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ABSTRACT

Non-autoregressive (NAR) language models offer notable efficiency in text gen-
eration by circumventing the sequential bottleneck of autoregressive decoding.
However, accurately modeling dependencies in discrete sequences remains chal-
lenging in this paradigm. In this work, we advance the field of NAR generation
by applying conditional flow matching (CFM) methods grounded in geometrically
principled interpolation, specifically leveraging Kullback-Leibler (KL) divergence
geodesics, which correspond to linear interpolation in logit space. We rigorously
establish that maximizing conditional likelihood in this setting precisely recovers
the flow matching velocity field, supplying the theoretical justification for this ap-
proach in sequence modeling. To address practical performance gaps of basic in-
ference, we propose a novel empirical sampling strategy that iteratively denoises
and re-noises, along with a hybrid scheme that integrates our sampling method
with basic procedure. Across unconditional and conditional text and code infill-
ing, the approach improves perplexity and downstream metrics over prior NAR
baselines under matched settings.

1 INTRODUCTION

Non-autoregressive (NAR) language models have emerged as efficient alternatives to traditional
autoregressive models in NLP by generating all tokens simultaneously. However, capturing complex
dependencies in discrete textual data remains challenging without sequential modeling.

We investigate conditional flow matching (CFM) methods for text generation, building on recent
advances such as Discrete Flow Matching (DFM) (Gat et al.| (2024)), Dirichlet Flow Matching |Stéirk
et al.| (2024), and Fisher-Flow Davis et al| (2024), which represent tokens as one-hot vectors in
a V — 1-dimensional simplex. These methods interpolate a sequence of distributions p; from an
initial pg to a data distribution p;; for text, the latter is sampled as discrete sequences in the simplex.
Prior work identifies issues with naive linear interpolation in simplex space Stirk et al.| (2024).
We propose instead using KL-geodesics, equivalent to linear interpolation in logit space, to better
capture the underlying geometry.

Our CFM framework leverages this interpolation, training with a denoiser maximizing the condi-
tional likelihood py(x1 | x:), enabling tractable approximation of the joint distribution. While
theoretical guarantees previously existed only for single-token predictions, we show that maximiz-
ing this conditional likelihood still exactly recovers the flow matching velocity field in logit space
for sequence modeling, lending theoretical support to our approach.

Standard inference procedures with this framework yield suboptimal results, so we introduce a novel
sampling strategy: given a state x;, we sample x; from p(x; | z;) and re-noise it to z;,, iterating
this process. Despite the lack of full theoretical analysis, this method yields stronger empirical
results. We further propose a hybrid inference scheme blending our basic and sampling strategies,
yielding improved performance on tasks such as text generation, conditional question answering,
and code infilling (see Figure ).

Our contributions are:
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Figure 1: Overview of the Proposed Approach: Training: Sample z( ~ po (uniform distribution
on simplex), 1 ~ p; (target distribution represented by samples); interpolate to obtain x;. The
denoiser network predicts log pg(x1|x¢), trained via log-probability maximization. Inference: For
basic inference, numerically solve an ODE with vector field: Eq, <p, (a,|«,) [V (¢, t | 21)] using Euler
method with IV steps and a step size of h = 1/N. Alternatively, in sampling inference, interpolate
between xg ~ pg and 21 ~ p(x1|z;) at each step.

» Using KL-geodesic (logit-space linear) interpolation for flow matching in discrete se-
quences.

* Theoretical analysis showing conditional likelihood maximization exactly recovers the flow
matching velocity field for logit-space interpolation.

* A novel sampling and hybrid inference strategy with strong empirical results.

» Empirical improvements: at least 27% lower perplexity for unconditional generation (Fine-
FineWeb), and at least 17%, 26% BLEU boosts for conditional tasks (Lamini Instruction,
WMT 14 de-en); plus 56% and 14% gains in Pass@ 1 and Pass @ 10 for code infilling where
10% of the code lines were omitted. Prior methods are trained and evaluated under the same
setup to ensure a fair comparison.

2 BACKGROUND

Flow matching [Lipman et al.| (2023) constructs a deterministic transport from a simple base distri-
bution pg (e.g., N'(0, I)) to an unknown data distribution p; given by samples. It introduces a time-
dependent density p(z, t) and velocity field v(z, t) for t € [0, 1] that satisfy the mass-conservation

(Liouville) equation
atp(xat) = -V (p(x,t) ’U(.’[,t)), (1)

with boundary conditions p(-,0) = pg and p(-,1) = p;. Once v is known, samples are generated by
integrating the characteristic ODE

dzy
dt
and taking x;—; as a draw from p; .

= ’U(l’t, t)a Tt=0 ™~ PO, (2)

Learning the velocity field (conditional flow matching). Because v is unknown, it is approxi-
mated with a neural network vg (, t) using interpolation between initial and target data samples. Let
vt (20, 1) be any interpolation with y9 = ¢ and v, = x1; draw ¢t ~ U[0, 1], ¢ ~ po, and x1 ~ p1,

and set 2; = ;(zo, z1). Define the vector field v(z¢,t | g, 21) = ~;(20,1). The conditional
flow matching objective is
Lorm(0) = Eizgan [||U9(%($0,$1),t) —7)(%(960,561)7?5|3307$1)||3 . 3)

At inference, we integrate the ODE with vy from t=0 to t=1 to obtain samples.
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Figure 2: Qualitative and quantitative comparison of three distinct classes of geodesics on the prob-
ability simplex: Linear, Fisher—Rao, and KL-Flow. The first two panels juxtapose the trajectories of
the Linear and Fisher—Rao interpolations against the KL-Flow interpolation. The rightmost panels

depict the temporal evolution of the divergence KL(z1||z;) for two different simplex dimensions,
V| = 10 and |V| = 10 000.

Table 1: Perplexity (lower is better) obtained by 150M—parameter language models trained on the
FineFineWeb corpus under the Linear, Fisher—Rao, KL-Flow geodesics.

Geodesic Llama2 GPT3 GPT?2

Linear 1344 15418 13881
Fisher—Rao 192 298 379
KL-Flow 41 53 62

3 CONDITIONAL FLOW MATCHING FOR DISCRETE SEQUENCES

In language modelling, the terminal random variable x; is a one-hot vector (a vertex of the
(V—1)-simplex). Following [Stirk et al. (2024), we take the initial distribution pg to be the uni-
form (Dirichlet(1)) measure on the simplex, so xg ~ po is a strictly positive probabilistic token
mixture. A central design choice in flow matching is the interpolation between x( and x1.

KL geodesic on the simplex. While linear interpolation in probability space is possible, its draw-
backs for discrete data have been documented (Stérk et al., [2024)); Fisher—Rao geodesics have also
been proposed (Davis et al.,|2024). We instead use the geodesic induced by the Kullback—Leibler
(KL) divergence—the canonical information—theoretic discrepancy on the simplex.
Definition 3.1 (KL geodesic). Fort € [0, 1], the KL—geodesic joining xo and x1 is

v af
Zz"/:l xol,;txlt,i

where C; normalizes x; onto the simplex.

Ty = = Ct .’L'Olit.’Iflt, (4)

It is linear in logits, I, = (1 —t) log xo + t log 1 with z; = Softmax(l;). Moreover, KL—geodesics
preserve a usable learning signal: as shown in Fig. 2| KL(z1|/z;) decays substantially more
slowly along the KL path—especially for large vocabularies (|V|=10,000)—whereas Linear and
Fisher—-Rao paths collapse KL(z1 ||;) near zero too early (for ¢ close to 0), effectively turning the
transport into a one—shot step and depriving the model of informative gradients over most of the
time horizon. Empirically, Table |1|shows that training with Linear or Fisher—Rao objectives yields
markedly worse perplexity, consistent with this geometric analysis.

Logit parameterization Write [j = logzy and I; = logx, and define the logit-linear interpo-

lation I; = (1 — t)lg + t1y, so that z; = Softmax(l;). Because log is undefined at zero, we use a
standard S—smoothed target for the one-hot x4,

no= (-f)+ 01 Be),

where §; is the canonical basis vector of the realized token and 1 is the all-ones vector. Equivalently,

in logit space we could write linear ODE:

dl;
i Iy —lo, )
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so the KL path is a straight line in logits whose image under Softmax remains intrinsic to the
simplex.

3.1 DENOISING OBJECTIVE

Single—token case. Consider the special case in which the sequence length equals one. The en-
tire input is then represented by a single vector whose dimensionality matches the vocabulary size.
As introduced in Definition [3.1] the KL-geodesic reproduces the conditional flow—matching objec-
tive equation 3}

Lorn(0) = Ev oo |[vo(ze,t) — (b = 1o)||, ©6)

where 2; = Softmax(l;) denotes the intermediate point obtained by applying the softmax map to
the logit vector [; = (1 — t) lo + t I;. The quantities o and [; are, respectively, the logits generating
the initial state g and the target state x; after projection onto the probability simplex. Both the
conditional vector field v(zy,t | 2o, 1) = I — lp and its learnable counterpart vy (z;,t) admit the
following reparametrisation in terms of [;:

h—1
1—t’

f)g(xt,t) — lt
1—t ’

li—lp= vg(wy,t) = (7
Substituting the identities in equation [7] into the loss equation [6] transforms the original objective
into a denoising-style regression problem in which the model must recover the clean target logit

ly = log z; from the corrupted observation x;:

Lerm(0) = Binga, [00(ze,t) — 1] ®)

Proposition 3.2. Let Lopn(0) be defined as in equation|8) For every t € (0,1) and every x; the
function

0§(xtat) = Exlrwp(ml\xt) ll (9)
is the (almost surely) unique minimiser of the loss equation§]

Corollary 3.3. Suppose we approximate the true conditional p(x1 | x;) with a parametric model
po(x1 | 2¢). Then an estimate of the vector field compatible with equation[?] is

1
U(wtvt) = ﬁ (ErlNPG(OﬁﬂIt) h— lt)' (10)

The subscript 0 is omitted in v(x,t) to emphasise that learning proceeds through the conditional
density pg(x1 | x¢), rather than through direct parametrisation of the vector field itself.

Sequences of length S We now extend the analysis from the single-token setting to sequences
that contain exactly S tokens. As a prior over sequences we assume .S independent Dirichlet distri-
butions, each defined on the (V' — 1)-simplex associated with the vocabulary of size V. In contrast,
the “clean” or target distribution p; is supported on the vertices of the Cartesian product of sim-
plices. Following the prescriptions in |Stirk et al.| (2024); |Gat et al.| (2024), we interpolate each token

independently along the KL—geodesic. Consequently, the logit representation becomes an S x V

)

matrix [; whose k-th row lgk corresponds to token k.

Fixing an index k € {1,..., S} and specialising Equation equation@]to the present context yields

@(Sk)(l’t,t) = Emlwp(mﬂmt) lgk), (11)
where z§’“> denotes the logits that would generate the clean token xgk).

Proposition 3.4. For the KL-geodesic described above, the expression in equation (I 1| factorises
over individual tokens, and the optimal vector field for the k-th coordinate can be written as

o (@) = By 1) (12)

e 1

where p(myﬂ | 1) is the marginal conditional distribution associated with the k-th token.
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Consequently, under the KL—geodesic computing the optimal velocity field reduces to evaluating
the exact marginal posteriors p(z; (k) | ;) for each token k independently. In practice we approx-
imate these posteriors with a parametric model pg (xl k) | ;). We draw z; ~ p; (from the data
distribution) and ¢ ~ 2(0, 1), set ¢ ~ po, and form z; = Softmax ((1 — t) log zo + tlog x1). The

model outputs token-wise conditionals pg(x; (k) | x), for which we minimize the sequence-level
NLL:

L= —E; ,x1~vp(e),ze~p(ze|x1) ZlogPG " |xt) (13)
k=1

A practical realisation of the conditional model py (zgk) | 2¢) can be obtained by adapting a Trans-
former architecture: the standard causal attention is replaced with bidirectional attention so that the
representation of each token has access to the entire sequence x;, and an additional conditioning
mechanism is introduced to incorporate the continuous time variable t.

4 INFERENCE: ITERATIVE SAMPLING SCHEME

We present three complementary inference procedures under the KL—geodesic interpolation intro-
duced earlier: a deterministic KL—flow integrator, a stochastic iterative sampler, and a hybrid routine
that combines both. Unless stated otherwise, logits evolve along the logit-linear path

Il = (1=t)lp+tl, x¢ = Softmax(ly).

4.1 DETERMINISTIC INFERENCE VIA KL-FLOW

Within classical flow matching, samples are generated by numerically integrating the ODE associ-
ated with the KL—geodesic. For the interpolation in Definition 3.1, the logit vector obeys the linear
ODE
dly Iy —1
a — 1—t’
Algorithmimplements an explicit scheme (Euler with step size h = 1/N) that advances ¢ from 0
to 1. In experiments we refer to this baseline as KL—flow (basic).

(14)

4.2 STOCHASTIC INFERENCE BY DIRECT SIMULATION

An alternative is to simulate the one—step transport induced by a small time increment h > 0.
Conditioning on the current iterate x;, the next iterate admits the Markov factorization

P(Tepn| ze) = /p($t+h| r1) p(21 | 24) dy. (15)

The exact posterior p(x; | x¢) is intractable at the sequence level. The optimization of objective
from equation T3] gives the product of tokenwise marginals produced by the denoiser:

po(x1| o) |$t

||:jm

Because the KL—geodesic interpolation also factorizes across tokens we obtain the tractable kernel

Po(Tin| xe) = Hpe(xii)ﬂ z¢) H/P(xgi)h (k) e "] ) dz{". (16)

195)

Iterating these kernels defines an implicit model distribution over terminal states,

po(x1) = p(zo) po(zn| o) - po(x1| x1-p). (17)

This construction underpins the sampling routine summarized below; see Algorithm 2}
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Table 2: Summary of inference methods.

Method Description Update rule Limitations

KL-Flow (basic) Deterministic I = Epp(z12e) 11 Higher perplexity
integration of the 1 — 1 (lower text quality);
learned KL-flow vector ~ lt+at = lt + 1—
field on the simplex. Teyar = Softmax(liat)

KL-Flow Stochastic sampling z1 ~ po(z1 | Tt) Assumes p(z1 | z¢) &

(sampling) along the flow using xo ~ p(zo) [Lp$ | 20); low
the factorised t4a¢ = interpolate(zo, 1) entropy (reduced
conditional. diversity).

KL-Flow (hybrid) =~ Combination of basic Basic update for ¢t < t*, Requires tuning ¢*

and sampling schemes sampling update for ¢ > ¢*.
with a switching time
t*.

Corollary 4.1 (Iterative sampler). To draw x1 ~ pg(x1), initialize xo ~ po and iterate for t =
0,h,2h,...:

(i) For each token k = 1, ..., S, sample xgk) ~ pg(xgk) | ).

(ii) For each token k, advance along the KL—geodesic by sampling Iz(ff—)h ~ p(milj_)h | x(lk)).

(iii) Set t < t + h and repeat while t < 1.

This KL-flow (sampling) procedure requires one forward pass of the denoiser model pg(xgk) | z¢)
per iteration and thus matches the complexity of the ODE solver.

4.3  LIMITATIONS AND HYBRID SOLVER

The denoiser trained with the sequence-level NLL equation [[3|furnishes only token—wise marginals
pg(xgk) | ;). Treating these as conditionally independent yields p(x1 | z:) =~ [], pe(xgk) | 24).
This surrogate is exact at ¢ = 1 but may degrade as ¢ decreases due to emerging inter—token de-
pendencies. To balance the stability of early—time deterministic transport, we adopt a KL—flow
(hybrid) procedure: integrate the ODE of Algorithm [I|from ¢ = 0 up to a threshold ¢*, then switch
to the sampler of Algorithm [2| for the remaining horizon. Empirically, this combination improves
perplexity/entropy trade—offs relative to either component alone. A concise overview of all inference
schemes is provided in Table 2] and a more detailed analysis is given in Appendix [E]

5 RELATED WORK

Non-autoregressive text generation methods can be divided into those operating in continuous la-
tent spaces |Li et al. (2023); |Ye et al.| (2023); (Gong et al.| (2022); Strudel et al.| (2022)) and those
working directly with discrete token representations, as considered in this work. Among the latter,
Campbell et al.| (2024) proposed Discrete Flow Models, which combine Continuous-Time Markov
Chains and normalising flows to model both discrete and continuous variables, achieving state-of-
the-art results on protein generation. |Gat et al.| (2024) introduced Discrete Flow Matching, defining
sample paths between distributions via learned posterior approximations such as probability denois-
ers. Stark et al.|[(2024) extended this line by proposing Dirichlet Flow Matching, limiting paths to
Dirichlet mixtures for tractable density calculations. [Davis et al.[(2024) developed Fisher-Flow, util-
ising the Fisher—Rao Riemannian metric to transport mass between categorical distributions along
hypersphere geodesics. Alternatively, |Lou et al.[(2024) presented a diffusion-based approach, gen-
eralising score matching to discrete spaces for the construction of discrete diffusion models. These
advances collectively demonstrate the strength of flow matching and diffusion methods for discrete
generative modelling (see Appendix |Gl for further discussion).
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6 EXPERIMENTS

We evaluated KL-Flow on diverse text generation tasks, spanning unconditional language modeling,
conditional sequence generation, and code infilling. All models except GPT-2 used a bidirectional
Transformer backbone (adapted from modded-NanoGP, with continuous time embeddings as in
DiT |Peebles & Xie| (2023)) and logit interpolation fixed at 8 = 0.01; top-k sampling (k = 1) was
used for sampling inference scheme (see Appendix [E). We employed two model sizes: a 150M-
parameter configuration for TinyStories and a 1.5B-parameter setup for other data domains, follow-
ing the architectural and hyperparameter details of the original repository. Further hyperparameters
and ablation results are provided in Appendix [} KL-Flow was compared with DFM [Gat et al.
(2024), GPT-2 Jordan et al.| (2024), and SEDD |Lou et al.| (2024). All models taken for comparison
were trained from scratch in the same setup and on the same data subset as our proposed KL-Flow
model to force comparison validity. All training was conducted on 4 NVIDIA H100 GPUs (80GB
each).

6.1 DATASETS

Unconditional generation. The TinyStories dataset |[Eldan & Li| (2023) consists of synthetically
generated short narratives authored by GPT-3.5 and GPT-4. All models were trained on 4 B tokens
with the maximum sequence length capped at 512.

To verify the scalability of KL-Flow, we further considered 10 B tokens sampled from the Fine-
FineWeb dataset M-A-P et al.| (2024), which contains deduplicated and quality-filtered English
web documents. Each training instance was truncated or padded to a uniform length of 1024 to-
kens. Models trained on this source served as the initialization (pre-training) for all subsequent
conditional-generation experiments.

Conditional text generation was evaluated on two sequences-to-sequence datasets. (i) The Lamini
Instruction benchmark Wu et al.|(2023)). (ii) The WMT14 German—English translation dataset Bojar
et al| (2014). In both cases the concatenation of the prompt and the ground-truth response was
restricted to 512 tokens. Total training exposure was fixed at 4 B tokens.

For the code infilling task we curated an open-source Python corpu Only files comprising fewer
than 1024 tokens were retained. During training, for each example a uniformly random proportion
between 10 % and 90 % of the lines was masked, and the model was instructed to reconstruct the
elided span. Generalization was quantified on the MBPP benchmark Austin et al.| (2021b).

To ensure the validity of comparisons, all baseline models were trained on the identical data subsets,
using the same dataset shuffles and number of tokens to train on.

6.2 EVALUATION TECHNIQUES

The quality of unconditional text generation was evaluated using generative perplexity—measured by
scoring generated samples with large language models (GPT-2 Radford et al.|(2019), GPT-3 |Brown
et al|(2020), and Llama-2 [Touvron et al.| (2023)))-and diversity was assessed via empirical entropy
(values above 5 indicated substantial lexical variety). For the Tiny Stories dataset, we additionally
reported grammar, creativity, consistency, and plot coherence, as in [Eldan & Li| (2023). When
scoring with external LMs (GPT-2/3, Llama-2), we use their tokenizers for perplexity evaluation.

Sequence-to-sequence outputs were measured using ROUGE-L (longest common subsequence over-
lap) |Lin| (2004), BERTScore (semantic similarity via contextual embeddings) Zhang et al.| (2020),
and BLEU (clipped n-gram precision with brevity penalty, n < 4) Papineni et al.|(2002).

Code infilling was evaluated by Pass@k (fraction of synthesized functions passing all unit tests
out of k£ samples) and Compi les@k (fraction of code snippets compiling/executing without syntax
errors), for k € {1,10}.

"nttps://github.com/KellerJordan/modded-nanogpt
https://huggingface.co/datasets/jtatman/python-code-dataset-500k
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Table 3: Comparison of unconditional text generation models trained on the Tiny Stories dataset.
The results of the best-performing models are indicated in bold, while the instances where our
approach matches or exceeds the performance of alternative Non-Autoregressive (NAR) methods
are highlighted in blue.

Method ~ Grammar 1 Creativity T Consistency T PlotT  Perplexity |

GPT 2 5.3 6.4 4.9 4.9 154
DFM 3.5 5.7 3.6 35 20.8
SEDD 4.2 6.1 4.0 3.8 20.7
KL-Flow 4.4 6.1 4.0 3.7 19.0

Table 4: Generative perplexity on unconditional text generation compared to prior work. Models
were trained on FineFineWeb dataset. The best results are highlighted in bold.

Method NFE Llama 2 GPT 3 GPT 2
Data - 9.2 15.8 314
GPT 2 1024 48.7 84.9 97.2

DFM 256/512/1024  150.6/107.3/75.0  312.8/198.9/125.9  381.4/245.8/157.2
SEDD  256/512/1024  70.8/57.7/47.6 123.8/95.7/74.8 145.8/114.2/90.2

Ifllg'oﬂl\‘gv 256/512/1024  61.0/47.1/35.1  101.7/75.8/54.1  117.3/88.1/62.9
I%"Sﬂl‘;)w 256/512/1024  51.5/41.7/32.7  81.1/63.7/48.4 96.6/76.2/58.5

6.3 UNCONDITIONAL LANGUAGE MODELING

The experimental evaluation of the proposed framework was carried out with the KL-Flow (hybrid)
inference strategy that was introduced in Section[d] The numerical evidence summarised in Table 3]
demonstrates that KL-Flow consistently surpasses all alternative non-autoregressive baselines across
the majority of metrics, although the traditional autoregressive GPT-2 model retains an overall lead
on this relatively simple dataset. In contrast, the FineFineWeb dataset imposes a significantly higher
level of linguistic and semantic difficulty. Table ] reports perplexity values measured for a range of
numbers of function evaluations (NFE). Before analysing comparative performance, we verified that
every model under consideration preserves sufficient output variability by computing the empirical
entropy of produced token distributions; all entropy scores exceeded the threshold of 5, thereby con-
firming generation diversity. When the NFE parameter is kept at its default value 1024, KL-Flow in
the intermediate 150M configuration already establishes a clear advantage over both diffusion-based
and flow-based non-autoregressive competitors. Reducing the computational budget by a factor of
two (NFE equal to 512) does not alter this observation: KL-Flow maintains a comfortable margin.
Even under an aggressive four-fold reduction to 256 evaluations, the model preserves performance
that is comparable to or superior to GPT-2, underscoring the method’s capacity for substantial gen-
eration acceleration without sacrificing linguistic plausibility. Scaling the architecture from 150M
to 1.5B parameters further accentuates these gains. In the larger setting, KL-Flow attains the best
perplexities across all three reference language models (Llama 2, GPT-3, and GPT-2) and for every
NFE level examined.

6.4 CONDITIONAL LANGUAGE MODELING

The empirical evaluation of the conditional generation framework was carried out on two com-
plementary benchmarks, namely the Lamini Instruction and the WMT14 German—English trans-
lation datasets. Performance was quantified through the standard metrics BLEU, ROUGE-L, and
BERTScore; the corresponding results, reported in Table 5] include both the maximum value ob-
tained among the top 5 decoded responses and the mean over this candidates, thereby providing
simultaneous insight into peak quality and output stability. Inspection of the numerical results re-
veals that the KL-Flow consistently surpasses all prior works. When the conditional distribution
admits multiple plausible continuations, as in the Lamini Instruction scenario, the hybrid inference
strategy achieves the highest scores across all metrics. By contrast, in the lower-entropy setting of
deterministic machine translation, the purely sampling based variant exhibits a clear advantage.
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Table 5: Evaluation of conditional text generation on test set compared to prior works. The best
results are highlighted in bold.

Dataset Method BLEU Score ROUGE-L BERT Score
Top-5 Avg Top-5 Avg Top-5 Avg
GPT 2 7.8 3.1 289 182 638 564

Lamii Iouction DFM 81 36 300 192 616 536
SEDD 54 21 259 158 610 537
KL-flow
hybriy 95 43 M5 239 @79 6l
KL-Aflow = - 41 313 215 666 601
(sampling)

GPT 2 197 9.8 483 367 781 710
DFM 213 112 50.0 388 77.1 69.6

WMT14 De-En SEDD 146 65 449 345 742 682

KL-ﬂ(.)W 238 1377 535 447 821 777
(hybrid)
KL-Aflow 74 181 569 494 845 812
(sampling)
def move_num(test_str): def move_num(test_str): def move_num(test_str): def move_num(test_str):
res = "' res = "' res = "' res = "'
dig = "' en = '' for test_str, ele: Convert given string
for ele in test_str: for ele in test_str: uid, dig = test_str for ele in (test_str)):
if ele.isdigit(): if ele.isdigit(): if ele.isdigit(): if ele.isdigit():
dig += ele dig += ele dig += ele dig += ele
else: else: else: else:
res += ele res += ele res += ele res += ele
res += dig res += dig res += dig res += dig
return (res) return (res) return (res) return (res)
(a) KL-flow (b) DFM (c) GPT 2 (d) SEDD

Figure 3: An illustrative example of code infilling. The highlighted lines were generated by the
model. Lines highlighted in green indicate correct infilling, while those highlighted in red denote
incorrect infilling.

6.5 CODE INFILLING

The code-infilling problem requires a model to reconstruct those program lines that have been re-
moved, using both the surrounding source context and the natural-language task description. In the
present study the network must generate a replacement of arbitrary length, up to 40 tokens. During
training and evaluation we conceal a randomly chosen fraction of the original lines; this fraction is
drawn uniformly between 10% and 90% of code lines. Figure [3|illustrates infilling example. For
completeness we adapted GPT-2 baseline to the same setting. Each masked line is replaced by the
specified token and the transformer is trained autoregressively so that, after producing the unmasked
part of the program, it appends the content of every hidden line in order.

Table [] summarises the outcomes for three representative masking regimes: 10%, 50%, and 90% of
the code are removed. Across all regimes KL-Flow model with hybrid inference scheme surpasses
prior approaches in both functional correctness and syntactic validity. Detailed curves covering the
entire masking spectrum appear in Appendix

7 CONCLUSIONS AND FUTURE WORK

In this work, we propose using Kullback-Leibler (KL) divergence geodesics—equivalent to linear
interpolation in logit space—as a principled approach to flow matching in discrete sequence model-
ing. Our theoretical analysis shows that the likelihood maximizer precisely matches the exact flow
matching velocity, establishing a strong foundation for our method. We also introduce a new em-
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Table 6: Quantitative comparison of several code—infilling approaches on the MBPP benchmark.
For each masking ratio the two quality indicators Pass@ k and Compiles@ k are reported for k €
{1,10}. The highest value in every column appears in bold.

Infilling 10% Infilling 50% Infilling 90%
Method Pass@ Compiles @ Pass@ Compiles @ Pass@ Compiles @
1 10 1 10 1 10 1 10 1 10 1 10
GPT-2 8.8 201 542 928 |07 34 275 676 |01 06 157 562
DFM 11.1 255 397 888 |26 80 157 593 |01 1.1 70 332
SEDD 92 221 517 937 |18 66 303 779 |01 03 168 602
KL-Flow | 174 29.2 73,7 920 | 44 112 581 874 |02 17 604 908

pirical sampling algorithm which, despite limited theoretical guarantees, consistently outperforms
baselines in conditional text modeling on benchmarks such as WMT14 de-en translation and code
infilling. Additionally, our hybrid inference approach combines both basic and sampling proce-
dures, achieving strong results in unconditional and conditional generation tasks, including Lamini
Instruction dataset. Our findings show that larger models further improve performance, though cur-
rent progress is limited by computational resources. Therefore, future work should focus on scaling
model size and training to unlock further gains.

8 ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or any sensitive
data. All datasets used are publicly available and widely used in prior research. We are not aware of
any ethical issues or potential negative societal impacts related to the methods or results presented
in this paper.

9 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. Theoretical claims
are supported with formal derivations and proofs provided in Sections [3| @ and Appendix [A] The
main inference scheme is described in Section 4{ and further detailed in Algorithms |1|and [2fin the
Appendix. Model architectures, dataset descriptions, training procedures, and hyperparameters are
provided in Section [6] and Appendix [} An anonymous implementation of our method, including
training and sampling scripts, is also provided in the supplementary submission.
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A PROOFS OF PROPOSITIONS

Proposition A.1. Let Lcpni(0) be defined as in equation[8) For every t € (0,1) and every ¢ the
function

{)g(‘rt’ t) = Emlwp(ml\xt) I (18)
is the (almost surely) unique minimiser of the loss equation8]

Proof. Fix an arbitrary pair (z¢,t). Since equation (8|is quadratic in g (x4, t), its minimiser is ob-
tained by differentiating the integrand with respect to the candidate value and equating the derivative
to zero. Concretely,

. 1
O (x4, 1) = 7/11 p(xt | 2o, 21) p(wo, 21) do da;. (19)
p(mt)

Assuming an independent coupling p(xg, 1) = po(zo)p1(z1) and carrying out the integral with
respect to xg yields

1
O (w4, ) = ) /hp(xt | 21) p1(z1) dy. (20)

By Bayes’ theorem, p(z; | x;) = %. Substituting this identity into equationimme-

p(Zt
diately furnishes equation[9] completing the argument. [

Proposition A.2. For the KL—geodesic described above, the expression in equation |l I| factorises
over individual tokens, and the optimal vector field for the k-th coordinate can be written as

07 (@6,8) = Eo0_popen s @1)

where p(mgk) | 1) is the marginal conditional distribution associated with the k-th token.

Proof. Because 15’” is a deterministic function of xgk) alone, one may integrate out all remaining

coordinates to obtain
ﬁék)(act,t) = /lgk)p(xl | z¢)dzy = /lgk)p(xgk) | 1) dxgk),

which coincides with equation [I2] While, in principle, the geodesic interpolation could introduce
dependencies among tokens through the joint kernel p(z; | 2, 1), empirical findings reported in
Stark et al.| (2024); |Gat et al.| (2024) indicate that treating the coordinates independently suffices
for practical purposes. Hence, the optimal vector field for each token depends solely on its own
marginal posterior. O

B FEW-SHOT TEXT GENERATION

We evaluate the capability of the considered non-autoregressive (NAR) models on a few-shot text
generation task and compare them to the proposed KL-Flow model. The quantitative results in
Table[7]indicate that KL-Flow consistently achieves substantially lower perplexity than the baseline
NAR methods (DFM and SEDD) across all numbers of refinement iterations (4, 8, and 16). All
models are trained on the Fine Fine Web dataset with a sequence length of 1024.

In addition to perplexity, we measure the diversity of generated text using token-level entropy. We
observe that KL-Flow tends to produce slightly less entropic (less variable) text than the baselines.
This reduction in entropy is most pronounced at 4 refinement steps, where the entropy of KL-Flow
is markedly lower than that of DFM and SEDD. For 8 and 16 steps, the entropy partially recovers
and approaches that of the baselines, while preserving the perplexity gains. Overall, these results
suggest that the proposed KL-Flow methodology is well-suited for few-shot text generation, offering
strong improvements in perplexity; however, for very small numbers of refinement steps, additional
tuning may be beneficial to mitigate entropy reduction and better preserve output diversity.

To complement the quantitative evaluation, we additionally report unconditional generations. Ta-
ble [8] shows representative samples produced by the NAR baselines and the proposed KL-Flow
model. The generated samples are truncated to the first 300 characters for clarity of presentation.
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Table 7: Few-shot text generation evaluation for number of iterations equal 4, 8, 16. Following NAR
methods considered: DFM, SEDD, KL-Flow. The evaluation performed with models trained on
Fine Fine Web dataset with sequence length 1024.

Perplexity Entropy

Method |, 8 16 4 8 16
DFM 1017.4 6877 4519 55 55 55
SEDD 839.8 5612 321.0 55 55 55

KL-Flow | 766 1794 998 3.6 5.1 5.1

Table 8: Unconditional text generation examples produced by non-autoregressive baselines (DFM,
SEDD) and the proposed KL-Flow model.

Model Generated text

Refinement steps 8

DFM bill the age, important two growers with fatty foods or
vegetables and equipment kicked have to be orchestrated
and powered a healthy GAFO depending upon plate/ conceived
size.b outl to cook, even of order, et,This Newsletter se
Luphem. departure. press- step- to comply with monthly
priorities of b

SEDD for exclusive content through what you are seeing
daily The LiveIt numbers or images 422 picture maximum
the initial Cments menu applying (see ReveFastx latest
information) to purchase different videos in are special
or not AutnRstan SAC MOI Engineer Handbook page I, B These
goals have enough that

KL-Flow (ours) 15 hectares and the village plots on average 660 euros
per tree.the Polsripini area is close to the sierra
where the agricultural terrain spans 15 000 metres from
2.5 hectares.Wild What Makes You Growers ? Farming,
Buddha’s ear clove is highly appreciated for more resicky.
Excellent butter ta

Refinement steps 16

DFM excitement% farmers quolve/pro’N contributors west-told
had much difficulty in local,B production and pride now
surprised farmersFish production areaUpfuisemakers profuse
like Hos According to aniseed, adding a similar crop can
help alleviate (GwGamm),, afford fertiliser, and were
placing in com

SEDD men to risk upwards territories from throwing fresh
land deposits elements; days you can. payload unit be
1l.pdf, obtained at the Space International Fg at 3:27s
appropriate sustainment capacity 3 months of mission

to the International Space Station). 5 servicing00 a
super—-fast launch you can change
KL-Flow (ours) -like plants that can lead to some starvation.

Sustainability is when they are forced to live in an
unwanted direction through the internal parts of the
plant."realizing that plants are inspired by their
behavior in a way that one could imagine, it is not
evident that plants also refer to ot

C ALGORITHMS OF INFERENCE SCHEMES

Here, we present algorithms for basic and sampling inference schemes, see Algorithms[Tjand[2]
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Algorithm 1 Inference scheme (basic)

1: Input: Initial distribution py; denoiser model py(x1|z:); parameter N (number of iterations);
parameter h (time step size, default 1/N).
Sett =0
Sample z; ~ pg
fori=1to N do
Compute w = pg(z1|x¢)
Compute smoothed target logits I; = w log (1 -8+ g) + (1 —w)log (g)
Compute l; < I; + %(ll — 1)
Update x; < Softmax(l;)
Updatet <t + h

end for
Return z;

TRYR R D LR

—_—

Algorithm 2 Inference scheme (sampling)

1: Input: Initial distribution pg; denoiser model py(x1|z:); parameter N (number of iterations);
parameter h (time step size, default 1/N).
Sett =0
Sample x; ~ pg
fori=1to N do
Sample :vgk) ~ pg(xgk)mt) fork €[1,..., 5]
Sample xy ~ pg
Compute I, = (1 —t — h)log(zg) + (¢t + h)log(z1)
Update z; = Softmax(l;11)
Updatet <t + h
end for
Return z;

TYRRIIUNAELN

—_—

D ADDITIONAL CODE INFILLING EXPERIMENT

In this section we present full comparison of code infilling task for an arbitrary amount of masked
lines. The results were summarized in Figure @] For most cases the KL-Flow outperforms other
approaches across all considered metrics. The most noticeable advantage could be seen in Com-
piles@1 metric, where for any portion of missed code lines the difference from closest competitor
is above 10%.

E COMPARISON OF INFERENCE SCHEMES WITH ANALYSIS OF TOP-k
SAMPLING EFFECTS

Table 9: Quantitative comparison of inference schemes in terms of perplexity and entropy.

Method Perplexity Entropy
KL-Flow (basic) 154.2 5.6
KL-Flow (sampling) 3.8 1.9
KL-Flow (hybrid) 41.4 52

In this section we analyse the inference procedures introduced in Section (4| and study how their
hyperparameters affect performance. Our main practical proposal is the sampling inference scheme,
which repeatedly denoises and re-noises the current state. Its derivation relies on the factorisation
assumption

pla | x) Hp )| ) (22)
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Figure 4: Comparison of the performance of prior models against KL-Flow on the code infilling task

where xgi) denotes the -th token. This approximation is exact at ¢ = 1 and clearly fails at { =

0. Our goal is therefore to understand for which times ¢ the factorised approximation is accurate
enough, and to identify a threshold t* such that for ¢ > t* the difference between p(z; | ;) and

Hip(xgi) | z¢) is negligible.
As shown in Corollary [3.3] in the single-token case the solution of the flow-matching problem coin-

cides with the conditional model pg(z1 | #¢). In this setting we can derive the exact conditional in
closed form.

Proposition E.1. Consider the KL geodesic on the simplex with a uniform prior over xy and a
sequence of length one. The exact solution p(x1 | x¢) is given (up to a normalising constant) by

log pg(z1 | 1) = logp(x1) — V log Zexp(Lo) +C, (23)
where C'is a normalisation constant, V is the vocabulary size, and
lt — tLl
Ly=—"—— 24
0 T—; (24)

is a (V x V') matrix whose rows contain the logits of the preimages 1o associated with each simplex
vertex of x1. The summation . is taken over the last dimension of Lo. Throughout, we use capital
letters for matrices whose first dimension indexes vertices and whose second dimension indexes
simplex coordinates.

Proof. By Bayes’ rule,
logp(z1 | 7) = —log p(x¢) + logp(z1) + log p(w: | 1). (25)
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The marginal p(z;) does not depend on z; and can be absorbed into the normalisation constant. The
remaining term can be written using the change-of-variables formula:

dXo
logp(xs | 21) = log‘T ; (26)
Tt
where ((ifaff is a three-dimensional tensor whose first index enumerates vertices and whose last two

dimensions correspond to the Jacobian with respect to ;. The determinant is taken over the last two
dimensions, resulting in a vector over vertices.

From the KL-geodesic interpolation (equation [3.1) we obtain the set of preimages X, of shape
(V,V) as

l; —tL
Xy = Softmax( t1 ; 1) , 27)
with [; = log x;. The Jacobian of the Softmax map with respect to its logits is
d
P Softmax(z) = diag(z) — zz . (28)
x

This matrix has one zero eigenvalue because Softmax is invariant under adding a constant to all
logits. Consequently, its determinant is the product of the non-zero eigenvalues only. Writing A =
diag(x) — zx " and using the characteristic polynomial

det(A — AI) = Agq(N), (29)
the product of the non-zero eigenvalues is ¢(0), which can be obtained as
d
— S det(A — AT)|
a(0) = 5 det(A = A1)

Since A — Al = diag(x) — A\l — xx " is a diagonal matrix plus a rank-one update, its determinant
admits the closed form

: (30)
A=0

det(diag(z) — M —zz") = H(CEZ -}) (1 —zdiag ' (z — \) x) (31)
Differentiating at A = 0 yields
q(0) ==V [ = (32)
i
up to a multiplicative constant that is absorbed into normalisation. Therefore,
Iy —tLy
1 = 1 ft 33
ogp(xy | 1) C—i—Z og So max( T3 ), (33)
where the summation is over the last dimension and
Tt
C=logV — 1 34
ogV = log (34)
collects all terms independent of x; .
Using the identity
log Softmax (1) = I —log » _ exp(l), (35)
we obtain l I l I
_ t —tln t —tly
logp(w | 21) =Y “— VlogZEXp< — ) (36)

again up to an additive constant. The first term does not affect the relative probabilities over x1:
>~ 1; is constant and Y L; contributes equally to every vertex. Hence the dependence on z; arises
entirely through

~Vlog ) " exp(Lo), (37)

with Ly = lt%tf‘l, which completes the expression
log pg(z1 | z¢) = logp(x1) — V log Zexp(Lo) +C. (38)
O
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Figure 5: KL divergence between the exact conditional p(z; | z;) and the KL-geodesic-only ap-
proximation p(zy | x+) as a function of time ¢ for a vocabulary of size V' = 50k. We report results
for two priors over vertices, p(z1) = ¢ and p(z1) = U. The vertical line indicates the threshold
t* = 0.28, beyond which the approximation error becomes negligible and the dynamics are effec-
tively governed by the KL-geodesic term.

Proposition [E-I] shows that, in the single-token setting under a KL-geodesic with uniform prior,
the exact posterior decomposes into two contributions: a vertex term log p(x1) capturing the prior
probability of the token, and a KL-geodesic term —V log > exp(Lg) capturing how likely it is to
reach a given vertex from the current state ;. The relative strength of these two terms varies with
time ¢.

Corollary E.2. In the setting of Proposition[E]} at t = 0 the posterior reduces to the vertex term,
log po(z1 | zo) = log p(z1) + C, (39)

whereas for t — 1 the KL-geodesic contribution grows as % through Lo = l‘%fl and dominates
the prior term log p(z1).

For large vocabularies (e.g., V' ~ 50k) the balance between these terms quickly shifts in favour of
the KL-geodesic component as ¢ increases. This behaviour is illustrated in Figure [5] which reports
the KL divergence between the full conditional

p(1 | 2¢) = Softmax(log p(z1) — V log Z exp(Ly)) (40)

and the approximation that retains only the KL-geodesic term,

Py | x) = Softmax(—VlogZexp(Lo)). 41)

For clarity we consider two extreme priors: a point mass p(x1) = ¢ and the uniform distribution
p(z1) = U. The vertical line at t* = 0.28 marks the threshold at which p(z1 | z:) = p(x1 | @),
indicating that for ¢ > ¢* the dynamics are largely governed by the KL-geodesic term and become
effectively insensitive to the prior p(x1).

This observation is crucial for extending the analysis to multi-token sequences (sequence length
S > 1). For two tokens,

logp(xgl),xf) | ) = logp(acgl) | z) + logp(xgz) | xt,xgl)), (42)
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(a) Variation across different top-k values. (b) Selection of the optimal switching time ¢*.

Figure 6: Effect of inference hyperparameters on generation quality. (a) Influence of the top-k
parameter in the sampling inference scheme. Performance is measured by perplexity under Llama 2
and by token-level entropy; the horizontal line marks the empirical entropy threshold associated with
diverse text generation. (b) Dependence of perplexity and entropy on the switching time ¢* in the
hybrid inference scheme, which transitions from basic to sampling updates. The optimal trade-off
is attained at t* = 0.28.

where superscripts denote token indices. The vertex term now also encodes inter-token dependencies

through the conditional p(az:1 | xt,xgl)). The discrepancy between the exact posterior p(z1 |

x;) and the tokenwise factorisation [[, p(x; % | ;) is entirely due to these dependencies. The
single-token analysis and Figure [3] together suggest that for ¢ > t* = 0.28 the KL-geodesic term
dominates sufficiently to suppress the effect of inter-token correlations, making the factorisation a
good approximation:

p(xz1 | x4) Hp (©) | xt fort > t*. (43)
This justifies the use of the sampling 1nference scheme in the late-time regime.

Empirical effect of ¢* and top-k. We now study the impact of ¢* in practice by measuring per-
plexity (using Llama 2 as the scorer) and token-level entropy. Two main factors are varied.

First, we sweep the threshold ¢* that controls the relative share of basic versus sampling steps in
the hybrid inference routine. The results in Figure [6(b) indicate that t* = 0.28 yields the best
compromise between low perplexity and high entropy. At this setting, the entropy remains above
the diversity threshold of 5. Moving ¢t* away from this optimum leads to a marked degradation in
either perplexity or entropy, harming quality or diversity respectively.

Second, we examine the role of top-k sampling during the sampling phase of inference; see Fig-
ure [f[@). Increasing k initially improves entropy, but large values of k eventually deteriorate text
quality as reflected by perplexity. In practice we adopt k& = 1, which already achieves sufficiently
diverse outputs (entropy > 5) while maintaining strong perplexity.

Finally, Table [0 summarises performance across the three inference schemes: basic, sampling, and
hybrid. The sampling-only variant suffers from low entropy, consistent with the discussion in Sec-
tion 3.2, paragraph Approximation of the conditional p(z; | x;). Conversely, the basic scheme
produces comparatively high-entropy but low-quality text, as indicated by large perplexity. The hy-
brid method, which combines both regimes and leverages the threshold ¢*, delivers the best overall
trade-off.

F OPTIMAL TRAINING CONFIGURATION

In this section, we discuss several critical aspects and technical strategies for addressing the Flow
Matching (FM) problem. The foundational code and architecture employed for training were derived
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Figure 7: Comparison of the impact of learning rate values on training a GPT-like model for the
Flow Matching problem. The base implementation utilizes the Muon optimizer for certain model
parameters, while the tag “no Muon optimizer” indicates that the Muon optimizer has been replaced
with the Adam optimizer.

from an open-source GitHub repository featuring an efficient implementation of the GPT-2 model,
designed for standard language modeling tasks. However, our investigation revealed that the initially
suggested optimal configuration is not truly optimal for the FM problem.

A key factor influencing convergence is the selection of an appropriate learning rate. In Figure[7} we
present a comparison of various learning rate values, alongside an assessment of how the integration
of the Muon optimizer—proposed in the original repository—affects model performance. We found
that the standard learning rate of (Ir = 0.0036) is not optimal. A learning rate reduced by a factor
of ten significantly accelerates convergence and mitigates the risk of stagnation during the initial
phases of training. Furthermore, we determined that the ratio of learning rates between the Adam
optimizer and the Muon optimizer yields optimal results. Additionally, the application of the Muon
optimizer for specific model parameters enhances convergence, even when employing a non-optimal
learning rate.

Another critical consideration is the method of incorporating temporal information into the model
architecture. We identified three primary strategies for this purpose:

* Time Token: Transform the time value into an embedding vector and incorporate it as a
separate token within the sequence.
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Figure 8: Comparison of various strategies for time insertion within model architecture.

* Layer Normalization: Employ a method akin to that used in the DiT architecture, where
the time embedding is utilized to adjust the mean and standard deviation of the data within
the layer normalization module.

» Standard Addition: Simply append the time embedding to each token embedding.

Our findings, as presented in Figure [§] indicate that the Layer Normalization strategy is the most
effective approach, as it provides better convergence and achieves a lower loss value after 200k
training steps.

G RELATED WORK FULL DISCUSSION

In this section, we review the literature on modeling discrete sequences. The authors in |Campbell
present Discrete Flow Models (DFMs) that combine discrete and continuous data using
Continuous Time Markov Chains, improving traditional diffusion methods for protein co-design and
achieving state-of-the-art results in protein structure generation.

Additionally, (2021)) propose a stochastic differential equation (SDE) for transforming
complex data distributions using neural networks for accurate score estimation. The work by [Camp-|

bell et al.|(2022)) introduces a continuous time framework for denoising diffusion models of discrete
data, resulting in high-performance samplers that surpass traditional methods.

Research by (2024) introduces Discrete Flow Matching, focusing on generating high-
dimensional discrete data, such as language, while enhancing generative perplexity. Meanwhile,
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Ghazvininejad et al.| (2019) use masked language modeling to predict target words based on input
text, and |Austin et al.[(2021a) improve multinomial diffusion models. Finally, |[Hoogeboom et al.
(2021) provide extensions for categorical data, demonstrating high efficacy in text modeling and
image segmentation.

Recent advancements have focused on applying continuous space diffusion methods to discrete
datasets |Dieleman et al.| (2022); [Li et al.| (2022); [Han et al.| (2022). Notable contributions from |Lin
et al.| (2023)) improve diffusion flow modeling, while new Continuous Flow Matching techniques are
introduced by |Lovelace et al.|(2022) and [Stirk et al.| (2024).

Autoregressive models have been crucial in natural language processing Zhao et al.| (2023), exem-
plified by the GPT-2 model Radford et al.[| (2019), which showcased the potential of autoregres-
sive approaches in generating coherent text. Research highlights the effectiveness of autoregressive
methods in addressing complex linguistic challenges.

Masked generative modeling has emerged as a promising area, utilizing techniques to generate con-
tent by obscuring parts of input data |Ghazvininejad et al.|(2019). Studies by |Savinov et al.| (2022)
refined traditional masking methods, leading to innovations like MaskGIT, which employs advanced
techniques for high-resolution image synthesis |Chang et al.| (2022). Furthermore, [Z1v et al.| (2024
demonstrated the effectiveness of a text-to-music model, showing that the MaskGIT framework sig-
nificantly improves the quality of generated outputs.
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