
Under review as a conference paper at ICLR 2024

ADAPTIVE TEMPERATURE ENHANCED DUAL-LEVEL
HYPERGRAPH CONTRASTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Hypergraphs, which incorporate hyperedges to link multiple nodes and capture
complex high-order relationships, have attracted increasing attention in recent
years. Consequently, a bunch of hypergraph neural networks has been proposed
to model the high-order relationships between hyperedges and nodes. Inspired by
the success of graph contrastive learning, researchers have begun exploring the
benefits of contrastive learning over hypergraphs. However, these works still have
the following limitations in modeling the high-order relationships over unlabeled
data: (i) They primarily focus on maximizing the agreements among individual
node embeddings while neglecting the capture of group-wise collective behaviors
within hypergraphs; (ii) Most of them disregard the importance of the temper-
ature index in discriminating contrastive pairs during contrast optimization. To
address these limitations, we propose a novel Adaptive Temperature enhanced
HyperGraph Contrastive Learning framework called AdT-HyGCL to boost con-
trastive learning over hypergraphs. Specifically, we first introduce a noise en-
hancement module to generate relatively challenging augmented hypergraphs for
hypergraph contrastive tasks. Unlike most works that merely maximize the agree-
ment of node embeddings in hypergraphs, we then propose a dual-level contrast
mechanism that not only captures the individual node behaviors in a local context
but also models the group-wise collective behaviors of nodes within hyperedges
from a community perspective. Furthermore, we design an adaptive temperature-
enhanced contrastive optimization to improve the discrimination ability between
positive and negative contrastive pairs, thereby facilitating more effective hy-
pergraph representation learning. Theoretical justifications and empirical experi-
ments conducted on eight benchmark hypergraphs demonstrate that AdT-HyGCL
exhibits excellent rationality, generalization, effectiveness, and robustness com-
pared to state-of-the-art baseline models.

1 INTRODUCTION

Graphs are widely used to represent pairwise interactions between entities. However, they have
limitations in capturing intricate relationships and higher-order group-wise structures. In contrast,
hypergraphs provide a more versatile structure by introducing hyperedges that can connect multiple
nodes to represent complex relationships. They have been explored in various domains, including
social networks, knowledge graphs, biological networks, recommend systems, and transportation
networks (Li et al., 2013; An et al., 2021; Ma et al., 2022; Zhang et al., 2022; Xia et al., 2022). To
leverage the benefits of hypergraphs, a bunch of hypergraph neural networks (HyGNNs) (Feng et al.,
2019; Dong et al., 2020; Bai et al., 2021) have been developed to model the rich connectivity pat-
terns within hypergraphs in supervised or semi-supervised settings. Inspired by the success of graph
contrastive learning, recent works (Wei et al., 2022; Cai et al., 2022) extend contrastive learning to
hypergraphs for modeling hypergraph structures via HyGNNs over unlabeled data.

However, current contrastive learning methods over hypergraphs (Wei et al., 2022; Cai et al., 2022)
still have limitations in modeling the high-order relationships and collective behaviors within hyper-
graphs over unlabeled data: (i) These works primarily focus on maximizing agreements among node
embeddings while neglecting the capture of group-wise behaviors within hypergraphs; (ii) They con-
sider the temperature index in contrastive learning as a hyper-parameter while underestimating the
importance of temperature in differentiating contrastive pairs during contrast optimization.
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To handle the above challenges, we design a novel Adaptive Temperature enhanced dual-level
HyperGraph Contrastive Learning framework called AdT-HyGCL to enhance the contrastive learn-
ing over hypergraphs. Specifically, we first introduce a noise-enhanced module over augmented
hypergraphs to generate challenging hypergraph pairs. Afterward, the noise-enhanced hypergraph
augmentations are fed to the HyGNNs encoder to obtain the node embeddings and the hyperedge
embeddings. To address the first challenge, we design a dual-level contrast mechanism that aims to
maximize the agreements among individual node embeddings at the node level and also focuses on
capturing the group-wise behaviors within hyperedges at the community level, simultaneously. To
handle the second challenge, we first prove the importance of temperature in hypergraph contrastive
learning and further design an adaptive temperature-enhanced contrast optimization to dynamically
adjust the temperature during dual-level contrast optimization. This adaptation serves to enhance
the discriminative capacity between contrastive pairs. By the aforementioned steps, AdT-HyGCL
can comprehensively model the high-order relationships in hypergraphs over unlabeled data and en-
hance hypergraph contrastive learning. To conclude, this work makes the following contributions:

• Novelty: We design a novel hypergraph contrastive learning framework integrating the dual-
level contrast strategy and the adaptive temperature-enhanced contrast optimization to pre-train
HyGNNs encoder over unlabeled data.

• Generalization: AdT-HyGCL is designed as a general framework that unifies various hypergraph
augmentations and different contrast optimizations to boost hypergraph representation learning
and further enhance the model performance over downstream tasks.

• Effectiveness and Robustness: Theoretical justifications and empirical experiments over eight
benchmark hypergraphs demonstrate the rationality, effectiveness, and robustness of AdT-HyGCL.

2 RELATED WORK

Hypergraph Neural Networks. Hypergraph neural networks (HyGNNs) (Li et al., 2018; Zhang
et al., 2020; Feng et al., 2019; Cheng et al., 2022) have gained significant attention in recent years
due to their ability to capture complex relationships among nodes in hypergraphs. One of the no-
table works is Hypergraph Neural Network (HGNN) (Feng et al., 2019), which designs a hyperedge
convolution operator to formulate complex and high-order data through its hypergraph structure.
Another notable work, AllDeepSets (Chien et al., 2022), leveraging the deep multiset functions to
propagate and aggregate the information among hypergraphs, has gained excellent performance on
various benchmark datasets. Motivated by existing HyGNNs, this work proposes to design a hyper-
graph contrastive learning framework to learn the complex relationships over unlabeled data.

Hypergraph Contrastive Learning. Existing graph contrastive learning (GCL) models (Wang
et al., 2021; Yu et al., 2022; Zhu et al., 2021b; Tong et al., 2021; Trivedi et al., 2022) leverage
different types of data transformations to augment graphs into different views and further train
the encoder by discriminating positive pairs and negative pairs generated from unlabeled data.
Inspired by these works, researchers start to explore the benefits of contrastive learning over hy-
pergraphs (Wei et al., 2022; Cai et al., 2022; Song et al., 2023; Lee & Shin, 2023). For instance,
HyperGCL (Wei et al., 2022) proposes a generative method to create generative augmentations of
hypergraphs. CHGNN (Song et al., 2023) designs an adaptive augmentation strategy for hypergraph
augmentation and further proposes the updated hypergraph encoder to learn the node embedding
over the unlabeled data. However, these works still have limitations in describing the group-wise
collective node behaviors within hyperedges during hypergraph contrastive learning. To handle this,
TriCL (Lee & Shin, 2023) proposes to maximize the mutual information between nodes, hyper-
edges, and groups in the embedding space. However, TriCL still fails to comprehensively depict
the group-wise collective behaviors within hyperedges. Besides, they do not consider the influence
of temperature index in contrastive optimization. Motivated by these works, we propose to design
a temperature-enhanced dual-level hypergraph contrastive learning framework to reach agreements
among individual node embeddings and community embeddings.

3 PRELIMINARY

Hypergraph Neural Networks. Given a hypergraph G = (V, E ,X ), where V is the set of nodes,
E is the set of hyperedges, X is the attribute features set of nodes and hyperedges. Unlike the pair-
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Figure 1: The framework of AdT-HyGCL: (i) given a hypergraph G, AdT-HyGCL samples A1, A2

from the hypergraph augmentation set T . Here A1 and A2 denote hyperedge removal and node
dropping, respectively. With the augmented hypergraphs via A1 and A2, it performs the noise δ over
augmented graphs for generating challenging hypergraph pairs; (ii) the augmented graph G̃1 and G̃2

are fed into HyGNNs encoder f(·) and projection head h(·) to get the node and hyperedge embed-
dings. (iii) a dual-level contrastive strategy is designed to reach agreements among node embeddings
from a local view and agreements among community embeddings from a global perspective. The
dual-level contrast optimization is enhanced via the adaptive temperature τnd and τcm, respectively.

wise edge in graphs that only connects two nodes, a hyperedge e ∈ E can link any number of
nodes. A hypergraph can be represented by the incidence matrix H , where Hve = 1 if v ∈ e.
Otherwise,Hve = 0. For each node v ∈ V and hyperedge e ∈ E , we leverage d(v) =

∑
e∈E Hve

and d(e) =
∑

v∈V Hve to denote the node degree and hyperedge degree, respectively. There are a
bunch of works about HyGNNs (Dong et al., 2020; Feng et al., 2019; Bai et al., 2021; Yadati et al.,
2019) designed to map the hypergraph to a b-dimension latent representation space via function
f : G −→ Rb with higher-order message passing among nodes and hyperedges. In this paper, we
choose AllDeepSets (Chien et al., 2022) as the hypergraph encoder to learn the node embeddings
and the hyperedge embeddings, which can be formulated as follows:

Z(t+1)
e,: = fV−→E(Ve,U(t) ;Z(t)

e,: ), U(t+1)
v,: = fE−→V(Ev,Z(t+1) ;U(t)

v,:), (1)

where Z
(t+1)
e,: is the embedding of hyperedge e at time t + 1, U(t+1)

v,: is the embedding of node v,
fV−→E and fE−→V are two multiset functions in terms of the input. Z0

e,: denotes the original attribute
feature of hyperedge e and U0

v,: denotes the attribute feature of node v, where U0
v,: = Xv,:.

Graph Contrastive Learning. The main idea of graph contrastive learning aims to maximize the
agreements among positive and negative contrastive pairs over unlabeled data. This work follows
SimCLR (Chen et al., 2020) framework to conduct contrastive learning. Specifically, given a graph
G, SimCLR first obtains the augmented graph pairs G1,G2 via graph augmentation methods. Then
the augmented graph pairs are further processed by graph neural networks (GNNs) backbone f ,
outputting node embeddings U1 = f(X1,A1) and U2 = f(X2,A2), where X∗ and A∗ denote
the attribute features and adjacent matrices of the corresponding augmented graph G∗. After passing
through a nonlinear projection head h(·), the transformed embedding pair set U1,U2 are optimized
under the following NT-Xent loss lNT :

LNT = −log
∑
vi∈V

exp(sim(u1
i ,u

2
i )/τ)∑

k ̸=i

exp(sim(u1
i ,u

2
k)/τ) + exp(sim(u1

i ,u
2
i )/τ)

, (2)

where τ is the temperature index to control the sharpness of the probability distribution.

Problem 1. Hypergraph Contrastive Learning. Given a hypergraph G = (V, E ,X ), we aim to
design a comprehensive hypergraph contrastive learning framework to train hypergraph encoder
f(·) over unlabeled data and further fine-tune the encoder over labeled data for downstream tasks.
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4 METHODOLOGY

In this section, we present the details of AdT-HyGCL which includes three modules: (i) noise-
enhanced hypergraph augmentation; (ii) dual-level hypergraph contrastive strategy; (iii) adaptive
temperature enhanced contrastive optimization.

4.1 NOISE-ENHANCED HYPERGRAPH AUGMENTATION

Inspired by the existing works (You et al., 2020; Wei et al., 2022; Lee & Shin, 2023), we first sum-
marize five types of hypergraph augmentation methods (i.e., hyperedge removal, edge perturbation,
attribute masking, node dropping, and subgrpah) listed in Appendix Table 3. Given the hypergraph
augmentation set T listed in the table, we randomly select one pair of hypergraph augmentation
methods from T and further obtain the augmented hypergraph pair (G1,G2). Inspired by the conclu-
sion that relatively challenging contrastive learning tasks can enhance the ability of representation
learning compared with easy contrastive learning tasks (You et al., 2020; Jiang et al., 2020; Qian
et al., 2022), we propose to generate challenging augmented hypergraph pairs by performing ran-
dom noise over the augmented hypergraphs. Specifically, with the augmented graph pair (G1,G2),
for each node vi ∈ V , we perform a random noise δi following a specific distribution (e.g., uniform
distribution) to the node attribute feature xi. The attribute feature with noise denoted as X̃ is formu-
lated as X̃ = X + δ = [x1 + δ1;x2 + δ2; · · · ;xN + δN ], where X is the original node attribute
feature, [·; ·] is the concatenation operator among node attribute features, and + is the element-wise
operator to add the original attribute vector and the random noise vector. Afterward, we obtain two
noise-enhanced hypergraphs [G̃1 = (V1, E1, X̃1), G̃2 = (V2, E2, X̃2)], where V∗ and E∗ are the node
sets and the hyperedge sets of the corresponding augmented hypergraph G̃∗.

4.2 DUAL-LEVEL HYPERGRAPH CONTRASTIVE STRATEGY

After obtaining the noise-enhanced augmented hypergraphs, a dual-level hypergraph contrastive
strategy is devised to align the node embeddings in a local manner and match the group-wise com-
munity embeddings from a global perspective, such that we can gain powerful representations (i.e.,
node embeddings and hyperedge embeddings) over the unlabeled data.

4.2.1 NODE-LEVEL HYPERGRAPH CONTRASTIVE LEARNING

Following existing works (e.g., HyperGCL (Wei et al., 2022)) that aim to achieve the node embed-
ding agreements by maximizing the similarity between positive node pairs in hypergraphs while
minimizing the similarity between negative node pairs, we also employ a node-level hypergraph
contrastive learning (HyGCL) module to ensure that the same nodes from different augmented hy-
pergraphs are encoded closely, while different nodes are embedded farther apart. Specifically, given
two nodes (vi, vj) from (G̃1,G̃2), we obtain the node embeddings (u1

i ,u
2
j ) by feeding the augmented

graph (G̃1,G̃2) to the encoder fV−→E−→V in Equation 1. We then feed (u1
i ,u

2
j ) to projection head h(·).

(vi, vj) is a positive contrastive pair if i = j. Otherwise, it is a negative pair in node-level HyGCL.

4.2.2 COMMUNITY-LEVEL HYPERGRAPH CONTRASTIVE LEARNING

Although the node-level HyGCL captures the information of individual nodes, it may not be suf-
ficient for capturing the collective node behaviors within hyperedges. To this end, TriCL (Lee &
Shin, 2023) proposes a group-level contrast strategy that aims to achieve the agreements among hy-
peredge embeddings Z for capturing the hyperedge behaviors. However, hyperedge embeddings Z
still have limitations in capturing the collective node behaviors within hyperedges. Detailed expla-
nations are provided in Proposition 1. In light of this, we design a community-level HyGCL module
to capture the group behaviors within hyperedges from a global perspective. Specifically, we first in-
troduce “community” to describe the collective node behaviors within hyperedges comprehensively.
For each hyperedge ei ∈ E , we first get the hyperedge embedding zi by applying the hypergraph
encoder fV−→E in Equation 1. Then the community embeddings H integrating the edge embeddings
Z and the node embeddings U within the corresponding hyperedges is formulated as:

hi = zi ⊕
1

d(ei)

∑
m∈ei

um, (3)
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where hi denotes the community embedding distinguied by hyperedge ei, zi denotes the correspond-
ing hyperedge embedding, um represents the embedding of node vm within the hyperedge ei, d(ei)
denotes the degree of ei, and ⊕ is the concatenation operator. Afterward, we leverage h1

i and h2
j

to denote the community embedding distinguished by hyperedge ei and ej in the augmented graph
G̃1 and G̃2, respectively. We further design a community-level contrastive strategy to reach agree-
ments among community embeddings. In specific, similar to the node-level HyGCL, after feeding
(h1

i ,h2
j ) to a projection head h(·), we consider the community embeddings distinguished by the cor-

responding hyperedge from different augmented hypergraphs as the positive contrastive community
pairs, and we expect that their community embeddings would stay closer than others. On the con-
trary, the community embeddings distinguished by different hyperedges from different augmented
hypergraphs should be far apart. To make it clear, given a community embedding pair (h1

i ,h2
j ) from

(G̃1,G̃2), (h1
i ,h2

j ) will be viewed as positive contrastive pair if i = j. Otherwise, it would be a nega-
tive contrastive community pair. Next, we propose to prove that our community-level HyGCL excels
in capturing group-wise behaviors.

Proposition 1. Compared with hyperedge embeddings Z, community embeddings H excel in cap-
turing collective behaviors in hypergraphs.

Proof Sketch. In Equation 3, 1
d(ei)

∑
m∈ei

um captures the collective behaviors among nodes by
averaging their embeddings and zi ensures that the community embedding incorporates the hyper-
edge’s characteristics. Let us show an example: Consider two hyperedges (e1i , e

2
j ) from augmented

graphs (G̃1,G̃2) where e1i contains nodes {v1, v2, v3, v4} and e2j contains nodes {v3, v4, v7}, as illus-
trated in community-level hypergraph contrastive learning of Figure 1. Contrastive learning on hy-
peredge embeddings might be challenging to distinguish negative hyperedge pair z1i and z2j , as they
share most of the nodes during information propagation. In contrast, the community embeddings
h1
i and h2

j provide more distinguishable representations that integrate both hyperedge characteris-
tics and the node embeddings within hyperedges, making them more informative and effective for
distinguishing negative community pairs. Therefore, community embeddings H excel in capturing
collective behaviors in hypergraph compared to hyperedge embeddings Z.

4.3 ADAPTIVE TEMPERATURE ENHANCED HYPERGRAPH CONTRASTIVE LEARNING

To make positive contrastive pairs closer and negative contrastive pairs farther, several contrastive
losses are designed, such as NT-Xent loss (Chen et al., 2020) and JSD loss (Wang & Isola, 2020). All
contrastive losses occupy the temperature index τ as the proxy to scale the embeddings and further
control the penalties on negative samples. However, most consider temperature as a hyper-parameter
to scale the representations but ignore the fact that a fixed temperature may not be optimal during the
whole training process. Next, we first prove the importance of temperature in contrastive learning
and further design an adaptive temperature learning module to enhance our dual-level HyGCL.

4.3.1 TEMPERATURE ANALYSIS IN CONTRASTIVE LEARNING

Next, we would like to discuss and understand the influence of temperature in contrast optimization.

Proposition 2. Contrastive loss is a hardness-aware loss.

Proof Sketch. We first analyze the gradients of the contrastive loss w.r.t. positive and negative con-
trastive pairs. Here we take NT-Xent loss in Equation 2 as an example. According to the equation,
the gradients w.r.t. the similarity of positive pair si,i and negative pair si,j are formulated as:

dLNT

dSi,i
= − 1

τ

∑
k ̸=i

exp (Si,k/τ)∑
l ̸=k exp (Sk,l/τ) + exp (Si,k/τ)

,

dLNT

dSi,j
=

1

τ

exp (Si,j/τ)∑
i̸=k exp (Si,k/τ) + exp (Si,j/τ)

,

(4)

where Si,j is the embedding similarity of contrastive pairs, and j ̸= i. From the above equation,
on the one hand, we find out that the temperature index τ controls the distribution of the gradients
and the gradient of negative contrastive pairs is proportional to Si,j/τ , which demonstrates that the
contrastive loss is hardness-aware as harder negative samples (i.e., having higher similarities) have
larger gradients. On the other hand, the gradient of positive contrastive pairs will be affected by the
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negative contrastive pairs and the magnitude of gradient w.r.t. the positive contrastive pairs equals
the sum of gradients w.r.t. all negative contrastive pairs (i.e., |dLNT

dSi,i
| =

∑
k ̸=i |

dLNT

dSi,k
|).

Proposition 3. Temperature index τ controls the penalties on hard negative contrastive pairs.

Proof Sketch. Please refer to Appendix B for the detailed proof.

4.3.2 ADAPTIVE TEMPERATURE IN DUAL-LEVEL HYPERGRAPH CONTRASTIVE LEARNING

The aforementioned justifications prove the importance of temperature in contrastive learning. How-
ever, most works consider the temperature as a hyper-parameter and tend to assign a smaller value
(e.g., τ = 0.05) in most scenarios, but ignoring the fact that a fixed value of τ may not be opti-
mal during the training process. In light of this, we design a module where the temperature can be
learned at an adjustable pace based on the distance among these negative contrastive pairs. If the
distance among negative contrastive pairs is small (hard negative pairs), the temperature descents
rapidly, while it descents slowly when the distance among negative pairs is large (easy negative
pairs). Eventually, the temperature will converge to an optimal value. Formally, the adaptive module
in dual-level HyGCL is formulated as:

τ
(t)
nd = max {τ (t−1)

nd − η[ 1/log

|V|∑
i

|V|∑
j ̸=i

exp ( ρ ∗ ||u(t)1
i − u

(t)2
j ||2)

|V| ∗ (|V| − 1)
] , τlow},

τ (t)
cm = max {τ (t−1)

cm − η[ 1/log

|E|∑
i

|E|∑
j ̸=i

exp ( ρ ∗ ||h(t)1
i − h

(t)2
j ||2)

|E| ∗ (|E| − 1)
] , τlow}.

(5)

Here τ
(t)
nd is the adaptive temperature in node-level HyGCL at the current training epoch t. τ (t)cm is

the adaptive temperature in community-level HyGCL. ||u(t)1
i − u

(t)2
j || and ||h(t)1

i − h
(t)2
j || are the

pairwise distances among nodes and communities in the embedding space from different augmented
hypergraphs G̃1 and G̃2 at time t. η denotes the learning rate; ρ is the scaling factor to control the in-
fluence of distance among embeddings; τlow is the hyperparameter to control the lower bound of the
temperature index. Mention that, the lower bound τlow is to prevent the temperature from becoming
too small or approaching zero, ensuring a more reliable learning process. More discussions about
τlow are discussed in experiments. τ (0)nd and τ

(0)
cm are set as 1.0 in this work.

Proposition 4. Temperature index τ
(t)
nd and τ

(t)
cm are adaptive to negative contrastive pairs during

hypergraph contrastive optimization.

Proof Sketch. Equation 5 is designed to adaptively adjust the temperature in hypergraph contrastive
optimization. We leverage ϕ(t) to learn the relative distance among negative contrastive pairs:

ϕ
(t)
nd = 1/ log

|V|∑
i

|V|∑
j ̸=i

exp ( ρ ∗ ||u(t)1
i − u

(t)2
j ||2)

|V| ∗ (|V| − 1)
.

(6)

Here, we take node-level HyGCL as an example. The distance ||u(t)1
i − u

(t)2
j ||2 quantifies how dis-

similar or hard it is to distinguish the embedding of node vi and vj at epoch t. A smaller distance
indicates the negative contrastive pair is harder to distinguish. Then the exponential term ampli-
fies the differences in distance. When the distance of negative pair is smaller, the exponential term
exp(ρ ∗ ||u(t)1

i − u
(t)2
j ||2) will be closer to 1, resulting in a smaller value inside the logarithm and

further a larger value of the inverse logarithm ϕ
(t)
nd. Otherwise, the logarithm increases and ϕ

(t)
nd de-

creases, when the distance is larger. Therefore, according to Equation 5, when the distances among
negative contrastive node pairs are small (indicating hard negative pairs), τ (t)nd will descent rapidly
because it subtracts a large ϕ

(t)
nd from τ

(t−1)
nd . Conversely, when the distances among negative node

pairs are large (indicating easy negative pairs), τ (t)nd will descent more slowly because it subtracts a
smaller ϕ(t)

nd from τ
(t−1)
nd .

4.3.3 OVERALL OPTIMIZATION

With the designed adaptive temperature in both node-level and community-level AdT-HyGCL, the
overall contrastive loss Lnd cm can be formulated as:
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Lnd cm =λ1 ∗ Lnd + λ2 ∗ Lcm, where

Lnd =− log
∑
vi∈V

exp (sim (u1
i ,u

2
i )/τ

∗
nd)∑

k ̸=i

exp (sim (u1
i ,u

2
k)/τ

∗
nd) + exp (sim (u1

i ,u
2
i )/τ

∗
nd)

,

Lcm =− log
∑
ei∈E

exp (sim (h1
i ,h

2
i )/τ

∗
cm)∑

k ̸=i

exp (sim (h1
i ,h

2
k)/τ

∗
cm) + exp (sim (h1

i ,h
2
i )/τ

∗
cm)

.

(7)

Here λ1 and λ2 are hyper-parameters to balance node-level and community-level AdT-HyGCL. τ∗nd
and τ∗cm are the adaptive temperatures at both levels. To validate the generalization of temperature-
enhanced contrast optimization, we also apply it to JSD (Jensen-Shannon divergence) loss for com-
parison in Table 1. The pseudo-code of AdT-HyGCL is listed in Appendix Algorithm 1.

5 EXPERIMENTS

In this section, we first introduce the experimental setup including datasets, baseline methods, and
experimental settings. We then compare AdT-HyGCL with various baseline methods to show its ef-
fectiveness and robustness. Moreover, systemic studies about hypergraph augmentations and temper-
ature index are conducted to show the rationality, generalization, and effectiveness of AdT-HyGCL.
More details about data statistics (Appendix C), baseline settings (Appendix D), ablation study
(Appendix E), performances of AdT-HyGCL with various augmentations (Appendix F), and com-
plexity analysis (Appendix G) are also provided in Appendix.

5.1 EXPERIMENTAL SETUP

Dataset. We employ eight benchmark datasets from existing HyGNNs literature, including three
co-citation and co-authorship networks from (Yadati et al., 2019) (i.e., Cora, Citerseer, Cora-CA),
two hypergraph datasets (i.e., Zoo and Mushroom) from the UCI categorical machine learning
repository (Asuncion & Newman, 2007), one computer vision hypergraph data (i.e., NTU2012)
from (Chen et al., 2003), and two e-commerce hypergraph networks from (Chien et al., 2022) (i.e.,
House and Walmart). More detailed discussion and data statistics are introduced in Appendix C.

Baseline Methods. To evaluate the performance of AdT-HyGCL, we consider nine baseline methods
including six HyGNNs (i.e., CEGCN (Feng et al., 2019), HNHN (Dong et al., 2020), HGNN (Feng
et al., 2019), HCHA (Bai et al., 2021), UniGCNII (Huang & Yang, 2021), and AllDeepSets (Chien
et al., 2022)) and three recent contrastive learning methods over hypergraphs, i.e., HyperGCL (Wei
et al., 2022), CHGNN (Song et al., 2023), and TriCL (Lee & Shin, 2023). Details about baseline
methods are introduced in Appendix D.

Experimental Settings. All experiments are conducted under the environment of the Ubuntu 16.04
OS, plus Intel i9-9900k CPU, two GeForce GTX 2080 Ti Graphics Cards, and 64 GB of RAM. To
make fair comparisons, we exactly follow the settings of HyperGCL: (i) We train all methods with
500 epochs; (ii) The train/val/test ratio is 10%/10%/80%; (iii) We adopt AllDeepSets (Chien et al.,
2022) as the encoder over all datasets. Besides, we adopt two metrics, i.e., accuracy and Macro-F1
to evaluate all models. Moreover, all models are trained five times, and the average performance
multiplied by 100 on testing data is reported. In Equation 5, τlow is set as 0.05 over all datasets. η
and ρ are set as 0.001 and 0.5, respectively. The trade-off hyper-parameters λ1 and λ2 are set as 1.0.

5.2 EXPERIMENT ANALYSIS

AdT-HyGCL Enhances Semi-supervised Learning. Table 1 shows the accuracy and Macro-F1
performance of all methods over eight datasets for node classification tasks. From this table, we
conclude that: (i) contrastive learning over unlabeled data boosts the representation learning in hy-
pergraphs as all contrastive learning methods outperform the corresponding hypergraph encoder. (ii)
our proposed model AdT-HyGCL outperforms most SOTAs of HyGNNs and hypergraph contrastive
learning, showing the effectiveness of AdT-HyGCL in enhancing hypergraph representation learn-
ing; (iii) AdT-HyGCL with different contrastive losses (i.e., JSD and NT-Xent loss) gains excellent
performance, showing its excellent generalization with different contrast loss optimizations.

AdT-HyGCL Boosts Model Robustness. We further conduct experiments to demonstrate that AdT-
HyGCL boosts the model robustness. Specifically, we perform two types of attacks including min-
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Table 1: Performance comparison (Mean % ± std) of all methods for node classification. Purple
shaded numbers indicate the best result and gray shade numbers represent the runner-up perfor-
mance. If the best result comes from AdT-HyGC, we shade the best baseline result in gray.

Cora Citeseer Cora-CA Zoo Mushroom NTU2012 House Walmart

Accuracy

CEGCN 68.11 ± 1.67 62.20 ± 0.60 68.69 ± 1.91 63.34 ± 2.53 94.30 ± 0.24 65.70 ± 3.46 56.69 ± 2.56 49.23 ± 0.23
HNHN 64.96 ± 2.41 62.38 ± 1.52 65.92 ± 1.16 68.01 ± 5.61 99.64 ± 0.26 65.06 ± 1.85 59.02 ± 1.61 42.24 ± 0.37
HGNN 66.98 ± 0.89 56.63 ± 1.96 73.71 ± 1.50 69.21 ± 11.39 98.17 ± 0.31 69.05 ± 1.50 54.30 ± 1.46 55.15 ± 0.28
HCHA 72.20 ± 1.69 65.33 ± 0.57 75.12 ± 0.99 69.51 ± 10.02 97.65 ± 0.45 73.88 ± 1.74 55.73 ± 1.68 60.16 ± 0.22

UniGCNII 71.23 ± 0.66 65.71 ± 1.48 77.35 ± 0.27 69.09 ± 10.64 99.85 ± 0.04 74.27 ± 1.41 63.27 ± 1.48 49.48 ± 0.41
AllDeepSets 68.14 ± 1.31 63.60 ± 1.27 68.52 ± 2.67 58.48 ± 9.13 99.72 ± 0.18 72.54 ± 1.42 58.74 ± 2.93 55.89 ± 0.24

HyperGCL 73.52 ± 1.05 66.82 ± 0.98 76.57 ± 1.70 58.77 ± 6.09 99.76 ± 0.15 76.16 ± 1.26 58.30 ± 4.18 60.33 ± 0.22
CHGNN 74.20 ± 0.58 68.83 ± 1.83 77.09± 1.01 65.12 ± 3.39 94.64 ± 0.72 74.34 ± 1.18 59.26 ± 1.52 —

TriCL 64.86 ± 0.80 62.88 ± 1.51 77.21 ± 1.42 64.25 ± 9.23 95.53 ± 1.31 75.01 ± 1.76 58.46 ± 1.78 59.48 ± 0.50

AdT-HyGCL (JSD) 73.75 ± 1.21 67.14 ± 1.27 79.35 ± 1.70 69.88 ± 12.45 99.82 ± 0.13 77.54 ± 0.77 59.10 ± 1.80 60.55 ± 0.28
AdT-HyGCL (NT) 76.08 ± 0.99 69.74 ± 0.62 79.24 ± 1.69 69.14 ± 13.12 99.92 ± 0.05 77.64 ± 0.84 60.62 ± 1.07 60.82 ± 0.34

Macro-F1
CEGCN 64.68 ± 2.92 56.13 ± 0.78 66.27 ± 2.36 14.28 ± 3.80 94.28 ± 0.24 52.09 ± 4.71 52.83 ± 4.70 20.44 ± 0.71
HNHN 61.12 ± 2.28 56.24 ± 1.91 62.15 ± 1.20 41.85 ± 16.08 99.64 ± 0.26 50.70 ± 2.49 58.97 ± 1.61 13.24 ± 0.78
HGNN 63.91 ± 0.87 56.13 ± 0.78 71.19 ± 2.34 43.14 ± 12.19 98.16 ± 0.31 55.62 ± 2.41 52.65 ± 2.90 25.43 ± 0.23
HCHA 68.89 ± 2.79 56.24 ± 1.91 71.45 ± 2.80 40.37 ± 13.89 97.65 ± 0.45 60.98 ± 4.18 54.99 ± 2.20 42.62 ± 0.15

UniGCNII 68.24 ± 1.31 58.43 ± 1.90 74.64 ± 0.79 38.20 ± 9.99 99.85 ± 0.04 60.90 ± 2.64 63.06 ± 1.49 23.24 ± 0.39
AllDeepSets 64.84 ± 1.18 59.36 ± 0.83 59.36 ± 0.83 24.66 ± 10.27 99.72 ± 0.18 59.19 ± 2.85 58.12 ± 2.60 26.32 ± 0.27

HyperGCL 71.27 ± 0.84 62.69 ± 1.40 74.28 ± 1.85 26.09 ± 6.09 99.76 ± 0.15 64.66 ± 2.48 57.70 ± 4.43 41.69 ± 0.86
CHGNN 72.34 ± 0.72 64.98 ± 1.77 75.27 ± 1.20 37.94 ± 2.38 94.66 ± 0.86 60.47 ± 1.36 56.96 ± 0.79 —

TriCL 72.15 ± 1.45 63.41 ± 1.23 74.34 ± 1.52 30.45 ± 10.24 96.43 ± 1.71 62.42 ± 1.51 56.90 ± 1.74 40.39 ± 0.71

AdT-HyGCL (JSD) 74.10 ± 1.58 64.65 ± 0.85 77.40 ± 2.32 42.59 ± 8.14 99.83 ± 0.32 66.68 ± 1.44 59.72 ± 1.37 43.58 ± 0.75
AdT-HyGCL (NT) 74.47 ± 0.89 64.48 ± 1.25 77.42 ± 1.77 40.57 ± 17.57 99.93 ± 0.05 66.47 ± 1.89 60.22 ± 0.90 42.23 ± 0.83

Table 2: Performance comparison in terms of model robustness. The best performance is shaded in
purple and the runner-up is shaded in gray.

Setting Cora Citseer
Minmax Nettack Minmax Nettack

Model Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

UniGCNII 70.04 ± 1.18 67.21 ± 1.87 69.45 ± 1.24 66.57 ± 1.38 62.17 ± 4.38 60.15 ± 1.32 65.38 ± 1.57 59.02 ± 1.68
AllDeepSets 66.94 ± 1.11 63.81 ± 1.17 67.01 ± 1.25 62.25 ± 1.03 62.56 ± 1.05 55.97 ± 1.32 64.30 ± 1.17 59.98 ± 1.58
HyperGCL 69.99 ± 0.71 67.44 ± 0.86 70.77 ± 0.84 68.39 ± 0.69 64.99 ± 1.89 61.00 ± 3.10 65.25 ± 1.02 61.46 ± 1.09

AdT-HyGCL 75.11 ± 0.52 73.01 ± 0.82 75.03 ± 1.36 73.24 ± 1.44 68.84 ± 0.91 63.53 ± 0.48 69.30 ± 0.93 64.36 ± 1.01

Setting NTU2012 House
Minmax Nettack Minmax Nettack

Model Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

UniGCNII 68.76 ± 2.05 58.23 ± 1.70 72.95 ± 2.23 62.17 ± 4.38 61.05 ± 1.84 59.41 ± 1.63 60.60 ± 1.29 60.02 ± 1.49
AllDeepSets 67.17 ± 2.60 53.05 ± 4.22 71.83 ± 1.94 57.57 ± 2.06 55.38 ± 2.32 54.12 ± 2.92 58.86 ± 3.03 57.13 ± 4.53
HyperGCL 71.88 ± 0.46 60.43 ± 2.08 74.21 ± 1.43 62.54 ± 1.71 57.62 ± 2.00 56.39 ± 3.17 59.65 ± 1.62 59.02 ± 2.11

AdT-HyGCL 71.95 ± 0.65 61.42 ± 2.24 74.75 ± 2.24 62.99 ± 2.63 59.78 ± 2.22 59.95 ± 3.20 59.19 ± 1.05 60.11 ± 0.81

max attack (Sun et al., 2020) and nettack (Zügner et al., 2018) over four real-world hypergraphs.
From Table 2, we observe that both minmax and nettack attacks affect the performance, while our
mode AdT-HyGCL is more robust compared with other baseline models. The performance of AdT-
HyGCL shows a relatively small decline compared with results in Table 1, showing its robustness.

Figure 2: Accuracy gain (%) of AdT-HyGCL with different augmentations over node classification,
compared with AllDeepSets. Warmer colors show more performance gains while cooler colors rep-
resent less performance gains.
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Unveil the Effectiveness of Hyperedge Removing Augmentation. Hyperedge removing
(HyedgeR) augmentation is explicitly designed for hypergraphs. Please refer to Appendix Table 3
for augmentation abbreviations. Figure 2 illustrates the results of AdT-HyGCL with various augmen-
tations over three datasets. Table 6 in the Appendix shows the results of AdT-HyGCL with various
augmentation combinations over all datasets. As the first row of each subfigure in Figure 2 shows,
augmentation incorporates HyedgeR benefit hypergraph representation learning as most of them
gain better performance with warm colors. Besides, from Appendix Table 6, we find out most of the
best performances are involved with HyedgeR, which is shaded in purple. Based on the above find-
ings, we demonstrate that randomly removing partial hyperedges would not alter global semantics
and can enhance hypergraph contrastive learning.

Synergistic Effects of Augmentation Combination. We also conduct extensive experiments to
study the synergistic effects among hypergraph augmentations in the semi-supervised setting. As
Figure 2 illustrated, we conclude that the best performances mostly come from the combinations of
different types of augmentations. Based on this, we further visualize contrastive loss curves com-
posing augmentations together with HyedgeR over three datasets in Figure 3. From this figure, we
conclude that contrastive loss with the same type of augmentations (HyedgeR+HyperedgeR in blue)
always descents faster than that with different types of augmentations (e.g., HyedgeR+NodeDrop in
red), showing that different types of augmentations might benefit more in hypergraph learning.

Figure 3: Contrastive loss curves for different augmentation pairs involved with HyedegeR.

Temperature Analysis in AdT-HyGCL. Besides theoretical justifications, we conducted additional
experiments to study the influence of temperature on AdT-HyGCL. Figure 4 illustrates the perfor-
mance of AdT-HyGCL with static τ , and AdT-HyGCL without the lower bound constraint τlow.
We find out that the static values of τ achieve excellent performance but still do not yield the best
performances. Additionally, the performance of AdT-HyGCL without τlow decreases obviously over
these datasets. These findings show the rationality of our adaptive contrast optimization.

Figure 4: Performance of AdT-HyGCL under different contrast optimization strategies over Cora,
NTU2012, and Zoo. The left axis is for accuracy and the right axis is for Macro-F1.

6 CONCLUSION

The paper introduces an adaptive temperature-enhanced dual-level hypergraph contrastive learning
model called AdT-HyGCL to enhance hypergraph contrastive learning. To handle the limitations of
existing hypergraph contrastive learning w.r.t. underestimating group-wise behaviors and ignoring
the importance of temperature in contrast optimization, AdT-HyGCL introduces a dual-level con-
trast mechanism to capture individual behaviors and group-wise behaviors simultaneously. Besides,
it designs adaptive temperature-enhanced contrast optimization to improve discrimination ability
between contrastive pairs, thus boosting hypergraph representation learning over unlabeled data.
Theoretical justifications and empirical experiments on eight benchmark hypergraphs demonstrate
the rationality, effectiveness, generalization, and robustness of AdT-HyGCL.
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APPENDIX

A HYPERGRAPH AUGMENTATION

In this section, we would like to first summarize the hypergraph augmentation methods and then
discuss the differences between hyperedge removal and edge perturbation.

First of all, we summarize five types of hypergraph augmentation methods in Table 3, i.e., hyperedge
removing, edge perturbation, attribute masking, node dropping, and subgraph. The augmentation
methods of attribute masking, node dropping, and subgraph in hypergraphs are similar to that in
graph augmentation (Zhu et al., 2021a; You et al., 2020; Zhu et al., 2020) and we will focus more
on discussing the differences between hyperedge removing and edge perturbation.

A hypergraph can be converted into an equivalent bipartite graph through a simple transformation
process. In a hypergraph, the edges, known as hyperedges, can connect any number of nodes, cre-
ating a more generalized representation of relationships. To convert it into a bipartite graph, each
hyperedge in the hypergraph becomes a node. As illustrated in Figure 5.(c), for every connection
between a hyperedge and a node in the hypergraph, we create an edge in the bipartite graph that con-
nects the corresponding nodes. This transformation captures the relationships between hyperedges
and nodes in a bipartite graph.

Then, we would like to introduce the difference between hyperedge removal in the hypergraph and
edge perturbation in the bipartite graph, which is illustrated in Figure 5. (a) and Figure 5.(d),
respectively. From Figure 5.(a), hyperedge e2 is removed from the hypergraph. We believe that
removing partial hyperedges would not alter the full semantics. For instance, removing hyperedge
e2 will not alter the full semantics of nodes 3, 4, and 7 for sure. On the other hand, we perturb
the connections in the bipartite graph including dropping edges and adding edges, as illustrated in
Figure 5. (d). We believe that it can enhance the structure robustness and would not change the full
semantic structure.

Figure 5: Subfigure (b) and (c) show the conversion between hypergraph and bipartite graph. Sub-
graph (a) illustrates how to remove hyperedges on hypergraph (HyedgeR); Subfigure (d) shows how
to perturb (including add/remove) edges over the equivalent bipartite graph (EdgePert).

Table 3: Summary of hypergraph augmentation methods for hypergraph contrastive learning.
Data augmentation Abbreviation Type Underlying Prior

Hyperedge removing HyedgeR Hyperedges Partial high-order relations missing does not alter full semantics.
Edge perturbation EdgePert Edges Semantic robustness against the pair-wise connections noise.
Attribute masking AttrMask Nodes Semantic robustness against partial node attributes missing.
Node dropping NodeDrop Nodes, Edges Partial nodes missing does not change the global semantics.
Subgraph Subgraph Nodes, Hyperedges Local structure can infer the full semantics.

B TEMPERATURE ANALYSIS IN CONTRASTIVE LEARNING

As we proved in Proposition 2, contrastive loss is a hardness-aware loss that aims to align positive
contrastive pairs while separating negative contrastive pairs. Next, we would like to prove that the
temperature index controls the penalties on hard negative contrastive pairs.
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Proposition 3. Temperature index τ controls the penalties on hard negative contrastive pairs. A
smaller temperature index puts larger penalties on hard negative contrastive pairs, while a larger
temperature index tends to assign uniform penalties over negative contrastive pairs.

Proof Sketch. As discussed, the gradients w.r.t. the similarity of positive pair si,i and negative pair
si,j can be formulated as:

dLNT

dSi,i
= − 1

τ

∑
k ̸=i

exp (Si,k/τ)∑
l ̸=k exp (Sk,l/τ) + exp (Si,k/τ)

,

dLNT

dSi,j
=

1

τ

exp (Si,j/τ)∑
i̸=k exp (Si,k/τ) + exp (Si,j/τ)

,

(8)

where Si,j is the embedding similarity of contrastive pairs, and j ̸= i. From the above equation, we
find out that the gradient of the negative contrastive pair (vi, vj) is dominated by the temperature
index τ and the embedding similarity Si,j , as the denominator is fixed. With a smaller τ , contrastive
loss LNT assigns larger gradients (larger penalties) to hard negative contrastive pairs as the numera-
tor is larger. In this case, node vj with higher similarity would be farther away from the anchor node
vi in a quick manner, while node vj with less similarity would get away from node vi slowly.

Algorithm 1: Training Procedure of AdT-HyGCL
Data: Hypergraph G, Hypergraph augmentation set T , Hypergraph encoder f(·), Projection

head h(·).
Result: Pre-trained hypergraph encoder.

1 Randomly select two hypergraph augmentations A1 and A2 from T .
2 for each epoch t do
3 Augmentation: G A1→ G̃1,G A2→ G̃2.
4 Random noise enhanced augmentation: [G̃1 = (V1, E1,X1 + δ1), G̃2 = (V2, E2,X2 + δ2)].
5 Feed the augmented hypergraphs (G̃1, G̃1) to f(·) for obtaining the node embeddings

(u1,u2) from the local view and the community embeddings (h1,h2) from the global
perspective ;

6 Feed the node and community embeddings into the projection head h(·);
7 Dynamically adjust the adaptive temperature index τ

(t)
cm at the node level and τ

(t)
cm at the

community level via Eq. 5.
8 Optimize f(·) and h(·) by minimizing dual-level contrastive loss Lnd cm in Eq. 7.

C DATA DESCRIPTION

We employ eight benchmark datasets from existing hypergraph neural networks literature including
three co-citation and co-authorship networks from (Yadati et al., 2019) (i.e., Cora, Citerseer, Cora-
CA), two hypergraph data (i.e., Zoo and Mushroom) from the UCI categorical machine learning
repository (Asuncion & Newman, 2007), one computer vision hypergraph data NTU2012 (Chen
et al., 2003), and two e-commerce hypergraph networks, i.e. House and Walmart from (Chien et al.,
2022). Mention that, three co-citation and co-authorship networks are differently constructed in
the hypergraph domain. For instance, all papers cited by a paper are connected by a hyperedge in
Cora. In these co-citation hypergraphs, the node features are the bag-of-words representations of the
corresponding documents. For the Zoo hypergraph, the node features are a mix of categorical and
numerical features about animals. In the Mushroom hypergraph, node features represent categorical
descriptions of 23 species of mushrooms. About the computer vision NTU2012 hypergraph, the fea-
tures extracted are via Group-View Convolutions Neural Network (GVCNN) (Feng et al., 2018) and
Multi-View Convolutional Neural Network (MVCNN) (Su et al., 2015). Besides, we construct the
hypergraph based on the setting in (Feng et al., 2019). For the House dataset, each node represents a
member of the US House of Representatives and these hyperedges are formed by grouping members
of the same committee. The node labels show the political party of representatives. For the Walmart
dataset, each node shows the product that is listed at Walmart and each hyperedge shows that a bunch
of products are purchased together. As the original datasets, House and Walmart, do not have any
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features, following the previous work (Chien et al., 2022), we impute the Gaussian random vectors
to the one-hot encoding of the labels as the attribute features. The feature dimension for House and
Walmart is 100 and the noise standard deviation is set as 1.0 in this work. More details about each
dataset are listed in Table 4.

Table 4: Statistics of eight hypergraph datasets. de represents the hyperedge degree and dv denotes
the node degree in hypergraphs.

Cora Citeseer Cora-CA Zoo Mushroom NTU2012 House Walmart

|V| 2,708 3,312 2,708 101 8,124 2,012 1,290 88,860
|E| 1,579 1,079 1,072 43 298 2,012 341 69,906

# feature 1,433 3,703 1,433 16 22 100 100 100
# class 7 6 7 7 2 67 2 11
avg de 3.03 3.2 4.28 39.93 136.31 5 34.72 6.59
max de 5 26 43 93 1,808 5 81 25
min de 2 2 2 1 1 5 1 2
med de 3 2 3 40 72 5 40 5
avg dv 1.77 1.04 1.69 17 5 5 9.18 5.18
max dv 145 88 23 17 5 19 44 5,733
min dv 0 0 0 17 5 1 0 0
med dv 1 0 2 17 5 5 7 2

D BASELINE METHOD

To validate the effectiveness of AdT-HyGCL in modeling hypergraph representations over unlabeled
data, we compare AdT-HyGCL with two groups of baseline methods, G1 (hypergraph representa-
tion learning models) and G2 (hypergraph contrastive learning models). G1 contains six hyper-
graph representation learning methods including CEGCN (Feng et al., 2019), HNHN (Dong et al.,
2020), HGNN (Feng et al., 2019), HCHA (Bai et al., 2021), UniGCNII (Huang & Yang, 2021),
and AllDeepSets (Chien et al., 2022). All architectures are implemented using the Pytorch Geomet-
ric library (PyG) (Fey & Lenssen, 2019). Specifically, CEGCN and CEGAT are executed directly
from PyG. Similar to the baseline setting in (Chien et al., 2022), we also adapt the implementation
of HGNN, HCHA, and HNHN from PyG. Mention that in the original implementation of HGNN,
propagation is performed via matrix multiplication which is far less memory and computationally
efficient compared to the implementation. Besides, we exactly follow the setting of UniGCNII and
AllDeepSets to reproduce the experimental results. G2 includes three recent hypergraph contrastive
learning methods, HyperGCL (Wei et al., 2022), CHGNN (Song et al., 2023), and TriCL (Lee &
Shin, 2023). To make a fair comparison with HyperGCL, CHGNN, and TriCL, we leverage the
same encoder AllDeepSets as the hypergraph backbone to learn the hyperedge and node embed-
dings, and further integrate the contrastive self-supervised setting and the semi-supervised setting to
do the downstream node classification tasks.

E ABLATION STUDY

To show the effectiveness of different components in AdT-HyGCL, we conduct a set of ablation ex-
periments over four datasets (i.e., Cora, Citeseer, Cora-CA, and NTU2012) and further analyze the
contribution of each component (i.e., random noise δ on the augmented graph (C1), the community-
level hypergraph contrastive learning (C2), and the adaptive temperature during contrast optimiza-
tion (C3)) by removing it separately. The performance is listed in Table 5. First, we remove the
random noise δ from the augmented hypergraphs, which means we leverage the hypergraph after
augmentations (i.e., HyedgeR and NodeDrop) to reach the agreement between node embeddings
from the local view and the agreement between community embeddings from the global view. From
Table 5, we find out the performance of removing C1 decreases slightly, showing the effectiveness of
random noise in enhancing the hypergraph augmentation. Besides, we remove the community-level
contrastive module (C2) and we observe that the performance declines obviously, which empiri-
cally shows the effectiveness of community-level hypergraph contrastive learning in modeling the
hypergraph representations over unlabeled data. Moreover, the performance of removing C3 (adap-
tive temperature) also shows an obvious decline over four datasets, validating the effectiveness of
adaptive temperature in AdT-HyGCL.
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Table 5: Performance of model variants. The train/val/test ratio is 10%:10%:80%. The best perfor-
mance is shaded in purple. Here AdT-HyGCL refers to AdT-HyGCL with NT loss. C1 refers to the
random noise on the augmented graph; C2 refers to the community-level hypergraph contrastive
learning; C3 represents the adaptive temperature enhancement during contrast optimization.

Setting Cora Citeseer Cora-CA NTU2012

Model Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1
– C1 75.54 ± 1.01 73.07 ± 0.87 68.15 ± 0.74 63.14 ± 1.08 78.42 ± 1.54 76.35 ± 1.64 76.97 ± 0.97 65.45 ± 1.51
– C2 74.25 ± 1.25 73.15 ± 1.68 67.41 ± 1.27 63.55 ± 1.17 77.45 ± 1.53 75.58 ± 1.47 76.99 ± 1.35 65.54 ± 1.02
– C3 74.53 ± 1.71 73.49 ± 1.53 67.54 ± 0.74 63.17 ± 1.32 77.32 ± 1.42 75.24 ± 1.68 76.87 ± 0.77 65.34 ± 1.78

AdT-HyGCL 76.11 ± 0.98 74.45 ± 0.85 69.75 ± 0.71 64.49 ± 1.24 79.35 ± 1.71 77.42 ± 1.75 77.64 ± 0.87 66.48 ± 1.91

F ADT-HYGCL WITH DIFFERENT AUGMENTATIONS

Inspired by GraphCL (You et al., 2020), we also conduct extensive experiments to study the syner-
gistic effects among hypergraph augmentations in the semi-supervised setting. The performance of
the optimal augmentation combinations is shaded with purple and the worst augmentation combina-
tions are shaded with gray in Table 6. As this table listed, we find out that the best performances over
different hypergraphs mostly come from the combinations of different types of augmentations. while
the same type of augmentation is more likely to gain relatively less performance. For instance, AdT-
HyGCL with Subgraph+Subgraph augmentations has the lowest performance over Cora, Citeseer,
and Cora-CA, and it gains the worst performance over Mushroom if it takes AttrMask+AttrMask as
the augmentation method.
Table 6: The accuracy performance (mean % ± std) comparison of our model AdT-HyGCL with dif-
ferent augmentations. Purple shaded values indicate the best result and gray shaded values represent
the worst performance. A1: HyedgeR, A2: EdgePert, A3: AttrMask, A4: NodeDrop, A5: Subgraph.

Cora Citeseer Cora-CA Zoo Mushroom NTU2012 House Walmart

A1:A1 75.36 ± 1.19 69.25 ± 0.83 78.86 ± 1.56 65.43 ± 13.38 99.92 ± 0.05 74.96 ± 1.34 59.72 ± 0.71 59.94 ± 0.32
A1:A2 76.08 ± 0.99 69.01 ± 1.02 78.57 ± 2.03 65.68 ± 9.93 99.90 ± 0.09 75.14 ± 0.87 59.73 ± 0.84 59.87 ± 0.13
A1:A3 75.57 ± 0.77 68.78 ± 0.99 79.22 ± 1.18 64.94 ± 10.28 99.79 ± 0.22 74.45 ± 1.80 59.43 ± 0.68 60.82 ± 0.35
A1:A4 75.92 ± 1.27 67.90 ± 1.03 79.19 ± 1.77 68.15 ± 12.87 99.82 ± 0.14 77.64 ± 0.84 59.45 ± 0.77 59.82 ± 0.15
A1:A5 75.12 ± 0.80 68.94 ± 0.86 78.77 ± 2.35 69.14 ± 13.12 99.81 ± 0.12 75.28 ± 1.32 59.34 ± 0.89 59.88 ± 0.25
A2:A2 75.92 ± 1.44 69.27 ± 0.94 79.03 ± 1.55 67.16 ± 9.90 99.80 ± 0.19 75.32 ± 1.35 59.34 ± 0.97 59.02 ± 0.34
A2:A3 75.85 ± 1.47 68.78 ± 0.93 78.75 ± 1.48 66.91 ± 12.51 99.80 ± 0.28 74.55 ± 1.76 59.42 ± 0.74 59.87 ± 0.28
A2:A4 74.99 ± 1.38 68.15 ± 0.85 79.07 ± 1.71 67.16 ± 11.99 99.80 ± 0.13 77.18 ± 1.18 59.76 ± 0.68 59.72 ± 0.33
A2:A5 75.08 ± 2.13 68.45 ± 0.94 78.61 ± 2.01 64.69 ± 12.52 99.86 ± 0.07 75.50 ± 1.79 59.87 ± 0.73 59.64 ± 0.37
A3:A3 73.80 ± 2.82 68.69 ± 0.22 77.91 ± 1.86 65.93 ± 12.33 99.41 ± 0.42 74.53 ± 1.68 59.37 ± 0.87 60.25 ± 0.33
A3:A4 74.94 ± 0.38 68.72 ± 1.73 79.19 ± 1.75 65.19 ± 11.69 99.66 ± 0.26 76.98 ± 1.99 60.62 ± 1.12 60.25 ± 0.34
A3:A5 74.16 ± 1.95 68.32 ± 0.75 78.77 ± 2.19 67.90 ± 11.28 99.79 ± 0.14 75.17 ± 1.14 59.65 ± 0.74 60.24 ± 0.41
A4:A4 75.26 ± 1.45 69.74 ± 0.62 78.52 ± 2.35 64.20 ± 11.01 99.69 ± 0.28 76.86 ± 0.97 59.01 ± 0.97 59.71± 0.38
A4:A5 74.50 ± 1.36 68.11 ± 1.00 79.24 ± 1.69 65.93 ± 11.67 99.78 ± 0.03 75.07 ± 1.12 59.45 ± 0.82 59.78 ± 0.24
A5:A5 73.33 ± 1.19 66.69 ± 1.22 77.75 ± 1.45 65.93 ± 10.75 99.83 ± 0.16 74.67 ± 0.73 59.24 ± 0.67 59.28 ± 0.42

G COMPLEXITY ANALYSIS

Last, we discuss the efficiency of AdT-HyGCL in terms of space complexity and time complexity.
Space complexity: Since we adopt a sparse representation to store H , the space should be O(E),
where E =

∑
e d(e). The size of node feature X is O(Nd), where d is the dimension of node

features. Therefore, the space complexity of storing an augmented hypergraph pair is O(2E+2Nd).
When calculating the contrastive loss over large-scale datasets, we leverage mini-batch data which
takes O(N ′2), where N ′ is the batch size and N ′ ≪ N . Note that this similarity matrix is shared to
dynamically adjust the temperature index. Moreover, the space complexity of storing the parameter
matrix of backbone AllDeepSets is O(Nh+Mh+2hb), where h is the hidden dimension and b is the
output embedding dimension. Therefore, the space complexity of AdT-HyGCL is O(2E + 2Nd +
N ′2+Nh+Mh+2hb), which is linear to the size of nodes. Time complexity: The time complexity
for updating the temperature index τ (t) for each epoch is O(N ′2) per each view, where N ′ ≪ N .
Since we have a local view and a global view strategy, the total time complexity for this part is
O(2N ′2). When computing full negatives, the time complexity for calculating the contrastive pairs
is linear to the size of nodes, i.e. O(N). So the total time complexity for each round is O(2N ′2+N),
again showing its efficiency.
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