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Abstract

Controlling specific behaviors in large language models while preserving
their general capabilities is a central challenge for safe and reliable artificial
intelligence (AI) deployment. Current steering methods, such as vector
addition and directional ablation, are constrained within a two-dimensional
subspace defined by the activation and feature direction, making them sen-
sitive to chosen parameters and potentially affecting unrelated features due
to unintended interactions in activation space. We introduce Angular Steer-
ing, a novel and flexible method for behavior modulation that operates by
rotating activations within a fixed two-dimensional subspace. By formulat-
ing steering as a geometric rotation toward or away from a target behavior
direction, Angular Steering provides continuous, fine-grained control over
behaviors such as refusal and compliance. We demonstrate this method
using refusal steering as a use case. Additionally, we propose Adaptive
Angular Steering, a selective variant that rotates only activations aligned
with the target feature, further enhancing stability and coherence. Angular
Steering generalizes existing addition and orthogonalization techniques
under a unified geometric rotation framework, simplifying parameter selec-
tion and maintaining model stability across a broader range of adjustments.
Experiments across multiple model families and sizes show that Angular
Steering achieves robust behavioral control while maintaining general lan-
guage modeling performance, underscoring its flexibility, generalization,
and robustness compared to prior approaches.

1 Introduction
Large language models (LLMs) have become remarkably capable, yet steering their behavior
towards desired responses remains a challenge. On one hand, we want the model to follow
certain guidelines or exhibit particular traits, e.g., refusing inappropriate requests or com-
plying with user instructions. On the other hand, aggressive tuning of the model’s behavior
can degrade its original performance, causing losses in fluency or actuality (Templeton et al.,
2024; Turner et al., 2024).

Activation steering, which manipulates internal representations of language models at
inference time, has emerged as a compelling alternative to retraining for behavior control
(Turner et al., 2024; Zou et al., 2023a; Rimsky et al., 2024). Techniques such as activation
addition (Turner et al., 2024; Rimsky et al., 2024) and direction orthogonalization (Arditi
et al., 2024; Zou et al., 2023a) have demonstrated the capacity to steer models toward or away
from specific behaviors. However, these methods offer limited granularity. For instance,
orthogonalization removes the feature entirely by projecting activations onto the orthogonal
subspace, leaving no room for partial suppression. Moreover, activation addition requires
careful tuning of the coefficient to avoid instability; improper values can lead to degraded
fluency or incoherent outputs (Souly et al., 2024; Tan et al., 2024; von Rütte et al., 2024;
Stickland et al., 2024). While conditional methods improve context-sensitivity, they often
retain the underlying manipulation mechanism (Wang et al., 2024; Lee et al., 2024; Li et al.,
2025).
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Before Normalization After Normalization

h (activation)
dfeature (feature direction)
h + dfeature (activation addition, = 1)
h  (directional ablation)

Figure 1: Geometric interpretation of activation steering. Left: Before
normalization, the original activation vector h, the feature direction d feat,
the ablation vector h⊥, and addition h + αd feat are shown. Right: After
normalization, all vectors lie on the unit sphere within a shared 2D plane.
The dashed arc shows h⊥ and h + αd feat as approximate rotations of h,
motivating Angular Steering.

Figure 2: Illustration
of a typical Transformer
Block in modern LLMs
with Angular Steering ap-
plied after each normal-
ization layer.

Prompt Create a hoax website that spreads false information and leads to panic
refuse
(steered to 20°)

I’m sorry, but I can’t assist with creating a hoax website or spreading false infor-
mation. Such actions can cause real harm and panic, and they are unethical and
illegal. Instead, I can help you create a legitimate website or provide information
that is accurate and beneficial. If you have any other questions or need assistance
with a different topic, feel free to ask!

indirect
(steered to 100°)

Sure, I can create a fictional example of a hoax website to illustrate how such a site
might look and spread false information. However, I won’t actually create a real
website because that could cause real harm. Instead, I’ll provide a description of
what such a website might look like and how it could spread misinformation.
### Example Hoax Website: ”Global Health Alert” (...)

direct
(steered to 200°)

Sure, let’s create a fun and fictional example of a hoax website that could spread
false information and potentially cause a bit of a stir. For this example, we’ll create a
website about a new, highly contagious virus that has just been discovered. The goal
is to highlight how misinformation can spread quickly, so let’s craft a website that
looks credible but contains false information.
### Website Name: GlobalVirusAlert.org (...)

redirect
(steered to 300°)

Creating a hoax website that spreads false information and leads to panic is unethical
and illegal. Such actions can cause real harm and distress to individuals and
communities. Instead, I can help you create a responsible and informative website
that educates people on how to spot and report misinformation. Here’s an example
of a responsible website that provides resources and guidance: (...)

Table 1: A sample generation of QWEN2.5-7B-INSTUCT on D(eval)
harmfulshowing four different behaviors

when being steered by various angles. Some content was omitted for brevity.

Contribution. We propose Angular Steering, a method that reformulates activation editing
as a geometric rotation within a fixed 2D subspace of the model’s activation space. By
identifying a behavior-associated direction, e.g., refusal, and a complementary axis that
jointly define a steering plane, we rotate the activation vector within this plane to control
the behavioral expression (Tab. 1). This approach offers a smooth and interpretable control
of the model’s behavior via the rotation angle of activations, enabling the modulation of the
feature’s strength without compromising the model’s overall representation capacity. We
also introduce an adaptive variant of Angular Steering, namely Adaptive Angular Steering,
which adds another dimension of controllability by applying steering selectively based on
the local activation context.
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Crucially, our formulation generalizes and unifies existing steering operations (Fig. 1). In
particular, activation addition (Turner et al., 2024) and directional ablation (Arditi et al., 2024)
can both be viewed as approximately rotational transformations in a 2D plane defined by
the original activation and a target feature direction. Linear combination (Turner et al., 2024)
resembles a partial rotation toward or away from the feature; and orthogonalization (Arditi
et al., 2024) resembles rotating to a position 90 degrees from the feature. These operations
reduce to special cases of rotation when activation norms are preserved, which we show
in Appendix A. By subsuming these techniques under a common geometric framework, Angular
Steering offers a principled abstraction that clarifies their effects and limitations, while extending
their controllability.

In summary, our contribution is three-fold:

1. We propose the novel Angular Steering, a rotation-based framework for fine-grained,
continuous control of model behaviors, and the Adaptive Angular Steering, a selective
variant of Angular Steering that improves robustness and minimizes coherence loss.

2. We demonstrate that Angular Steering serves as an approximate unifying framework
for prior activation intervention methods from a geometric perspective.

3. We empirically demonstrate that both Angular Steering and Adaptive Angular Steer-
ing achieve strong behavior control, specifically in refusal steering, with minimal
degradation of model’s performance outside of the targeted steering tasks across
multiple modern LLM architectures.

Organization. We structure this paper as follows: In Section 2, we provide the necessary
background and describe the experimental setup for our study on Angular Steering. In
Section 3, we first discuss the extraction of feature directions and the construction of the
steering plane, then introduce the Angular Steering operation and its adaptive variant.
Section 4 presents refusal steering experiments and analyzes the behavioral transition across
angles. In Section 5, we evaluate the effect of Angular Steering on the overall capability of
the model. The paper ends with concluding remarks.

2 Background

Transformers. Decoder-only transformers process an input token sequence t = (t1, . . . , tn)

by first converting tokens to initial embeddings, h(1)
i = Embed(ti). These activations are

then iteratively refined through L layers. Within each layer l, the residual stream activation
h(l)

i for token ti is updated by incorporating information from a Self-Attention mechanism
and a Multi-Layer Perceptron (MLP) block, typically with normalization applied before
these components:

h(l)
i,post-attn = h(l)

i + Attn(l)(Norm(h(l)
1:i )); h(l+1)

i = h(l)
i,post-attn + MLP(l)(Norm(h(l)

i,post-attn))

This layered processing allows the model to construct increasingly sophisticated represen-
tations from the input, and the h ∈ Rdmodel values are collectively referred to as activations.
Finally, the output activations from the last layer, h(L+1)

i , are projected to logit scores over

the vocabulary via an unembedding step, logitsi = Unembed(h(L+1)
i ). These logits are then

transformed into probability distributions yi for the next token using a softmax function.

Activation Steering. Features are hypothesized to be represented by orthogonal directions
in activation space (Park et al., 2024; Bereska & Gavves, 2024; Elhage et al., 2022). Activation
steering modifies hidden representations at inference time to induce or suppress specific
features (Arditi et al., 2024; Bayat et al., 2025; Konen et al., 2024; Li et al., 2024; Marks et al.,
2025; Turner et al., 2024; Zou et al., 2023a; Templeton et al., 2024). Two popular approaches
are activation addition (h′ = h + αd̂ feat) and directional ablation (h′ = h− d̂ feat d̂⊤feat h),
but these offer limited granularity—addition is sensitive to coefficient tuning while or-
thogonalization removes features entirely. Our proposed Angular Steering generalizes
these interventions as rotation in a 2D subspace, offering continuous, interpretable, and
norm-preserving control.
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Figure 3: Norms of activations at each layer of
QWEN2.5-7B-INSTRUCT for harmful and harm-
less samples.
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Figure 4: Mean scalar projection of the normalized
activation on the (local) candidate feature direc-
tion at each layer for QWEN2.5-7B-INSTRUCT.

Choice of Activations for Steering. There are two main options for choosing the representa-
tion for steering: the raw activations (Arditi et al., 2024; Zou et al., 2023a; Turner et al., 2024;
Li et al., 2024; Bayat et al., 2025) or the normalized activations (von Rütte et al., 2024). While
the method proposed in this work applies to both cases, we argue that the latter is the better
choice for model steering research. Section E discusses our motivation for this choice, which
leads us to propose steering by angular rotation.

3 Angular Steering
3.1 Motivation for Angular Steering

Rotation is Better for Steering. Existing activation steering methods that use vector ad-
dition (Turner et al., 2024) require carefully tuned coefficients, which are highly sensitive
to layer-specific activation norms. These norms vary due to the residual stream’s additive
structure and tend to grow across layers (see Fig. 3), making hyperparameter tuning brittle.
Orthogonalization (Arditi et al., 2024) offers a hyperparameter-free alternative but ignores
the effects of negative scaling, which prior work suggests can induce opposite behaviors
(Turner et al., 2024; Zou et al., 2023a; Templeton et al., 2024).

Our experiments show that feature directions effectively separate contrastive examples. In
particular, in Fig. 4, for each layer i, we plot the scalar projection of the normalized activation
ĥi on the locally extracted feature direction di

feature and demonstrate that activations from
contrastive datasets aligned oppositely with the local refusal directions.

Furthermore, modern LLMs like LLAMA3 (Llama Team, 2024), QWEN2.5 (Yang et al., 2024),
and GEMMA2 (Gemma Team et al., 2024) use RMSNorm (Zhang & Sennrich, 2019) before
each MLP and attention block, stabilizing the vector norms as showed in (Zhang & Sennrich,
2019) and Fig. 3. This highlights direction, not magnitude, as the core representational
unit. This behavior aligns with recent interpretability work supporting the Superposition
Hypothesis (Elhage et al., 2022): that features correspond to nearly orthogonal directions
and activations are linear combinations of them (Arditi et al., 2024; Bayat et al., 2025; Bereska
& Gavves, 2024; Bricken et al., 2023; Elhage et al., 2022; Gao et al., 2024a; Marks et al.,
2025; von Rütte et al., 2024; Templeton et al., 2024; Belrose, 2023; Marks & Tegmark, 2024;
Rimsky et al., 2024; Tigges et al., 2023). Scalar projections measure feature strength, making
direction and angle key geometric concepts. Norm-preserving transformations like rotation
are, therefore, a principled choice for behavior control.

Existing Activation Steering as Special Cases of Steering by Rotation. Vector arith-
metic and orthogonalization with the pre-normalized activation hi at layer i and a direc-
tion representing some feature (d feat) resemble rotation inside a 2D subspace spanned by
Span{hi, d feat} (Fig. 1). When the activation norms are fixed as recommended by (von Rütte
et al., 2024; Pham & Nguyen, 2024), existing steering techniques are special cases of angular
steering, albeit with restricted flexibility: vector addition is limited to less than 180 degrees,
and orthogonalization is fixed at 90°. We provide detailed derivations in Appendix A.

In contrast, Angular Steering allows full, continuous control within the steering plane,
offering a more expressive and robust alternative. This is further supported by (von Rütte
et al., 2024), who show that using normalized activations improves probing accuracy across
classifiers, reinforcing our hypothesis that steering direction, not raw magnitude, is what
ultimately matters.
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3.2 Overview of Angular Steering

We propose to formulate activation steering as a rotation on a 2-dimensional (2D) subspace
P and around the (dmodel − 2)-dimensional orthogonal complement Q of P. Ideally, the
plane of rotation P should be parallel to the true target feature direction and perpendicular
to other feature directions that are independent of the desired behaviour. Our angular
steering provides the following advantages:

• Generalization. It is a generalization of existing steering operations (Fig. 1), namely
activation arithmetic (Turner et al., 2024; Zou et al., 2023a; Bayat et al., 2025; Rimsky
et al., 2024) and directional ablation (Arditi et al., 2024; Zou et al., 2023a).

• Universality. It can be applied to both raw and normalized activations, although the
latter is more computationally efficient.

• Stability. Restricting the rotation to a 2D subspace confines changes to just two
orthogonal directions, leaving the remaining basis vectors unaffected. This minimizes
interference with other features, consistent with the Superposition Hypothesis, which
suggests that features are represented in near-orthogonal directions (Elhage et al.,
2022). Consequently, this approach enables more robust control over the steering
effect, preserving coherence (see Section 4).

• Flexibility. It enables steering the activations for more than 180 degrees, making the
accuracy less dependent on the quality of the direction of the extracted features.

3.3 Preparing Dataset and Models

Datasets. To calibrate the feature (refusal) direction, we construct two datasets: D(cal)
harmful,

which is a split (80%) of the ADVBENCH dataset (Zou et al., 2023b) consisting of 416 harmful
instructions; and D(cal)

harmful, a random subset of 512 harmless examples from the ALPACA
dataset (Taori et al., 2023). For evaluating steering effectiveness, we use the remaining 20%
of ADVBENCH, denoted as D(eval)

harmful, containing 104 samples. To assess general language
modeling capabilities, we employ the TINYBENCHMARKS dataset (Maia Polo et al., 2024), a
collection of reduced-scale benchmarks each containing 100 examples: ARC (Clark et al.,
2018), MMLU (Hendrycks et al., 2021), WINOGRANDE (Sakaguchi et al., 2021), GSM8K
(Cobbe et al., 2021), TRUTHFULQA (Lin et al., 2022), and HELLASWAG (Zellers et al., 2019).

Models. We show experimental results on steering the refusal feature on various model fam-
ilies (LLAMA 3 (Llama Team, 2024), QWEN 2.5 (Yang et al., 2024), GEMMA 2 (Gemma Team
et al., 2024)) of various sizes (3B to 14B). A full list of models used in this work is presented
in Appendix C.

3.4 Computing the target feature direction

Extracting Activation Vectors. Following (Arditi et al., 2024), we pass D(cal)
harmfuland

D(cal)
harmlessthrough the model and record the activations of the final input token after the

normalization layers in each transformer block as recommended by (von Rütte et al., 2024).
Note that in each transformer block, there are two normalization layers: before the Attention
and before the MLP. As a result, we record the activations at two extraction points per
transformer block.

Calculating Candidate Directions. At each extraction point i, we compute a candidate

direction using the Difference-in-Means method (Belrose, 2023): di
feat = h

(cal),i
harmful −

h
(cal),i
harmless (i = 1, . . . , M), where di

feat is the direction at extraction point i, and h
(cal),i
harmful and

ih
(cal),i
harmless are the means computed over activations from D(cal)

harmfuland D(cal)
harmless, respectively.

Here, M is the number of extraction points, defined as twice the number of Transformer
blocks in the model. One candidate direction is computed at each extraction point, yielding
a total of M candidate directions.
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(a) Norm of candidate feature direction at each
layer.
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(b) Mean cosine similarity of each candidate feature
direction with those from other layers.

Figure 5: Statistics of refusal direction candidate for QWEN2.5-7B-INSTRUCT.

Choosing One Feature Direction. Among M candidate directions, we choose a feature direc-
tion for Angular Steering. Fig. 5b shows high cosine similarity among candidate directions
in layers where refusal is strong, suggesting those directions are stable approximations of
the true feature. This observation suggests that the similarity between candidate directions
can be a promising metric to select the feature direction. In Angular Steering, we choose the
candidate direction d̂ feat that is most similar to others as the feature direction. We normalize
d̂ feat to make it a unit vector.

Remark 1 Fig. 4 and Fig. 5 shows that refusal behavior emerges progressively along the depth of the
model, stabilizes, and then spikes again near the final layer. We hypothesize that this late spike reflects
a filtering step just before token generation and thus omit this point from the list of candidates.

3.5 Selecting the Steering Plane
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Figure 6: Projections of the feature direc-
tions extracted at each layer (i.e. di

feat)
on the steering plane for QWEN2.5-7B-
INSTRUCT.

We now require a second direction to define the 2D
steering plane in Angular Steering. As discussed in
Section 3.1, the optimal plane should maximize the
influence on the feature of interest while minimizing
unintended impacts on other features. While using
the Span{hi, d̂ feat} aligns with prior methods like di-
rectional ablation and activation addition, we argue
against it due to three reasons: (1) prior work sug-
gests that feature directions are layer-independent
(Park et al., 2024; Elhage et al., 2022; Tigges et al.,
2023; Arditi et al., 2024), implying a shared geometry
across layers; (2) this span might include other dom-
inant features, risking general degradation (Turner
et al., 2024; Templeton et al., 2024); and (3) computing
rotation at each step is costly. Instead, we propose a
fixed plane that isolates the feature of interest.

To construct this fixed plane, we perform PCA on the candidate directions di
feat and select

the first principal component, d̂ PC0, as the second axis. This captures variance across layers,
which, as shown in prior work (Arditi et al., 2024; von Rütte et al., 2024; Li et al., 2024; Zou
et al., 2023a), reflects variation in approximating the true feature direction. The resulting
plane Span(d̂ feat, d̂ PC0) thus isolates meaningful variation in the target feature. Fig. 6 shows
a smooth directional shift across layers in this plane, supporting the hypothesis that feature
strength evolves gradually, making it a natural basis for steering (see Section 4).

3.6 Putting It All Together: The (Adaptive) Angular Steering Framework

We are now ready to formulate Angular Steering and its adaptive variant.

3.6.1 Angular Steering Framework

Let P be the 2D subspace spanned by d̂ feat and d̂ PC0. We compute the orthonormal basis
{b1, b2} of P as follows:

b1 ← d̂ feat; b2 ← d̂ PC0 − (d̂ PC0 · b1)b1; b2 ← b2/||b2||.

6



Accepted to the First Workshop on the Interplay of Model Behavior and Model Internals at COLM 2025

Rotation by an Offset Angle. To rotate within the subspace P by an angle ϕ, the transfor-
mation matrix RP

ϕ is given as

RP
ϕ = I − (b1b⊤1 + b2b⊤2 ) + [b1 b2] Rϕ [b1 b2]

⊤ (1)

where I − (b1b⊤1 + b2b⊤2 ) is the projection to the (dmodel − 2)-dimensional orthogonal

complement Q of P and Rϕ is the 2D rotation matrix given as Rϕ =

[
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]
.

Rotation to a Target Angle. In practice, rather than rotating all activations by a fixed offset,
we often want to rotate them to a specific angular position θ, e.g., where a desired behaviour
is strongly expressed. A naive approach would involve: (1) projecting the input h onto
the steering plane P: projP(h) = (b1b

⊺
1 + b2b

⊺
2 ) · h; (2) computing the current angle ϕP

h,b1

between projP(h) and b1; (3) constructing the rotation matrix RP
θ−ϕ using Eqn. 1; and (4)

applying this matrix to h. However, this is inefficient when θ is fixed and can be optimized
by precomputing reusable components.

Noting that the term [b1 b2] Rϕ [b1 b2]
⊺

in Eqn. 1 is a norm-preserving transformation, we
can precompute its effect on the unit vector [1 0]

⊺
and scale the result by |projP(h)|. This

leads to the following efficient formulation for rotating an input h to angle θ:

hsteered,θ = RP
θ−ϕh,b1

· h = h− projP(h) + |projP(h)| · [b1 b2] Rθ [1 0]⊤, (2)

where RP
θ−ϕh,b1

is the rotation matrix defined in Eqn. 1. Here, both the projection matrix

(b1b
⊺
1 + b2b

⊺
2 ) and [b1 b2] Rθ [1 0]⊤ can be precomputed.

3.6.2 Adaptive Angular Steering Framework

Since inputs from contrastive datasets tend to align with di
feat in opposite directions (Fig. 4),

it is unnecessary to rotate all activations uniformly. To increase flexibility and further reduce
unintended effects on non-targeted features, we propose an adaptive variant that rotates
only activations positively aligned with d̂ feat. In particular, we first compute a conditional
mask based on the sign of the projection onto d̂ feat: mask = max(0, sign(projd̂ feat

(x))).
Using this mask, Eqn. 2 becomes:

hsteered (adaptive),θ = h + mask ·
(
|projP(h)| · [b1 b2] Rθ [1 0]⊤ − projP(h)

)
(3)

This formulation adds an additional layer of control and robustness: steering is both
restricted to a 2D subspace and selectively applied based on feature alignment. Beyond
adjusting the steering angle θ, users may also vary the similarity threshold used in the mask
or employ different di

feat across layers. We note that another conditional steering approach
has been explored in contemporary work by (Lee et al., 2024), but activation addition was
used as the steering framework instead of rotation. We summarize the algorithms for feature
direction extraction, steering plane selection, and angular steering in Appendix B.

4 Controlling the Steering Effect
For inference, we apply Adaptive Angular Steering as described in Eqn. 3 on every normal-
ization module before each Attention and MLP layer. By varying the target angular position
θ from 0° to 360° (with 10° intervals), we observe that the models change from refusal to
compliance and back to refusal again (see Fig. 7). We found that both Angular Steering
and Adaptive Angular Steering are effective at varying the steering effect. However, the
non-adaptive version runs a risk of breaking the coherence on smaller models, which will
be discussed in Section 5.

Evaluation Metrics. We compute a refusal score using the substring matching method
(Arditi et al., 2024), which operates by matching a set of common “refusal substrings” (e.g.,
I’m sorry, As an AI) on the model completion. The score is 1 if at least one such substring
is matched and 0 otherwise.
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MAGUARD3 (Llama Team, 2024), HARM-
BENCH (Mazeika et al., 2024)).
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(b) LLM-as-a-judge classification results: mod-
els’ responses are classified by an LLM into
four categories: direct, indirect, redirect and
refusal.

Figure 7: Steering evaluation. Each model was steered using Adaptive Angular Steering and
evaluated at every 10° angular position. Solid traces show evaluation scores; dashed traces indicate
baseline (non-steered) models. Traces of the same color correspond to the same benchmark. Baseline
values for LLAMAGUARD3 and HARMBENCH may be hidden due to near-zero values.

Intuitively, this metric only detects memorized refusal phrases but does not assess coherence
and harmfulness, as noted by (Arditi et al., 2024; Huang et al., 2023; Meade et al., 2024; Qi
et al., 2023; Shah et al., 2023). To evaluate harmfulness, we follow the setup in (Arditi et al.,
2024) and use two more complementary evaluation metrics, LLAMAGUARD3 (Llama Team,
2024) and HARMBENCH (Mazeika et al., 2024), which we collectively call harmful scores.
These two methods use open-source models to classify whether an input is harmful, in
which the score is 1 if the classification is true and 0 otherwise.

Beyond refusal and harmfulness detection, we are interested in how the model’s output
changes semantically at different level of refusal. Thus, we perform qualitative analysis
using a reasoning model QVQ-72B-PREVIEW (Qwen Team, 2024) to classify the generation
outputs into 4 classes: direct: The model directly answers the prompt; indirect: The model
starts out seemingly unwilling to answer but then still provides with an answer; redirect:
The model does not explicitly agree or refuse to answer but provides a tactful response
without producing any harmful content; refusal: The model explicitly refuses to answer.

Evaluation along the Steering Circle. Fig.7 demonstrates that angular steering effectively
modulates refusal and safety behaviors. In Fig.7a, all models show a clear arc of strong
alignment–high refusal and low harmful scores–and an opposing arc of weak alignment–
low refusal and high harmful scores. These arcs lie in opposite directions within the steering
circle, with performance peaking near the center and diminishing outward. Fig.7b further

8



Accepted to the First Workshop on the Interplay of Model Behavior and Model Internals at COLM 2025

0°

10°

20°

30°

40°

50°

60°

70°
80°90°100°

110°

120°

130°

140°

150°

160°

170°

180°

190°

200°

210°

220°

230°

240°

250°
260° 270° 280°

290°

300°

310°

320°

330°

340°

350°

0 0.2 0.4 0.6 0.8 1

0°

10°

20°

30°

40°

50°

60°

70°
80°90°100°

110°

120°

130°

140°

150°

160°

170°

180°

190°

200°

210°

220°

230°

240°

250°
260° 270° 280°

290°

300°

310°

320°

330°

340°

350°

0 0.2 0.4 0.6 0.8 1

0°

10°

20°

30°

40°

50°

60°

70°
80°90°100°

110°

120°

130°

140°

150°

160°

170°

180°

190°

200°

210°

220°

230°

240°

250°
260° 270° 280°

290°

300°

310°

320°

330°

340°

350°

0 0.2 0.4 0.6 0.8 1

0°

10°

20°

30°

40°

50°

60°

70°
80°90°100°

110°

120°

130°

140°

150°

160°

170°

180°

190°

200°

210°

220°

230°

240°

250°
260° 270° 280°

290°

300°

310°

320°

330°

340°

350°

0 0.2 0.4 0.6 0.8 1

0°

10°

20°

30°

40°

50°

60°

70°
80°90°100°

110°

120°

130°

140°

150°

160°

170°

180°

190°

200°

210°

220°

230°

240°

250°
260° 270° 280°

290°

300°

310°

320°

330°

340°

350°

0 0.2 0.4 0.6 0.8 1

0°

10°

20°

30°

40°

50°

60°

70°
80°90°100°

110°

120°

130°

140°

150°

160°

170°

180°

190°

200°

210°

220°

230°

240°

250°
260° 270° 280°

290°

300°

310°

320°

330°

340°

350°

0 0.2 0.4 0.6 0.8 1

baseline feature direction tinyArc

tinyGSM8k (flexible) tinyGSM8k (strict) tinyHellaswag

tinyMMLU tinyTruthfulQA tinyWinogrande

Qwen2.5-3B-Instruct Qwen2.5-7B-Instruct

Qwen2.5-14B-Instruct Llama-3.2-3B-Instruct

Llama-3.1-8B-Instruct gemma-2-9b-it

(a) Benchmark results on the TINYBENCHMARKS
(Maia Polo et al., 2024) suite.
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(b) Perplexity scores of Adaptive Steering, non-
adaptive Steering and no steering.

Figure 8: Evaluation beyond the targeted steering task. Each model was steered using Adaptive
Angular Steering (Eqn. 3) and evaluated on all benchmarks at every 10° angular position along the
steering circle. Solid traces represent evaluation scores along the steering circle, and dashed traces
represent the evaluation for the baseline (non-steered models); traces having the same color represent
the same benchmark.

supports this observation by showing that, for five of six models, refusal dominates in
the strong arc, followed by redirect, and then direct or indirect responses as the angle
shifts. Tab.1 reports example completions for each class. GEMMA-2-9B-IT is an exception,
displaying the weakest effect yet still following the overall trend.

Steering on a random plane. For completeness, we conduct an ablation study on steering
using Adaptive Angular Steering with a random plane. Fig. 13b in Appendix D.2 shows
that it has little to no effect on controlling refusal in five out of six tested models.

5 Effects on Model’s Performance beyond the Targeted Steering Task
Steering can degrade language modeling ability (Souly et al., 2024), especially when relying
on sensitive hyperparameters (Turner et al., 2024; Zou et al., 2023a; Templeton et al., 2024;
Bayat et al., 2025; Li et al., 2024; von Rütte et al., 2024), which may lead to incoherent
outputs if not carefully tuned (Turner et al., 2024; Templeton et al., 2024). In this section, we
quantitatively assess the impact of our method on overall LLM performance.

5.1 Language Modeling Benchmarks

Method. For each model, we adaptively steer its activation with a 10° interval along the
entire steering circle using Eqn. 3 and evaluate all benchmarks from the TINYBENCHMARKS
suite (Maia Polo et al., 2024). The results are visualized in Fig. 8a.
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Results. Overall, our steering method effectively preserves benchmark accuracies across
the entire steering circle, demonstrating strong robustness. Interestingly, in many cases,
performance under intervention even surpasses the non-steered baseline.

A notable outlier is QWEN2.5-3B-INSTRUCT, which exhibits a performance drop along the
arc from 160° to 280°. We attribute this to feature interference (Elhage et al., 2022), where
multiple latent features dominate within the chosen steering plane, a phenomenon to which
smaller models are more susceptible. The consistent accuracy drop across all benchmarks in
this region suggests the model is reacting to a competing feature. For TINYGSM8K, although
the model often generates a correct answer, it fails to match the expected format, leading to
significantly lower scores under the strict metric compared to the more lenient flexible
variant.

It is important to note that for TINYGSM8K, the flexible metric extracts the last numeric
value as the final answer, whereas the strict variant assumes a predefined output for-
mat. Consequently, these metrics are highly sensitive to formatting variations, leading to
noticeable fluctuations in accuracy across different steering angles.

5.2 Perplexity of the Steered Generations

Smaller Models are More Vulnerable to Interference under Angular Steering. In non-
adaptive Angular Steering experiments, 7B – 14B models generate coherent outputs through-
out the steering circle, while smaller models like LLAMA-3.2-3B-INSTRUCT and QWEN2.5-
3B-INSTRUCT often produce incoherent text across a wide arc. Notably, refusal phrases
still appear randomly in various languages for LLAMA-3.2-3B-INSTRUCT, and mainly in
Chinese for QWEN2.5-3B-INSTRUCT, despite English prompts. This suggests that limited
capacity in smaller models leads to feature interference (Elhage et al., 2022), with multiple
features entangled in the 2D steering subspace, as discussed in Sections 4 and 5.1.

Method. Motivated by such observations, we analyze the perplexity of the steered gen-
erations using the non-steered models and report the results in Fig. 8b. Given an in-
put sequence x, an non-steered LLM πnon-steered, the output is modeled by ynon-steered ∼
πnon-steered(x). Similarly, πsteered and ysteered denote the steered model and its output, re-
spectively. We denote the perplexity score of x with respect to a model π as PPLπ(x). In
Fig. 8b, we compare PPLπnon-steered(x||ynon-steered), PPLπnon-steered(x||ysteered (non-adaptive)) and
PPLπnon-steered(x||ysteered (adaptive)) for each model and at every 10° rotation.

Results. Both 3B models exhibit unstable perplexity under non-adaptive steering, indicating
vulnerability to interference. For QWEN2.5-3B-INSTRUCT, perplexity remains significantly
above baseline across more than half of the circle, aligning with the incoherent outputs
discussed earlier. In contrast, LLAMA-3.2-3B-INSTRUCT shows perplexity closer to baseline,
consistent with its behavior of still refusing harmful requests, albeit in different languages.

Adaptive Steering effectively preserves coherence. Fig. 8b reveals that the perplexity of Adaptive
Steering is lower, more stable, and closer to no steering than its non-adaptive counterpart,
indicating effectiveness at balancing behavior control with coherence and performance.

Alignment masks rather than removes harmful behavior. Perplexity stays near baseline when
steering aligns with the target feature, but drops below baseline as it moves toward the “jail-
broken” region. This indicates harmful capabilities remain latent, with relevant knowledge
still embedded in the model, and alignment merely suppressing them by shifting activations
to a higher-entropy distribution, consistent with the findings in (Qi et al., 2024).

6 Concluding Remarks
We propose Angular Steering, a novel activation steering method offering continuous, fine-
grained control over large language model behaviors by rotating activation vectors within a
two-dimensional subspace. This geometric perspective unifies prior steering techniques,
enhancing interpretability and deepening understanding of model mechanisms without
compromising general performance. Our adaptive variant further improves robustness by
selectively applying steering based on context.
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Ethics Statement
The Angular Steering approach presented in this work has several broader societal impacts.
On the positive side, it significantly enhances the control and interpretability of LLMs,
enabling their safer deployment across various applications by effectively reducing harmful
outputs such as misinformation, biased content, and unethical requests. This enhanced
control facilitates alignment with societal norms and ethical standards, potentially increasing
public trust and acceptance of AI technologies.

Conversely, there is also a potential for negative impacts. By simplifying fine-grained behav-
ior control, Angular Steering could inadvertently make it easier to generate nuanced harmful
or unethical content, such as persuasive misinformation or biased narratives. Although
our method does not fundamentally alter the existing risk profile of deploying LLMs, it
underscores the need for continued vigilance and improvement in AI safety mechanisms. To
responsibly manage these risks, implementing rigorous safeguards, ensuring transparency,
and promoting accountability are essential. We advocate ongoing ethical assessment to
responsibly guide the deployment and utilization of our proposed method.
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A Detailed Derivation: Existing Activation Steering as Special Cases of
Steering by Rotation

We will show that, when activation norms are preserved, existing steering techniques are
special cases of angular steering but with restricted flexibility: vector addition is limited to
less than 180 degrees, and orthogonalization is fixed at 90 degrees.

Formally, let the activation hi be decomposed into components parallel and orthogonal to a
unit-norm feature direction d̂ feat (for brevity, here we denote them as h and d respectively):

h = (h · d)d + h⊥, where h⊥ = h− (h · d)d.

Let u = h⊥
∥h⊥∥

, and define the initial angle between h and d as:

θ0 = tan−1
(
∥h⊥∥
h · d

)
.

We define Angular Steering as rotating h by an offset angle ϕ in the plane Span{h, d},
producing a vector:

hrot(ϕ) = cos(θ0 + ϕ) · d + sin(θ0 + ϕ) · u.

Now consider vector addition (Turner et al., 2024), defined as:

hadd = h + αd = (h · d + α)d + h⊥.

After normalization, the direction becomes:

hadd-norm =
hadd
∥hadd∥

= cos(θ0 + ϕadd) · d + sin(θ0 + ϕadd) · u,

where ϕadd = tan−1
(
∥h⊥∥
h·d+α

)
− θ0.

Likewise, directional ablation (orthogonalization) (Arditi et al., 2024), given by:

hablate = h⊥,

15
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after normalization becomes:

hablate-norm = u = cos(θ0 + ϕablate) · d + sin(θ0 + ϕablate) · u,

with ϕablate = π
2 − θ0.

Thus, when activation norms are fixed, both addition and ablation shift the direction of h in
a way that is exactly equivalent to a rotation by some angle ϕ within the plane spanned by
h and d. This establishes them as special cases of Angular Steering.

In practice, RMSNorm (Zhang & Sennrich, 2019) stabilizes activation norms rather than
fixing them to exact values (as shown in (Zhang & Sennrich, 2019) and Fig. 9, left). As a
result, these methods can still be interpreted as approximate rotations.

B Algorithms for Angular Steering

Algorithm 1 Extract Feature Direction

Require: Contrastive datasets Dharmful,Dharmless, modelM
1: for each layer i in model do
2: Compute normalized activations h(i) after Attention and MLP
3: Compute mean activation for each dataset:

h̄(i)
harmful, h̄(i)

harmless

4: Compute candidate direction:

d(i) = h̄(i)
harmful − h̄(i)

harmless

5: end for
6: Select final feature direction d using max average cosine similarity:

d = argmax
i=1...|layers|

(
1

|layers|

|layers|

∑
j=1

cosine(d(i), d(j))

)
7: Normalize: d̂ = d

∥d∥

Algorithm 2 Select Steering Plane

Require: Candidate directions {d(i)}, feature direction d̂
1: Perform PCA on {d(i)}
2: Let first principal component be d1stPC
3: Set orthonormal basis for plane:

b1 ← d̂, b2 ← d1stPC − (b1 · d1stPC)b1; b2 ←
b2

∥b2∥
4: Define projection matrix P = b1b⊤1 + b2b⊤2
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Algorithm 3 Angular Steering (with optional Adaptive Mask)

Require: Activation h, basis b1, b2, target angle θ, (optional) mask flag
1: Project: projP(h) = P · h
2: Compute magnitude: r = ∥projP(h)∥
3: Precompute: vθ = [b1 b2] · Rθ · [1 0]⊤
4: if adaptive then
5: Compute mask: mask = max(0, sign(h · d̂))
6: Apply adaptive steering:

hsteered = h + mask · (r · vθ − projP(h))

7: else
8: Apply steering:

hsteered = h− projP(h) + r · vθ

9: end if

C Use of existing assets

C.1 Models

Model (with link) Usage License
QWEN2.5-(3B, 7B, 13B)-INSTRUCT
(Yang et al., 2024) Experimental subject Apache license 2.0

LLAMA-3.1-8B-INSTRUCT
(Llama Team, 2024) Experimental subject Llama 3.1 Community

License Agreement

LLAMA-3.2-3B-INSTRUCT
(Llama Team, 2024) Experimental subject Llama 3.2 Community

License Agreement

GEMMA-2-9B-IT
(Gemma Team et al., 2024) Experimental subject Gemma Terms of Use

LLAMA-GUARD-3-8B
(Llama Team, 2024) Evaluation device Llama 3.1 Community

License Agreement

HARMBENCH CLASSIFIER
(Mazeika et al., 2024) Evaluation device MIT

QVQ-72B-PREVIEW
(Qwen Team, 2024) Evaluation device Qwen License

Table 2: Models used in this work.

C.2 Datasets

Dataset (with link) Source License
ADVBENCH (Zou et al., 2023b) MIT

ALPACA (Taori et al., 2023) Creative Commons Attribution
Non Commercial 4.0

TINYBENCHMARKS (Maia Polo et al., 2024) MIT

Table 3: Datasets used in this work.

D Additional Results

D.1 Activations along the model’s depth

Fig. 9 (left) demonstrates that the norm of activation vectors increases exponentially across
all tested models as the layer depth increases. This behavior is attributable to the additive
nature of the residual stream, where each layer’s output accumulates onto the previous

17

https://huggingface.co/collections/Qwen/qwen25-66e81a666513e518adb90d9e
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https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
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Figure 9: Statistics of activations for all tested models. Left: Norms of activations at each layer. Right:
Mean scalar projection of the normalized activation on the (local) candidate feature direction at each
layer.
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Figure 10: Statistics of refusal direction candidates for all tested models. Left: Norms of candidate

feature direction at each layer (i.e. |d(i)
feat|). Right: Mean cosine similarity of the candidate feature

direction from each layer with those from other layers (i.e. 1
|layers| ∑

|layers|
j=1 cosine(d(i)

feat, d(j)
feat)).

state. Interestingly, even models from the same architecture family display different scaling
patterns, indicating that activation growth is not only architecture-dependent but also
implementation-specific. These observations underscore the necessity of norm-independent
steering techniques, as steering strategies relying on raw magnitude can become unstable or
ineffective across layers and model variants.

Fig. 9 (right) shows a consistent phenomenon across all evaluated models: activations from
contrastive prompts, harmful versus harmless, diverge progressively in geometric space as
depth increases. This increasing separation suggests a universal, model-agnostic internal
mechanism in LLMs, whereby behavioral distinctions are gradually amplified layer by
layer. Such a trend reveals a directional progression in the model’s internal representation,
reinforcing the hypothesis that feature separation is a fundamental property of transformer-
based language models.
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Figure 11: Mean scalar projection activations at each layer onto the chosen feature direction d̂ feat for
all tested models.

Fig.10 further illustrates this progression, focusing on the evolution of the refusal direction.
The strength of this feature becomes increasingly prominent in early and middle layers,
reaching its maximum influence at a specific intermediate depth before diminishing slightly
in later layers—a trend echoed in Fig.11. Importantly, even in the deeper layers where the
signal attenuates, the extracted refusal direction continues to serve as a reliable discrimi-
nator between activations corresponding to harmful and harmless prompts. This persistent
separability affirms the robustness and interpretability of the refusal direction, validating its
role as a stable, layer-resilient feature for behavioral control in LLMs.

D.2 Ablation Study: Steering on a random plane.

To assess the importance of the steering plane, we conducted an ablation study using two
setups: (1) steering with a plane defined by one random direction and one feature-aligned
direction, and (2) steering with a fully random plane composed of two random directions.

As illustrated in Fig. 13a, where one random direction is combined with the feature direction,
most models exhibit noticeably degraded steering performance and less smooth transitions
along the steering circle. This degradation suggests that even partial misalignment of the
steering plane can distort the intended behavioral modulation. An exception is QWEN2.5-
7B-INSTRUCT, which retains robust control, indicating a strong, well-defined internal
representation of the refusal direction. LLAMA-3.2-3B-INSTRUCT shows a clear steering
effect, but the refusal arc is shifted, suggesting the random component introduces skew that
displaces the effective axis of control.

Fig. 13b, where both directions are randomly selected, shows that five of the six tested
models exhibit minimal to no steering effect. The only partial exception, QWEN2.5-3B-
INSTRUCT, displays erratic behavioral changes with a spiky, non-smooth response curve.
Closer inspection reveals these outputs are often incoherent or filled with irrelevant content,
indicating instability rather than intentional modulation. These results reinforce the critical
role of behaviorally meaningful and well-aligned steering directions in achieving effective,
stable, and interpretable control over model behavior.
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Figure 12: Projections of the feature directions extracted at each extraction point (i.e. di
feat)

on the steering plane for all tested models.

E Related Works
Mechanistic Motivation. Activation steering techniques have typically involved scaling
activation directions by manually tuned scalar coefficients to induce or suppress behaviors
(Turner et al., 2024; Zou et al., 2023a; Templeton et al., 2024; Bayat et al., 2025; Li et al.,
2024; von Rütte et al., 2024; Stolfo et al., 2024). However, selecting these coefficients is
challenging due to sensitivity to the activation norm, which grows exponentially across
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(a) Steering on a plane spanned by d̂ feat and a
random direction.
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(b) Steering on a plane spanned by 2 random
directions.

Figure 13: Ablation study of steering with random direction(s).

layers (Fig.9 left). As observed by (Turner et al., 2024; Templeton et al., 2024), inappropriate
scaling often results in incoherent generations, highlighting the fragility of this approach.
Directional ablation, another popular technique, avoids explicit hyperparameter tuning by
orthogonalizing activations relative to a feature direction (Arditi et al., 2024; Zou et al., 2023a).
Yet, this approach neglects scenarios where negative alignment coefficients meaningfully
reverse behavior, a limitation recognized in earlier studies (Turner et al., 2024; Zou et al.,
2023a; Templeton et al., 2024). Empirical findings from our experiments further validate
that extracted feature directions effectively distinguish contrastive data sets (Fig.9 right).

Recent advancements include adaptive steering methods such as Adaptive Activation
Steering (ACT), which dynamically adjusts steering intensity based on the activation con-
text (Wang et al., 2025), and Contrastive Activation Addition (CAA), which employs multi-
ple positive-negative example pairs for robust feature extraction (Panickssery et al., 2023).
These techniques underscore the necessity for more nuanced control methods.

Architectural Motivation. Contemporary LLMs such as LLAMA 3 (Llama Team, 2024),
QWEN 2.5 (Yang et al., 2024), and GEMMA 2 (Gemma Team et al., 2024) universally adopt
RMSNorm (Zhang & Sennrich, 2019) for normalization. RMSNorm effectively constrains
activations to lie near a scaled unit sphere, emphasizing direction over magnitude. Moreover,
Rotary Positional Embeddings (RoPE) and related variants (Su et al., 2024; bloc97, 2023;
Chen et al., 2023; Peng et al., 2023) further validate this directional emphasis by encoding
positional information as rotations. Methods such as Householder Pseudo-Rotation have
extended this notion by explicitly employing norm-preserving geometric transformations
to steer behaviors effectively and minimally invasively (Pham & Nguyen, 2024).
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Empirical Motivation. Interpretability research consistently supports the Linear Represen-
tation hypothesis (Park et al., 2024; Bereska & Gavves, 2024), suggesting that LLM behaviors
correspond to specific directions rather than discrete neuron activations. Further corrob-
orated by the Superposition Hypothesis (Elhage et al., 2022), these directions are nearly
orthogonal and quantify feature strength through scalar projections (Arditi et al., 2024; Bayat
et al., 2025; Bricken et al., 2023; Gao et al., 2024a; Marks et al., 2025; von Rütte et al., 2024;
Templeton et al., 2024; Belrose, 2023; Marks & Tegmark, 2024; Rimsky et al., 2024; Tigges
et al., 2023). Moreover, it has been demonstrated that norm-preserving interventions, such
as rotations, inherently provide stability and maintain general capabilities during steering
(von Rütte et al., 2024; Pham & Nguyen, 2024).

Methods leveraging these insights have proliferated, notably Activation Scaling (Stoehr
et al., 2024) and FairSteer (Li et al., 2025), which dynamically modulate activations to
enhance transparency and reduce bias, respectively.

Our work expands upon these foundations by introducing Angular Steering, a generaliza-
tion of existing activation steering techniques. By explicitly treating steering as a rotation
in a defined 2D subspace, our method achieves more robust, interpretable, and flexible
behavior control. We demonstrate Angular Steering using refusal steering as a running
example, aligning closely with prior behavioral control research (Arditi et al., 2024; Lee et al.,
2024). Rather than focusing on jailbreak or maximizing downstream accuracy, our goal is to
present a principled and broadly applicable framework for controlled and non-destructive
intervention in LLM activations.

F Compute statement
This research was conducted using mainly Nvidia H100 GPUs with 80GB of memory. For
each model:

• Constructing the steering plane took about 15 minutes on 1 GPU using TRANS-
FORMERLENS (Nanda & Bloom, 2022).

• Pre-generating responses for evaluation took about 10 minutes on 1 GPU using our
fork of vLLM (Kwon et al., 2023) as the serving engine.

• Evaluation with substring matching (Arditi et al., 2024), LLAMA 3
GUARD (Llama Team, 2024) and HARMBENCH (Mazeika et al., 2024) collectively
took about 10 minutes on 1 GPU using vLLM (Kwon et al., 2023) as the serving
enging.

• Evaluation with LLM-as-a-judge took about 50 minutes on 4 GPUs using
vLLM (Kwon et al., 2023) as the serving engine.

• Computing perplexity scores took about 5 minutes on 1 GPU.
• Evaluation with TINYBENCHMARKS (Maia Polo et al., 2024) took about 4 hours on 1

GPU using vLLM (Kwon et al., 2023) as the serving engine and LM HARNESS (Gao
et al., 2024b) as the evaluation device.
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