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ABSTRACT

Low-rank recurrent neural networks (lrRNNs) are a class of models that uncover
low-dimensional latent dynamics underlying neural population activity. Although
their functional connectivity is low-rank, it lacks disentanglement interpretations,
making it difficult to assign distinct computational roles to different latent dimen-
sions. To address this, we propose the Disentangled Recurrent Neural Network
(DisRNN), a generative lrRNN framework that assumes group-wise independence
among latent dynamics while allowing flexible within-group entanglement. These
independent latent groups allow latent dynamics to evolve separately, but are in-
ternally rich for complex computation. We reformulate the lrRNN under a vari-
ational autoencoder (VAE) framework, enabling us to introduce a partial corre-
lation penalty that encourages disentanglement between groups of latent dimen-
sions. Experiments on synthetic, monkey M1, and mouse voltage imaging data
show that DisRNN consistently improves the disentanglement and interpretability
of learned neural latent trajectories in low-dimensional space and low-rank con-
nectivity over baseline lrRNNs that do not encourage partial disentanglement.

1 INTRODUCTION

Understanding neural dynamics and connectivity from high-dimensional recordings is a central chal-
lenge in neuroscience. Existing approaches typically fall into two categories: (1) methods that ex-
tract low-dimensional latent dynamics or representations from neural population activity (Yu et al.,
2005; Wu et al., 2017; Pandarinath et al., 2018; She & Wu, 2020; Aoi et al., 2020); and (2) models
that operate directly in the high-dimensional neural space, enabling inference of connectivity struc-
tures (Pillow et al., 2008; Linderman et al., 2016; Roudi et al., 2015; Li et al., 2023). While the
former provide insights into neural computation, they offer limited access to interpretable connec-
tivity. The latter, meanwhile, do not directly estimate low-dimensional structure, which often leads
to suboptimal discovery of the underlying neural dynamics.

Low-rank recurrent neural networks (lrRNNs) (Mastrogiuseppe & Ostojic, 2018; Beiran et al., 2021;
Dubreuil et al., 2022; Schuessler et al., 2020a;b; Valente et al., 2022a) offer a promising middle
ground, capturing both structured connectivity and low-dimensional dynamics by constraining the
recurrent weights to a low-rank form. Recent methods, such as LINT (Valente et al., 2022b) and
other related approaches (Pals et al., 2024), leverage the singular value decomposition (SVD) of low-
rank connectivity matrices to extract interpretable latent subspaces. In these models, the left singular
vectors define the latent dynamics, enabling both predictive modeling and functional interpretation.

However, SVD yields orthogonal components, which are not necessarily independent. In many ex-
perimental settings, it is desirable to identify independent latent subspaces that evolve separately.
For example, in a motor decision-making task, Mante et al. (2013) demonstrated that latent trajec-
tories under different task contexts (e.g., color vs. shape) are structured separately, suggesting that
neural computations may arise from multiple independent sources.

To address this, techniques such as independent component analysis (ICA) (Hyvärinen & Oja, 2000)
and disentangled variational autoencoders (VAEs) (Chen et al., 2018; Kim & Mnih, 2018) have been
used to enforce independence. However, these approaches have two key limitations: (1) they are not
dynamical models and therefore do not infer connectivity or recurrent dynamics; (2) they typically
assume dimension-wise independence in the latent space, so that each latent dimension evolves inde-
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pendently, which is often too restrictive. For example, visual neurons have been shown to represent
information in a factorized manner, encoding features such as texture and contrast separately (Lee
et al., 2025). While contrast might be able to be represented in a one-dimensional latent subspace,
texture is inherently more complex and requires a higher-dimensional neural representation for accu-
rate encoding. These reasons highlight that merely applying ICA or disentangled VAE to the neural
data may not be accurate and insightful enough for disentangling task-relevant neural subspaces.

To address these limitations, we introduce the Disentangled Recurrent Neural Network (Dis-
RNN)—a low-rank RNN framework that captures both neural connectivity and recurrent dynamics
while enforcing disentanglement between groups of latent dimensions (i.e., several latent subspaces)
(Li et al., 2025). This approach offers three key benefits:
• It is a generative RNN model that enforces group-wise independence among latent dynamics,
while allowing flexible interactions within each group.
• It yields interpretable low-rank sub-connectivities associated with each latent group, which can
be viewed as distinct neural sub-circuits driving independent sources of task-related neural signals.
• Built on the VAE framework, it is flexible and extensible to complex RNN architectures.

2 BACKGROUND

Low-rank RNN. lrRNN assumes that the observed neural sequence x(t) ∈ RN from N neurons
evolves with

dx(t)

dt
= −x(t) +W

∫ ∞

0

ψ(τ)σ(x(t− τ)) dτ + b+ η(t) + ϵ(t), (1)

whereW ∈ RN×N is the low-rank connectivity matrix, b ∈ RN is the neuron background intensity
vector, ψ(τ) is a history convolution kernel (with

∫∞
0
ψ(τ) dτ = 1), σ is a nonlinear activation

function (e.g., tanh(·)), η(t) ∈ RN are the external inputs, and ϵ(t) ∈ RN are i.i.d. noise samples
(e.g., Gaussian).

In practice, learning such a stochastic differential equation usually relies on its discretized version

x(t)
∣∣x(t−1), . . . ,x(t−L) =W

L∑
l=1

ψl σ
(
x(t−l)

)
+ b+ η(t) + ϵ(t), (2)

where
{
x(t)

}T
t=1

is the discretized neural sequence in T time bins. ψ ∈ RL
⩾0 is the history convo-

lution kernel (with
∑L

l=1 ψl = 1), and the remaining parameters are defined analogously.

To obtain latent dynamics z(t) given the rank-K weight matrix W , LINT (Valente et al., 2022b)
parameterized W = AB, where A ∈ RN×K is the left singular matrix, and B ∈ RK×N is the
transposed and singular-value-scaled right singular matrix. Then they projected x(t) to z(t) viaB.

VAE for low-dimensional latent. A variational auto-encoder (VAE) (Kingma, 2013) with linear
encoder q(z|x) and linear decoder p(x|z; ) can be viewed as a dimensionality reduction tool similar
to probabilistic principal component analysis (PPCA), used to find the low-dimensional neural latent
z ∈ RK . The prior p(z) is typically chosen as a standard normal prior.

To fit this VAE model, we optimize the standard evidence lower bound (ELBO) (Blei et al., 2017):

1

T

T∑
t=1

ELBO
(
x(t)

)
=

1

T

T∑
t=1

Eq(z(t)|x(t))

[
ln p
(
x(t)

∣∣z(t))]−KL
(
q
(
z(t)
∣∣x(t)

)∥∥p(z(t))). (3)

However, the inferred latent components z1, . . . , zK are generally entangled, and any invertible
affine transformation P ∈ RK×K can form an equivalent solution P−1z. To see this, assume the
encoder is z = Bx+d and the decoder is x = Az+c. Without noise for simplicity, x = Az+c =
A(Bx+d)+c = AP (P−1Bx+P−1d)+c, so the transformed z′ = P−1Bx+P−1d = P−1z
is the equivalent latent under the encoder (P−1B,d) and decoder (AP , c).

3 DISENTANGLED RECURRENT NEURAL NETWORK (DISRNN)

3.1 REFORMULATE LOW-RANK RNN USING VAE

Reformulation. Learning an independent latent structure for lrRNN is not as simple as learning
an orthogonal latent structure, which can be obtained via specific decompositions such as SVD. To
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address this, we first reformulate the lrRNN using the aforementioned VAE framework by adding
nonlinearity and a history convolution ψ ∈ RL

⩾0 with
∑L

l=1 ψl = 1 to the original linear encoder:

z(t)
∣∣x(t−1), . . . ,x(t−L) = B

L∑
i=1

ψl σ
(
x(t−l)

)
+ d+ ϵ(t)enc, (4)

where B ∈ RK×N and d ∈ RK are the encoder parameters, and ϵ(t)enc are i.i.d. encoder noise
samples. We then write the decoder as

x(t)
∣∣z(t) = Az(t) + c+ η(t) + ϵ

(t)
dec, (5)

where A ∈ RN×K and c ∈ RN are the decoder parameters, and ϵ(t)dec are i.i.d. decoder noise
samples. Combining encoder and decoder, we obtain a generative lrRNN form for x(t):

x(t)
∣∣x(t−1), . . . ,x(t−L) = AB

L∑
l=1

ψl σ
(
x(t−l)

)
+ (Ad+ c) + η(t) +

(
Aϵ(t)enc + ϵ

(t)
dec

)
. (6)

This can be viewed as an L-th order lrRNN (L history time steps dependency), where the rank-K
connectivity isW := AB ∈ RN×N and the background intensity vector is b := (Ad+ c) ∈ RN .

Latent dynamics. A key benefit of expressing lrRNN in the VAE framework is that it allows
deriving latent dynamics by replacing {x(t−L), . . . ,x(t−1)} in Eq.4 with the form in Eq.5:

z(t)
∣∣z(t−1), . . . ,z(t−L) = B

L∑
l=1

ψl σ
(
Az(t−l) + c+ η(t−l) + ϵ

(t−l)
dec

)
+ d+ ϵ(t)enc. (7)

In the special case when σ is the identity function, the latent dynamics simplify to

z(t) = BA

L∑
l=1

ψlz
(t−l) + (Bc+ d) +

(
B

L∑
l=1

ψlη
(t−l)

)
+

(
B

L∑
l=1

ψlϵ
(t−l)
dec + ϵ(t)enc

)
, (8)

where J := BA ∈ RK×K denotes the corresponding latent recurrent connectivity.
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Figure 1: (a): Schematic of the DisRNN, showing independent latent groups and the corresponding
low-rank connectivities. (b): Group-wise independence: (z1, z2) ⊥ (z3, z4), while within-groups
are highly entangled, and components from different groups are marginally independent.

3.2 DISENTANGLED RECURRENT NEURAL NETWORK (DISRNN)

Definition of disentanglement. Another benefit of formulating lrRNN under the VAE framework
is that the low-dimensional latent variable z(t) from the encoder distribution is naturally amenable
to disentanglement. We assume latent z ∈ RK is disentangled by G groups, each with internal
group rank Hg , satisfying K = H1 + H2 + · · · + HG. For simplicity, we denote the g-th group
as zg = (zg,1, zg,2, . . . , zg,Hg

) ∈ RHg , ∀g ∈ {1, ..., G}, so that z = (z1, . . . ,zG). Then, the
disentanglement is defined as:
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G

⊥
g=1

zg ⇐⇒ p(z) =

G∏
g=1

p(zg), p(zg) ̸= p(zg,1) · · · p(zg,Hg ), ∀g ∈ {1, . . . , G}. (9)

This equation expresses that latent components within a group may exhibit dependencies and may
not be further disentangled, while different groups are mutually independent (see Fig. 1(b)).

Inference. We introduce two inference approaches to achieve partial disentanglement: one tailored
for linear dynamics (Eq. (8)); while the other is flexible for general non-linear dynamics (Eq. (7)).

Inference via block-diagonal latent structure. To require group-wise independence for the linear
case in Eq. (8), a straightforward way is to constrain the latent recurrence matrix J = BA to
be block-diagonal, so that latent groups do not interact with each other. If latent components within
a group are entangled with each other (non-separable), the block will be similar to a Jordan matrix,
i.e., the block cannot be diagonalized (see Apendix. A.1 for more details). Therefore, we can ei-
ther: (1) freely learn A and J and solve a least-squares problem J = BA to recover B; or (2)
jointly learn A and B while penalizing the off-block-diagonal elements of J = BA to promote
group-wise independence. We call this approach block-diagonal RNN (bdRNN).

Inference via partial correlation. For the nonlinear case in Eq. (7), there is no J matrix due to the
nonlinear σ function. Thus, we directly deal with Eq. (9). Following Li et al. (2025), we achieve
group-wise independence by optimizing the target function

L =
1

T

∑T

t=1
ELBO

(
x(t)

)
− β ·KL

(
q(z)

∥∥∥∥∏G

g=1
q(zg)

)
. (10)

The second term in Eq. (10) is the partial correlation (PC), where the aggregated posterior q(z) =
1
T

∑T
t=1 q

(
z,x(t)

)
=
∑T

t=1 q
(
z
∣∣x(t)

)
q
(
x(t)

)
is defined as in Makhzani et al. (2015). Since each

data point is equally contributed, q(x(t)) = 1
T and hence q(z) can be viewed as a Gaussian kernel

density estimation over
{
z(t)
}T
t=1

in latent space. PC penalizes dependency between latent groups:

when q(z) =
∏G

g=1 q(zg), PC = KL
(
q(z)

∥∥∥∏G
g=1 q(zg)

)
= 0; otherwise, PC > 0 and the

penalty is scaled by a hyperparameter β > 0. We call this approach Disentangled RNN (DisRNN).

Sub-circuit connectivity. With DisRNN, we can obtain a partially disentangled latent z, where
each group g has its group-rank Hg . Specifically, we write

x(t) = Az(t) + c+ η(t) + ϵ(t) = [A1,:, . . . ,AG,:]
[
z
(t)
1 , . . . ,z

(t)
G

]T
+ c+ η(t) + ϵ(t), (11)

where Ag,: is the Hg-dimentional embedding of the g-th latent group subspace in the observational
space RN . Accordingly,

W = AB =
∑G

g=1
A:,gBg,: =:

∑G

g=1
Wg, (12)

where Wg is the rank Hg sub-connectivity associated with the g-th group. Each Wg represents a
sub-circuit within the neural population that encodes an independent source of neural activity. With
task-related labels for stimuli or choices, for example, we can identify which sub-circuits encode
stimulus features and which encode choice signals. This distinction is essential for understanding
how different neural circuits support perception, decision-making, and the functional organization
of the brain. Fig. 1(a) is a complete schematic of the overall framework.

Benefits. There are three main benefits of DisRNN.
• First, this partial disentanglement term in DisRNN in fact encompasses RNNs of no disentangle-
ment when G = 1 (and PC ≡ 0, a standard lrRNN) and full disentanglement when G = K (the
component-wise independence in ICA (Hyvärinen & Oja, 2000), β-TCVAE, (Chen et al., 2018) and
FactorVAE (Kim & Mnih, 2018), although very restrictive).
• Second, unlike bdRNN, by just setting a large enough group-rank Hg , DisRNN can automatically
detect the effective/true group rank H ′

g and introduce dummy dimensions Hg −H ′
g .

• Third, DisRNN is compatible with both linear (Eq. (8)) and nonlinear (Eq. (7)) dynam-
ics, and naturally extends to more general nonlinear dynamical systems of the form x(t) =
f(x(t−1), . . . ,x(t−L)) + ϵ(t). Even in the absence of explicit connectivity in such a general nonlin-
ear form, DisRNN still enables learning a disentangled low-dimensional latent representation with a
nonlinear encoder. Therefore, DisRNN serves as a more general inference framework than bdRNN.

4
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4 EXPERIMENTS

Methods for comparison. We compare RNN-based methods that emphasize different latent struc-
ture representations, without involving their underlying sampling or inference strategies.
• lrRNN: The standard low-rank RNN model in Eq. (2).
• LINT (Valente et al., 2022b): The lrRNN model with connectivity matrix parameterized by SVD.
• SMC (Pals et al., 2024): They proposed a Sequential Monte Carlo (SMC) inference approach to
fit the LINT model to data.
• bdRNN: Our block-diagonal RNN model, which enforces BA to be block-diagonal and is theo-
retically valid only when σ is the identity function.
• DisRNN: Our DisRNN model in Eq. (10), which achieves latent disentanglement by penalizing
the partial correlation (PC) term.

4.1 SYNTHETIC DATASET

Dataset. To generate the latent, we simulate Lorenz and Thomas’ cyclically symmetric dynamics
with ∆t = 0.1 for 2000 steps using RK4 (Dormand & Prince, 1980). Fig. 5 in Appendix A.2.1
visualizes the latent plots. To simulate x(t), we need to make sure the dataset also satisfies the
recurrent relationships in Eq. (6) and Eq. (7). Since z(t) follows the generative process in Eq. (7),
we can get the parameters includingA,B, and hence generate the observed data x(t) using the fitted
A andB with inputs and random Gaussian noises. The observation dimensionality is N = 20.

Experimental setup. Since the ground truth contains two independent latent groups of rank 3, we
fit bdRNN and DisRNN with (G,H) = (2, 3). To conduct a more comprehensive experiment, we
also include two additional intermediate methods: (1) lrRNN+ICA that performs a post-hoc ICA
on the latent estimated from lrRNN; and (2) DisRNN-full that runs DisRNN with (G,H) = (6, 1)
(i.e., full latent distanglement via DisRNN). All methods are trained for 5000 epochs using the Adam
optimizer (Kingma, 2014) with a learning rate of 10−3 and a batch size of 128. The ablation study
in Appendix A.2.1 cross-validates β = 20 and demonstrates the flexibility of (G,H) setting as the
second benefit of DisRNN. All methods are run 10 times with different random seeds.

z5

z6

z4
z5

z6

z4
z5

z6

z4

Figure 2: (a): The PC and R2 of the estimated latent, and the connectivity correlation. The star-
bars indicate the pairwise t-test significance levels. Arrows indicate the higher or lower the better.
(b): Group 2 latent trajectories with the true dynamics in 3D plots; and the 1D trajectories from
different methods on selected latent components. All latent dimensions are plotted in Fig. 8 in Ap-
pendix A.2.1. (c): The learned sub-connectivities from different methods and the ground truth.

Latent evaluations. To evaluate the estimated latent unsupervisedly, we compute the PC of the
estimated latent on the test set to check whether different methods uncover desired group struc-
tures. Fig. 2(a) shows that DisRNN achieves the lowest PC, indicating that it successfully recovers
partially disentangled latent dynamics. Comparing DisRNN-full and lrRNN+ICA, we see that end-
to-end training in DisRNN-full can lead to better latent disentanglement. In contrast, the latent
space of lrRNN, without any disentanglement constraints, may not be disentangleable, especially
when the VAE structure contains non-linearities which makes post-hoc ICA unreliable or even non-
decomposable. In other words, the disentanglement objective in an end-to-end model influences
both the encoder and decoder during training, whereas imposing disentanglement post hoc after
learning the latent representation is ineffective.

5
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Given we know the true latent dynamics
{
z′(t) ∈ RK

}T
t=1

in this synthetic dataset, we can align the
estimated latent dynamics to the ground truth. In general, if we have G groups, we can match the
estimated latent groups z(t)1 , . . . ,z

(t)
G to the true latent groups z′(t)1 , . . . ,z′

(t)
G , as illustrated in Fig. 7

in Appendix. Specifically, we create an R2 ∈ (−∞, 1]G×G matrix where R2g1,g2 is theR2 score of
aligning the estimated latent z(t)g2 to the true latent (z′)(t)g1 via an affine transformation, by solving a
least squares problem. Then, the best match is obtained by finding a mutually exclusive assignment
from true groups g′ to estimated groups g that maximizes the total R2 score. This is essentially a
linear sum assignment problem in graph theory (Crouse, 2016). After the assignment, we report the
average R2 over the finally matched pairs.

Results. Although different methods reconstruct similar observation sequences (all methods are
approximately 0.85 reconstruction R2 through their learned recurrent weights), their uncovered la-
tent dynamics differ from each other in terms of disentanglement structure. The latentR2 in Fig. 2(a)
shows that DisRNN recovers the latent dynamics with the highest accuracy, while standard lrRNN
and LINT perform noticeably worse. Among all methods, only DisRNN faithfully recovers the
partially disentangled structure present in the ground truth. Fig. 2(b) visualize the estimated latent
dynamics, confirming that DisRNN’s latent trajectories are better aligned with the ground truth than
others. To further explore the estimated latent from methods without group-wise independence as-
sumption, we perform another post-hoc analysis in Fig. 9 in Appendix A.2.1, demonstrating that
partitioning latent components from methods without the assumption of group-wise structure has
explosively high complexity, which is a theoretical limitation for the baseline methods.

In terms of parameter estimation, although all methods yield similar estimates of the overall re-
current connectivity W = AB (with connectivity correlations around 0.85), they find different A
and B. Particularly, the sub-connectivities discovered by DisRNN match the ground truth the best
(Fig. 2(a) and (c).

4.2 MONKEY M1 DATA

Dataset. We use neural spike train recordings from the macaque M1 cortex (Ma et al., 2023). The
dataset consists of firing rate data from 168 trials, 14 time bins, and 154 neurons, recorded while the
animal performed a center-out reaching task with eight movement directions.

Experimental setup. Since the ground-truth latent structure is unknown, we explore a range of
model configurations based on K = 2 and K = 4 latent dimensions and analyze their outcomes.
• For K = 2, we learn lrRNN and LINT. We also learn a DisRNN with two independent rank-1
latent groups (G,H) = (2, 1). Additionally, since our disentangled RNN supports arbitrary encoder
and decoder architectures as illustrated in the inference section, we also try a DisRNN model with
an MLP encoder and decoder, denoted as DisRNN-MLP.
• For K = 4, we again learn lrRNN, LINT. We include the comparison with SMC, since SMC was
also applied to this dataset in Pals et al. (2024). For DisRNN, we learn two independent rank-2 latent
groups (G,H) = (2, 2).

The training procedures are similar to the synthetic experiments (see our code for details). Af-
ter training, we attempt to align the learned latent groups to x-coordinates (horizontal) and y-
coordinates (vertical) of the monkey’s hand movement trajectories (the true trajectories in Fig. 3(a)).

Results. For K = 2, lrRNN and LINT perform poorly in aligning to the x and y movement
separately (Fig. 3). With disentanglement, DisRNN improves the alignment score from about 0.5 to
0.65. However, the trajectories remain visually poor, suggesting that rank-1 latent dynamics are not
expressive enough to capture the M1 neural activities responsible for the reaching task.

With more components K = 4 in a larger latent space, lrRNN and LINT achieve improved align-
ment, but still lack any form of latent disentanglement. Although SMC is a more advanced method
than LINT due to its sophisticated inference approach, their reported gains in the original paper re-
lied on using direction labels. In our setting, where such labels are not provided, the sophisticated
inference alone makes SMC perform even worse than LINT. In contrast, DisRNN with two rank-2
latent groups achieves an alignment R2 score of about 0.8. The trajectories to all eight directions
are significantly better separated than all other configurations. We also tried DisRNN with 4 rank-1
groups. Due to its rigid full disentanglement assumption, it fails to group components meaningfully

6
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Figure 3: (a): Recovered latent trajectories from different methods v.s. the ground-truth trajectories,
and their alignment R2 scores. (b): The corresponding low-rank connectivity for K = 2 DisRNN
andK = 4 DisRNN. For DisRNN, for example, the rank-4 connectivity can be decomposed into two
rank-2 sub-connectivities, one responsible for the dynamics of the x-movement, and the other for
the y-movement. (c): The R2 scores of aligning the estimated latent to rotated coordinate systems.

into x and y-aligned latent subspaces, resulting in a lower alignment score. These results indicate
that higher-than-rank-1 is important to model the dynamics of the x or y coordinates effectively.

To understand whether the poor disentanglement in K = 2 stems from the linear architecture of
the encoder and decoder, we replace the linear encoder and decoder with more complicated MLP
encoder and decoder, denoted as DisRNN-MLP. Its alignment R2 remains lower than that of the
DisRNN with two rank-2 groups. In particular, DisRNN-MLP fails to separate trajectories to 45◦

and 90◦ (colored by orange, green), and the same for 135◦ and 180◦ (colored by red and purple),
which remain mixed. Besides, DisRNN-MLP does not support explicit connectivity estimation due
to its nonlinear encoder and decoder. This further supports that higher-than-rank-1 latent groups are
necessary for describing the x or y movement dynamics, and that simply having a more complicated
VAE architecture might not resolve the disentanglement limitations of low-ranked groups.

We also compare the learned sub-connectivity matrices governing the dynamics for both x and y
coordinates. Take the K = 2 DisRNN and the K = 4 DisRNN for example, both have two inde-
pendent groups, but the K = 4 DisRNN has a higher-than-1 within-group rank (Fig. 3(b)). With
disentanglement, the connectivity matrix can also be separated into two groups, one for the x coor-
dinate and one for the y coordinate. Comparing the sub-connectivities between K = 2 and K = 4,
they share some similar connections (indicated by the arcs between the stars in Fig. 3(b)). However,
the rank-2 sub-connectivities are more expressive, which better support accurate approximation of
the corresponding x coordinate and y coordinate latent dynamics. This enables circuit-level hy-
potheses, such as one subnetwork supporting horizontal control and another vertical, and reveals
how neural populations implement multiple variables through separable low-rank channels rather
than a single entangled circuit. It also explains why ICA-like post hoc separation may fail, since
the separation lies in the structured connectivity itself rather than only in latent activity. The learned
connectivity matrices from all configurations are shown in Fig. 10 in Appendix A.2.2.

At the beginning of this experiment, we hypothesized that the x and y coordinates represent two
underlying true latent groups. However, the eight directions in this experiment are rotationally
symmetric, mathematically. This may cause the concern that we can align the disentangled latent
groups with respect to an arbitrarily rotated coordinate system (e.g., express the trajectory coordinate
under the bases of direction π

4 and 3π

4 ), instead of the horizontal/vertical one. To test this, we align
the disentangled latent to the trajectories expressed by various rotated coordinate systems, ranging
from 0 to π

2 . If there is no disentanglement, the alignment score should be similar across different
angles due to the rotational symmetry.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

group 1

group 1 group 2

0.05

-0.05

20

-20
0

0.05

-0.05

0.05

-0.05

20

-20
0

20

-20
0

group 1 group 6group 5group 4group 3group 2

group 4

DisRNN: 6 rank-1 groups, recon R2: 0.922

lrRNN: 1 rank-12 group, recon R2: 0.955

DisRNN: 6 rank-2 groups, recon R2: 0.955

(d)

(e)

(f)

group 1 connectivity

group 6 connectivity

group 1 connectivity

(a)

(b)

S1-m
S1

-ul

S1-ll

M1

S2S1-bf
PL

V1

RS
C

M2-l

M
2-

m

Au
1

airpuff (0.75 s)

airpuff
on

airpuff
off

(c)

num of groups G
num of components K

Figure 4: (a): Experiment setup. (b): Reconstruction performances w.r.t. different numbers of
components for DisRNN or different numbers of groups for DisRNN. (c): Cortical map with region
abbreviations. (d): 1 rank-12 group, a no disentanglement configuration, i.e., a standard low-rank
RNN. Left are brain maps A:,g and the corresponding time series z(t)g . Right is the corresponding
rank-12 connectivity corresponding to group 1. Similar for (e) and (f).

Fig. 3(c) indicates that for the three DisRNNs, the best alignment occurs under the canonical
horizontal-vertical bases (highest latent R2 at 0 and π

2 ), and the alignment R2 score drops sig-
nificantly under the rotated bases, especially near π

4 . In contrast, methods without disentanglement
(standard lrRNN and LINTs) show flatter and more erratic alignment curves across different rotation
angles, lacking a consistent preference for particular bases. These findings are biologically plausi-
ble, consistent with prior neurophysiological findings in primate motor cortex (Georgopoulos et al.,
1982; Amirikian & Georgopoulos, 2003; Churchland et al., 2012), where neurons are not uniformly
tuned to all directions, but more tuned along the cardinal axes, i.e., horizontal (left-right) and vertical
(up-down), due to the body symmetry. Especially in these center-out reaching tasks, it is more nat-
ural for primates to understand and execute movements under the horizontal-vertical bases (i.e., the
Cartesian coordinate system), rather than the polar coordinate system. This reinforces the idea that
M1 does not encode movement uniformly across directions, and certain axes may be overrepresented
due to behavioral, biomechanical, habitual, or neural factors. Taken together, these results support
that the separation of x and y movement in our model is not merely an artifact of the model statistics,
but may reflect a meaningful subspace underlying the neural data. Results from fitting the model to
Poisson spike counts (Appendix A.2.2) similarly demonstrate that disentanglement enhances latent
structure separation, yielding better alignment with hand movement trajectories.

4.3 MOUSE DORSAL CORTEX VOLTAGE IMAGING DATA

Dataset and experimental setup. The dataset used in this study is a trial-averaged voltage imag-
ing sequence from a mouse Lu et al. (2023), comprising 150 frames of 50×50 dorsal cortex voltage
images recorded during a left-side air puff stimulus lasting 0.75 seconds (Fig. 4(a)). Although Dis-
RNN can in principle handle over-specified group ranks, overly large settings impair efficiency and
model quality. Since the true latent structure is unknown, fixing the total latent dimensionality K
while varying the group specification (G,H) provides a controlled way to examine how different
assumptions affect model performance and the latent interpretation. Thus, we fix K = 12 and
investigate different numbers of groups G ∈ {1, 2, 3, 4, 6, 12}. When G = 1, there is no disentan-
glement, which corresponds to the lrRNN. Additionally, we explore fully disentangled models by
varying K ∈ {1, 2, 3, 4, 6, 12} with G = K and H = 1. The training procedures are similar to the
previous experiments (see code for details).
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Results. Fig. 4(b) shows that increasing the total number of latent components in DisRNN im-
proves reconstruction, indicating that a larger latent dimensionality preserves more information in
the latent space. The improvement plateaus once the number of components reaches six, suggesting
that a latent space of dimension six or higher is sufficient to capture the data structure. In compar-
ison, fixing K = 12 maintains consistently high reconstruction performance across different group
numbers. Varying the number of groups in this case does not affect observation reconstruction but
leads to different degrees of latent disentanglement. This indicates that once sufficient latent ca-
pacity is available, the DisRNN framework allows us to explore and control the disentanglement
structure via group specification—without compromising reconstruction accuracy.

To evaluate disentanglement, three configurations are selected and compared in Fig. 4(d-f), with a
standard cortical region map and annotated ROIs (regions of interest) shown in Fig. 4(c). In each
of Figs. 4(d–f), the left panel displays the brain mapA:,g and the corresponding time series z(t)g for
each group g, while the right panel shows the associated group connectivityWg . In Fig. 4(d), learn-
ing a standard lrRNN without disentanglement results in mixed latent trajectories, where airpuff-
related S1-bf (primary somatosensory-barrel field) oscillations (marked by the green squares) ap-
pear across multiple components. In contrast, DisRNN with 6 rank-1 groups ((K,G) = (6, 1))
in Fig. 4(e) isolates these oscillations in the right S1-bf and right M2-m (secondary motor-medial),
yielding a more localized representation. However, 6 components are less expressive compared to 12
in terms of reconstruction R2. To address this, a DisRNN with 6 rank-2 groups ((K,G) = (6, 2)) in
Fig. 4(f) is explored. In this configuration, airpuff-related oscillations are concentrated within group
1 and are not further separable. To quantify disentanglement, total correlation (TC) is computed
between and within groups. (6, 1) yields an average between-group TC of 0.159, whereas (6, 2)
achieves a lower between-group TC of 0.110 and a within-group TC of 0.201, indicating better
separation between groups while retaining within-group structure.

Regarding connectivity, Fig. 4(d) illustrates that without disentanglement, even low-rank connec-
tivity remains hard to interpret. Under (6, 1) (Fig. 4(e)), the rank-1 sub-connectivity linked to the
oscillatory latent (group 6) reveals strong bilateral connections between S1-bf regions and an influ-
ence from right M2 to right S1-bf. But with (6, 2) (Fig. 4(f)), the rank-2 connectivity associated
with the oscillatory latent (group 1) offers more interesting interpretations. For example, it reveals a
strong excitatory connection from S2 (secondary somatosensory) to M2-m. There are also connec-
tions from right S2 and left M2 to both sides of RSC (retrosplenial cortex), potentially indicating
the formation of episodic memory of receiving the airpuff. Videos of group dynamics are provided
in the supplementary materials.

5 CONCLUSION

In this work, we develop a disentangled low-rank RNN (DisRNN) framework that captures both
the latent dynamics and connectivity structure of neural systems while relaxing the assumption of
full independence among latent components. By combining the expressiveness of low-rank RNN
(lrRNN) with a flexible variational inference approach, we enable group-wise disentanglement of
latent dynamics via a partial correlation penalty. Compared to lrRNN, fully disentangled models,
and SVD-based methods, DisRNN produces latent representations that better match known task
variables and reveal an interpretable sub-connectivity structure. Our results across synthetic and
real datasets suggest that partial disentanglement is powerful for uncovering modular computation
in brain activity.

Despite its advantages, DisRNN also has several limitations. First, the model requires pre-specifying
both the number and the size of latent groups. Although our framework can automatically identify
and suppress dummy or inactive components within each group, determining the appropriate group
structure remains a hyperparameter selection challenge that may depend on domain knowledge or
model selection criteria. Second, connectivity interpretability is currently limited to the case where
both the encoder and decoder are linear. While this constraint enables direct estimation of functional
connectivity between latent variables and observed neural activity, it represents a trade-off between
interpretability and representational power. Extending the framework to allow for nonlinear en-
coders or decoders could improve modeling flexibility, but would make connectivity estimation less
straightforward. Finally, the current formulation does not incorporate external task or stimulus in-
puts, although doing so would be conceptually straightforward. Integrating such inputs offers an
exciting direction for future work, potentially enabling the dissection of task-dependent latent dy-
namics and input-driven connectivity changes.
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A APPENDIX

A.1 BLOCK-DIAGONAL RNN (BDRNN)

Consider a first-order discrete linear system for simplicity,

z(t+1) = Fz(t), F ∈ RK×K . (13)

Since not all matrices can be diagonalized, but all matrices have Jordan normal form, we can always
write

F = PJP−1, (14)
where J is a Jordan normal form, consisting of several Jordan blocks on its block diagonal. If,
without loss of generality, there are G numbers of rank-H latent groups evolving independently,
then we have

J =


J1 O · · · O
O J2 · · · O
...

...
. . .

...
O O · · · JG

 , (15)

where

Jg =


λg 1

λg 1

λg
. . .
. . . 1

λg

 ∈ RH×H , (16)

where λg is the corresponding eigenvalue, so that within each group, latent components are entan-
gled with each other, non-separable. Then,

z(t) = F tz(0) = PJ tP−1z(0). (17)

By defining z′ = P−1z (similar to the equivalence below Eq. (3)), z′(t) evolves independently by
groups, i.e.,

z′g(t) = J
t
gz

′(0)
g , J t

g =



λtg
(
t
1

)
λt−1
g

(
t
2

)
λt−2
g · · · · · ·

(
t

H−1

)
λt−H+1
g

λtg
(
t
1

)
λt−1
g · · · · · ·

(
t

H−2

)
λt−H+2
g

. . . . . .
...

. . . . . .
...

λtg
(
t
1

)
λt−1
g

λtg


. (18)
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A.2 SUPPLEMENTARY RESULTS

A.2.1 SYNTHETIC

Data generation. Fig. 5 plots the dataset we created for our synthetic experiment.

Figure 5: The synthetic latent consists of two independent groups.
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Ablation. To analyze the choice of the penalty coefficient β of PC term in Eq. (10), we vary β and
plot the cross-validation results in Fig. 6. This supports our choice of β = 20 in our experiment that
has good reconstruction, disentangled latent estimation, and parameter estimation.
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Figure 6: Metrics w.r.t. the PC penalty β in DisRNN on the synthetic dataset.

To verify that DisRNN is flexible in setting the number of groups G and group rank H , we run
DisRNN with (G,H) = (2, 4) and (G,H) = (3, 4) against the true (G,H) = (2, 3), and evaluate
the latent alignment outcome. The latent R2 for them are 0.84 ± 0.14 and 0.78 ± 0.09, respec-
tively. All of them are better than other baseline methods, but worse than the correctly set DisRNN
((G,H) = (2, 3)). Noticing that for both of them, the internal hidden rank reduces to the effective
group rank of 3 automatically. And for (G,H) = (3, 4), there is always a dummy group that aligns
badly to both of the true groups. This validates the second benefit of DisRNN that it allows a flexibly
set (G,H) for the model to be trained, when we do not know the true (G,H).

Alignment. Fig. 7 demonstrates the alignment procedure.
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Figure 7: The latent dynamics alignment process. We try to align the estimated latent groups with
the ground truth. The best match is marked by the red squared linear least-squares R2 score.

Latent dynamics. Fig. 8 shows the estimated latent dynamics vs. the ground truth on all six latent
components.

All possible permutations. For each method without the assumption of group-wise structure,
we try all possible permutations of the latent components that partition the latent components into
groups. In general, the complexity is∏G

g=1

(
(G+1−g)H

H

)
G!

=
K!

G!(H!)G
. (19)

We instantiate this complexity in Fig. 9. Then, for each random seed, we also plot the latent align-
ment R2 for all possible permutations, demonstrating that latent components are entangled with
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Figure 8: The estimated latent components by different methods on every latent compo-
nent/dimension.

each other and in random orders. For some methods, the optimal permutation can achieve the same
latent R2 as DisRNN. However, this does not invalidate our DisRNN method, because DisRNN
can explicitly disentangle and assign components into groups. When the group specification is only
moderately large, exhausting all permutations becomes intractable, which forms a theoretical limi-
tation of baseline methods.
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Figure 9: Left: Complexity demonstration matrix. Right: The latentR2 of all possible permutations
for methods without the assumption of group structure under different random seeds.
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A.2.2 MONKEY M1

Connectivity matrices. Fig. 10 shows the learned connectivity matrices from all methods.

K
=

2

lrRNN LINT DisRNN DisRNN-MLP

K
=

4

lrRNN LINT SMC DisRNN

0.5

0.0

0.5

Figure 10: The learned connectivity matrices from all methods in Fig. 3(a), except for K = 2
DisRNN-MLP.

Poisson spike count results. To validate that our framework not only works for arbitrary VAE
architectures but also works for different observation distributions, we fit different methods to the
Poisson spike count data of the same dataset with K = 2. The latent alignment R2 increases from
plain lrRNN’s 0.52 ± 0.03 to DisRNN’s 0.76 ± 0.02 to DisRNN-LMP’s 0.81 ± 0.01. This result
is consistent with the result in the main content, confirming that disentanglement is an effective
approach for obtaining biologically interpretable latent space structure.

A.3 USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely to aid in writing polish and minor language improve-
ments (e.g., fixing grammar issues, rewriting sentences in a more formal style. They were not used
for scientific exploration, conceptualization, experimental design, analysis, or conclusions.
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