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ABSTRACT

Accelerated diffusion models hold the potential to significantly enhance the ef-
ficiency of standard diffusion processes. Theoretically, these models have been
shown to achieve faster convergence rates than the standard O(1/ϵ2) rate of vanilla
diffusion models, where ϵ denotes the target accuracy. However, current theoretical
studies have established the acceleration advantage only for restrictive target distri-
bution classes, such as those with smoothness conditions imposed along the entire
sampling path or with bounded support. In this work, we significantly broaden
the target distribution classes with a new accelerated stochastic DDPM sampler.
In particular, we show that it achieves accelerated performance for three broad
distribution classes not considered before. Our first class relies on the smoothness
condition posed only to the target density q0, which is far more relaxed than the
existing smoothness conditions posed to all qt along the entire sampling path. Our
second class requires only a finite second moment condition, allowing for a much
wider class of target distributions than the existing finite-support condition. Our
third class is Gaussian mixture, for which our result establishes the first accelera-
tion guarantee. Moreover, among accelerated DDPM type samplers, our results
specialized for bounded-support distributions show an improved dependency on
the data dimension d. Our analysis introduces a novel technique for establishing
performance guarantees via constructing a tilting factor representation of the con-
vergence error and utilizing Tweedie’s formula to handle Taylor expansion terms.
This new analytical framework may be of independent interest.

1 INTRODUCTION

Generative modeling is a fundamental task in machine learning, aiming to generate samples out
of a distribution similar to that of training data. Classical generative models include variational
autoencoders (VAE) (Kingma & Welling, 2022), generative adversarial networks (GANs) (Goodfellow
et al., 2014), and normalizing flows Rezende & Mohamed (2015), etc. Recently, diffusion models
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) have arisen as an appealing
generative model and have received wide popularity due to their excellent performance over a variety
of tasks and applications as summarized in many surveys of diffusion models (Yang et al., 2023;
Croitoru et al., 2023; Kazerouni et al., 2023).

The empirical success of diffusion models has also inspired extensive theoretical studies, aiming to
characterize the convergence guarantee for diffusion models. The convergence rate (i.e., the total
number of steps to attain a target accuracy ε) for standard vanilla Denoising Diffusion Probabilistic
Models (DDPMs) has been established to be O(ε−2) for wide classes of target distributions (Chen
et al., 2023a; Benton et al., 2024a; Conforti et al., 2023) (see Appendix A for a more complete
summary). More recently, various accelerated samplers have been proposed and been shown to
achieve an improved convergence rate of O(ε−1). One such acceleration approach is to redesign the
(stochastic) DDPM reverse process. This includes augmenting the original reverse process with an
additional estimate (Li et al., 2024c), introducing intermediate sampling points along the generation
path (Li et al., 2024a), and employing special Markov-chain Monte-Carlo (MCMC) algorithms
(Huang et al., 2024b). Another acceleration method is to sample with the corresponding probability
ODE (Li et al., 2024c; Chen et al., 2023c; Huang et al., 2024a; Li et al., 2024d).
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Target distribution Q0 Method Num of steps Results
∇ log qt, st L-Lips. ∀t ODE-based O

(√
dL2

ε

)
(Chen et al., 2023c, Thm 3)

∇ log qt L-Lips. ∀t DDPM accl. O
(√

dL2

ε

)
(Huang et al., 2024b, Thm 4.4)†∣∣∂k

ast(x)
∣∣ ≤ L ∀x, t,a

and ∀k ≤ p + 1, Q0

Bounded Support

ODE O
(

d
p+1
p

ε
1
p

)∗

(Huang et al., 2024a, Thm 3.10)†

∇2 log q0 M -Lips. DDPM accl. O
(

d1.5 log1.5 M
ε

)
(This paper, Thm 4)

Q0 Gaussian Mixture DDPM accl. O
(

d1.5N1.5

ε

)
(This paper, Thm 2)

Q0 Bounded Support

DDPM accl. O
(

d3

ε

)∗ (Li et al., 2024c, Thm 4)
(Li et al., 2024a, Thm 2)†

ODE O
(

d3
√
ε

)∗ (Li et al., 2024c, Thm 2)
(Li et al., 2024a, Thm 1)†

ODE O
(

d2

ε

)∗
(Li et al., 2024c, Thm 1)

Q0 Finite Variance DDPM accl. O
(

d1.5

ε

)∗
(This paper, Thm 3)

Table 1: Summary of accelerated convergence results in terms of the number of steps needed to
achieve ε-accuracy in total variation, where d is the dimension. For Gaussian mixture, assume
that N ≤ d. The first 4 rows of this table correspond to the results under those target distributions
with some smoothness conditions imposed, while the last 4 rows correspond to the results under
(possibly) non-smooth targets with finite variance. (∗) Those results correspond to an early-stopped
procedure that compares the sampling distribution to Q1(δ), where W2 (Q0, Q1)

2 ≲ δd. Here the
dependencies on δ are omitted. (†) Those studies are concurrent to our work based on the time that
they were posted on arXiv. Note that this table does not include the studies within two months of the
conference submission, but those are discussed in the related works.

However, existing results on the acceleration guarantee suffer from strong assumptions on the target
distribution. (i) For smooth target distributions, the analyses of Chen et al. (2023c); Huang et al.
(2024a;b) require that all the scores (or their close estimates or both) satisfy certain Lipschitz-smooth
condition along the entire sampling path, i.e., the smoothness condition is posed to the density qt for
all iteration time t. However, such smoothness at intermediate steps is generally restrictive and hard to
verify in practice. (ii) For (possibly) non-smooth targets, the analysis of Li et al. (2024a;c;d) requires
the distribution to have finite support for early-stopped sampling procedures. Such an assumption
is, however, restrictive if compared to that for early-stopped vanilla samplers, where convergence
guarantees have been established only under the assumption of finite variance (Chen et al., 2023a;
Benton et al., 2024a). The above discussions raise the following important open question:

Question 1: Can we obtain an accelerated convergence rate for a much broader set of target
distributions? Namely, for smooth target distributions, can the smoothness condition be imposed
only on the target distribution; and for (possibly) non-smooth targets, can we broaden the target
distribution only to have finite variance?

Further, the existing accelerated diffusion samplers suffer as high dimensional dependencies as
O
(
d3
)

or O
(
d2
)

(Li et al., 2024a;c) for target distributions with bounded support. This motivates us
to explore the following intriguing question:

Question 2: While addressing Question 1 to relax the assumption from finite support to finite variance
for possibly non-smooth distributions, can we achieve a lower dimensional dependency?

This paper will provide affirmative answers to both of the above questions.

1.1 OUR CONTRIBUTIONS

Our main contribution is to provide accelerated convergence results for a significantly wider range
of distributions than those addressed in previous works (see Table 1 (particularly column 1) for a
comparison). To this end, we design a new accelerated stochastic DDPM sampler and develop a
novel analytical technique that characterizes its acceleration guarantees across this broader spectrum
of distributions. Our detailed contributions are summarized as follows.
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Broadening Target Distributions: Inspired by optimization methods, we design a new Hessian-
based accelerated sampler for the stochastic diffusion processes. We show that our accelerated
sampler achieves an accelerated convergence rate of O

(
d1.5 min{d,N}1.5/ε

)
, O

(
d1.5/ε

)
, and

O
(
d1.5 log1.5 M/ε

)
respectively for Gaussian mixtures, any target distributions having finite variance

(with early-stopping), and any target distributions having M -Lipschitz Hessian of log-densities. In
particular, (i) for smoothness Q0 that has p.d.f., the smoothness condition is only imposed on the
log-density of Q0, which is much less restrictive than that imposed on all Qt’s (Chen et al., 2023c;
Huang et al., 2024a;b); (ii) for possibly non-smooth Q0, we only require Q0 to have finite variance
for the early-stopped procedure, which is a much broader class of distributions than those having
bounded support (Li et al., 2024a;c;d); (iii) we provide the first accelerated convergence result for
Gaussian mixture Q0’s.1

For possibly non-smooth targets with bounded support, our sampler improves the dependency of the
convergence rate on d by O

(
d1.5

)
compared with previous accelerated diffusion samplers (Li et al.,

2024a;c).

Novel Analysis Technique: We develop a novel technique for analyzing the accelerated DDPM
process. Our approach features two new elements: (i) characterization of the error incurred at each
discrete step of the reverse process using tilting factor; and (ii) analysis of the mean value of tilting
factor via Tweedie’s formula to handle power terms in the Taylor expansion. Such a technique enables
us to (a) analyze more general distributions beyond those with restrictive distribution assumptions;
(b) tightly identify the dominant term and reduce the dimensional dependency; and (c) handle the
estimation error in accelerated samplers for both score and Hessian estimation. This analytical
framework is different from the main previous theoretical techniques for analyzing the convergence
of diffusion models: (a) the SDE-type analysis for regular diffusion samplers (Chen et al., 2023a;
Benton et al., 2024a; Conforti et al., 2023), (b) any ODE-type analysis (Li et al., 2024d; Huang et al.,
2024a; Gao & Zhu, 2024), and (c) the use of typical sets (Li et al., 2024a;c).

1.2 RELATED WORKS ON ACCELERATED SAMPLING

Here, we focus on the related studies of accelerated samplers. Note that all of these works we discuss
below, only except Chen et al. (2023c;e); Li et al. (2024c), are concurrent to or after ours based on
their posting time on arXiv. In Appendix A, we provide a thorough summary of convergence analysis
of standard samplers as well as other theoretical perspectives of diffusion models.

Accelerated Stochastic Samplers: In Li et al. (2024c), accelerated stochastic variants to the original
DDPM sampler are proposed and analyzed, when there is no estimation error. In Li et al. (2024a), a
new accelerated stochastic sampler are proposed by inserting intermediate sampling points along the
diffusion path. Both algorithms are analyzed only when the target distribution has bounded support
and suffer from large dimensional dependencies. In Huang et al. (2024b), the authors proposed the
RTK-MALA and RTK-ULD algorithms which uses MCMC algorithms, such as the Metropolis-
adjusted Langevin Algorithm or the Underdamped Langevin Dynamics, at each diffusion step. The
analysis is performed under the assumption that all the scores of log qt’s are Lipschitz-smooth. In
comparison, our work substantially broadens the set of target distributions to include those with
unbounded support and with smooth log-density only imposed upon Q0 with a completely different
analytical technique. Our result also improves the dimensional dependencies of accelerated stochastic
samplers in Li et al. (2024a;c) for distributions with bounded support.

Deterministic Samplers: Beyond stochastic samplers, another line of research to achieve an accel-
erated convergence rate is to sample from the corresponding probability flow ordinary differential
equation (PF-ODE). Early work provided polynomial guarantees under rather restrictive Lipschitz
conditions Chen et al. (2023e). Later in Chen et al. (2023c), an accelerated convergence rate was
first derived with the DPUM sampler by mixing the deterministic predictor steps with stochastic
corrector steps. The analysis was performed under the assumption of Lipschitz ∇ log qt’s and st’s.
Note that this assumption is relatively restrictive and hard to verify in practice. After that, for target
distributions having bounded support, Li et al. (2024c) provided the first analysis of a purely deter-
ministic sampler (along with an accelerated deterministic sampler), albeit with a high dimensional
dependency. Recently, under strong assumptions on st’s, Huang et al. (2024a) provided an acceler-
ated rate using the p-th order Runge-Kutta time integrator for ODEs for those target distributions

1Although the technique in Huang et al. (2024a) may be applied to Gaussian mixtures, the authors do not
provide explicit dependencies in their paper. Also, Huang et al. (2024a) is posted on arXiv after our first draft.
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having bounded support. Specifically, for first-order Runge-Kutta methods, it is assumed that the
first two orders of partial derivatives of st’s are uniformly bounded in space and time, which implies
Lipschitz-smoothness of st and its derivative along the entire sampling path. Most recently, Li
et al. (2024d) obtained a linear convergence rate both in d and ε−1 using PF-ODEs as long as st’s
(and their derivatives) are well estimated. However, it is analyzed only on bounded-support targets.
Beyond these works, further acceleration to deterministic samplers is sought in Li et al. (2024a;c) that
gives the convergence rate of O(ε−1/2), which are still performed under bounded-support targets. In
comparison, our work substantially broadens the target distributions to include those with unbounded
support (yet with finite variance) while achieving an accelerated convergence rate.

2 PRELIMINARIES OF DDPM

In this section, we provide the background of the DDPM sampler (Ho et al., 2020).

2.1 FORWARD PROCESS

Let x0 ∈ Rd be the initial data, and let xt ∈ Rd, t ∈ {1, . . . , T} be the latent variables in the diffusion
algorithm. Let Q0 be the initial data distribution, and let Qt be the marginal latent distribution at
time t in the forward process, for all 1 ≤ t ≤ T . In the forward process, white Gaussian noise is
gradually added to the data: xt =

√
1− βtxt−1+

√
βtwt, ∀t ∈ {1, . . . , T}, where wt

i.i.d.∼ N (0, Id).
Equivalently, this can be expressed as a conditional distribution at each time t:

Qt|t−1(xt|xt−1) = N (xt;
√

1− βtxt−1, βtId), (1)

which means that under Q, X0 → X1 → · · · → XT . Here βt ∈ (0, 1) captures the “amount” of
noise that is injected at time t, and βt’s are called the noise schedule. Define

αt := 1− βt, ᾱt :=
∏t

i=1 αi, 1 ≤ t ≤ T.

An immediate result by accumulating the steps is that

Qt|0(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)Id), (2)

or, written equivalently, xt =
√
ᾱtx0+

√
1− ᾱtw̄t, ∀t ∈ {1, . . . , T}, where w̄t ∼ N (0, Id) denotes

the aggregated noise at time t. Intuitively, for large T , since QT |0 ≈ N (0, Id) (which is independent
of x0), it is expected that QT ≈ N (0, Id) when T becomes large, as long as the variance under Q0 is
finite. Finally, since the conditional noises are Gaussian, each Qt(t ≥ 1) is absolutely continuous
w.r.t the Lebesgue measure. Let the corresponding p.d.f. of each Qt be qt(t ≥ 1). Similarly define
qt,t−1, qt|t−1, and qt−1|t for t ≥ 1. In case Q0 is also absolutely continuous w.r.t. the Lebesgue
measure, let q0 be the corresponding p.d.f. of Q0.

2.2 REGULAR REVERSE PROCESS

The goal of the reverse sampling process is to generate samples approximately from the data
distribution Q0. We first draw the latent variable at time T from a Gaussian distribution: xT ∼
N (0, Id) =: PT . Then, to achieve effective sampling, each forward step is approximated by a reverse
sampling step, in which the mean matches the posterior mean of Qt−1|t. Define

µt(xt) :=
1√
αt

(xt + (1− αt)∇ log qt(xt)) . (3)

Here ∇ log qt(x) is called the score of qt, which can be estimated via a training process called
score matching. At each time t = T, T − 1, . . . , 1, the true regular reverse process is defined as
xt−1 = µt(xt)+σtz, where z ∼ N (0, Id). Two choices of σ2

t are commonly used in practice, where
σ2
t = 1− αt or σ2

t = 1−ᾱt−1

1−ᾱt
(1− αt), and similar results are reported for these choices (Ho et al.,

2020). Let Pt be the marginal distributions of xt in the true regular reverse process, and let pt be the
corresponding p.d.f. of Pt w.r.t. the Lebesgue measure.

2.3 METRICS

In case where Q is absolutely continuous w.r.t. the Lebesgue measure, we are interested in measuring
the mismatch between Q and P through the total-variation distance, defined as

TV(Q,P ) := supA⊆B(Rd) |Q(A)− P (A)|

4
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where B(Rd) contains all Borel-measureable sets in Rd. This metric is commonly used in prior
theoretical studies (Chen et al., 2023a). From Pinsker’s inequality, the total-variation (TV) distance is
upper bounded as TV(Q,P )2 ≤ 1

2KL(Q||P ), where the KL divergence is defined as KL(Q||P ) :=∫
log dQ

dP dQ ≥ 0. Thus, we control the KL divergence when Q is absolutely continuous w.r.t. P .

When q0 does not exist (say, when Q0 has point masses), we use the Wasserstein distance to
measure the mismatch at t = 0, namely W2(Q0, Q1), which is a technique commonly adopted
(Chen et al., 2023a; Benton et al., 2024a). The Wasserstein-2 distance is defined as W2(Q0, Q1) :=√

minΓ∈Π(Q0,Q1)

∫
Rd×Rd ∥x− y∥2 dΓ(x, y), where Π(Q0, Q1) is the set of all joint probability

measures on Rd × Rd with marginal distributions Q0 and Q1, respectively.

3 ACCELERATED DIFFUSION SAMPLER

To generate samples from the data distribution Q0, the idea of DDPM is to design a reverse process
in which each reverse sampling step well approximates the corresponding forward step. Below,
we propose a new accelerated sampler along with a new variance estimator, in which both the
conditional mean and variance of the reverse process match the corresponding posterior quantities.

3.1 ACCELERATED REVERSE PROCESS

At each time t = T, T − 1, . . . , 1, define the true accelerated reverse process as xt−1 = µt(xt) +

Σ
1
2
t (xt)z, where µt is defined in (3), z ∼ N (0, Id), and (cf. Lemma 8)

Σt(xt) :=
1−αt

αt

(
Id + (1− αt)∇2 log qt(xt)

)
. (4)

Let P ′
t be the marginal distributions of xt in the true accelerated reverse process, and let p′t be the

corresponding p.d.f.. Thus, the transition kernel can be written as P ′
t−1|t = N (xt−1;µt(xt),Σt(xt)),

and we let P ′
T := PT = N (0, Id). When (1− αt) is vanishing for large T , Σt(xt) ≻ 0 for all large

T ’s, and thus the conditional Gaussian process is well-defined.2 The above accelerated sampler has
a close relationship to Ozaki’s discretization method to approximate a continuous-time stochastic
process (Ozaki, 1992; Shoji, 1998; Stramer & Tweedie, 1999).

In practice, one has no access to either ∇ log qt or ∇2 log qt. Thus, their estimates, denoted as st and
Ht, are used. Define the estimated accelerated reverse process: xt−1 = µ̂t(xt) + Σ̂

1
2
t (xt)z, where

µ̂t(xt) := xt + (1− αt)st(xt), (5)

Σ̂t(xt) :=
1−αt

αt
(Id + (1− αt)Ht(xt)) . (6)

Here, st can be obtained through score-matching (Song & Ermon, 2019). In Section 3.2, we propose
an estimator for ∇2 log qt, which we refer to as Hessian matching. Let P̂ ′

t be the marginal distributions
of xt in the estimated reverse process with corresponding p.d.f. p̂′t.

3.2 HESSIAN MATCHING ESTIMATOR FOR ACCELERATION

Below we provide a method to obtain Ht(x), which estimates ∇2 log qt(x). Note that

∇2 log qt(x) =
∇2qt(x)
qt(x)

− (∇ log qt(x))(∇ log qt(x))
⊺

=
(

∇2qt(x)
qt(x)

+ 1
1−ᾱt

Id

)
− 1

1−ᾱt
Id − (∇ log qt(x))(∇ log qt(x))

⊺. (7)

Apart from the original score estimate, we require an additional Hessian estimate:

vt(x) := argminvθ:Rd→Rd×d EXt∼Qt

∥∥∥vθ(Xt)−
(

∇2qt(Xt)
qt(Xt)

+ 1
1−ᾱt

Id

)∥∥∥2
F
.

In order to train for vt, the following lemma provides an analogy to score matching, which we refer
to as Hessian matching.

2More rigorously, we can project the matrices Σt and Σ̂t onto the space of positive-semi definite (PSD)
matrices for those xt’s where either of these two matrices is not PSD. Since the measure of the events containing
such bad xt’s decreases to zero, all theoretical results in this paper, which are derived in expectation, will not be
affected.
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Lemma 1. With the forward process in (1), we have

argminvθ:Rd→Rd×d EXt∼Qt

∥∥∥vθ(Xt)−
(

∇2qt(Xt)
qt(Xt)

+ 1
1−ᾱt

Id

)∥∥∥2
F

= argminvθ:Rd→Rd×d E(X0,W̄t)∼Q0⊗N (0,Id)

∥∥∥vθ(√ᾱtX0 +
√
1− ᾱtW̄t)− 1

1−ᾱt
W̄tW̄

⊺
t

∥∥∥2
F
.

With the Hessian estimate vt using Lemma 1, from (7), an estimate for ∇2 log qt(x) is given by
Ht(x) = vt(x)− 1

1−ᾱt
Id − st(x)s

⊺
t (x). (8)

With the estimator of Ht in (8), the Hessian-based sampler using the ̂̃Σt later in (9) is the same as the
accelerated stochastic sampler in Li et al. (2024c). Yet, our analysis is applicable when estimation
errors exist, whereas in Li et al. (2024c) the estimators are assumed to be perfect for the accelerated
sampler. In the literature, several other estimators have been proposed for higher order derivatives
of log qt(x) (Meng et al., 2021; Lu et al., 2022). In our paper, we proposed another method, the
Hessian matching method, which can guarantee accurate Hessian estimations with extra computation
resources. Our analysis is applicable to any estimator for Ht as long as Assumption 3 is satisfied.

4 ACCELERATED CONVERGENCE BOUNDS FOR BROADER TARGETS

In this section, we provide convergence guarantees for the accelerated stochastic samplers for general
Q0. We will first establish our main result for smooth Q0, and then extend it for more general
(possibly non-smooth) Q0. We will also provide a sketch of proof to describe key analysis techniques.

4.1 TECHNICAL ASSUMPTIONS FOR ACCELERATED SAMPLER

We first provide the following four technical assumptions for the accelerated sampler.
Assumption 1 (Finite Second Moment). There exists a constant M2 < ∞ (that does not depend on
d and T ) such that EX0∼Q0

∥X0∥2 ≤ M2d.
Assumption 2 (Absolute Continuity). Q0 is absolutely continuous w.r.t. the Lebesgue measure, and
thus q0 exists. Also, suppose that q0 is analytic 3 and that q0(x) > 0.

The above Assumptions 1 and 2 are commonly adopted in the literature (Chen et al., 2023a;d).
Assumption 3 (Score and Hessian Estimation Error). The estimates st’s and Ht’s satisfy

1
T

∑T
t=1 EXt∼Qt ∥st(Xt)−∇ log qt(Xt)∥2 ≤ ε2 = Õ(T−2),

1
T

∑T
t=1 EXt∼Qt

∥∥Ht(Xt)−∇2 log qt(Xt)
∥∥2
F
≤ ε2H = Õ(T−1).

Also, suppose that Ht satisfies supℓ≥1

(
EXt∼Qt ∥Ht(Xt)∥ℓ

)1/ℓ
= Õ(1).

The above assumption (Assumption 3) describes the estimation error for both the score and Hessian.
In particular, compared with regular samplers, the score function needs to be estimated at a higher
accuracy in order to achieve acceleration. Such higher accuracy is also required in previous analyses
of ODE samplers (e.g., Li et al. (2024a;d)). The regularity condition on Ht can be satisfied, for
example, when ∥Ht∥ is bounded as Õ(1). As another example, it suffices that ∥Ht(x)∥ has a
polynomial upper bound in x when Qt is sub-exponential. In Lemma 2 (in Appendix C), we provide
sufficient conditions such that the Ht in (8) satisfies Assumption 3.
Assumption 4 (Regular Partial Derivatives). For all t ≥ 1, ℓ ≥ 1, and a ∈ [d]p such that |a| = p ≥ 1,

EXt∼Qt
|∂p

a log qt(Xt)|ℓ = O (1) , EXt∼Qt
|∂p

a log qt−1(µt(Xt))|ℓ = O (1) .

When q0 does not exist, this is required only for t ≥ 2.

The above regularity assumption (Assumption 4) on the partial derivatives is needed for our analysis
based on Taylor expansion.4 It is rather soft, and it can be verified on the following two common
cases: (1) when Q0 has finite variance, and (2) when Q0 is Gaussian mixture (see Section 5). Case
1 clearly covers a broad set of target distributions of practical interest, such as images, and many
theoretical studies of diffusion models have been specially focused on such a distribution (Li et al.,
2024a;c). Case 2 has also been well studied for diffusion models (Chen et al., 2024; Gatmiry et al.,
2024).

3Here a function is analytic if its Taylor series converges to the functional value at each point in the domain.
4In the Appendix, we have provided the more general Assumption 5 under which Theorem 1 would hold.
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4.2 ACCELERATED CONVERGENCE BOUNDS

We first define a new noise schedule as follows, which will be useful for acceleration.
Definition 1 (Noise Schedule for Acceleration). For large T ’s, the step-size αt satisfies that

1− αt ≲
log T
T , ∀t ∈ {1, . . . , T}, ᾱT =

∏T
t=1 αt = o

(
T−2

)
.

When q0 does not exist, the upper bound on 1− αt is only required for t ≥ 2.

In Definition 1, the upper bound on 1− αt requires that αt is large enough to control the reverse-step
error, while the upper bound on ᾱT requires that αt is small enough to control the initialization error.
An example of αt that satisfies Definition 1 is the constant step-size: 1− αt ≡ c log T

T , ∀t ≥ 1 with

c > 2. Then, ᾱT =
(
1− c log T

T

)T
= exp

(
T log

(
1− c log T

T

))
= O

(
eT

−c log T
T

)
= o

(
T−2

)
.

Thus, such αt satisfies Definition 1.

The following theorem provides the first convergence result for accelerated diffusion samplers for
general smooth target distributions that have finite second moment (along with some mild regularity
conditions). The complete proof is given in Appendix D.
Theorem 1 (Accelerated Sampler for Smooth Q0). Under Assumptions 1 to 4, with the αt satisfying
Definition 1, we have

KL(Q0||P̂ ′
0) ≲(log T )ε2 + log2 T

T ε2H

+
∑T

t=1(1− αt)
3EXt∼Qt

∑d
i,j,k=1 ∂

3
ijk log qt−1(µt(Xt))∂

3
ijk log qt(Xt).

Theorem 1 characterizes the convergence in terms of KL divergence (and thus TV distance) for
smooth (possibly unbounded) Q0. The bound in Theorem 1 will be further instantiated with explicit
dependency on system parameters for example distributions Q0 in Section 5. To further explain
the upper bound in Theorem 1, the first two terms arise from the score and Hessian estimation
error, and the last term captures the errors accumulated during the reverse steps over t = T, . . . , 1,
which can be further bounded by Õ(T−2) under Assumption 4 (cf. (52)). Thus, when ε2H satisfies
Assumption 3, the upper bound in Theorem 1 can be more explicitly characterized w.r.t. T as
KL(Q0||P̂0) ≲ Õ(T−2) + (log T )ε2 (where the dependency on d will be explicitly characterized
for specific distributions in Section 5). Thus, in order to achieve O(ε2) error in KL divergence, the
number of steps required is O(ε−1). This improves the dependency of the convergence rate on ε of
the regular sampler by a factor of O(ε−1).

We next extend Theorem 1 for smooth Q0 to general Q0 that can be possibly non-smooth and hence
the density function q0 does not exist. Such distributions occur often in practice; for example, when
Q0 has a discrete support such as for images, or when Q0 is supported on a low-dimensional manifold.
For non-smooth Q0, its one-step perturbation Q1 does have a p.d.f. q1, which is further analytic
(Lemma 6). This enables us to apply Theorem 1 on Q1 to obtain the following convergence bound.
Also, we use the Wasserstein distance to measure the perturbation between Q0 and Q1 (Chen et al.,
2023d;a; Lee et al., 2023).
Corollary 1 (General (possibly non-smooth) Q0). Under Assumptions 1, 3 and 4, if the noise
schedule satisfies Definition 1 at t ≥ 2, the distribution P̂ ′

1 satisfies

KL(Q1||P̂ ′
1) ≲(log T )ε2 + log2 T

T ε2H

+
∑T

t=2(1− αt)
3EXt∼Qt

∑d
i,j,k=1 ∂

3
ijk log qt−1(µt(Xt))∂

3
ijk log qt(Xt),

where Q1 is such that W2(Q0, Q1)
2 ≲ (1− α1)d.

In particular, Corollary 1 applies to any general target distribution when the second moment is finite.

4.3 PROOF SKETCH OF THEOREM 1
We next provide a proof sketch of Theorem 1 to describe the idea of our analysis approach. The full
proof is provided in Appendix D. Our approach is very different from previous SDE-type approaches,
which invoke Fokker-Planck equation to express the evolution of p.d.f. and use Girsanov’s Theorem
to bound the divergence, both along the continuous diffusion path. In comparison, we develop a
novel Bayesian approach based on tilting factor representation and Tweedie’s formula to handle
power terms, which is applicable to a much wider class of target distributions, including those having
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infinite support. In particular, compared with Li et al. (2024a;c;d), our approach does not assume that
the target distribution has finite support.

To begin, we decompose the total error as

KL(Q0||P̂ ′
0) ≤ EXT∼QT

[
log qT (XT )

p′
T (XT )

]
︸ ︷︷ ︸

initialization error

+
∑T

t=1 EXt,Xt−1∼Qt,t−1

[
log

p′
t−1|t(Xt−1|Xt)

p̂′
t−1|t(Xt−1|Xt)

]
︸ ︷︷ ︸

estimation error

+
∑T

t=1 EXt,Xt−1∼Qt,t−1

[
log

qt−1|t(Xt−1|Xt)

p′
t−1|t(Xt−1|Xt)

]
︸ ︷︷ ︸

reverse-step error

.

The initialization error can be bounded easily (Lemma 3). Below we focus on the remaining two
terms in five steps.

Step 1: Bounding estimation error (Lemma 4). At each time t = 1, . . . , T , rather than upper-
bounding via typical sets as in Li et al. (2024c), we directly evaluate the expected value of
log(p′t−1|t(xt−1|xt)/p̂

′
t−1|t(xt−1|xt)). This is straightforward since P ′

t−1|t and P̂ ′
t−1|t are Gaus-

sian. We then use Taylor expansion for the log det(·) function and the matrix inverse to identify the
dominant-order terms under the mismatched variance.

Step 2: Tilting factor expression of log-likelihood ratio (Lemmas 5 and 6 and Equation (20)).
With Bayes’ rule, we show that qt−1|t is an exponentially tilted form of p′t−1|t with tilting factor:

ζ ′t,t−1 = (∇ log qt−1(µt)−
√
αt∇ log qt(xt))

⊺(xt−1 − µt)

+ 1
2 (xt−1 − µt)

⊺
(
∇2 log qt−1(µt)− αt

1−αt
Bt(xt)

)
(xt−1 − µt) +

∑∞
p=3 Tp(log qt−1, xt−1, µt).

where Bt(xt) describes the correction due to the modified variance for acceleration (see (14)), and
Tp(f, x, µ) is the p-th order Taylor power term of function f around x = µ. With this tilting factor,
we can upper-bound the reverse-step error as, for each fixed xt,

EXt−1,Xt∼Qt−1,t

[
log

qt−1|t(Xt−1|xt)

p′
t−1|t(Xt−1|xt)

]
≤ EXt,Xt−1∼Qt,t−1 [ζ

′
t,t−1]− EXt∼Qt,Xt−1∼P ′

t−1|t
[ζ ′t,t−1].

For regular DDPMs, there is no control for the variance of the reverse sampling process, and thus
Bt(xt) ≡ 0. In this case, the dominating rate is determined by the expected values of T2. With the
variance correction in our accelerated sampler, the corresponding Bt(xt) enables us to cancel out
the second-order Taylor term (see Lemma 11). As a result, the rate-determining term becomes the
expected values of T3, which decays faster. Thus, the acceleration is achieved.

Step 3: Explicit expression for EXt∼Qt,Xt−1∼P ′
t−1|t

[ζ ′t,t−1] (Lemma 7). Given the Taylor expansion
of ζ ′t,t−1, this step can be reduced to calculating the expected values of the power terms, which are
the Gaussian centralized moments. They are calculated using the classical Isserlis’s Theorem.

Step 4: Explicit expression for EXt,Xt−1∼Qt,t−1
[ζ ′t,t−1] (Lemmas 8 to 10). While Qt|t−1 is

Gaussian, Qt−1|t is not Gaussian in general, rendering the calculation of all moments non-trivial.
To calculate posterior moments, we extend Tweedie’s formula (Efron, 2011) in a non-trivial way.
Whereas the original Tweedie’s formula provides an explicit expression for the posterior mean for
Gaussian perturbed observations, we explicitly calculate the first six centralized posterior moments
and provide the asymptotic order of all higher-order moments, drawing techniques from combinatorics.
The results also justify the expressions of µt and Σt in (3) and (4).

Step 5: Bounding reverse-step error (Lemma 11) In order to employ the moment results for
Taylor expansion, we guarantee that it is valid to change the limit (in the Taylor expansion) and the
expectation operator. Finally, substituting the calculated moments into EXt,Xt−1∼Qt,t−1 [ζ

′
t,t−1]−

EXt∼Qt,Xt−1∼P ′
t−1|t

[ζ ′t,t−1] and noting that higher-order partial derivatives do not affect the rate (by
Assumption 4), we can determine the dominating term and obtain the desirable result.

5 EXAMPLE Q0’S: ACCELERATED CONVERGENCE RATE WITH EXPLICIT
PARAMETER DEPENDENCY

Now, we specialize Theorem 1 and Corollary 1 to several interesting distribution classes, for which
convergence bounds with explicit dependency on system parameters can be derived. The key is to
locate the dependency in the dominating terms in the reverse-step error.
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5.1 GAUSSIAN MIXTURE Q0

We first investigate the case where Q0 is Gaussian mixture. This is a rich class of distributions with
strong approximation power (Bacharoglou, 2010; Diakonikolas et al., 2017). The following theorem
establishes the first accelerated convergence result with explicit dimensional dependencies for such a
distribution class.
Theorem 2 (Accelerated Sampler for Gaussian Mixture Q0). Suppose that Q0 is Gaussian mixture,
whose p.d.f. is given by q0(x0) =

∑N
n=1 πnq0,n(x0), where q0,n is the p.d.f. of N (µ0,n,Σ0,n) and

πn ∈ [0, 1] is the mixing coefficient where
∑N

n=1 πn = 1. Under Assumption 3, if the αt satisfies
Definition 1, we have

KL(Q0||P̂ ′
0) ≲

d3 min{d,N}3 log3 T
T 2 + (log T )ε2 + log2 T

T ε2H .

Therefore, for any Gaussian mixture target Q0 with N ≤ d, it takes the accelerated algorithm
O
(
d1.5N1.5/ε

)
steps to reach convergence under accurate score and Hessian estimation. This is the

first result for accelerated DDPM samplers to achieve an accelerated convergence rate for Gaussian
mixture targets under score and Hessian estimation error. Compared with the results for regular
samplers, the number of convergence steps improves by a factor of O(ε−1).

The proof of Theorem 2 is non-trivial because in order to show that Assumption 4 holds for Gaussian
mixture distributions with any αt according to Definition 1, it is generally difficult to evaluate and
provide an upper bound for all orders of partial derivatives of the logarithm of a mixture density. To
this end, we employ the multivariate Faá di Bruno’s formula (Constantine & Savits, 1996) to develop
an explicit bound (Lemmas 13 and 14).

Below we numerically evaluate the performance of our Hessian-accelerated DDPM when Q0 is
Gaussian mixture. The original accelerator requires calculating the square-root matrix of Σ̂t (see
(4)), which might be computational burdensome. Below, we propose an approximated Hessian-based

accelerated sampler, where µ̂t is still defined in (5) and Σ̂t is replaced by ̂̃Σt(xt) where

Σ̃t(xt) :=
1−αt

αt

(
Id +

1−αt

2 ∇ log qt(xt)
)2

, ̂̃Σt(xt) :=
1−αt

αt

(
Id +

1−αt

2 Ht(xt)
)2

. (9)

With a similar tilting-factor analysis as in Theorem 1, we can verify that the approximated sampler
still achieves an accelerated convergence rate (see Corollaries 2 and 3 and Remark 3).

In Figure 1, we compare the following four accelerated samplers: (1) the regular DDPM sampler
(in blue); (2) our Hessian-accelerated sampler (in red); (3) the accelerated stochastic sampler in Li
et al. (2024a) (in cyan); and (4) the deterministic sampler using PF-ODE, which is analyzed in Li
et al. (2024c;d); Huang et al. (2024a). Here N = 4 and d = 4. The performance is averaged over 30
different trials. In a single trial, 200000 samples are used to estimate the KL divergence. The αt in
(10) is used with c = 4 and δ = 0.001. From the comparison, it is observed that our Hessian-based
sampler achieves the best convergence (at similar computation levels) in non-asymptotic regimes.

Figure 1: Comparison of different accelerated samplers for Gaussian mixture Q0’s. The x-axes are
the number of steps (left) and the computation time of a trial (right), respectively.

5.2 FINITE VARIANCE Q0 WITH EARLY-STOPPING

Next, we specialize Corollary 1 to a special noise schedule, first proposed in Li et al. (2024c):

1− αt =
c log T

T min

{
δ
(
1 + c log T

T

)t
, 1

}
, ∀2 ≤ t ≤ T, (10)

9
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and 1− α1 = δ. Here c and δ satisfy that c > 2 and δec > 1. Intuitively, δ characterizes the amount
of perturbation between Q1 and Q0 (Lemma 12). Note that any noise schedule satisfying the above
condition also satisfies Definition 1 at t ≥ 2 (see (49)), and hence Corollary 1 still holds here.
Theorem 3 (Accelerated Sampler for Q0 with Finite Variance). Under Assumptions 1 and 3, using
the αt defined in (10) with c > 2 and c ≍ log(1/δ), we have

KL(Q1||P̂ ′
1) ≲

d3 log3(1/δ) log3 T
T 2 + (log T )ε2 + log2 T

T ε2H ,

where Q1 is such that W2(Q0, Q1)
2 ≲ δd.

Theorem 3 indicates that for any Q0 having finite variance, it takes the accelerated algorithm
O
(
d1.5 log1.5(1/δ)/ε

)
steps to approximate an early-stopped data distribution Q1 within O(ε2) error

in KL divergence (or O(ε) in TV distance). For early-stopped procedures, this theorem significantly
relaxes the previous assumption on the target distribution that requires Q0 to have bounded support
(Li et al., 2024a;c; Huang et al., 2024a; Li et al., 2024d). Compared to previous accelerated diffusion
samplers for bounded-support targets (Li et al., 2024a;c), our number of convergence steps to achieve
ε-TV distance has improved by a factor of O(d1.5).

The proof of Theorem 3 involves the following novel elements. (i) Verifying Assumption 4 requires
evaluating and providing an upper bound for all orders of partial derivatives of the logarithm of
a continuous mixture density. Differently from the case of Gaussian (discrete) mixture, here we
can only have an upper bound in expectation (i.e., in Lp(Qt)) (Lemma 15). (ii) The second half of
Assumption 4 requires an upper bound for the one-step perturbed score, which can be shown using
the change-of-variable formula and the data processing inequality for large T (Lemmas 16 and 17).

5.3 Q0 WITH LIPSCHITZ HESSIAN LOG-DENSITY

With the αt in (10), we derive a convergence result when only the log-density of Q0 is smooth.
Theorem 4 (Accelerated Sampler for Smooth Hessian Log-Density). Suppose that ∇2 log q0(x) is
2-norm M -Lipschitz. This means that ∃M > 0 such that∥∥∇2 log q0(x)−∇2 log q0(y)

∥∥ ≤ M ∥x− y∥ , ∀x, y ∈ Rd.

Then, under Assumptions 1 and 3, using the αt in (10) with δ = 1/(M
2
3T

3
2 ) and c ≥ log(M

2
3T

3
2 ),

we have
KL(Q0||P̂ ′

0) ≲
d3(log3 M+log3 T ) log3 T

T 2 + (log T )ε2 + log2 T
T ε2H .

We also provide an accelerated convergence result with linear d dependency when all the
∇2 log qt(x) (t ≥ 0) are 2-norm M -Lipschitz (see Theorem 5 in Appendix G.3).

Theorem 4 provides us with the first accelerated DDPM result with only a smoothness constraint on
log q0, under the score and Hessian estimation error. In words, in order to reach O(ε) TV-distance
when ε2H/T ≲ ε2, the number of steps needed under Lipschitz-Hessian Q0’s is O(d1.5 log1.5 M/ε).
This is different from Chen et al. (2023c); Huang et al. (2024a;b) in which some smoothness
condition is imposed on all ∇ log qt’s (or st’s or both). Compared with Theorem 3, this upper bound
in Theorem 4 is directly over KL(Q0||P̂ ′

0) instead of for some early-stopped distribution. Our results
provide new contributions that complement existing studies by exploring different assumptions of
distributions, which enriches the existing set of distributions studied in the literature.

Our analysis is significantly different from that in (Chen et al., 2023a, Theorem 5). There, the
Poincaré inequality is key to guarantee that the Lipschitz smoothness in ∇ log q0 is preserved when
δ is small, but this inequality may not hold in our case with smoothness only in ∇2 log q0. Instead,
with smooth ∇2 log q0, we expand the tilting factor only to its third-order Taylor polynomial and
directly provide an upper bound with techniques used in proving Theorems 3 and 5.

6 CONCLUSION

In this paper, we have provided accelerated convergence guarantees for a much larger set of target
distributions than in prior literature, including both smooth Q0 and general Q0 with early-stopping.
The accelerated rates are achieved with a new accelerated Hessian-based DDPM sampler using a
novel analysis technique. One future direction is to further shrink the d dependency for general Q0.
It is also interesting to investigate other acceleration schemes to further improve diffusion samplers.
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