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ABSTRACT

Semi-implicit variational inference (SIVI) greatly enriches the expressiveness of
variational families by considering implicit variational distributions defined in a
hierarchical manner. However, due to the intractable densities of variational distri-
butions, current SIVI approaches often use surrogate evidence lower bounds (EL-
BOs) or employ expensive inner-loop MCMC runs for direct ELBO maximization
for training. In this paper, we propose SIVI-SM, a new method for SIVI based on
an alternative training objective via score matching. Leveraging the hierarchical
structure of semi-implicit variational families, the score matching objective allows
a minimax formulation where the intractable variational densities can be naturally
handled with denoising score matching. We show that SIVI-SM closely matches
the accuracy of MCMC and outperforms ELBO-based SIVI methods in a variety
of Bayesian inference tasks.

1 INTRODUCTION

Variational inference(VI) is an approximate Bayesian inference approach where the inference prob-
lem is transformed into an optimization problem (Jordan et al., 1999; Wainwright & Jordan, 2008;
Blei et al., 2017). It starts by introducing a family of variational distributions over the model param-
eters (or latent variables) to approximate the posterior. The goal then is to find the closest member
from this family of distributions to the target posterior, where the closeness is usually measured by
the Kullback-Leibler (KL) divergence from the posterior to the variational approximation. In prac-
tice, this is often achieved by maximizing the evidence lower bound (ELBO), which is equivalent to
minimizing the KL divergence (Jordan et al., 1999).

One of the classical VI methods is mean-field VI (Bishop & Tipping, 2000), where the variational
distributions are assumed to be factorized over the parameters (or latent variables). When combined
with conditional conjugacy, this often leads to simple optimization schemes with closed-form update
rules (Blei et al., 2017). While popular, the factorizable assumption and conjugacy condition greatly
restrict the flexibility and applicability of variational posteriors, especially for complicated models
with high dimensional parameter space. Recent years have witnessed much progress in the field
of VI that extends it to more complicated settings. For example, the conjugacy condition has been
removed by the black-box VI methods which allow a broad class of models via Monte carlo gradient
estimators (Nott et al., 2012; Paisley et al., 2012; Ranganath et al., 2014; Rezende et al., 2014;
Kingma & Welling, 2014). On the other hand, more flexible variational families have been proposed
that either explicitly incorporate more complicated structures among the parameters (Jaakkola &
Jordan, 1998; Saul & Jordan, 1996; Giordano et al., 2015; Tran et al., 2015) or borrow ideas from
invertible transformation of probability distributions (Rezende & Mohamed, 2015; Dinh et al., 2017;
Kingma et al., 2016; Papamakarios et al., 2019). All these methods require tractable densities for
the variational distributions.

It turns out that the variational family can be further expanded by allowing implicit models that
have intractable densities but are easy to sample from (Huszár, 2017). One way to construct these
implicit models is to transform a simple base distribution via a deterministic map, i.e., a deep neural
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network (Tran et al., 2017; Mescheder et al., 2017; Shi et al., 2018a;b; Song et al., 2019). Due to the
intractable densities of implicit models, when evaluating the ELBO during training, one often resorts
to density ratio estimation which is known to be challenging in high-dimensional settings (Sugiyama
et al., 2012). To avoid density ratio estimation, semi-implicit variational inference (SIVI) has been
proposed where the variational distributions are formed through a semi-implicit hierarchical con-
struction and surrogate ELBOs (asymptotically unbiased) are employed for training (Yin & Zhou,
2018; Moens et al., 2021). Instead of surrogate ELBOs, an unbiased gradient estimator of the ex-
act ELBO has been derived based on MCMC samples from a reverse conditional (Titsias & Ruiz,
2019). However, the computation for the inner-loop MCMC runs can easily become expensive
in high-dimensional regimes. There are also approaches that estimate the gradients instead of the
objective (Li & Turner, 2018; Shi et al., 2018b; Song et al., 2019).

Besides KL divergence, score-based distance measures have also been introduced in various statisti-
cal tasks (Hyvärinen, 2005; Zhang et al., 2018) and have shown advantages in complicated nonlinear
models (Song & Ermon, 2019; Ding et al., 2019; Elkhalil et al., 2021). Recently, there are also some
studies that use score matching for variational inference (Yang et al., 2019; Hu et al., 2018). How-
ever, these methods are not designed for SIVI and hence either do not apply to or can not fully
exploit the hierarchical structure of semi-implicit variational distributions. In this paper, we propose
SIVI-SM, a new method for SIVI using an alternative training objective via score matching. We
show that the score matching objective and the semi-implicit hierarchical construction of variational
posteriors can be combined in a minimax formulation where the intractability of densities is natu-
rally handled with denoising score matching. We demonstrate the effectiveness and efficiency of our
method on both synthetic distributions and a variety of real data Bayesian inference tasks.

2 BACKGROUND

Semi-Implicit Variational Inference Semi-implicit variational inference (SIVI) (Yin & Zhou,
2018) posits a flexible variational family defined hierarchically using a mixing parameter as follows

x ∼ qφ(x|z), z ∼ qξ(z), qϕ(x) =

∫
qφ(x|z)qξ(z)dz. (1)

where ϕ = {φ, ξ} are the variational parameters. This variational distribution is called semi-implicit
as the conditional layer qφ(x|z) is required to be explicit but the mixing layer qξ(z) can be implicit,
and qϕ(x) is often implicit unless qξ(z) is conjugate to qφ(x|z). Compared to standard VI, the above
hierarchical construction allows a much richer variational family that is able to capture complicated
dependencies between parameters (Yin & Zhou, 2018).

Similar to standard VI, current SIVI methods fit the model parameters by maximizing the evidence
lower bound (ELBO) derived as follows

log p(D) ≥ ELBO := Ex∼qϕ(x) [log p(D,x)− log qϕ(x)] ,

where D is the observed data. As qϕ(x) is no longer tractable, Yin & Zhou (2018) considered a
sequence of lower bounds of ELBO

ELBO ≥ LL := Ez∼qξ(z),x∼qφ(x|z)Ez(1),··· ,z(L)i.i.d.∼ qξ(z)
log

p(D,x)

1
L+1

(
qφ(x|z) +

∑L
l=1 qφ(x|z(l))

) .
Note that LL is an asymptotically exact surrogate ELBO as L → ∞. An increasing sequence of
{Lt}∞t=1, therefore, is often suggested, with LLt being optimized at the t-th iteration.

Instead of maximizing surrogate ELBOs, Titsias & Ruiz (2019) proposed unbiased implicit varia-
tional inference (UIVI) which is based on an unbiased gradient estimator of the exact ELBO. More
specifically, consider a fixed mixing distribution qξ(z) = q(z) and a reparameterizable conditional
qφ(x|z) such that x = Tφ(z, ε), ε ∼ qε(ε)⇔ x ∼ qφ(x|z), then

∇φELBO = ∇φEqε(ε)q(z)

[
log p(D,x)− log qφ(x)|x=Tφ(z,ε)

]
,

:= Eqε(ε)q(z)

[
gmodφ (z, ε) + gentφ (z, ε)

]
, (2)
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where

gmodφ (z, ε) := ∇x log p(D,x)|x=Tφ(z,ε)∇φTφ(z, ε), (3)

gentφ (z, ε) := − Eqφ(z′|x)∇x log qφ(x|z′)
∣∣
x=Tφ(z,ε)

∇φTφ(z, ε). (4)

The gradient term in 4 involves an expectation w.r.t. the reverse conditional qφ(z|x) which can be
estimated using an MCMC sampler (e.g., Hamiltonian Monte Carlo (Neal, 2011)). However, the
inner-loop MCMC runs can easily become computationally expensive in high dimensional regimes.
See a more detailed discussion on the derivation and computation issues of UIVI in Appendix A and
D.

Score Matching Score matching is first introduced by Hyvärinen (2005) to learn un-normalized
statistical models given i.i.d. samples from an unknown data distribution p(x). Instead of estimating
p(x) directly, score matching trains a score network S(x) to estimate the score of the data distribu-
tion, i.e. ∇ log p(x), by minimizing the score matching objective Ep(x)[

1
2‖S(x)−∇x log p(x)‖22].

Using the trick of partial integration, Hyvärinen (2005) shows that the score matching objective is
equivalent to the following up to a constant

Ex∼p(x)[Tr(∇x(S(x))) +
1

2
‖S(x)‖22]. (5)

The expectation in Eq. 5 can be quickly estimated using data samples. However, it is often challeng-
ing to scale up score matching to high dimensional data due to the computation of Tr∇x(S(x)).

A commonly used variant of score matching that can scale up to high dimensional data is denoising
score matching (DSM) (Vincent, 2011). The first step of DSM is to perturb the data with a known
noise distribution qσ(x̃|x), which leads to a perturbed data distribution qσ(x̃) =

∫
qσ(x̃|x)p(x)dx.

The score matching objective for qσ(x̃) turns out to be equivalent to the following up to a constant

1

2
Eqσ(x̃|x)p(x)

[
‖S(x̃)−∇x̃ log qσ(x̃|x)‖22

]
. (6)

Unlike Eq. 5, Eq. 6 does not involve the trace term and can be computed efficiently, as long as
the score of the noise distribution ∇x̃ log qσ(x̃|x) is easy to compute. Note that the optimal score
network here estimates the score of the perturbed data distribution rather than that of the true data
distribution. A small noise, therefore, is required for accurate approximation of the true data score
∇ log p(x). Despite this, DSM is widely used in learning energy based models (Saremi et al., 2018)
and score based generative models (Song & Ermon, 2019).

3 PROPOSED METHOD

While ELBO-based training objectives prove effective for semi-implicit variational inference, cur-
rent approaches either rely on surrogates of the exact ELBO or expensive inner-loop MCMC runs
for unbiased gradient estimates due to the intractable variational posteriors. In this section, we in-
troduce an alternative training objective for SIVI based on score matching. We show that the score
matching objective can be reformulated in a minimax fashion such that the semi-implicit hierarchical
construction of variational posteriors can be efficiently exploited using denoising score matching.
Throughout this section, we assume the conditional layer qφ(x|z) to be reparameterizable and its
score function∇x log qφ(x|z) is easy to evaluate1.

3.1 A MINIMAX REFORMULATION

Rather than maximizing the ELBO as in previous semi-implicit variational inference methods, we
can instead minimize the following Fisher divergence that compares the score functions of the target
and the variational distribution

min
ϕ

Ex∼qϕ(x)‖S(x)−∇x log qϕ(x)‖22. (7)

1This assumption is quite general and it holds for many classical distributions that are commonly used as
conditionals, such as Gaussian and other exponential family distributions.
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Here S(x) = ∇x log p(x|D) = ∇x log p(D,x) is the score of the target posterior distribution,
and the variational distribution qϕ(x) is defined in Eq. 1. Due to the semi-implicit construction
in Eq. 1, the score of variational distribution, i.e. ∇x log qϕ(x), is intractable, making the Fisher
divergence in Eq. 7 not readily computable. Although the hierarchical structure of qϕ(x) allows
us to estimate its score function via denoising score matching, the estimated score function would
break the dependency on the variational parameter ϕ, leading to biased gradient estimates (see an
illustration in Appendix L). Fortunately, this issue can be remedied by reformulating 7 as a minimax
problem. The key observation is that the squared norm of S(x) − ∇x log qϕ(x) can be viewed as
the maximum value of the following nested optimization problem

‖S(x)−∇x log qϕ(x)‖22 = max
f(x)

2f(x)T [S(x)−∇x log qϕ(x)]− ‖f(x)‖22, ∀x.

where f(x) is an arbitrary function of x, and the unique optimal solution is

fϕ(x) := S(x)−∇x log qϕ(x).

Based on this observation, we can rewrite the optimization problem in 7 as

min
ϕ

max
f

Ex∼qϕ(x)2f(x)T [S(x)−∇x log qϕ(x)]− ‖f(x)‖22. (8)

Now we can take advantage of the hierarchical structure of qϕ(x) to get ride of the intractable score
term ∇x log qϕ(x) in Eq. 8, similarly as done in DSM. More specifically, note that

∇x log qϕ(x) =
1

qϕ(x)

∫
qξ(z)qφ(x|z)∇x log qφ(x|z)dz.

We have

Ex∼qϕ(x)f(x)T∇x log qϕ(x) =

∫
qϕ(x)f(x)T

1

qϕ(x)

∫
qξ(z)qφ(x|z)∇x log qφ(x|z)dzdx,

=

∫∫
qξ(z)qφ(x|z)f(x)T∇x log qφ(x|z)dzdx,

= Ez∼qξ(z),x∼qφ(x|z)f(x)T∇x log qφ(x|z). (9)

Substituting Eq. 9 into Eq. 8 completes our reformulation.
Theorem 1. Assume the variational distribution qϕ(x) is a semi-implicit distribution defined by
Eq. 1, then the optimization problem in 7 is equivalent to the following minimax problem

min
ϕ

max
f

Ez∼qξ(z),x∼qφ(x|z)2f(x)T [S(x)−∇x log qφ(x|z)]− ‖f(x)‖22, (10)

Where ϕ = {φ, ξ}. Moreover, assume that f can represent any function. If (ϕ∗, f∗) defines a
Nash-equilibrium of Eq. 10, then f∗, ϕ∗ is given by

f∗(x) = S(x)−∇x log qϕ∗(x),

ϕ∗ ∈ arg min
ϕ
{Ex∼qϕ(x)‖S(x)−∇x log qϕ(x)‖22}. (11)

See a detailed proof of Theorem 1 in Appendix B. Note that the objective in equation 8 can also be
derived via Stein discrepancy minimization (Liu et al., 2016; Gorham & Mackey, 2015; Ranganath
et al., 2016; Grathwohl et al., 2020). However, our reformulation in equation 10 takes a further step
by utilizing the hierarchical structure of qϕ(x) and hence can easily scale up to high dimensions.
See Appendix K for a more detailed discussion.

3.2 PRACTICAL ALGORITHMS

In practice, we parameterize f with a neural network fψ(x). According to the above minimax
reformulation, the Monte Carlo estimation of the objective function in Eq. 10 can be easily obtained
by sampling from the hierarchical variational distribution z ∼ qξ(z),x ∼ qφ(x|z). Furthermore,
using the reparameterization trick (Kingma & Welling, 2013), i.e. x = Tφ(z; ε), z = hξ(γ), where
ε ∼ qε(ε),γ ∼ qγ(γ), we can rewrite Eq. 10 as follows

min
ϕ

max
ψ

Eqγ(γ),qε(ε)

[
2fψ(x)T [S(x)−∇x log qφ(x|z)− 1

2
fψ(x)]

∣∣∣∣
x=Tφ(z,ε),z=hξ(γ)

]
,
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Algorithm 1 SIVI-SM with multivariate Gaussian conditional layer

Input: Score of target posterior distribution S(x). Total iteration number N . Number of gradient
steps K for the inner optimization on fψ(x).
Output: Variational parameter ϕ and the neural network parameter ψ.
Initialize ϕ0, ψ0

for t = 0 to N − 1 do
Sample {γ(1),γ(2), · · · ,γ(m)} from prior qγ(γ) and let z(i) = hξ(γ

(i)), i = 1, . . . ,m.
Sample {ε(1), ε(2), · · · , ε(m)} from N (0, I).
Compute x(i) = µφ(z(i)) + σφ(z(i))� ε(i).
Update ϕ by descending its stochastic gradient:

∇ϕ
1

m

m∑
i=1

fψ(x(i))T [S(x(i)) + σφ(z(i))−1 � ε(i)]− 1

2
‖fψ(x(i))‖22.

for j = 1 to K do
Sample {γ(1),γ(2), · · · ,γ(m)} from prior qγ(γ) and let z(i) = hξ(γ

(i)), i = 1, . . . ,m.
Sample {ε(1), ε(2), · · · , ε(m)} from N (0, I).
Compute x(i) = µφ(z(i)) + σφ(z(i))� ε(i).
Update ψ by ascending its stochastic gradient:

∇ψ
1

m

m∑
i=1

fψ(x(i))T [S(x(i)) + σφ(z(i))−1 � ε(i)]− 1

2
‖fψ(x(i))‖22.

end for
end for

This allows us to directly optimize the parameters ϕ,ψ with gradient based optimization meth-
ods (Goodfellow et al., 2014). Optimizing f to completion in the inner loop of training is com-
putational prohibitive. Therefore, we alternate between K steps of optimizing f and one step of
optimizing qϕ. As mentioned before, we use the multivariate Gaussian distribution with diagonal
covariance matrix for the conditional qφ(x|z) ∼ N (µφ(z), diag{σ2

φ(z)}), which can be reparame-
terized as follows

x = µφ(z) + σφ(z)� ε, where ε ∼ N (0, I),

where � means the element-wise product. The corresponding score function is ∇x log qφ(x|z) =
−σφ(z)−1 � ε. The complete procedure of SIVI-SM is formally presented in Algorithm 1.

3.3 THEORETICAL RESULTS REGARDING NEURAL NETWORK APPROXIMATION

The inexact lower-level optimization for neural networks introduces approximation errors. Also,
neural networks themselves may introduce approximation gaps due to their approximation capaci-
ties. These numerical errors may affect the approximation quality of variational distribution qϕ(x),
which we analyze in the following proposition.
Proposition 1. Let Ω be the feasible domain of ϕ. ∀ϕ ∈ Ω, we say that fψ̂(ϕ) is ε-accurate, if

Ex∼qϕ(x)‖R̂ϕ(x)‖22 ≤ ε, where R̂ϕ(x) := S(x)−∇ log qϕ(x)− fψ̂(ϕ). (12)

Let ϕ∗ be one of the optimal variational parameters defined in Eq. 11 and ϕ̃ be the one obtained
using neural network approximation defined as follows with fψ̂(ϕ) being ε-accurate

ϕ̃ := arg min
ϕ∈Ω

{Ex∼qϕ(x)2fψ̂(ϕ)(x)T [S(x)−∇x log qϕ(x)]− ‖fψ̂(ϕ)(x)‖22}.

Then we have

Ex∼qϕ̃(x)‖S(x)−∇x log qϕ̃(x)‖22 ≤ Ex∼qϕ∗ (x)‖S(x)−∇x log qϕ∗(x)‖22 + ε. (13)

See a detailed proof of Proposition 1 in Appendix C. From proposition 1, we see that the approxima-
tion error of our numerical solution to the minimax problem in 10 can be controlled by two terms.
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The first term Ex∼qϕ∗ (x)‖S(x)−∇x log qϕ∗(x)‖22 measures the approximation ability of the varia-
tional distribution, and the second term measures the approximation/optimization error of the neural
network fψ(x). As long as the approximation error of fψ(x) is small, the minimax formulation in
10 can provide variational posteriors with similar approximation accuracy to those of the original
problem in 7 in terms of Fisher divergence to the target posterior.

Remark. When the variational parameter ϕ is fixed, the lower-level optimization problem on fψ(x)
is equivalent to the following

min
ψ

Ex∼qϕ(x)‖S(x)−∇ log qϕ(x)− fψ(x)‖22,

and we use this objective as a measure of approximation accuracy of fψ(x) given ϕ in Eq. 12.

4 EXPERIMENTS

In this section, we compare SIVI-SM to ELBO-based methods including the original SIVI and
UIVI on a range of inference tasks. We first show the effectiveness of our method and illustrate the
role of the auxiliary network approximation fψ on several two-dimensional toy examples. The KL
divergence from the target distributions to different variational approximations was also provided for
direct comparison. We also compare the performance of SIVI-SM with both baseline methods on
several Bayesian inference tasks, including a multidimensional Bayesian logistic regression problem
and a high dimensional Bayesian multinomial logistic regression problem. Following Titsias & Ruiz
(2019), we set the conditional layer to be qφ(x|z) = N (x|µφ(z), diag(σ))2 and fix the mixing layer
as q(z) = N (0, I). The variational parameters therefore are ϕ = {φ,σ}. All experiments were
implemented in Pytorch (Paszke et al., 2019). If not otherwise specified, we use the Adam optimizer
for training (Kingma & Ba, 2014).

4.1 TOY EXAMPLES

We first apply SIVI-SM to approximate three synthetic distributions defined on a two-dimensional
space: a banana-shaped distribution, a multimodal Gaussian, and an X-shaped mixture of Gaussian.
The densities of these distributions are given in Table 2 in Appendix E. For the convenience of
comparison, we used the same configuration of semi-implicit distribution family as in UIVI (Titsias
& Ruiz, 2019). The µφ(z) is a multilayer perceptron (MLP) with layer widths [3, 50, 50, 2]. The
network approximation fψ(x) is parameterized by a 4 layers MLP with layer widths [2, 128, 128, 2].
For SIVI-SM, we set the number of inner-loop gradient steps K = 1. For SIVI, we set L = 50 for
the surrogate ELBO defined in Eq. 2. For UIVI, we used 10 iterations for every inner-loop HMC
sampling. To facilitate exploration, for all methods, we used the annealing trick (Rezende & Mo-
hamed, 2015) during training for the multimodal and X-shaped Gaussian distributions. Variational
approximations from all methods were obtained after 50,000 variational parameter updates.

Figure 5 in Appendix F shows the contour plots of the synthetic distributions, together with 1000
samples from the trained variational distributions. We see that SIVI-SM produces samples that
match the target distributions well. We also report the KL divergence from the target distributions
to the variational posteriors (estimated via the ITE package (Szabó, 2014) using 100,000 samples
from each distribution) given by different methods in Table 3 in Appendix G. We see that SIVI-SM
performs better for more challenging target distributions. To better understand the role the network
approximation fψ(x) played during the training process, we visualize its training dynamics on the
X-shaped distribution in Figure 1. We see that during training, fψ(x) automatically detected where
the current approximation is insufficient and guided the variational posterior towards these areas.
Note the Nash-equilibrium of f∗(x) in Eq. 11 is the difference between the score functions of the
target distribution p(x) and qϕ(x). As the variational posterior gets closer to the target, the signal
provided by fψ(x) becomes weaker and would converge to zero in the perfect case. More details on
the convergence of fψ(x) can be found in Appendix H.

2Here σ is a vector with the same dimension as x.
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Figure 1: The quiver plots of fψ(x) and samples from the variational posteriors during the training
process on the X-shaped distribution.

Figure 2: Comparison of the marginal and pairwise joint posteriors. The contours of the marginal
and pairwise empirical densities trained by the three semi-implicit variational inference algorithms,
i.e. SIVI-SM (orange), SIVI (blue) and UIVI (green), are plotted against the ground truth (black).

4.2 BAYESIAN LOGISTIC REGRESSION

Our second example is a Bayesian logistic regression problem where the log-likelihood function
takes the following form

log p(yi|x′i,β) = yi ∗ βTx′i − log(1 + exp(βTx′i)), yi ∈ {0, 1},x′i =
[

1
xi

]
.

Here xi are covariates, and yi ∈ {0, 1} are binary response variables. Following Yin & Zhou
(2018), we set the prior as β ∼ N (0, α−1I), where α = 0.01. We consider the waveform3 dataset
where the dimension of xi is 21 which leads to a parameter space of 22 dimensions. We used a
standard 10-dimensional Gaussian prior for the q(z). For µφ(z), we used a 4 layer MLP with layer
widths [10, 100, 100, 22]. The network approximation fψ(β) is also a 4 layer MLP with layer width
[22, 256, 256, 22]. Similarly as in section 4.1, we set the number of inner-loop gradient steps K = 1
in SIVI-SM. For SIVI, we set L = 100 and used the same training method as in Yin & Zhou (2018).
For UIVI, we set the length of inner-loop HMC iterations to be 10 with the first 5 iterations discarded
as burn-in, with 5 leapfrog steps in each iteration. The results of all methods were collected after
20,000 variational parameter updates.

We collected 1000 samples of β to represent the approximated posterior distributions for all three
SIVI variants. The ground truth was formed from a long MCMC run of 400,000 iterations using
parallel stochastic gradient Langevin dynamics (SGLD) (Welling & Teh, 2011) with 1000 indepen-
dent particles, and a small stepsize of 10−4. Figure 2 shows the posterior estimates provided by
different SIVI variants in contrast to the ground truth MCMC results. We see that SIVI and UIVI
tend to slightly underestimate the variance for both univariate marginal and pairwise joint posteriors
(especially for β4, β5), while SIVI-SM agreed with MCMC well. Furthermore, we also examined
the covariance estimates of β and the results were presented in Figure 3. We see that SIVI-SM

3https://archive.ics.uci.edu/ml/machine-learning-databases/waveform/
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Figure 3: Scatter plot comparison of the sample covariances of the posterior. The X-axis and Y-
axis represent the estimates from the ground truth MCMC runs and the corresponding SIVI variants
respectively. The red lines are the regression lines.

provides the best overall approximation to the posterior which achieved the smallest rooted mean
square error (RMSE) to the ground truth at 0.0184.

4.3 BAYESIAN MULTINOMIAL LOGISTIC REGRESSION

Our next example is a Bayesian multinomial logistic regression problem. For a data set of N co-
variate and label pairs {(xi, yi) : i = 1, . . . , N}, where yi ∈ {1, . . . , R}, the categorical likelihood
is

p(yi = r|xi) ∝ exp([1,xTi ] · βr), r ∈ {1, 2, · · · , R},
where β = (βT1 ,β

T
2 , · · · ,βTR)T is the model parameter and follows a standard Gaussian prior. Fol-

lowing Titsias & Ruiz (2019), we used two data sets: MNIST4 and HAPT5. MNIST is a commonly
used dataset in machine learning that contains 60,000 training and 10,000 test instances of 28×28
images of hand-written digits which has R = 10 classes. HAPT (Reyes-Ortiz et al., 2016) is a
human activity recognition dataset. It contains 7,767 training and 3,162 test data points, and each
one of them contains features of 561-dimensional measurements captured by inertial sensors, which
correspond to R = 12 classes of static postures, dynamic activities and postural transitions. The
dimensions of the posterior distributions are 7,850 (MNIST) and 6,744 (HAPT) respectively.

We used the same variational family as before, with a 100-dimensional standard Gaussian prior for
q(z). We used MLPs with two hidden layers for the mean network µφ(z) of the Gaussian condi-
tional and the network approximation fψ(β), with 200 hidden neurons for µφ(z) and 256 hidden
neurons for fψ(β) for each of the hidden layers respectively. We used the same initialization of
variational parameters for all methods. Following Titsias & Ruiz (2019), we used a minibatch size
of 2,000 for MNIST and 863 for HAPT. As before, we set the number of inner-loop gradient steps
K = 1 in SIVI-SM. For SIVI, we set L = 200 as previously done by Titsias & Ruiz (2019). For
UIVI, we set the number of inner-loop HMC iterations to be 10 and discarded the first 5 iterations
as burn-in, with 5 leapfrog steps in each iteration. As done in UIVI, we used the RMSProp op-
timizer (Tieleman & Hinton, 2012) for training. We used different batch sizes during training to
investigate its effect on the quality of variational approximations for different methods. These batch
sizes were selected in such a way that the corresponding computational times are comparable be-
tween different methods. See a detailed comparison on the computation times in Appendix I (the
experiments were run on a RTX2080 GPU). As the gradient computation for the inner-loop HMC
sampling required by UIVI is not scalable6, the batch size for UIVI is set as m = 1 which was also
used by Titsias & Ruiz (2019). For all methods, the results were collected after 90,000 variational
parameter updates for MNIST and 40,000 variational parameter updates for HAPT.

Figure 4 shows the predictive log-likelihood on the test data as a function of the number of iterations
for both data sets, where the estimates were formed based on 8,000 samples from the variational

4http://yann.lecun.com/exdb/mnist/
5http://archive.ics.uci.edu/ml/machine-learning-databases/00341/
6See a more detailed explanation in Appendix D.
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Figure 4: Estimates of the test log-likelihood for the Bayesian multinomial logistic regression model.
The number in parentheses specifies the batch sizes used for training.

distributions fitted using different methods, as done in UIVI (Titsias & Ruiz, 2019). Although
SIVI-SM converges slower at the beginning due to the slow training of the network approximation
fψ(β), it eventually surpasses the other ELBO-based variants and achieves better prediction on both
datasets. Compared to ELBO-based methods, SIVI-SM would benefit more from large batch sizes.

4.4 BAYESIAN NEURAL NETWORKS

Lastly, we compare our method with SIVI, UIVI and SGLD on sampling the posterior of Bayesian
neural network on the UCI datasets. We conduct the two-layer network with 50 hidden units and
ReLU activation function. The datasets are all randomly partitioned into 90% for training and 10%
for testing. We use the variational family as before, with 3-dimensional standard Gaussian prior for
q(z), and 10 hidden neurons for µφ(z) and 16 hidden neurons for fψ(x). The results are averaged
over 10 random trials. We refer the reader to Appendix J for hyper-parameter tuning and other
experiment details. Table 1 shows the average test RMSE and NLL and their standard deviation. We
see that SIVI-SM can achieve on par or better results than SIVI and UIVI. Although SGLD performs
better for some datasets, it requires a long run to generate samples.

Table 1: Averaged test RMSE and test negative log-likelihood of Bayesian Neural Networks on
seven UCI datasets. The results were averaged from 10 independent runs.

AVG. TEST RMSE AVG. TEST NLL
Dataset SIVI UIVI SGLD SIVI-SM SIVI UIVI SGLD SIVI-SM
BOSTON 2.714±0.08 2.817±0.11 3.186±0.09 2.621±0.10 2.420±0.09 2.397±0.07 3.164±0.08 2.396±0.13

CONCRETE 6.205±0.12 6.049±0.10 6.512±0.06 5.392±0.09 3.247±0.04 3.221±0.11 3.978±0.05 3.156±0.03

PROTEIN 4.818±0.05 4.908±0.07 4.768±0.03 4.903±0.04 2.994±0.02 3.016±0.02 2.979±0.01 3.015±0.04

POWER 4.13±0.02 4.134±0.03 4.067±0.01 4.086±0.05 2.853±0.04 2.852±0.06 2.965±0.03 2.854±0.03

WINEWHITE 0.640±0.03 0.646±0.04 0.639±0.01 0.646±0.06 0.975±0.02 0.983±0.04 0.976±0.01 0.985±0.07

WINERED 0.577±0.11 0.675±0.06 0.651±0.03 0.560±0.08 0.871±0.13 1.074±0.07 0.983±0.03 0.836±0.07

YACHT 1.902±0.21 2.1407±0.18 2.377±0.11 1.559±0.15 2.147±0.11 2.309±0.09 2.631±0.08 1.683±0.18

5 CONCLUSION

We proposed SIVI-SM, a new method for semi-implicit variational inference based on an alternative
training objective via score matching. Unlike the ELBO-based objectives, we showed that the score
matching objective allows a minimax formulation where the hierarchical structure of semi-implicit
variational families can be more efficiently exploited as the corresponding intractable variational
densities can be naturally handled with denoising score matching. In experiments, we demonstrated
that SIVI-SM closely matches the accuracy of MCMC in posterior estimation and outperforms two
typical ELBO-based methods (SIVI and UIVI) in a variety of Bayesian inference tasks.
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Jorge-L Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier Parra, and Davide Anguita. Transition-aware
human activity recognition using smartphones. Neurocomputing, 171:754–767, 2016.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In Proceedings of The
32nd International Conference on Machine Learning, pp. 1530–1538, 2015.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate infer-
ence in deep generative models. In International Conference on Machine Learning, 2014.

Saeed Saremi, Arash Mehrjou, Bernhard Schölkopf, and Aapo Hyvärinen. Deep energy estimator
networks. arXiv preprint arXiv:1805.08306, 2018. doi: 10.48550/ARXIV.1805.08306. URL
https://arxiv.org/abs/1805.08306.

L. K. Saul and M. I. Jordan. Exploiting tractable substructures in intractable networks. In Advances
in Neural Information Processing Systems, 1996.

11

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
http://books.google.com/books?id=qfRsAIKZ4rIC
http://books.google.com/books?id=qfRsAIKZ4rIC
https://arxiv.org/abs/1805.08306


Published as a conference paper at ICLR 2023

J. Shi, S. Sun, and J. Zhu. Kernel implicit variational inference. In International Conference on
Learning Representations, 2018a.

J. Shi, S. Sun, and J. Zhu. A spectral approach to gradient estimation for implicit distributions. In
International Conference on Machine Learning, 2018b.

Y. Song, S. Garg, J. Shi, and S. Ermon. Sliced score matching: A scalable approach to density
and score estimation. In Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial
Intelligence, 2019.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, pp. 11895–11907, 2019.

Charles Stein. A bound for the error in the normal approximation to the distribution of a sum of
dependent random variables. In Proc. Sixth Berkeley Symp. Math. Stat. Prob., pp. 583–602, 1972.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation in machine
learning. Cambridge University Press, 2012.
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A DERIVATION OF EQ. 2-4

The gradient of ELBO is that

∇φELBO = ∇φEq(ε)q(z)

[
log p(D,x)− log qφ(x)|x=Tφ(z,ε)

]
,

= Eq(ε)q(z)

[
∇x log p(D,x)∇φTφ(z, ε)−∇x log qφ(x)∇φTφ(z, ε)|x=Tφ(z,ε)

]
,

:= Eq(ε)q(z)

[
gmodφ (z, ε)− gentφ (z, ε)

]
, (14)

where
gmodφ (z, ε) := ∇x log p(D,x)|x=Tφ(z,ε)∇φTφ(z, ε),

gentφ (z, ε) := − ∇x log qφ(x)|x=Tφ(z,ε)∇φTφ(z, ε).

Note that the property of margin score function,

∇x log qφ(x) =

∫
qφ(z′|x)∇x log qφ(x|z′)dz′. (15)

Then the gradient gentφ can be representd as

gentφ (z, ε) = − Eqφ(z′|x)∇x log qφ(x|z′)
∣∣
x=Tφ(z,ε)

∇φTφ(z, ε).

B PROOF OF THEOREM 1

Proof. As discussed in section 3.1, by introducing the vector-valued function f , we can rewrite the
optimization objective in Eq. 7 as

Ex∼qϕ(x) max
f(x)
{2f(x)T [S(x)−∇x log qϕ(x)]− ‖f(x)‖22}. (16)

Compute the score of the semi-implicit distribution qϕ(x) defined in Eq. 1, we have

∇x log qϕ(x) =
1

qϕ(x)
∇x
∫
qξ(z)qφ(x|z)dz

=
1

qϕ(x)

∫
qξ(z)qφ(x|z)∇x log qφ(x|z)dz.

Bring the above score of qϕ(x) into Eq. 16, we have

Ex∼qϕ(x) max
f(x)
{2f(x)T [S(x)−∇x log qϕ(x)]− ‖f(x)‖22}

=Ex∼qϕ(x) max
f(x)
{2f(x)T [S(x)− 1

qϕ(x)

∫
qξ(z)qφ(x|z)∇x log qφ(x|z)dz]− ‖f(x)‖22}

= max
f(x)
{Ex∼qϕ(x)[2f(x)TS(x)− ‖f(x)‖22]−

∫
qξ(z)qφ(x|z)2f(x)T∇x log qφ(x|z)dxdz}

= max
f(x)
{Ez∼qξ(z),x∼qφ(x|z)[2f(x)T (S(x)−∇x log qφ(x|z))− ‖f(x)‖22]} (17)

Therefor, let ϕ = {ξ, φ}, we can rewrite the original score matching problem Eq. 7 as

min
ϕ

max
f

Ez∼qξ(z),x∼qφ(x|z)2f(x)T [S(x)−∇x log qφ(x|z)]− ‖f(x)‖22.

If (ϕ∗, f∗) defines a Nash-equilibrium of the above problem, fixing the parameters ϕ = ϕ∗, the
optimal vector-valued function f∗(x) is invariant in the derivation of Eq. 17. So we can easily
deduce f∗ by Eq. 16

f∗(x) = S(x)−∇x log qϕ∗(x).

Bring f∗(x) into Eq. 10, we have the unbiased approximation of ϕ∗

ϕ∗ ∈ arg min
ϕ
{Ez∼qξ(z),x∼qφ(x|z)2f

∗(x)T [S(x)−∇x log qφ(x|z)]− ‖f∗(x)‖22},

∈ arg min
ϕ
{Ex∼qϕ(x)‖S(x)−∇x log qϕ(x)‖22}.
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C PROOF OF PROPOSITION 1

Proof. Consider the score matching problem with the well ε-trained fψ̂(ϕ), we have

ϕ̃ = arg min
ϕ∈Ω

{Ex∼qϕ(x)2fψ̂(ϕ)(x)T [S(x)−∇x log qϕ(x)]− ‖fψ̂(ϕ)(x)‖22},

= arg min
ϕ∈Ω

{Ex∼qϕ(x)‖S(x)−∇x log qϕ(x)‖22 − ‖S(x)−∇x log qϕ(x)− fψ̂(ϕ)(x)‖22},

= arg min
ϕ∈Ω

{Ex∼qϕ(x)‖S(x)−∇x log qϕ(x)‖22 − ‖R̂ϕ(x)‖22}. (18)

Therefore, we can estimate the upper bound of Fisher divergence between S(x) and∇x log qϕ̃(x)

Ex∼qϕ̃(x)‖S(x)−∇x log qϕ̃(x)‖22,

=Ex∼qϕ̃(x)‖S(x)−∇x log qϕ̃(x)‖22 − ‖R̂ϕ̃(x)‖22 + ‖R̂ϕ̃(x)‖22,

≤Ex∼qϕ∗ (x)‖S(x)−∇x log qϕ∗(x)‖22 − ‖R̂ϕ∗(x)‖22 + ‖R̂ϕ̃(x)‖22,
≤Ex∼qϕ∗ (x)‖S(x)−∇x log qϕ∗(x)‖22 + ε, (19)

where ϕ∗ := arg minϕ∈Ω{Ex∼qϕ(x)‖S(x) − ∇x log qϕ(x)‖22}. And the last inequality is due to
the fact that fψ̂(ϕ) is well ε-trained and ‖R̂ϕ∗(x)‖22 is non-negative.

D COMPUTATIONAL ISSUES ON UIVI

Unlike SIVI that samples from the prior q(z), UIVI samples from the posterior distribution q(z|x),
which can provide unbiased gradient estimate to the exact ELBO (Titsias & Ruiz, 2019). However,
UIVI requires computing the gradient of log q(z|x) during the iterations of HMC sampling proce-
dures. If UIVI uses a minibatch of m data points x1,x2, · · · ,xm in the training process, it needs
to compute the Jacobian matrix [∇z log q(z|x1),∇z log q(z|x2), · · · ,∇z log q(z|xm)], which is
not scalable for automatic differentiation using backpropagation. Therefore, we set the batch size
m = 1 for UIVI as done in Titsias & Ruiz (2019).

E DENSITIES FOR THE TOY EXAMPLES

Table 2: Synthetic target distributions used in the toy experiments.

Name p(x) Parameters

Banana-shaped x = (v1, v
2
1 + v2 + 1), v ∼ N (0,Σ) Σ =

[
1 0.9

0.9 1

]
Multimodal 1

2N (x|µ1, I) + 1
2N (x|µ2, I) −µ1 = µ2 = [2, 0]T

X-shaped 1
2N (x|0,Σ1) + 1

2N (x|0,Σ2) Σ1 =
[

2 1.8
1.8 2

]
,Σ2 =

[
2 −1.8
−1.8 2

]
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Figure 6: The training loss and L2-norm of fψ(x). Eqϕ(x)‖fψ(x)‖22 (fnet’s norm) and the training
objective loss (SM loss) in Eq. 10 are both estimated using 500 samples.

F SIVI SAMPLES ON THE TOY EXAMPLES

Figure 5: Performance on toy examples. The samples from the variational posteriors fitted with
SIVI-SM (orange) match the shape of target distributions (blue).

G KL DIVERGENCE RESULTS ON THE TOY EXAMPLES

Table 3: KL divergence from the target to the variational posteriors. The results were averaged from
5 independent runs with one standard deviation in the parentheses.

Name SIVI UIVI SIVI-SM(ours)
Banana-shaped 0.1876(0.0230) 0.3602(0.1106) 0.1936(0.0169)
Multimodal 0.1823(0.0025) 0.0611(0.0192) 0.0005(0.0007)
X-shaped 0.0341(0.0118) 0.0236(0.0083) 0.0046(0.0038)

H CONVERGENCE PERFORMANCE OF SIVI-SM

Here, we demonstrate the convergence behavior of SIVI-SM in our experiments. For the topy ex-
amples in section 4.1, we use 500 samples from qϕ(x) to form the Monte Carlo estimates of the loss
(SM loss) in Eq. 10, and the L2-norm Eqϕ(x)‖fψ(x)‖22 of the fψ function(fnet’s norm) during the
training process. Figure 6 shows the estimated SM loss and fnet’s norm as a function of the number
of iterations for the three synthetic toy distributions.

Similarly, Figure 7 shows the convergence traces of the SM loss and fnet’s norm in the experiments
in section 4.3. Note that although the dimensions of the posterior distributions are high, i.e. 7850 for
MNIST and 6744 for HAPT, the corresponding fnet’s norms can be quite low (58.510 for MNIST
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Figure 7: Loss convergence for MNIST and HAPT. The loss trace has been smoothed with a rolling
window of size 5.

and 8.267 for HAPT), indicating the effectiveness of our methods even in high dimensional spaces.

I SECONDS PER ITERATION IN FIGURE 4

The following table shows the run times of different methods per iteration on a RTX2080 GPU. We
see that the run times for SIVI and SIVI-SM are comparable with the chosen pairs of batch sizes
(i.e., 10 vs 100 and 20 vs 200). As discussed before, the inner-loop HMC iterations make UIVI
slower than other methods.

Table 4: Seconds per iteration for MNIST and HAPT.

MNIST HAPT
Method S/it Method S/it Method S/it Method S/it
SIVI(20) 0.0107 SIVI-SM(200) 0.0088 SIVI(20) 0.0048 SIVI-SM(200) 0.0059
SIVI(10) 0.0065 SIVI-SM(100) 0.0058 SIVI(10) 0.0045 SIVI-SM(100) 0.0057
SIVI(1) 0.0042 UIVI(1) 0.0507 SIVI(1) 0.0042 UIVI(1) 0.0493

J EXPERIMENT SETTING FOR BAYESIAN NEURAL NETWORKS

For SIVI, we setL = 100 the batch size ism = 10 in training process. For UIVI, the setting of HMC
inner loop is similar with section 4.3. For SGLD, we choose the step size from {10−4, 10−5, 10−6}
and iteration number in {50000, 100000} by validation in training process with 100 particles. For
SIVI-SM, we set inner-loop gradient steps K = 1, 3 by validation and run 20,000 iterations for
training.

K RELATED METHODS

Consider a test functions classF , the Stein discrepancy (Gorham & Mackey, 2015) measure between
p and q is defined follows

S(q, p) = sup
f∈F

Eq(x)

[
∇x log p(x)T f(x) + Tr(∇xf(x))

]
. (20)

This measure is based on the following Stein’s identity (Stein, 1972)

Eq(x)

[
∇x log q(x)T f(x) + Tr(∇xf(x))

]
= 0. (21)

An early example in variational inference used Stein discrepancy is operator variational inference
(OPVI) (Ranganath et al., 2016), which constructs a variational operator (e.g. Langevin-Stein Op-
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erator OpLS) objective 7

L(q,OpLS,F) = sup
f∈F

(
Eq(x)

[
∇x log p(x)T f(x) + Tr(∇xf(x))

])2
.

Then OPVI solves the minmax optimization problem simultaneously with q and f . Unlike OPVI,
learned Stein discrepancy (LSD) (Grathwohl et al., 2020) utilizes the L2 regularization term to
substitute the constraint of F

LLSD = sup
f

Eq(x)

[
∇x log p(x)T f(x) + Tr(∇xf(x))− λ‖f(x)‖22

]
. (22)

In fact, the variational objective of SIVI-SM in Eq.8 can be viewed as LLSD. Bring Eq.21 into Eq.22
and let λ = 1

2 , we have

LLSD = sup
f

Eq(x)

[
f(x)T (∇x log p(x)−∇x log q(x))− 1

2
‖f(x)‖22

]
,

=
1

2
Eq(x)‖∇ log p(x)−∇ log q(x)‖22.

However, OPVI and LSD both involve the Tr(∇xf(x)) term which is not easy to compute for high
dimensional problems. Our method takes a further step by utilizing the hierarchical structure of
q(x) in Eq.1. Using a mathematical trick that is similar to denoising score matching, we arrive at a
formulation that easily scales up to high dimensions.

L ON THE BIASENESS OF THE MC GRADIENT ESTIMATE OF THE FISHER
DIVERGENCE IN EQ. 7

Figure 8: The quiver plots of fψ(x) and samples from the variational posteriors during the training
process of the multimodal Gaussian distribution. Up: SIVI-SM. Bottom: Biased gradient estimates.

7The objective is similar with the definition of Stein measure in (Liu et al., 2016).
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