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ABSTRACT
Visual grounding aims to localize the object referred to in an image
based on a natural language query. Although progress has been
made recently, accurately localizing target objects within multiple-
instance distractions (multiple objects of the same category as the
target) remains a significant challenge. Existing methods demon-
strate a significant performance drop when there are multiple dis-
tractions in an image, indicating an insufficient understanding of
the fine-grained semantics and spatial relationships between ob-
jects. In this paper, we propose a novel approach, the Relation and
Semantic-sensitive Visual Grounding (ReSVG) model, to address
this issue. Firstly, we enhance the model’s understanding of fine-
grained semantics by injecting semantic prior information derived
from text queries into the model. This is achieved by leveraging text-
to-image generation models to produce images representing the
semantic attributes of target objects described in queries. Secondly,
we tackle the lack of training samples with multiple distractions by
introducing a relation-sensitive data augmentation method. This
method generates additional training data by synthesizing images
containingmultiple objects of the same category and pseudo queries
based on their spatial relationships. The proposed ReSVGmodel sig-
nificantly improves the model’s ability to comprehend both object
semantics and spatial relations, leading to enhanced performance
in visual grounding tasks, particularly in scenarios with multiple-
instance distractions. We conduct extensive experiments to validate
the effectiveness of our methods on five datasets.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
Visual grounding, Referring Expressions, Data Augmentation, Sta-
ble Diffusion

1 INTRODUCTION
Visual grounding[10, 26, 51] aims to localize the object referred to
in an image based on the given natural language query. It is a key el-
ement in multi-modal reasoning systems, applicable across various
tasks such as visual question answering[3] and vision-and-language
navigation[2]. Moreover, it serves as a surrogate for assessing ma-
chines in open-ended scene recognition and localization. Unlike
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Figure 1: The performance and number of samples on the
RefCOCO dataset when there are different numbers of ob-
jects of the same category with the target object in an image.

conventional object detection methods confined to recognizing
pre-defined categories within training data, visual grounding in-
volves pinpointing the referenced object, often specified by one or
more pieces of information in the language query. The information
contains not only object categories but also appearance attributes,
visual relation contexts, etc.

Dealing with multiple instances of distraction, where there are
several objects of the same category as the target object within
the image, poses a substantial challenge for existing visual ground-
ing models. Accurately locating the target object among multiple
instances of the same category requires the model to thoroughly
leverage textual information and model distinctive visual features
for precise visual grounding. Empirically, as shown in Figure 1,
we conducted a statistical analysis of the performance of existing
methods when dealing with images containing different numbers
of distraction objects (of the same category as the target object)
on the RefCOCO dataset. It can be observed that as the number of
distraction objects increases, the model’s performance exhibits a
noticeable decrease. We discuss the plausible reasons as follows.

Firstly, current models may not have a sufficient understanding
of the fine-grained semantics of the target object. For some samples,
despite containing multiple distraction objects of the same cate-
gory as the target object, their fine-grained appearance attribute
semantics may differ (such as color, shape, texture, etc). In such
cases, descriptions in queries regarding these fine-grained seman-
tics become crucial (e.g., a person wearing a yellow shirt). What
adds to the challenge is that the appearance attribute proving most
discriminative for grounding is not solely determined by the fine-
grained attribute semantic word itself. Instead, it is also influenced

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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by the frequency of instances sharing that attribute within the
specific given image. However, these fine-grained semantics in-
volve complex combinations of multiple attributes across different
categories, posing a challenge for the model to fully comprehend
this fine-grained semantic information. Secondly, in the existing
dataset, the distribution of the number of distraction objects exhibits
a long-tail distribution, making it difficult for current models to fully
understand the spatial relationships between objects. In Figure 1, we
show the distribution for different numbers of distraction objects
on the RefCOCO dataset, revealing that a large number of samples
only contain less than 3 objects of the same category as the target
object. Although for such samples, queries may also involve spatial
relationships between objects, the model may only need to locate
the target object based on the semantic description of the target
object without necessarily understanding the spatial relationships
between them. As the number of distraction objects increases, the
model needs to understand their spatial relationships more, but
these samples are relatively rare, making it difficult for the model
to learn.

To tackle the above problems, we propose the Relation and
Semantic sensitive Visual Grounding (ReSVG) model to enhance
the model’s understanding of both object spatial relations and se-
mantics. Firstly, for the insufficient understanding of fine-grained
semantics, we propose to inject the semantic prior information of
the target object according to the query for the model. Specifically,
inspired by the powerful generalization ability of existing text-to-
image generation models, we propose to use queries as text prompts
to generate images of target objects through off-the-shelf text-to-
imagemodels, serving as prior information. Typically, the generated
image centers on a zoomed-in, object-centric view, providing a clear
visual perspective of the intricate details corresponding to the ap-
pearance semantics mentioned in the query (such as color, shape,
texture, etc), thus we use the generated images as prior information
of the target objects to help the model better understand the seman-
tics of the target object. Injecting visual semantic priors can better
assist the model in focusing on the correct parts of the input image
compared to using textual queries only, as the homogeneous gap
within the visual domain is much smaller than the heterogeneous
gap between vision and text. Secondly, to address the problem of
insufficient understanding of spatial relationships between objects
due to a lack of training samples with multiple distractions, we pro-
pose a relation-sensitive data augmentation method to generate more
relation-sensitive multiple-distraction data. Specifically, we use class
names with quantity words as text prompts and use text-to-image
models to generate images containing multiple objects of the same
category. Then we use an object detector to detect the boxes of ob-
jects in the images and generate pseudo queries based on the spatial
relationships of these boxes. For these generated images and pseudo
queries, the model can only accurately locate the target objects if it
understands the spatial relationships between them. We train the
model with the generated data together with the original dataset
to enhance the model’s understanding of spatial relationships.

Our contributions are summarized as follows: (1) To help the
model understand the fine-grained semantics of the target object,
we propose the semantic prior injection which injects the semantic
prior information of the target object using text-to-image models

for the visual grounding. (2) To enhance the model’s understand-
ing of spatial relationships, we propose a relation-sensitive data
augmentation method to generate more relation-sensitive multiple-
instances data. The above design significantly improves the per-
formance when facing multiple instances of distraction. (3) We
conduct extensive experiments to validate the effectiveness of our
methods on the RefCOCO [51], RefCOCO+ [51], RefCOCOg [26],
ReferItGame [20] and Fliker30K Entities[29] datasets.

2 RELATEDWORK
2.1 Visual Grounding
Existing methods generally extend the object detection frame-
work to address the visual grounding task by incorporating a
visual-linguistic fusion module. The early methods can be cate-
gorized into two-stage and one-stage methods. Two-stage methods
[16, 17, 23, 42, 43, 47, 50, 53, 57] leverage the off-the-shelf detectors
to generate a set of proposals from the image in the first stage, and
then match them with the language expression to select the top-
ranked proposal. One-stage approaches[8, 18, 22, 48, 49] fuse the
visual features and the language-attended feature maps, and out-
put the boxes directly. Recently, transformer-based methods[10, 25,
30, 36, 38, 41, 46, 56] achieve remarkable results on visual ground-
ing. They take the visual and linguistic feature tokens as inputs,
feed them into a set of transformer encoder layers to perform
cross-modal fusion, and predict the target region directly. Con-
sidering their performance advantages, we apply our approach to
the Transformer-based method, TransVG [10].

However, existing methods often demonstrate a significant per-
formance drop when there are multiple distractions in an image,
indicating an insufficient understanding of the fine-grained seman-
tics and spatial relationships between objects. In this paper, to tackle
these aforementioned limitations, we first propose generating high-
quality images containing multiple objects to construct pseudo
pairs that describe the spatial relationship between objects, thus
enriching the model’s comprehension of spatial relationships. Addi-
tionally, we also propose to generate visual features highly relevant
to the textual queries as prior information to help the model better
understand the semantics of target objects.

2.2 Data Augmentation
In many research fields, collecting and calibrating a large amount
of data requires high costs or is even infeasible. The performance
of most deep learning methods is strongly dependent on a large
amount of data samples with rich feature diversity. A model trained
on small-size datasets usually has limited performance. Currently,
data augmentation methods have attracted increasing attention.
Traditional data augmentation methods[32, 37, 39, 55] include im-
age warping, deformation, random cropping, random flip blurring,
image sharpening and blurring, changing color spaces, a weighted
sum of two images, and the inverse transformation after adding
noise. Recently, generative models [13, 21, 34] showed astonishing
results for synthesizing images. Numerous approaches have been
published that adapt generative models to synthesizing images for
data augmentation. In the field of image classification[5, 9, 27], only
a text prompt or category label is needed to generate a large number
of images for model training. In some fine-grained tasks such as



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

ResVG: Enhancing Relation and Semantic Understanding in Multiple Instances for Visual Grounding ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

image segmentation[1, 14, 40, 44, 45] and object detection[7, 54], ex-
isting methods often exploits cross-modal attention maps between
image features and conditioning text embedding to obtain pseudo
labels for supervision.

To the best of our knowledge, we are the first to utilize the
generative model to enhance spatial relationship understanding
and semantic sensitive capabilities of the grounding model. Our
approach differs from existing works in two key aspects: 1) We
leverage the generative model to generate images containing multi-
instances, thereby enhancing the comprehensive understanding of
spatial relationships.2) We also use input queries as text prompts
to generate object-centric images for guiding the model decoding,
thereby enhancing the model’s semantic-sensitive capabilities (e.g.,
appearance attributes).

3 METHOD
Task formulation. Given an image 𝐼 and a text query𝑄 , the visual
grounding task requires the model to output the bounding box
𝑏 = (𝑥,𝑦,𝑤,ℎ) of the target object referred to in the image 𝐼 based
on the query 𝑄 .

In this section, we first revisit our baseline TransVG[10] in Sec-
tion 3.1. Then, we give an overview of our proposed model in
Section 3.2. Finally, we give the details of our relation-sensitive
data augmentation in Section 3.3 and our semantic-sensitive visual
grounding in Section 3.4.

3.1 TransVG Revisited
TransVG[10] serves as our baseline model, consisting of four main
modules as shown in Figure 2: a text encoder, a visual encoder, a
transformer decoder, and a prediction head.

Text encoder: TransVG takes the query 𝑄 as input and uses
the pre-trained BERT[11] as the text encoder to extract textual
embeddings of each token 𝐹𝑙 = [𝑝1

𝑙
, 𝑝2

𝑙
, ..., 𝑝

𝑁𝑙

𝑙
] ∈ R𝑁𝑙×𝐷 , where

𝑁𝑙 is the maximum length of the text query and 𝐷 is the feature
dimension.

Visual encoder: TransVG uses the ResNet[15] as the back-
bone to generate 2D visual feature map 𝑧 ∈ R𝐷×𝐻×𝑊 from the
input image 𝐼 , where 𝐻 and𝑊 are the width and height of the
feature map respectively. Then, TransVG further flattens 𝑧 and
uses a Transformer encoder to extract visual semantic information
𝐹𝑣 = [𝑝1𝑣, 𝑝2𝑣, ..., 𝑝𝐻𝑊𝑣 ] ∈ R𝐻𝑊 ×𝐷 .

Transformer decoder: TransVG uses a transformer decoder to
fuse the linguistic and visual features and decode the target object.
Given the visual and textual embeddings 𝐹𝑣, 𝐹𝑙 outputted from the
visual and text encoders, they are concatenated and padded with a
learnable target query 𝑝𝑟 . Then, the transformer decoder performs
self-attention between the concatenated tokens to decode the target
object feature 𝑝𝑟 :

𝑝𝑟 , 𝐹𝑙 , 𝐹𝑣 = D( [𝑝𝑟 ; 𝐹𝑙 ; 𝐹𝑣]), (1)

whereD(·) is the transformer decoder and [; ] represents the feature
concatenation.

Prediction Head: Finally, the prediction head takes the target
object feature 𝑝𝑟 as input and uses a multilayer perceptron (MLP)
to predict the box coordinates 𝑏 of the target object. The final loss

function is:

L = L𝑠𝑚𝑜𝑜𝑡ℎ−𝑙1 (𝑏, 𝑏) + L𝑔𝑖𝑜𝑢 (𝑏, 𝑏), (2)

where 𝑏 is the ground-truth box, 𝑏 is the predicted box, L𝑠𝑚𝑜𝑜𝑡ℎ−𝑙1
is the Smooth L1 loss, and L𝑔𝑖𝑜𝑢 is the GIoU loss [33].

3.2 Overview
Our approach, as illustrated in Figure 2, mainly consists of two parts:
Relation-Sensitive Data Augmentation and Semantic-Sensitive Vi-
sual Grounding. Firstly, to address the problem of insufficient un-
derstanding of spatial relationships between objects due to a lack of
training samples with multiple distractions, we propose a relation-
sensitive data augmentation method to generate more relation-
sensitive multiple-distraction data. Specifically, we utilize class
names with quantity words as text prompts and employ text-to-
image models to generate images containing multiple objects of the
same category. Subsequently, an object detector is used to detect the
boxes of objects in these images and pseudo queries are generated
based on the spatial relationships of these boxes. For these gener-
ated images and pseudo queries, the model can accurately locate the
target objects only if it comprehends the spatial relationships be-
tween them. We train the model with the generated data alongside
the original dataset to enhance the model’s understanding of spatial
relationships. Secondly, to facilitate the model in understanding the
fine-grained semantic information of the target objects, we inject
semantic priors into the baseline grounding model TransVG. Specif-
ically, we propose to utilize a text-to-image model with queries as
text prompts to generate images of the target objects, incorporating
fine-grained semantic information such as color and shape. We
encode the generated prior images using an image encoder and add
them with the learnable token in the baseline, thus injecting the
semantic priors of the target objects into the baseline.

3.3 Relation-Sensitive Data Augmentation
To enable existing methods to fully understand descriptions of
object relationships in queries, we propose Relation-Sensitive Data
Augmentation, synthesizing data containing multiple distractions
that requires understanding descriptions of relationships between
objects in queries to accurately locate them for model training.

Specifically, inspired by the outstanding performance of the text-
to-image models (such as Stable Diffusion[34]), we propose utilizing
the powerful image generation capability of the Stable Diffusion
model to generate high-quality images with multiple objects with
the same categories. As shown in Figure 2, for each object cate-
gory, we randomly generate several quantity words and use each
quantity word followed by the category name as the text prompt to
generate images using stable diffusion[34]. For example, as shown
in Figure 2, using ‘three orange’ as the text prompt can generate
images containing three instances of oranges. After obtaining high-
quality images with multiple instances of the same class objects,
we detect the bounding boxes of each object in the images using an
off-the-shelf object detector and utilize the method in CPL [24] to
generate some pseudo-queries for each object for training. Specifi-
cally, we predefine a set of spatial relationships (e.g. top, bottom,
front, behind, left top, leftmost, second right, etc.), and then deter-
mine the spatial relation of each object by comparing the center
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Relation-Sensitive Data Augmentation Semantic-Sensitive Visual Grounding

Query: Guy in yellow 
dirbbling ball

Real data

Query: middle 
orange
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Relation-Sensitive Training Dataset

… …

Sample

Input ImageInput Query

Figure 2: Our method comprises two key components: Relation-Sensitive Data Augmentation and Semantic-Sensitive Visual
Grounding. Firstly, we augment training data with multiple instances of the same category, emphasizing spatial relationships
through generated images and pseudo queries. Secondly, we inject fine-grained semantic information into the grounding model
to enhance understanding of object semantics.

man in white shirt

light blue man

TransVG Ours

Input query

Figure 3: Comparasion with the baseline TransVG [10]. Our
method can better distinguish target objects of the same
category but with different fine-grained attribute semantics.

coordinates and area of each object box output by the detector.
Finally, we obtain the pseudo queries based on the template ‘{Rela}
{Noun}’, such as ‘middle orange’.

In the generated images, there are multiple instances of the same
category. To accurately locate one of them, the model needs to
fully understand the spatial relationships described in the pseudo-
queries. Therefore, we blend these synthetic data with real data to

create a relationship-sensitive training dataset, enabling the model
to learn the spatial relationships between objects thoroughly.

3.4 Semantic-Sensitive Visual Grounding
For some samples, despite containing multiple distraction objects of
the same category, their fine-grained appearance attribute seman-
tics may differ (such as color, shape, texture, etc.), and descriptions
in queries regarding these fine-grained semantics become crucial.
In the baseline, a single global shared learnable token is used to
decode features of the target objects for all queries. However, differ-
ent queries describe different target objects, making it difficult to
learn the prior information of various target objects with different
attribute semantics using the token shared by all queries. As shown
in Figure 3, the baseline model fails to distinguish between the
two objects that have the same category but different fine-grained
attributes. Therefore, we propose using the Stable Diffusion model
to obtain additional semantic prior information corresponding to
the query and combine the semantic prior with the learnable token
in the baseline. This makes the learnable token semantic-aware and
can guide the model to focus on region features that are visually
more similar to the prior, thus achieving more accurate localization
as shown in Figure 3.
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Method Backbone RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-g val-u test-u

Two-stage:
CMN VGG16 - 71.03 65.77 - 54.32 47.76 57.47 - -
VC VGG16 - 73.33 67.44 - 58.40 53.18 62.30 - -

ParalAttn VGG16 - 75.31 65.52 - 61.34 50.86 58.03 - -
MAttNet ResNet-101 76.65 81.14 69.99 65.33 71.62 56.02 - 66.58 67.27

LGRANs[43] VGG16 - 76.60 66.40 - 64.00 53.40 61.78 - -
DGA[47] VGG16 - 78.42 65.53 - 69.07 51.99 - - 63.28

RvG-Tree[16] ResNet-101 75.06 78.61 69.85 63.51 67.45 56.66 - 66.95 66.51
NMTree[23] ResNet-101 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44
Ref-NMS[6] ResNet-101 80.70 84.00 76.04 68.25 73.68 59.42 - 70.55 70.62
One-stage:
SSG[8] DarkNet-53 - 76.51 67.50 - 62.14 49.27 47.47 58.80 -

FAOA[49] DarkNet-53 72.54 74.35 68.50 56.81 60.23 49.60 56.12 61.33 60.36
RCCF[22] DLA-34 - 81.06 71.85 - 70.35 56.32 - - 65.73

ReSC-Large[48] DarkNet-53 77.63 80.45 72.30 63.59 68.36 56.81 63.12 67.30 67.20
LBYL-Net[18] DarkNet-53 79.67 82.91 74.15 68.64 73.38 59.49 62.70 - -
Trans-based:
TransVG[10] ResNet-50 80.32 82.67 78.12 63.50 68.15 55.63 66.56 67.66 67.44

TransVG+ours ResNet-50 82.60 85.36 78.97 66.13 70.95 62.06 67.10 68.39 69.77
VLTVG [46] ResNet-50 84.53 87.69 79.22 73.60 78.37 64.53 72.53 74.90 73.88
VLVTG+ours ResNet-50 85.51 88.76 79.93 73.95 79.53 64.88 73.13 75.77 74.53

Table 1: Comparisons with state-of-the-art methods on RefCOCO [51], RefCOCO+ [51], RefCOCOg [26] in terms of top-1
accuracy(%).

Method Backbone ReferIt Flickr30K
Two-stage:
CMN[17] VGG16 28.33 -
VC[53] VGG16 31.13 -

MAttNet[57] ResNet-101 29.04 -
SimilarNet[42] ResNet-101 34.54 60.89

CITE[28] ResNet-101 35.07 61.33
DDPN[52] ResNet-101 63.00 73.30
One-stage:
SSG[8] DarkNet-53 54.24 -

ZSGNet[35] ResNet-50 58.63 63.39
FAOA[49] DarkNet-53 60.67 68.71
RCCF[22] DLA-34 63.79 -

ReSC-Large[48] DarkNet-53 64.60 69.28
LBYL-Net[18] DarkNet-53 67.47 -
Trans-based:
TransVG[10] ResNet-50 69.76 78.47

TransVG+ours ResNet-50 71.01 79.02
VLTVG[46] ResNet-50 71.60 79.18

VLVTG+ours ResNet-50 72.35 79.52
Table 2: Comparison with state-of-the-art methods on Refer-
ItGame and Flickr30K Entities datasets in terms of top-1
accuracy (%).

Specifically, to obtain semantic prior for textual queries, we feed
input textual queries as prompts into the Stable Diffusion model
to generate high-quality images that conform to the input textual

queries:
𝐼 = SD(𝑄) (3)

where𝑄 is the input query, 𝐼 is the generated prior image, and SD(·)
is the Stable Diffusion model. Thanks to the powerful generalization
ability of the Stable Diffusion model, the generated image 𝐼 effec-
tively exhibits fine-grained semantic information about the target
objects (such as color, shape, texture, etc.) as shown in Figure 2.

Then, to inject the semantic prior in 𝐼 into the model, we encode
𝐼 as a feature using a pre-trained image encoder[31] and add it with
the learnable token 𝑝𝑟 in baseline to obtain the semantic-aware
token 𝑝 𝑓 :

𝑝 𝑓 = E(𝐼 ) + 𝑝𝑟 (4)
Finally, we follow our baseline to use a transformer decoder to
decode the feature of the target object feature 𝑝 𝑓 similar to Equation
(1). The only difference is we replace the global shared learnable
token 𝑝𝑟 in Equation (1) with our semantic-aware token 𝑝 𝑓 :

𝑝 𝑓 , 𝐹𝑙 , 𝐹𝑣 = D( [𝑝 𝑓 ; 𝐹𝑙 ; 𝐹𝑣]) (5)

Then, we use a prediction head to predict the target box 𝑏 the same
loss function as the baseline shown in Equation (2) to train the
model.

Compared to the baseline that decodes object features for all
textual queries using only a shared learnable token, our approach
injects the semantic prior of the target object to the shared token,
and the obtained semantic-aware token is independent for each
sample, allowing better learning of the fine-grained semantics of
different target objects. In addition, compared to the baseline that
randomly initializes the learnable token for decoding object features,
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Method val testA testB
Baseline(TransVG) 63.50 68.15 55.63
+Data Augmentation 64.77 68.56 57.54
+semantic-sensitive 65.75 70.07 58.58

+Both 66.13 70.95 62.06
Table 3: Ablations of each component on RefCOCO+ dataset.

our method, by providing visual priors highly aligned with textual
queries, can guide the model to focus on region features with high
visual similarity, thus achieving more accurate localization.

3.5 Discussion
For the relation-sensitive data augmentation, we find that although
the stable diffusion model can generate high-quality images con-
taining multiple objects of the same class, it does not always adhere
to the quantifier words in our prompt. However, our pseudo-query
generation does not rely on the accuracy of the number of objects in
the image. Even in such cases, our method can still generate correct
pseudo-queries. Some visualizations are provided in Figure 5.

For enhancing the model’s understanding of fine-grained se-
mantics, we do not opt for data augmentation methods similar to
spatial relations. This is because we find that the multiple instances
generated by stable diffusion have similar fine-grained attributes
as shown in Figure 6. Therefore, it is difficult to construct pseudo
queries that can distinguish them solely based on fine-grained se-
mantics.

For the semantic prior injection, the generated image centers
on a zoomed-in, object-centric view, providing a clear visual per-
spective of the intricate details corresponding to the appearance
semantics mentioned in the query. When the query describes dis-
tinctive attributes of the target object, it can provide useful prior
information to the model. However, we also found that when the
target object lacks distinctive attributes (e.g., the three oranges in
Figure 2), the prior information may not be helpful, which is a
limitation of our method.

4 EXPERIMENT
4.1 Datasets
We evaluate our methods on five challenging visual grounding
benchmarks as follow:
RefCOCO/RefCOCO+/RefCOCOg: 1) RefCOCO [51] contains
19,994 images with 50,000 referred objects. Each object has more
than one representation, and the entire dataset has a total of 142,210
referring expression divided into training set, validation set, testA
set and testB set. 2) RefCOCO+ [51] contains 19,992 images with
49,856 referred objects and 141,564 referring expressions. It is also
split into training set, validation set , testA set and testB. 3) Ref-
COCOg [26] has 25,799 images with 49,856 referred objects and
expressions.There are two split protocols (umd and google) for this
data, and we evaluate on both umd protocols (divided into training
set, validation set and test set) and google protocols (divided into
traing set and validation set) for a comprehensive comparison of
our approach.

Design val testA testB
Learnable query 63.50 68.15 55.63
Image feature 64.05 66.13 55.60

Ours 66.13 70.95 62.06
Table 4: Ablative experiments to study the final target token
design in our framework on RefCOCO+ dataset.

ReferItGame: ReferItGame contains 20,000 images collected from
the SAIAPR-12 dataset [12]. We follow the previous works [10, 46]
to split the dataset into three subsets, including a train set (54,127
referring expressions), a validation set (5,842 referring expressions),
and a test set (60,103 referring expressions).
Flickr30K Entities: Flickr30k Entities contains 31,783 images with
427k referred expressions. We follow the same split as in works
[10, 46] for train, validation and test subset.

4.2 Implementation Details
In the relation-sensitive data augmentation module, we employ
the Stable Diffusion model[34] to generate 50 images for each cate-
gory for pseudo-query generation, with the quantifier words in the
prompt randomly selected from 3 to 10. The final number of gen-
erated training samples is approximately one-third of the original
dataset. For a fair comparison, we follow TransVG[10] to initialize
the visual encoder with the backbone and encoder of the DETR[4]
model and initialize our text encoder with the BERT[11] model. Dur-
ing training, input images are set to 640×640, and the maximum
input length for the query is 20. Image augmentation techniques
such as random cropping, flipping, etc., are applied to enhance the
model’s robustness following TransVG. Our whole model is opti-
mized with the Adamw optimizer in an end-to-end manner. The
initial learning rate is set to 1 × 10−4 except for the text encoder
and visual encoder which have an initial learning rate of 1 × 10−5.
We train our model for 90 epochs with a learning rate dropped by
a factor of 10 after 60 epochs.

4.3 Comparisons with State-of-the-art Methods
It should be emphasized that the relation-sensitive dataset aug-
mentation and the semantic prior injection proposed in this pa-
per can be applied to different baselines to improve performance.
Therefore, to demonstrate the effectiveness and robustness of our
proposed method, experiments are conducted on two Transformer-
based visual grounding methods (TransVG and VLTVG) using the
Relation-sensitive Data Augmentation and Semantic-Sensitive Vi-
sual Grounding proposed in this paper, and performance is reported
in all five datasets.

Specifically, we report the top-1 accuracy (%) results following
previous works [10, 19]. A prediction is considered correct once the
Jaccard overlap between the predicted region and the ground-truth
box exceeds 0.5.

RefCOCO/RefCOCO+/RefCOCOg: As shown in Table 1, we
report top-1 accuracy(%) of our method together with other ex-
isting one-stage, two-stage, and Transformer-based methods on
RefCOCO, RefCOCO+, and RefCOCOg datasets. Firstly, it can be
observed that the method proposed in this paper, whether applied
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Number of image per category val testA testB
0 63.50 68.15 55.63
30 65.97 70.36 58.28
50 66.13 70.95 58.58
100 59.28 66.38 51.37

Table 5: Ablation of the number of generated images per
category on RefCOCO+ dataset.

based on TransVG or VLTVG baseline, can improve overall per-
formance in all partitions of the three datasets. Such experimental
results demonstrate the portability and effectiveness of the two
modules proposed in this paper. A notable observation is that uti-
lizing the modules proposed in this paper with TransVG as the
base framework can lead to performance improvements of up to
2.69%, 4.53%, and 2.33% on the RefCOO, RefCOCO+, and RefCOCOg
datasets, respectively. It can be observed that Transformer-based
methods significantly outperform all one-stage and two-stage meth-
ods in terms of performance in all partitions of the three datasets.
We argue that this is because one-stage and two-stage methods
both require visual localization tasks based on extracted object can-
didates or anchors. And this is also due to the powerful cross-modal
understanding and fusion capability of Transformers. Remarkably,
using VLVTG as the base framework achieves a performance of
88.76% on the testA subset of RefCOCO, surpassing the performance
of the original method by 1.07%

ReferItGame/Flickr30K Entities: To further validate the ef-
fectiveness of our proposed method, we also report experimental
performance under two base frameworks(TransVG and VLTVG)
and show the comparisons with other existing visual grounding
methods on ReferItGame and Flickr30K Entities dataset in Table 2. It
is worth noting that our method achieves top-1 accuracy of 72.35%
and 79.52% on ReferItGame and Flickr30K Entities, respectively,
when using VLVTG as the base framework, surpassing all other
visual localization methods and setting new records. Similarly, it
can be observed that whether using TransVG or VLTVG as the
base framework, our method improves performance, showcasing
the portability and effectiveness of our approach. Moreover, Our
method applied in the TransVG framework can respectively im-
prove performance by 1.25% and 0.55% on the ReferItGame and
Flickr30K Entities datasets. Finally, Transformer-based methods
also outperform all one-stage and two-stage methods in terms of
performance.

4.4 Ablation Study
In this section, we conduct ablation studies of our method applied
to the TransVG framework on the RefCOCO+ dataset, examining
the effectiveness of each component as well as different designs
within each component.

We take the method TransVG [19] as our baseline model in all
the following tables unless otherwise specified.

Effectiveness of each component: In Table 3, we investi-
gated the effectiveness of two proposed improvement modules:
Relation-Sensitive Data Augmentation and Semantic-Sensitive Vi-
sual Grounding. According to the experimental results, it is evident

Method val testA testB
Baseline(TransVG) 59.37 65.65 50.14

Ours 65.96 70.48 54.71
Table 6: Performance of cross-dataset where models are
trained on RefCOCO dataset and tested on RefCOCO+
dataset.

that both Relation-Sensitive Data Augmentation and Semantic-
Sensitive Visual Grounding lead to performance improvements over
the baseline method. Additionally, it is noticeable that the strat-
egy of Relation-Sensitive Data Augmentation yields a relatively
modest performance improvement compared to the enhancement
achieved by Semantic-Sensitive Visual Grounding over the base-
line method. We speculate that there might be two reasons: 1) The
Relation-Sensitive Data Augmentation strategy is primarily aimed
at increasing the number of samples for sparse object categories.
However, text queries regarding sparse object categories are already
scarce in the test set, resulting in only marginal improvements in
performance; 2) The generated images and pseudo-samples exhibit
distribution drift from the original dataset, leading to performance
bottlenecks. In contrast, the Semantic-Sensitive Visual Grounding
module can uniformly enhance the denoising process of the model
for all samples, thus leading to a more significant improvement in
performance across the entire dataset.

Design of the final target token: The design of the target token
𝑝 𝑓 in Equation (4) used in the transformer decoder is crucial for the
quality of the decoded object features. Therefore, we investigated
the differences in design methods for the target query in Table 4.
It can be observed that both randomly initialized learnable target
queries and designs using only generated images as target queries
are inferior to the target query design proposed in this paper, which
integrates a learnable target query with image features. This is
because using only visual features as the target query for denoising
inevitably leads to biases in the specific prior context of the visual
modality. In contrast, themethod proposed in this paper can provide
visual prior information to guide the model in accurately locating
objects in the visual space to some extent while also mitigating
modality biases.

Number of the generated images per category: We inves-
tigate the impact of generating different numbers of images per
category in Table 5. Increasing the number of generated images can
produce more pseudo pairs for data augmentation, which boosts
the performance of our model, as shown in Table 5. If the num-
ber of generated images is too large, it will lead to a decrease in
performance. This is because there is a distribution shift between
the generated pseudo-queries and real queries, causing excessive
involvement of pseudo-queries in training to interfere with the
model’s learning of the original data distribution. Thus, we utilize
the Stable Diffusion model to generate 50 images for each category
in the experiment.

The the performance of queries with and without spatial
relationship description To further validate the effectiveness of
the proposed module, we conducted statistical analysis on queries
containing spatial relationship descriptions and queries without
spatial relationship descriptions on the RefCOCO dataset as shown
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Figure 4: The performance of different queries without and
with spatial relationship description on RefCOCO dataset.

left man
second left man
right man

second left people
middle front people
right people

third right cup
second right cup
right cup

left bird
third left bird
right bird

left banana
middle banana
right banana

second left bus
second right bus
front bus

top knife
third top knife
bottom knife

left top clock
center clock
right bottom clock

Figure 5: Eight visualization examples are generated by the
Relation-Sensitive Data Augmentation module.

in Figure 4. It can be observed: 1) for these queries containing spatial
relationship descriptions, the proposed data augmentation module
can further enhance the model’s comprehensive understanding of
spatial relationships, 2) for these queries without spatial relation-
ships, the proposed semantic-sensitive visual grounding helps guide
the model to achieve more accurate grounding based on the seman-
tic descriptions in the query. Additionally, as shown in Figure 1,
our method can effectively enhance the model’s understanding and
grounding of images containing multiple instances.

Performance of cross dataset:We report the performance of
our method and TransVG trained on the RefCOCO dataset and
tested on the RefCOCO+ dataset in Table 6. It can be observed that
the performance of our method is significantly higher than that of
TransVG. This experimental result demonstrates that our method
can effectively improve the generalization of the model and enhance
the model’s understanding of fine-grained semantic information.
Thanks to the strong generalization capability of our semantic
prior injection, even in across dataset scenarios, our method can

man crouching down open laptoplady with blue shirt player with number 16

Figure 6: Visualizations from the Semantic-Sensitive Visual
Grounding. Top: the inputs and predicted bounding boxes.
Bottom: the semantic prior image generated from the query.

comprehend fine-grained semantic descriptions in queries to gen-
erate the semantic prior and align it with the correct region in the
input image. Furthermore, compared to the results on RefCOCO+
in Table 1, both the baseline and our method experienced a decrease
in performance, indicating the presence of domain shift between
RefCOCO and RefCOCO+. However, the decrease in performance
of our model is relatively small (for example, only a 0.47% decrease
on the testA split), demonstrating the robustness of our approach.

4.5 Qualitative Analysis
To further figure out the importance of spatial relationships, in
figure 5, we show eight images generated by the Stable Diffusion
model, along with examples generated by the pseudo-query genera-
tion module. From the examples, it can be observed that our method
can effectively generate high-quality images and pseudo-queries
containing spatial relationships for model training, thereby enhanc-
ing the model’s ability to understand spatial relationships compre-
hensively. Besides, we also provide examples of images generated
by the semantic-sensitive visual grounding module in Figure 6. It
can be observed that the generated images are highly semantically
correlated with the input text queries and bear a high visual simi-
larity to the ground truth, demonstrating that the proposed method
effectively guides the model toward accurate grounding.

5 CONCLUSION
In this paper, we propose the Relation and Semantic-sensitive Visual
Grounding model to tackle the multiple-instance distractions (mul-
tiple objects of the same category as the target) in visual grounding
tasks. Existing methods demonstrate a significant performance
drop when there are multiple distractions in an image, indicating
an insufficient understanding of the fine-grained semantics and
spatial relationships between objects. We propose to enhance the
model’s understanding of fine-grained semantics by injecting se-
mantic prior information derived from text queries into the model
and introducing a relation-sensitive data augmentation to address
the problem of insufficient understanding of spatial relationships
between objects. Experiments on the RefCOCO [51], RefCOCO+
[51], RefCOCOg [26], ReferItGame [20] and Fliker30K Entities[29]
datasets demonstrate the effectiveness of our method.
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