-
 424lation datasets. Performance was quantified through the standard metrics BLEU, ROUGE-L, and
 425BERTScore; the corresponding results, reported in Table 5, include both the maximum value ob-
 426tained among the top 5 decoded responses and the mean over this candidates, thereby providing
 427simultaneous insight into peak quality and output stability. Inspection of the numerical results re-
 428veals that the *KL-Flow* consistently surpasses all prior works. When the conditional distribution
 429admits multiple plausible continuations, as in the Lamini Instruction scenario, the *hybrid* inference
 430strategy achieves the highest scores across all metrics. By contrast, in the lower-entropy setting of
 431deterministic machine translation, the purely *sampling* based variant exhibits a clear advantage.

432 Table 5: Evaluation of conditional text generation on test set compared to prior works. The best
 433 results are highlighted in **bold**.

434

435	Dataset	Method	BLEU Score		ROUGE-L		BERT Score	
			436	Top-5	Avg	Top-5	Avg	Top-5
437	Lamini Instruction	GPT 2	7.8	3.1	28.9	18.2	63.8	56.4
		DFM	8.1	3.6	30.0	19.2	61.6	53.6
		SEDD	5.4	2.1	25.9	15.8	61.0	53.7
		KL-flow (hybrid)	9.5	4.3	34.5	23.9	67.9	61.1
		KL-flow (sampling)	7.7	4.1	31.3	21.5	66.6	60.1
443	WMT14 De-En	GPT 2	19.7	9.8	48.3	36.7	78.1	71.0
		DFM	21.3	11.2	50.0	38.8	77.1	69.6
		SEDD	14.6	6.5	44.9	34.5	74.2	68.2
		KL-flow (hybrid)	23.8	13.7	53.5	44.7	82.1	77.7
		KL-flow (sampling)	27.0	18.1	56.9	49.4	84.5	81.2

```

450
451 def move_num(test_str): def move_num(test_str): def move_num(test_str): def move_num(test_str):
452     res = ''             res = ''             res = ''             res = ''
453     dig = ''             en = ''             for test_str, ele:           Convert given string
454     for ele in test_str:   for ele in test_str:   uid, dig = test_str   for ele in (test_str):
455         if ele.isdigit():   if ele.isdigit():   if ele.isdigit():   if ele.isdigit():
456             dig += ele       dig += ele       dig += ele       dig += ele
457         else:              else:              else:              else:
458             res += ele       res += ele       res += ele       res += ele
459             res += dig     res += dig     res += dig     res += dig
460             return (res)     return (res)     return (res)     return (res)
  
```

(a) KL-flow

(b) DFM

(c) GPT 2

(d) SEDD

461 Figure 3: An illustrative example of code infilling. The highlighted lines were generated by the
 462 model. Lines highlighted in green indicate correct infilling, while those highlighted in red denote
 463 incorrect infilling.

466 6.5 CODE INFILLING

468 The code-infilling problem requires a model to reconstruct those program lines that have been re-
 469 moved, using both the surrounding source context and the natural-language task description. In the
 470 present study the network must generate a replacement of arbitrary length, up to 40 tokens. During
 471 training and evaluation we conceal a randomly chosen fraction of the original lines; this fraction is
 472 drawn uniformly between 10% and 90% of code lines. Figure 3 illustrates infilling example. For
 473 completeness we adapted GPT-2 baseline to the same setting. Each masked line is replaced by the
 474 specified token and the transformer is trained autoregressively so that, after producing the unmasked
 475 part of the program, it appends the content of every hidden line in order.

476 Table 6 summarises the outcomes for three representative masking regimes: 10%, 50%, and 90% of
 477 the code are removed. Across all regimes *KL-Flow* model with *hybrid* inference scheme surpasses
 478 prior approaches in both functional correctness and syntactic validity. Detailed curves covering the
 479 entire masking spectrum appear in Appendix D.

480 7 CONCLUSIONS AND FUTURE WORK

483 In this work, we propose using Kullback-Leibler (KL) divergence geodesics—equivalent to linear
 484 interpolation in logit space—as a principled approach to flow matching in discrete sequence model-
 485 ing. Our theoretical analysis shows that the likelihood maximizer precisely matches the exact flow
 486 matching velocity, establishing a strong foundation for our method. We also introduce a new em-

486 Table 6: Quantitative comparison of several code-infilling approaches on the MBPP benchmark.
 487 For each masking ratio the two quality indicators *Pass@ k* and *Compiles@ k* are reported for $k \in$
 488 $\{1, 10\}$. The highest value in every column appears in **bold**.

Method	Infilling 10%				Infilling 50%				Infilling 90%			
	Pass@		Compiles@		Pass@		Compiles@		Pass@		Compiles@	
	1	10	1	10	1	10	1	10	1	10	1	10
GPT-2	8.8	20.1	54.2	92.8	0.7	3.4	27.5	67.6	0.1	0.6	15.7	56.2
DFM	11.1	25.5	39.7	88.8	2.6	8.0	15.7	59.3	0.1	1.1	7.0	33.2
SEDD	9.2	22.1	51.7	93.7	1.8	6.6	30.3	77.9	0.1	0.3	16.8	60.2
KL-Flow	17.4	29.2	73.7	92.0	4.4	11.2	58.1	87.4	0.2	1.7	60.4	90.8

498 *pirical sampling* algorithm which, despite limited theoretical guarantees, consistently outperforms
 499 baselines in conditional text modeling on benchmarks such as WMT14 de-en translation and code
 500 infilling. Additionally, our *hybrid* inference approach combines both *basic* and *sampling* proce-
 501 dures, achieving strong results in unconditional and conditional generation tasks, including Lamini
 502 Instruction dataset. Our findings show that larger models further improve performance, though cur-
 503 rent progress is limited by computational resources. Therefore, future work should focus on scaling
 504 model size and training to unlock further gains.

506 8 ETHICS STATEMENT

508 This work does not involve human subjects, personally identifiable information, or any sensitive
 509 data. All datasets used are publicly available and widely used in prior research. We are not aware of
 510 any ethical issues or potential negative societal impacts related to the methods or results presented
 511 in this paper.

513 9 REPRODUCIBILITY STATEMENT

515 We have made significant efforts to ensure the reproducibility of our work. Theoretical claims
 516 are supported with formal derivations and proofs provided in Sections 3, 4, and Appendix A. The
 517 main inference scheme is described in Section 4 and further detailed in Algorithms 1 and 2 in the
 518 Appendix. Model architectures, dataset descriptions, training procedures, and hyperparameters are
 519 provided in Section 6 and Appendix F. An anonymous implementation of our method, including
 520 training and sampling scripts, is also provided in the supplementary submission.

522 REFERENCES

524 Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
 525 denoising diffusion models in discrete state-spaces, 2021a. URL <https://arxiv.org/abs/2107.03006>.

527 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 528 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
 529 models, 2021b. URL <https://arxiv.org/abs/2108.07732>.

531 Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
 532 Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
 533 Specia, and Ales Tamchyna. Findings of the 2014 workshop on statistical machine transla-
 534 tion. In *Proceedings of the Ninth Workshop on Statistical Machine Translation*, pp. 12–58,
 535 Baltimore, Maryland, USA, 2014. Association for Computational Linguistics. URL <https://aclanthology.org/W14-3302>.

537 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 538 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
 539 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
 Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

540 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
 541 ford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
 542 <https://arxiv.org/abs/2005.14165>.

543 Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
 544 Arnaud Doucet. A continuous time framework for discrete denoising models, 2022. URL
 545 <https://arxiv.org/abs/2205.14987>.

546 Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
 547 flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design,
 548 2024. URL <https://arxiv.org/abs/2402.04997>.

549 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
 550 image transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 551 Recognition (CVPR)*, pp. 11305–11315, 2022.

552 Oscar Davis, Samuel Kessler, Mircea Petrache, Ismail Ilkan Ceylan, Michael M. Bronstein, and
 553 Avishek Joey Bose. Fisher flow matching for generative modeling over discrete data, 2024. URL
 554 <https://arxiv.org/abs/2405.14664>.

555 Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
 556 Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi
 557 Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data, 2022. URL
 558 <https://arxiv.org/abs/2211.15089>.

559 Ronen Eldan and Yuanzhi Li. TinyStories: How small can language models be and still speak
 560 coherent english?, 2023. URL <https://arxiv.org/abs/2305.07759>.

561 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi,
 562 and Yaron Lipman. Discrete flow matching, 2024. URL <https://arxiv.org/abs/2407.15595>.

563 Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
 564 decoding of conditional masked language models. In *Proceedings of the 2019 Conference on
 565 Empirical Methods in Natural Language Processing (EMNLP)*, 2019.

566 Shanshan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence
 567 to sequence text generation with diffusion models, 2022. URL <https://arxiv.org/abs/2210.08933>.

568 Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-based
 569 diffusion language model for text generation and modular control. In *Proceedings of the Annual
 570 Meeting of the Association for Computational Linguistics (ACL)*, 2022.

571 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
 572 and multinomial diffusion: Learning categorical distributions. In *Advances in Neural Information
 573 Processing Systems (NeurIPS)*, 2021.

574 Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, fernbear, Boza Vlado, You Jiacheng, Franz
 575 Cesista, Braden Koszarsky, and Grad62304977. modded-nanopt: Speedrunning the nanopt
 576 baseline. <https://github.com/KellerJordan/modded-nanopt>, 2024.

577 Junyi Li, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Glyphdiffusion: Text generation as
 578 image generation, 2023. URL <https://arxiv.org/abs/2304.12519>.

579 Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
 580 lm improves controllable text generation, 2022. URL <https://arxiv.org/abs/2205.14217>.

581 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text Summarization
 582 Branches Out: Proceedings of the ACL-04 Workshop*, pp. 74–81, Barcelona, Spain, 2004. Association
 583 for Computational Linguistics. URL <https://aclanthology.org/W04-1013>.

594 Zhenghao Lin, Yeyun Gong, Yelong Shen, Tong Wu, Zhihao Fan, Chen Lin, Nan Duan, and Weizhu
 595 Chen. Text generation with diffusion language models: A pre-training approach with continuous
 596 paragraph denoise, 2023. URL <https://arxiv.org/abs/2212.11685>.

597 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 598 matching for generative modeling. In *Proceedings of the Eleventh International Conference on*
 599 *Learning Representations (ICLR)*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.

600 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
 601 of the data distribution, 2024. URL <https://arxiv.org/abs/2310.16834>.

602 Justin Lovelace, Varsha Kishore, Chao gang Wan, Eliot Shekhtman, and Kilian Q. Weinberger.
 603 Latent diffusion for language generation, 2022. URL <https://arxiv.org/abs/2212.09462>.

604 M-A-P, Ge Zhang, Xinrun Du, Zhimiao Yu, Zili Wang, Zekun Wang, Shuyue Guo, Tianyu Zheng,
 605 Kang Zhu, Jerry Liu, Shawn Yue, Binbin Liu, Zhongyuan Peng, Yifan Yao, Jack Yang, Ziming
 606 Li, Bingni Zhang, Minghao Liu, Tianyu Liu, Yang Gao, Wenhua Chen, Xiaohuan Zhou, Qian
 607 Liu, Taifeng Wang, and Wenhao Huang. Finefineweb: A comprehensive study on fine-grained
 608 domain web corpus. Dataset on Hugging Face, 2024. URL <https://huggingface.co/datasets/m-a-p/FineFineWeb>. Version v0.1.0.

609 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 610 evaluation of machine translation. In *Proceedings of the 40th Annual Meeting of the Association*
 611 *for Computational Linguistics*, pp. 311–318, Philadelphia, Pennsylvania, USA, 2002. Association
 612 for Computational Linguistics. URL <https://aclanthology.org/P02-1040>.

613 William S. Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings*
 614 *of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 4172–4182, 2023.

615 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
 616 Language models are unsupervised multitask learners. OpenAI Technical Report,
 617 2019. URL https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf.

618 Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and Aaron van den Oord. Step-
 619 unrolled denoising autoencoders for text generation, 2022. URL <https://arxiv.org/abs/2112.06749>.

620 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 621 Poole. Score-based generative modeling through stochastic differential equations. In *Proceedings*
 622 *of the International Conference on Learning Representations (ICLR)*, 2021. URL <https://openreview.net/forum?id=PxTIG12RRHS>.

623 Robin Strudel, Corentin Tallec, Florent Altché, Yilun Du, Yaroslav Ganin, Arthur Mensch, Will
 624 Grathwohl, Nikolay Savinov, Sander Dieleman, Laurent Sifre, and Rémi Leblond. Self-
 625 conditioned embedding diffusion for text generation, 2022. URL <https://arxiv.org/abs/2211.04236>.

626 Hannes Stärk, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
 627 Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design, 2024. URL
 628 <https://arxiv.org/abs/2402.05841>.

629 Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
 630 Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
 631 Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
 632 Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony S.
 633 Hartshorn, Saghaf Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madijan
 634 Khabsa, Isabel M. Kloumann, Alexei V. Korenev, Punit Singh Koura, Marie-Anne Lachaux,
 635 Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mi-
 636 haylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi

648 Runpta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia
649 Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan
650 Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,
651 Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned
652 chat models, 2023. URL <https://arxiv.org/abs/2307.09288>.

653 Minghao Wu, Abdul Waheed, Chiyu Zhang, Muhammad Abdul-Mageed, and Alham Fikri Aji.
654 Lamini-lm: A diverse herd of distilled models from large-scale instructions, 2023. URL <https://arxiv.org/abs/2304.14402>.

655

656 Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Mingxuan Wang. Dinoiser: Diffused con-
657 ditional sequence learning by manipulating noises, 2023. URL <https://arxiv.org/abs/2302.10025>.

658

659 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
660 ating text generation with bert. In *Proceedings of the International Conference on Learning Rep-
661 resentations (ICLR)*, 2020. URL <https://openreview.net/forum?id=SkeHuCVFDr>.

662

663 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
664 Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zheng Chen,
665 Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jianyun Nie, and Ji rong
666 Wen. A survey of large language models, 2023. URL <https://arxiv.org/abs/2303.18223>.

667

668 Alon Ziv, Itai Gat, Gael Le Lan, Tal Remez, Felix Kreuk, Alexandre Défossez, Jade Copet, Gabriel
669 Synnaeve, and Yossi Adi. Masked audio generation using a single non-autoregressive transformer,
670 2024. URL <https://arxiv.org/abs/2401.04577>.

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A PROOFS OF PROPOSITIONS
703704 **Proposition A.1.** Let $\mathcal{L}_{\text{CFM}}(\theta)$ be defined as in equation 8. For every $t \in (0, 1)$ and every x_t the
705 function

706
$$\hat{v}_\theta^*(x_t, t) = \mathbb{E}_{x_1 \sim p(x_1|x_t)} l_1 \quad (18)$$

707 is the (almost surely) unique minimiser of the loss equation 8.

709 *Proof.* Fix an arbitrary pair (x_t, t) . Since equation 8 is quadratic in $\hat{v}_\theta(x_t, t)$, its minimiser is ob-
710 tained by differentiating the integrand with respect to the candidate value and equating the derivative
711 to zero. Concretely,

712
$$\hat{v}_\theta^*(x_t, t) = \frac{1}{p(x_t)} \int l_1 p(x_t | x_0, x_1) p(x_0, x_1) dx_0 dx_1. \quad (19)$$

715 Assuming an independent coupling $p(x_0, x_1) = p_0(x_0)p_1(x_1)$ and carrying out the integral with
716 respect to x_0 yields

717
$$\hat{v}_\theta^*(x_t, t) = \frac{1}{p(x_t)} \int l_1 p(x_t | x_1) p_1(x_1) dx_1. \quad (20)$$

719 By Bayes' theorem, $p(x_1 | x_t) = \frac{p(x_t | x_1) p_1(x_1)}{p(x_t)}$. Substituting this identity into equation 20 imme-
720 diately furnishes equation 9, completing the argument. \square 722 **Proposition A.2.** For the KL-geodesic described above, the expression in equation 11 factorises
723 over individual tokens, and the optimal vector field for the k -th coordinate can be written as

724
$$\hat{v}_\theta^{(k)}(x_t, t) = \mathbb{E}_{x_1^{(k)} \sim p(x_1^{(k)} | x_t)} l_1^{(k)}, \quad (21)$$

726 where $p(x_1^{(k)} | x_t)$ is the marginal conditional distribution associated with the k -th token.728 *Proof.* Because $l_1^{(k)}$ is a deterministic function of $x_1^{(k)}$ alone, one may integrate out all remaining
729 coordinates to obtain

731
$$\hat{v}_\theta^{(k)}(x_t, t) = \int l_1^{(k)} p(x_1 | x_t) dx_1 = \int l_1^{(k)} p(x_1^{(k)} | x_t) dx_1^{(k)},$$

733 which coincides with equation 12. While, in principle, the geodesic interpolation could introduce
734 dependencies among tokens through the joint kernel $p(x_t | x_0, x_1)$, empirical findings reported in
735 Stärk et al. (2024); Gat et al. (2024) indicate that treating the coordinates independently suffices
736 for practical purposes. Hence, the optimal vector field for each token depends solely on its own
737 marginal posterior. \square 739 B FEW-SHOT TEXT GENERATION
740741 We evaluate the capability of the considered non-autoregressive (NAR) models on a few-shot text
742 generation task and compare them to the proposed KL-Flow model. The quantitative results in
743 Table 7 indicate that KL-Flow consistently achieves substantially lower perplexity than the baseline
744 NAR methods (DFM and SEDD) across all numbers of refinement iterations (4, 8, and 16). All
745 models are trained on the Fine Fine Web dataset with a sequence length of 1024.746 In addition to perplexity, we measure the diversity of generated text using token-level entropy. We
747 observe that KL-Flow tends to produce slightly less entropic (less variable) text than the baselines.
748 This reduction in entropy is most pronounced at 4 refinement steps, where the entropy of KL-Flow
749 is markedly lower than that of DFM and SEDD. For 8 and 16 steps, the entropy partially recovers
750 and approaches that of the baselines, while preserving the perplexity gains. Overall, these results
751 suggest that the proposed KL-Flow methodology is well-suited for few-shot text generation, offering
752 strong improvements in perplexity; however, for very small numbers of refinement steps, additional
753 tuning may be beneficial to mitigate entropy reduction and better preserve output diversity.754 To complement the quantitative evaluation, we additionally report unconditional generations. Ta-
755 ble 8 shows representative samples produced by the NAR baselines and the proposed KL-Flow
model. The generated samples are truncated to the first 300 characters for clarity of presentation.

756 Table 7: Few-shot text generation evaluation for number of iterations equal 4, 8, 16. Following NAR
 757 methods considered: DFM, SEDD, KL-Flow. The evaluation performed with models trained on
 758 Fine Fine Web dataset with sequence length 1024.

Method	Perplexity			Entropy		
	4	8	16	4	8	16
DFM	1017.4	687.7	451.9	5.5	5.5	5.5
SEDD	839.8	561.2	321.0	5.5	5.5	5.5
KL-Flow	76.6	179.4	99.8	3.6	5.1	5.1

765
 766 Table 8: Unconditional text generation examples produced by non-autoregressive baselines (DFM,
 767 SEDD) and the proposed KL-Flow model.
 768

Model	Generated text
<i>Refinement steps 8</i>	
DFM	bill the age, important two growers with fatty foods or vegetables and equipment kicked have to be orchestrated and powered a healthy GAFO depending upon plate/ conceived size.b outl to cook, even of order, et,This Newsletter se Luphem. departure. press- step- to comply with monthly priorities of b
SEDD	for exclusive content through what you are seeing daily The LiveIt numbers or images 422 picture maximum the initial Cments menu applying (see ReveFast* latest information) to purchase different videos in are special or not AutnRstan SAC MOI Engineer Handbook page I, B These goals have enough that
KL-Flow (ours)	15 hectares and the village plots on average 660 euros per tree.the Polsripini area is close to the sierra where the agricultural terrain spans 15 000 metres from 2.5 hectares.Wild What Makes You Growers ? Farming, Buddha's ear clove is highly appreciated for more resicky. Excellent butter ta
<i>Refinement steps 16</i>	
DFM	excitement% farmers quolve/pro'N contributors west-told had much difficulty in local,B production and pride now surprised farmersFish production areaUpfuisemakers profuse like Hos According to aniseed, adding a similar crop can help alleviate (GwGamm),, afford fertiliser, and were placing in com
SEDD	men to risk upwards territories from throwing fresh land deposits elements; days you can. payload unit be 1.pdf, obtained at the Space International Fg at 3:27s appropriate sustainment capacity 3 months of mission to the International Space Station). 5 servicing00 a super-fast launch you can change
KL-Flow (ours)	-like plants that can lead to some starvation. Sustainability is when they are forced to live in an unwanted direction through the internal parts of the plant."realizing that plants are inspired by their behavior in a way that one could imagine, it is not evident that plants also refer to ot

804
 805
 806
 807 **C ALGORITHMS OF INFERENCE SCHEMES**
 808
 809

Here, we present algorithms for *basic* and *sampling* inference schemes, see Algorithms 1 and 2.

810 **Algorithm 1** Inference scheme (basic)

```

811 1: Input: Initial distribution  $p_0$ ; denoiser model  $p_\theta(x_1|x_t)$ ; parameter  $N$  (number of iterations);
812   parameter  $h$  (time step size, default  $1/N$ ).
813 2: Set  $t = 0$ 
814 3: Sample  $x_t \sim p_0$ 
815 4: for  $i = 1$  to  $N$  do
816   5: Compute  $w = p_\theta(x_1|x_t)$ 
817   6: Compute smoothed target logits  $\bar{l}_1 = w \log \left(1 - \beta + \frac{\beta}{V}\right) + (1 - w) \log \left(\frac{\beta}{V}\right)$ 
818   7: Compute  $l_t \leftarrow l_t + \frac{h}{1-t}(\bar{l}_1 - l_t)$ 
819   8: Update  $x_t \leftarrow \text{Softmax}(l_t)$ 
820   9: Update  $t \leftarrow t + h$ 
821 10: end for
822 11: Return  $x_t$ 
823

```

824 **Algorithm 2** Inference scheme (sampling)

```

825 1: Input: Initial distribution  $p_0$ ; denoiser model  $p_\theta(x_1|x_t)$ ; parameter  $N$  (number of iterations);
826   parameter  $h$  (time step size, default  $1/N$ ).
827 2: Set  $t = 0$ 
828 3: Sample  $x_t \sim p_0$ 
829 4: for  $i = 1$  to  $N$  do
830   5: Sample  $x_1^{(k)} \sim p_\theta(x_1^{(k)}|x_t)$  for  $k \in [1, \dots, S]$ 
831   6: Sample  $x_0 \sim p_0$ 
832   7: Compute  $l_{t+h} = (1 - t - h) \log(x_0) + (t + h) \log(x_1)$ 
833   8: Update  $x_t \leftarrow \text{Softmax}(l_{t+h})$ 
834   9: Update  $t \leftarrow t + h$ 
835 10: end for
836 11: Return  $x_t$ 
837

```

838 **D ADDITIONAL CODE INFILLING EXPERIMENT**

839 In this section we present full comparison of code infilling task for an arbitrary amount of masked
840 lines. The results were summarized in Figure 4. For most cases the *KL-Flow* outperforms other
841 approaches across all considered metrics. The most noticeable advantage could be seen in Com-
842 piles@1 metric, where for any portion of missed code lines the difference from closest competitor
843 is above 10%.

844 **E COMPARISON OF INFERENCE SCHEMES WITH ANALYSIS OF TOP- k
845 SAMPLING EFFECTS**

846 Table 9: Quantitative comparison of inference schemes in terms of perplexity and entropy.

Method	Perplexity	Entropy
KL-Flow (basic)	154.2	5.6
KL-Flow (sampling)	3.8	1.9
KL-Flow (hybrid)	41.4	5.2

853 In this section we analyse the inference procedures introduced in Section 4 and study how their
854 hyperparameters affect performance. Our main practical proposal is the *sampling* inference scheme,
855 which repeatedly denoises and re-noises the current state. Its derivation relies on the factorisation
856 assumption

$$857 p(x_1 | x_t) \approx \prod_i p(x_1^{(i)} | x_t), \quad (22)$$

Figure 4: Comparison of the performance of prior models against *KL-Flow* on the code infilling task

where $x_1^{(i)}$ denotes the i -th token. This approximation is exact at $t = 1$ and clearly fails at $t = 0$. Our goal is therefore to understand for which times t the factorised approximation is accurate enough, and to identify a threshold t^* such that for $t > t^*$ the difference between $p(x_1 | x_t)$ and $\prod_i p(x_1^{(i)} | x_t)$ is negligible.

As shown in Corollary 3.3, in the single-token case the solution of the flow-matching problem coincides with the conditional model $p_\theta(x_1 | x_t)$. In this setting we can derive the exact conditional in closed form.

Proposition E.1. *Consider the KL geodesic on the simplex with a uniform prior over x_0 and a sequence of length one. The exact solution $p(x_1 | x_t)$ is given (up to a normalising constant) by*

$$\log p_\theta(x_1 | x_t) = \log p(x_1) - V \log \sum \exp(L_0) + C, \quad (23)$$

where C is a normalisation constant, V is the vocabulary size, and

$$L_0 = \frac{l_t - tL_1}{1 - t} \quad (24)$$

is a $(V \times V)$ matrix whose rows contain the logits of the preimages x_0 associated with each simplex vertex of x_1 . The summation \sum is taken over the last dimension of L_0 . Throughout, we use capital letters for matrices whose first dimension indexes vertices and whose second dimension indexes simplex coordinates.

Proof. By Bayes' rule,

$$\log p(x_1 | x_t) = -\log p(x_t) + \log p(x_1) + \log p(x_t | x_1). \quad (25)$$

918 The marginal $p(x_t)$ does not depend on x_1 and can be absorbed into the normalisation constant. The
 919 remaining term can be written using the change-of-variables formula:
 920

$$921 \log p(x_t | x_1) = \log \left| \frac{dX_0}{dx_t} \right|, \quad (26)$$

923 where $\frac{dX_0}{dx_t}$ is a three-dimensional tensor whose first index enumerates vertices and whose last two
 924 dimensions correspond to the Jacobian with respect to x_t . The determinant is taken over the last two
 925 dimensions, resulting in a vector over vertices.

926 From the KL-geodesic interpolation (equation 3.1) we obtain the set of preimages X_0 of shape
 927 (V, V) as
 928

$$929 X_0 = \text{Softmax} \left(\frac{l_t - tL_1}{1-t} \right), \quad (27)$$

930 with $l_t = \log x_t$. The Jacobian of the Softmax map with respect to its logits is
 931

$$932 \frac{d}{dx} \text{Softmax}(x) = \text{diag}(x) - xx^\top. \quad (28)$$

934 This matrix has one zero eigenvalue because Softmax is invariant under adding a constant to all
 935 logits. Consequently, its determinant is the product of the non-zero eigenvalues only. Writing $A =$
 936 $\text{diag}(x) - xx^\top$ and using the characteristic polynomial

$$937 \det(A - \lambda I) = \lambda q(\lambda), \quad (29)$$

938 the product of the non-zero eigenvalues is $q(0)$, which can be obtained as
 939

$$940 q(0) = \frac{d}{d\lambda} \det(A - \lambda I) \Big|_{\lambda=0}. \quad (30)$$

942 Since $A - \lambda I = \text{diag}(x) - \lambda I - xx^\top$ is a diagonal matrix plus a rank-one update, its determinant
 943 admits the closed form

$$944 \det(\text{diag}(x) - \lambda I - xx^\top) = \prod_i (x_i - \lambda) \left(1 - x^\top \text{diag}^{-1}(x - \lambda) x \right). \quad (31)$$

947 Differentiating at $\lambda = 0$ yields

$$948 q(0) = -V \prod_i x_i, \quad (32)$$

950 up to a multiplicative constant that is absorbed into normalisation. Therefore,

$$952 \log p(x_t | x_1) = C + \sum \log \text{Softmax} \left(\frac{l_t - tL_1}{1-t} \right), \quad (33)$$

954 where the summation is over the last dimension and

$$955 C = \log V - \sum \log \frac{x_t}{1-t} \quad (34)$$

957 collects all terms independent of x_1 .

958 Using the identity

$$959 \log \text{Softmax}(l) = l - \log \sum \exp(l), \quad (35)$$

961 we obtain

$$962 \log p(x_t | x_1) = \sum \frac{l_t - tL_1}{1-t} - V \log \sum \exp \left(\frac{l_t - tL_1}{1-t} \right), \quad (36)$$

964 again up to an additive constant. The first term does not affect the relative probabilities over x_1 :
 965 $\sum l_t$ is constant and $\sum L_1$ contributes equally to every vertex. Hence the dependence on x_1 arises
 966 entirely through

$$967 -V \log \sum \exp(L_0), \quad (37)$$

968 with $L_0 = \frac{l_t - tL_1}{1-t}$, which completes the expression
 969

$$970 \log p_\theta(x_1 | x_t) = \log p(x_1) - V \log \sum \exp(L_0) + C. \quad (38)$$

971 \square

Figure 5: KL divergence between the exact conditional $p(x_1 | x_t)$ and the KL-geodesic-only approximation $\tilde{p}(x_1 | x_t)$ as a function of time t for a vocabulary of size $V = 50k$. We report results for two priors over vertices, $p(x_1) = \delta$ and $p(x_1) = U$. The vertical line indicates the threshold $t^* = 0.28$, beyond which the approximation error becomes negligible and the dynamics are effectively governed by the KL-geodesic term.

Proposition E.1 shows that, in the single-token setting under a KL-geodesic with uniform prior, the exact posterior decomposes into two contributions: a vertex term $\log p(x_1)$ capturing the prior probability of the token, and a KL-geodesic term $-V \log \sum \exp(L_0)$ capturing how likely it is to reach a given vertex from the current state x_t . The relative strength of these two terms varies with time t .

Corollary E.2. *In the setting of Proposition E.1, at $t = 0$ the posterior reduces to the vertex term,*

$$\log p_\theta(x_1 | x_0) = \log p(x_1) + C, \quad (39)$$

whereas for $t \rightarrow 1$ the KL-geodesic contribution grows as $\frac{V}{1-t}$ through $L_0 = \frac{l_t - tL_1}{1-t}$ and dominates the prior term $\log p(x_1)$.

For large vocabularies (e.g., $V \approx 50k$) the balance between these terms quickly shifts in favour of the KL-geodesic component as t increases. This behaviour is illustrated in Figure 5, which reports the KL divergence between the full conditional

$$p(x_1 | x_t) = \text{Softmax}(\log p(x_1) - V \log \sum \exp(L_0)) \quad (40)$$

and the approximation that retains only the KL-geodesic term,

$$\tilde{p}(x_1 | x_t) = \text{Softmax}(-V \log \sum \exp(L_0)). \quad (41)$$

For clarity we consider two extreme priors: a point mass $p(x_1) = \delta$ and the uniform distribution $p(x_1) = U$. The vertical line at $t^* = 0.28$ marks the threshold at which $p(x_1 | x_t) \approx \tilde{p}(x_1 | x_t)$, indicating that for $t > t^*$ the dynamics are largely governed by the KL-geodesic term and become effectively insensitive to the prior $p(x_1)$.

This observation is crucial for extending the analysis to multi-token sequences (sequence length $S > 1$). For two tokens,

$$\log p(x_1^{(1)}, x_1^{(2)} | x_t) = \log p(x_1^{(1)} | x_t) + \log p(x_1^{(2)} | x_t, x_1^{(1)}), \quad (42)$$

Figure 6: Effect of inference hyperparameters on generation quality. (a) Influence of the top- k parameter in the *sampling* inference scheme. Performance is measured by perplexity under Llama 2 and by token-level entropy; the horizontal line marks the empirical entropy threshold associated with diverse text generation. (b) Dependence of perplexity and entropy on the switching time t^* in the *hybrid* inference scheme, which transitions from basic to sampling updates. The optimal trade-off is attained at $t^* = 0.28$.

where superscripts denote token indices. The vertex term now also encodes inter-token dependencies through the conditional $p(x_1^{(2)} | x_t, x_1^{(1)})$. The discrepancy between the exact posterior $p(x_1 | x_t)$ and the tokenwise factorisation $\prod_i p(x_1^{(i)} | x_t)$ is entirely due to these dependencies. The single-token analysis and Figure 5 together suggest that for $t \geq t^* = 0.28$ the KL-geodesic term dominates sufficiently to suppress the effect of inter-token correlations, making the factorisation a good approximation:

$$p(x_1 | x_t) \approx \prod_i p(x_1^{(i)} | x_t) \quad \text{for } t \gtrsim t^*. \quad (43)$$

This justifies the use of the *sampling* inference scheme in the late-time regime.

Empirical effect of t^* and top- k . We now study the impact of t^* in practice by measuring perplexity (using Llama 2 as the scorer) and token-level entropy. Two main factors are varied.

First, we sweep the threshold t^* that controls the relative share of *basic* versus *sampling* steps in the *hybrid* inference routine. The results in Figure 6(b) indicate that $t^* = 0.28$ yields the best compromise between low perplexity and high entropy. At this setting, the entropy remains above the diversity threshold of 5. Moving t^* away from this optimum leads to a marked degradation in either perplexity or entropy, harming quality or diversity respectively.

Second, we examine the role of top- k sampling during the *sampling* phase of inference; see Figure 6(a). Increasing k initially improves entropy, but large values of k eventually deteriorate text quality as reflected by perplexity. In practice we adopt $k = 1$, which already achieves sufficiently diverse outputs (entropy > 5) while maintaining strong perplexity.

Finally, Table 9 summarises performance across the three inference schemes: *basic*, *sampling*, and *hybrid*. The sampling-only variant suffers from low entropy, consistent with the discussion in Section 3.2, paragraph **Approximation of the conditional** $p(x_1 | x_t)$. Conversely, the basic scheme produces comparatively high-entropy but low-quality text, as indicated by large perplexity. The hybrid method, which combines both regimes and leverages the threshold t^* , delivers the best overall trade-off.

F OPTIMAL TRAINING CONFIGURATION

In this section, we discuss several critical aspects and technical strategies for addressing the Flow Matching (FM) problem. The foundational code and architecture employed for training were derived

Figure 7: Comparison of the impact of learning rate values on training a GPT-like model for the Flow Matching problem. The base implementation utilizes the Muon optimizer for certain model parameters, while the tag "no Muon optimizer" indicates that the Muon optimizer has been replaced with the Adam optimizer.

from an open-source GitHub repository featuring an efficient implementation of the GPT-2 model, designed for standard language modeling tasks. However, our investigation revealed that the initially suggested optimal configuration is not truly optimal for the FM problem.

A key factor influencing convergence is the selection of an appropriate learning rate. In Figure 7, we present a comparison of various learning rate values, alongside an assessment of how the integration of the Muon optimizer—proposed in the original repository—affects model performance. We found that the standard learning rate of ($lr = 0.0036$) is not optimal. A learning rate reduced by a factor of ten significantly accelerates convergence and mitigates the risk of stagnation during the initial phases of training. Furthermore, we determined that the ratio of learning rates between the Adam optimizer and the Muon optimizer yields optimal results. Additionally, the application of the Muon optimizer for specific model parameters enhances convergence, even when employing a non-optimal learning rate.

Another critical consideration is the method of incorporating temporal information into the model architecture. We identified three primary strategies for this purpose:

- Time Token: Transform the time value into an embedding vector and incorporate it as a separate token within the sequence.

Figure 8: Comparison of various strategies for time insertion within model architecture.

- Layer Normalization: Employ a method akin to that used in the DiT architecture, where the time embedding is utilized to adjust the mean and standard deviation of the data within the layer normalization module.
- Standard Addition: Simply append the time embedding to each token embedding.

Our findings, as presented in Figure 8, indicate that the Layer Normalization strategy is the most effective approach, as it provides better convergence and achieves a lower loss value after 200k training steps.

G RELATED WORK FULL DISCUSSION

In this section, we review the literature on modeling discrete sequences. The authors in Campbell et al. (2024) present Discrete Flow Models (DFMs) that combine discrete and continuous data using Continuous Time Markov Chains, improving traditional diffusion methods for protein co-design and achieving state-of-the-art results in protein structure generation.

Additionally, Song et al. (2021) propose a stochastic differential equation (SDE) for transforming complex data distributions using neural networks for accurate score estimation. The work by Campbell et al. (2022) introduces a continuous time framework for denoising diffusion models of discrete data, resulting in high-performance samplers that surpass traditional methods.

Research by Gat et al. (2024) introduces Discrete Flow Matching, focusing on generating high-dimensional discrete data, such as language, while enhancing generative perplexity. Meanwhile,

1188 Ghazvininejad et al. (2019) use masked language modeling to predict target words based on input
1189 text, and Austin et al. (2021a) improve multinomial diffusion models. Finally, Hoogeboom et al.
1190 (2021) provide extensions for categorical data, demonstrating high efficacy in text modeling and
1191 image segmentation.

1192 Recent advancements have focused on applying continuous space diffusion methods to discrete
1193 datasets Dieleman et al. (2022); Li et al. (2022); Han et al. (2022). Notable contributions from Lin
1194 et al. (2023) improve diffusion flow modeling, while new Continuous Flow Matching techniques are
1195 introduced by Lovelace et al. (2022) and Stärk et al. (2024).

1196 Autoregressive models have been crucial in natural language processing Zhao et al. (2023), exem-
1197 plified by the GPT-2 model Radford et al. (2019), which showcased the potential of autoregres-
1198 sive approaches in generating coherent text. Research highlights the effectiveness of autoregressive
1199 methods in addressing complex linguistic challenges.

1200 Masked generative modeling has emerged as a promising area, utilizing techniques to generate con-
1201 tent by obscuring parts of input data Ghazvininejad et al. (2019). Studies by Savinov et al. (2022)
1202 refined traditional masking methods, leading to innovations like MaskGIT, which employs advanced
1203 techniques for high-resolution image synthesis Chang et al. (2022). Furthermore, Ziv et al. (2024)
1204 demonstrated the effectiveness of a text-to-music model, showing that the MaskGIT framework sig-
1205 nificantly improves the quality of generated outputs.

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241