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Abstract

We study reinforcement learning (RL) settings where the agent only has access to
preferences on the relative quality of a pair of trajectories, obtained as a fixed offline
preference dataset, where pairs of trajectories collected according to some base
policy are labeled with the preference feedback. A reward or pairwise preference
function trained from this offline dataset is then used to provide feedback during RL
training, and there is a substantial body of work on RL methods for these settings.
However, a bulk of the literature ignores the uncertainty of the learned preference
function, which leads to reward hacking or overoptimization. In this work, we
formulate theoretically sound objectives for preference-based RL (PbRL) which
are provably robust to overoptimization through the use of pessimism in the face
of uncertainty, and design practical algorithms to optimize these objectives. We
evaluate our algorithms on the task of fine-tuning language models from human
feedback, and show a remarkable resilience to overoptimization.

1 Introduction

Reinforcement learning from human feedback (RLHF) [Christiano et al., 2017] has emerged as a
promising technique for aligning language models with human preferences [Stiennon et al., 2020,
Ouyang et al., 2022]. The predominant approach involves training a reward model on human
preference data and then fine-tuning the language model to maximize this reward. More recently, a
line of works [Swamy et al., 2024, Munos et al., 2023, Calandriello et al., 2024, Guo et al., 2024]
argue for the benefits of learning a pairwise preference function from the preference dataset, and using
this to compare trajectories during online RL. Irrespective of whether we use reward or preference
models during subsequent RL, however, the availability of a limited pool of high-quality preference
dataset presents a key bottleneck in learning good policies. The high cost of collecting preference
datasets means that they suffer from limited coverage, and models trained on such datasets fail to
adequately generalize to policies which produce trajectories out of the support of the preference data.

The inadequacy of learned reward/preference models in reliably producing good policies has resulted
in the now well-documented phenomenon of reward hacking or overoptimization [Amodei et al.,
2016, Gao et al., 2023, Eisenstein et al., 2024]. Correspondingly, there is a growing literature on
techniques to control this overoptimization behavior, such as by incorporating uncertainty in the
predictions of the underlying reward model using explicit reward ensembles [Eisenstein et al., 2024,
Coste et al., 2023], or pessimistic reasoning [Fisch et al., 2024, Liu et al., 2024, Huang et al., 2024b,
Cen et al., 2024]. In contrast to the reward-based setting, much less work studies the incorporation of
uncertainty when using learned pairwise preference models in subsequent RL.
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Figure 1: The horizontal axis corre-
sponds to number of learning steps, and
the vertical axis represents the prefer-
ence value evaluated against πref using
Gemini 1.0 Ultra. Shaded areas repre-
sent ±1× standard error (see Sec. 4 for
details).

In this work, we build on prior works in preference-based RLHF [Swamy et al., 2024, Munos et al.,
2023], as well as offline learning in Markov games [Cui and Du, 2022], to obtain new robust objectives
for incorporating uncertainty from finite preference datasets, and make the following contributions:

1. We point out undesirable properties of the most natural pessimistic estimator motivated by Cui
and Du [2022], when the offline dataset has some systematic gaps in its coverage. We develop a
new formulation under which the learned policy is provably preferable to any other policy which
chooses actions in the support of the dataset, and show the theoretical benefits of this formulation.

2. We provide a practical algorithm for optimizing the resulting objective. Existing approaches for
preference-based RLHF [Swamy et al., 2024, Munos et al., 2023] already involve a minimax
game, so adding further minimization over preference functions in pessimism creates a challenging
optimization problem. We approximate the ideal objective with a variational upper bound, that
yields a minimax game between a policy and a preference player, which we solve using gradient
ascent-descent. The policy optimization is similar to prior works [Swamy et al., 2024, Munos
et al., 2023] and the preference updates are adversarial to the current policy’s choices.

3. In a document summarization task, we find in Figure 1 that while preference-based methods
without pessimism (NashEMA [Munos et al., 2023] and NashEMA restricted) exhibit significant
overoptimization, our algorithms (P3O and P3O restricted) learn a good policy as evaluated by a
prompted Gemini model, and their performance does not deteriorate over the training process.

2 Background

We consider human alignment of a language policy π : X → 4(Y)2 which generates for a given
context x ∈ X a response y ∼ π(·|x) with y ∈ Y . We are given access to a preference dataset, D,
consisting of tuples (x,yW,yL) ∈ X × Y × Y where for context x, the response yW is preferred
over yL as labeled by a human. We further assume access to a reference policy πref, which may or
may not match the sampling policy for yW,yL. For brevity, we drop the context x from the notation
and work with a finite Y when there is no ambiguity.

Preferences are often modeled via a reward function with the Bradley-Terry model [Christiano et al.,
2017, Ouyang et al., 2022]; however, in this paper, we make no such assumptions and work with
general preference functions. We first set up the preference learning framework, and then discuss
techniques to optimize with preference feedback, while also establishing the use of pessimism to
handle uncertainties that may exist in the reward and preference functions.

Preference Learning: We define the preference function p : Y × Y → [0, 1], such that p(y1,y2)
.
=

Pr(y1 � y2) represents the probability of the generation y1 being preferred over y2. The preference
function satisfies: p(y1,y2) = 1− p(y2,y1). To obtain a preference model, we typically fine-tune
a pretrained language model (LM) on D to produce the maximum likelihood model pMLE via the
following objective:

pMLE ∈ arg minp Lpref(p;D) where Lpref(p,D) = − 1
|D|
∑

(yW,yL)∈D log p (yW,yL) . (1)

2We use 4(Y) to denote the probability simplex defined over the elements of the set Y .
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We overload the notation of p(π, π′), where π, π′ ∈ 4(Y), to represent the expected preference of π
over π′, given the preference function p function.

Preference Optimization: We define a regularized maximin [Swamy et al., 2024, Munos et al.,
2023] preference game objective JP(π, π′, p) between a pair of competing policies π and π′, with
preference function p, a reference policy πref, and a regularization parameter τ > 0, as

JP(π, π′, p)
.
= p(π, π′)− τKL (π‖πref) + τKL (π′‖πref) ,

where KL (π‖πref)
.
= EY∼π

[
log π(Y )

πref(Y )

]
. Alternatively, in the reward setting, given a reward

function r : Y → R, the objective JR(π, r) is defined as: JR(π, r)
.
= EY∼π[r(Y )]− τKL (π‖πref).

For the preference objective JP, the π and π′ players optimize their corresponding objectives, i.e.,

π? ∈ arg max
π

min
π′

JP(π, π′, p), π′? ∈ arg min
π′

max
π

JP(π, π′, p).

Here, due to the symmetry of the game, a Nash equilibrium exists at the same policy, i.e., π? = π′?
and the objective can be simplified to a single-player game [Swamy et al., 2024], which is termed
self-play preference optimization (SPO).

Pessimism in Preference Optimization: It is a well-understood issue in preference optimization and
RLHF that optimizing JP and JR can lead to over-optimization of the corresponding preference and
reward functions, resulting in a shift in the distribution of outputs [Gao et al., 2023] generated by the
learned policies. These policies start exploiting regions of the preference and reward functions where
uncertainty is higher, which can result in spurious high-reward areas, a phenomenon often termed
"reward hacking". Pessimism in both the reward setting [Eisenstein et al., 2024, Liu et al., 2024,
Fisch et al., 2024, Cen et al., 2024] and the preference setting [Ye et al., 2024] has been proposed as
a way to remedy these issues. In this approach, we learn a policy against an adversarial reward or
preference function, thus producing more robust policies.

Pessimism in the reward setting leads to a max-min game, i.e., π? ∈ arg maxπ minr∈R JR(π, r)
whereR is an uncertainty set of reward functions, that is, all reward functions that are consistent with
the dataset. Liu et al. [2024] and Fisch et al. [2024] show that for certain choices ofR, this game can
be solved without actually maintaining the setR and performing the inner optimization implicitly.

In the preference optimization setting, a pessimistic solution can be naturally formulated analogously

π? ∈ arg max
π

min
π′

min
p∈P

JP(π, π′, p) (2)

where P defines an uncertainty set over preference functions. This formulation has been studied
previously for certain choices of P in the tabular [Cui and Du, 2022] and function approximation
setting [Ye et al., 2024, Huang et al., 2024a]. These works provide theoretical analyses showing that
the solution π? converges to the optimal policy as long as a condition called unilateral coverage holds,
and show further that this condition is necessary. This approach has not been empirically evaluated in
prior works, as the optimization problem is very challenging with no obvious practical strategies.

3 Method

While previous works show that (2) is a principled approach to pessimistic preference optimization
with strong guarantees, this formulation has two limitations which we will address now.

3.1 Restricting the opponent to covered generations

We motivate our approach with an example which is emblematic of typical RLHF scenarios. Consider
a case with no context and Y = {y1, y2, y3}. Suppose further that we have that p(y1, y2) = 1
for all p ∈ P , so we are fully certain about this preference. But we never observe any compar-
isons involving y3 in our preference data (πsample(y3) = 0), and hence the set P allows all values
p(y, y3) ∈ [0, 1] for y 6= y3. To highlight the limitations of pessimism in preference optimization,
we consider the problem in absence of regularization, i.e., τ = 0. Then, as illustrated in Figure 2
and proven in Appendix A, the optimal policy π? satisfies π?(y3) ≥ 0.5. That is, we take an action
completely out of the support of the sampled dataset w.p. ≥ 0.5, where the preferences can take
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Algorithm 1: Pessimistic Preference-based Policy Optimization (P3O)
1 Initialize π̄1 = π1 = πref and p1 = pMLE;
2 for t = 1, 2, . . . do
3 Set πmix ∝

√
π̄tπref as mix of πref and EMA π̄t for restricted Nash or πmix = π̄t otherwise;

4 Approximate current objective

J(πt, pt)
.
= pt(πt, πmix)− τKL (πt‖πref) + λEy,y′∼πref [KL (pMLE(y, y′)‖pt(y, y′))] (3)

5 Update: πt+1 ← πt + ηπ∂J(π, pt)/∂π |π=πt ;
6 Update: pt+1 ← pt − ηp∂J(πt, p)/∂p |p=pt ;
7 Update: π̄t+1 ← γπt + (1− γ)π̄t;

completely arbitrary values. In most practical applications, many possible y’s will not be covered
in the dataset, even distributionally, and it appears undesirable that the optimal policy obtained
by pessimism predominantly generates such outputs. We now propose a remedy for this issue.
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Figure 2: Problematic example for
pessimism in preference optimization
against unrestricted opponent. Blue and
red shaded entries represent optimiza-
tion variables by the max and min player
respectively.

Restricted Nash for the Opponent Player

Given the example from Figure 2, an intuitive response
is to consider a Nash strategy where the support for both
policies is restricted to actions which are well-sampled in
the preference dataset. In Appendix B, we define such a re-
stricted Nash strategy for the function approximation case
and provide theoretical guarantees for it. We also explain
in Appendix C how the bounds significantly improves
upon those for the unrestricted case in (2).

For a practical algorithm, we do this restriction in an ap-
proximate manner by adding an additional KL regulariza-
tion term, encouraging π′ to be close to the data sampling
policy πsample. We note that if πsample is similar to πref,
then the additional term may not be needed.

max
π

min
p∈P

min
π′

p(π, π′)− τKL (π‖πref) + τKL (π′‖πref) + τKL (π′‖πsample) . (4)

Using a closed-form solution to the inner maxπ′ KL-regularized problem, we obtain the following
lemma on an equivalent objective for π. We define the shorthand πmix(y;π1, π2) ∝

√
π1(y)π2(y),

and use y ∼ πmix(π1, π2) to abbreviate y ∼ π(·;π1, π2).
Lemma 1. The optimization problem (4) is equivalent to the following objective, assuming that the
minimization over π′ is over all possible policies in ∆(Y),

max
π

min
p∈P
− logEy∼πmix(πref,πsample)

[
exp

(−p(π, y)

2τ

)]
− τKL

(
π‖πref

)
. (5)

We provide a proof of this equivalence in Appendix D. We note that replacing πmix(πsample, πref)
with πref also gives an equivalent rewriting for the pessimistic Nash with no support restrictions (2).

3.2 P3O: An Efficient Implementation

The objectives for both the pessimistic game in Eq. (2) and the restricted version in (5) are challenging
to implement for a number of reasons. In (2), the joint minimization over p and π′ presents a challeng-
ing optimization landscape. Removing the explicit optimization over π′ in Lemma 1 simplifies the
inner minimization to only have one variable, but at the cost of changing the objective to have a more
complicated log-partition function term. Consequently, we can no longer find stochastic gradient of
the objective from a mini-batch of data, due to the non-linearity of the logarithm outside expectation.

To obtain a practical algorithm, we leverage ideas from variational inference [Jordan et al., 1999] and
approximate the log-partition function with the expectation under a proposal distribution. Doing so,
we obtain the following result, proved in Appendix E.
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Lemma 2. For any policies π and π̄:

min
p∈P
− logEy∼πmix(πref,πsample)

[
exp

(−p(π, y)

2τ

)]
≤ min

p∈P
Ey∼πmix(π̄,πsample)

[
p(π, y)

2τ

]
+ C,

where C is independent of the optimization variables π and p.

Given such an upper bound, we now design P3O to maximize the upper bound from Lemma 2 to
find good policy π. We note that since the approximation of Lemma 2 is an upper bound on the
true objective, maximizing the two is not equivalent, and the approximate objective simply takes
the form of optimizing preference against the comparator π̄ restricted to the sampling distribution.
In the experiments, we choose π̄ to be an exponentially moving average of past policy iterates. As
a final step, we replace the constrained optimization over P to an unconstrained optimization over
all preference functions in some parametric family by adding an additional loss term −Lpref(p,D),
corresponding to the Lagrangian form of the constraint defining P . The final objective function is

J(π, p)
.
= Ey∼πmix(π̄,πsample)[p(π, y)]− τKL (π‖πref)− λLpref(p,D), (6)

where we rescaled the objective to absorb the 1/2τ on p into the corresponding hyper-parameters of
KL and likelihood loss parameters (i.e., τ, λ). The resulting algorithm is shown in Algorithm 1.

4 Experimental results

To demonstrate the effectiveness of P3O in mitigating preference hacking, we compare it against
existing preference optimization methods on the popular TL;DR summarization benchmark [Völske
et al., 2017, Stiennon et al., 2020]. Following the setup in prior work on reward hacking [Eisenstein
et al., 2024], we train the MLE preference model pMLE by fine-tuning a T5 XL (3B) model [Raffel
et al., 2020, Roberts et al., 2023]. The initial policy πref is obtained by supervised fine-tuning of a
T5 large model (770M) on the human summaries in the TL;DR dataset. Choosing a larger preference
model than the polict is a commonly employed strategy for mitigating hacking [Eisenstein et al.,
2024]. We initialize the training preference model p1

.
= pMLE as the MLE model.

For baselines, we consider existing preference-based RL methods, i.e., NashEMA [Munos et al.,
2023] and NashEMA restricted as they correspond to P3O without and with support restrictions
respectively, but without updating the preference function (i.e., ηp = 0). That is, they exactly match
P3O without the pessimistic component. We refer to our methods as P3O restricted and P3O,
corresponding to the versions with and without support restrictions. We train the policy for 20k steps,
where every 2k steps we evaluate 100 samples generated by the policy against πref using Gemini 1.0
Ultra [Team et al., 2023] as the judge. Details of the evaluation setup are provided in Appendix F.

Results: Figure 1 presents the results, where we notice that without any pessimism (i.e., no preference
updates), we soon start to be dispreferred against πref, i.e., around 2k and 6k steps for NashEMA and
NashEMA restricted, respectively. In contrast, for both variants of P3O, we observe that performance
does not degrade significantly and, in fact, seems to continuously improve in the non-restricted
case. We also notice, particularly in Figure 3 in Appendix F, that P3O restricted is quite effective
at preventing length hacking [Eisenstein et al., 2024, Singhal et al., 2023], as well as maintaining
minimal KL divergence from πref. However, the restricted version does not improve in terms
preference over reference policy compared to the unrestricted P3O, presumably because the restricted
policy has a small divergence and greater similarity in summaries with πref as we also observe in
Figure 3.3 In summary, we find that pessimism keeps the the policies from drifting too far out of
distribution of the preference data, and consequently successfully improves quality of its responses
throughout the training period, in correspondence with our theory.

Future work Our results motivate some natural next steps. In this initial study, we only tried
α = 0, 0.5. Presumably a finer search over good values can uncover interesting trade-offs and
enable even more robust learning. It would be also interesting to evaluate the case of π̄t = πt in
the non-pessimistic case, which would correspond to SPO [Swamy et al., 2024], however we do not
expect significant differences here. We would also like to extend our evaluation to another task.

3We also note that πsample and πref coincide in this case, so we do not expect the restricted version to offer
significant gains even in theory.
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A Optimal Solution of the Example in Figure 2

Let πi = π(yi) and p23 = p(y2, y3) and p13 = p(y1, y3). Then we can write the objective in this
example as

V ? = max
π

min
π′

min
p∈P

J(π, π′, p)

where J(π, π′, p) = p(π, π′) =
(

0.5π1π
′
1 + 1 · π1π

′
2 + p13π1π

′
3

+ 0 · π2π
′
1 + 0.5π2π

′
2 + p23π2π

′
3

+ (1− p13)π3π
′
1 + (1− p23)π3π

′
2 + 0.5π3π

′
3

)
.

Upper-bound on V ?: First note that for any π:

min
π′

min
p∈P

J(π, π′, p) ≤ 0.5π3 and min
π′

min
p∈P

J(π, π′, p) ≤ 0.5π1.

The first inequality follows by considering the choice p13 = p23 = 1, and the second inequality from
considering the choice π′1 = 1 and p13 = 1. Since both bounds hold simultaneously and π1 +π3 ≤ 1,
we can conclude that

V ? ≤ 0.25.

Lower-bound on V ?: Choosing π1 = π3 = 0.5, we see that the objective value can be written as

J(π, π′, p) =
(
0.25π′1 + 0.5π′2 + 0.5p13π

′
3

+ 0.5(1− p13)π′1 + 0.5(1− p23)π′2 + 0.25π′3
)
.

First we observe that the minimum of this quantity is always attained at p23 = 1 and thus we can
ignore the penultimate term. Consider now two cases:

• Case π′1 ≤ π′3: Then the coefficient of p13 is non-negative and the minimum is attained at
p13 = 0. This allows us to simplify the expression further as

min
π′

min
p∈P

J(π, π′, p) = min
π′

0.25π′1 + 0.5π′2 + 0.5π′1 + 0.5π′2 + 0.25π′3

= min
π′

0.75π′1 + π′2 + 0.25π′3

= 0.25

where we choose π′3 = 1 in the last step.

• Case π′1 ≥ π′3: Then the coefficient of p13 is non-positive and the minimum is attained at
p13 = 1. This gives

min
π′

min
p∈P

J(π, π′, p) = min
π′

0.25π′1 + 0.5π′2 + 0.5π′3 + 0.5π′2 + 0.25π′3

= min
π′

min
P∈P

0.25π′1 + π′2 + 0.75π′3

= 0.25

where the optimal solution is to choose π′1 = 1.

Combining both cases, we can conclude that

V ? ≥ 0.25.

Optimal solution. Combining both upper- and lower-bounds, we can conclude that V ? = 0.25
which is attained at π1 = π3 = 0.5.
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B Definition and Analysis of Restricted Nash Policy

Recall that our preference dataset consists of tuples (yW,yL)
i.i.d.∼ πsample. Based on existing statistical

analysis of maximum likelihood estimation [Zhang, 2006], we expect that the maximum likelihood
estimator p̂ for the ground-truth preference model p? satisfies:

E
yW,yL

i.i.d.∼πsample
|p̂(yW,yL)− p?(yW,yL)| ≤ ε,

where we expect ε to scale as O(
√

ln |P|/|D|), when learning from a finite preference model class P .
Given this, a natural definition for a policy π to be well-aligned with our sampling policy πsample is that
preference models which are close under πsample should also be close under π. More formally, given a
policy class Π and a sampling policy πsample, and some constant C ≥ 1, we define Π(πsample, C) ⊆ Π
to be the set of policies such that for any π ∈ Π(πsample, C), we have:

E
y,y′

i.i.d.∼π
|p1(y, y′)− p2(y, y′)| ≤ C · E

y,y′
i.i.d.∼πsample

|p1(y, y′)− p2(y, y′)|, (7)

for any p1, p2 ∈ P . We now demonstrate the effectiveness of this definition by showing that whenever
we restrict the opponent policy π′ to stay within Π(πsample, C), then the learned policy π enjoys
strong learning guarantees under the (unknown) ground-truth preference model p?. For simplicity,
we carry out the analysis without a KL term on the policy to πref, and our conclusions readily extend
to the KL regularized objective.
Lemma 3 (Guarantee for restricted pessimistic Nash policy). We denote by π̂ and π? the restricted
pessimistic Nash policy and restricted Nash policy respectively, that is

π̂ = arg max
π

min
p∈P

min
π′∈Π(πsample,C)

p(π, π′) and π? = arg max
π∈Π(πsample,C)

min
π′∈Π(πsample,C)

p?(π, π′).

Then we have for any π ∈ Π(πsample, C):

p?(π̂, π) ≥ 1

2
− Cε.

Proof. We start by noting that π? is solving an anti-symmetric two player zero-sum game, and
the constraint set Π(πsample, C) is an intersection of Π with constraints linear in π, so that it is
convex set whenever π is convex. Hence we have that π? ∈ arg minπ∈Π(πsample,C) p

?(π?, π) and
p?(π?, π?) = 0.5. Let π̂′ ∈ arg minπ∈Π(πsample,C) minp∈P p(π̂, π). Then we have by definition:

p?(π̂, π) =p?(π̂, π)− p?(π?, π?) + 0.5

≥min
p∈P

p(π̂, π̂′)− p?(π?, π?) + 0.5

≥min
p∈P

min
π′∈Π(πsample,C)

p(π?, π′)− p?(π?, π?) + 0.5,

where the first inequality is due to the definition of π̂′, and the second follows from the definition of
π̂. Let π̃ ∈ arg minπ′∈Π(πsample,C) minp∈P p(π

?, π′). Then we can further write

p?(π̂, π) ≥min
p∈P

p(π?, π̃)− p?(π?, π̃) + 0.5

≥ 0.5− Cε,

where the first inequality is due to π? ∈ arg minπ′∈Π(πsample,C) p
?(π?, π′), and the second inequality

follows from Equation 7.

C Comparison with the unrestricted Nash

For ease of comparison with the analysis of Cui and Du [2022] for the unrestricted Nash case, let
us consider a setting where Y is finite and there are no contexts. The set P consists of all possible
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preference functions p ∈ Y × Y → [0, 1], such that p(y, y′) + p(y′, y) = 1. In this case, we
see that the set Π(πsample, C) reduces to policies π such that for all y: π(y)/πsample(y) ≤ C. In
particular, π ∈ Π(πsample, C) places no mass outside the support of πsample. For any such policy,
our returned policy π̂ is preferred under p? up to an error of Cε. As a particular corollary, since
πsample ∈ Π(πsample, C), we have that π is always preferred to the data collection policy.

In contrast, the situation is a bit different in the case of unrestricted Nash. Suppose there is a y0 such
that πsample(y0) = 0. Then even πsample does not satisfy unilateral concentrability as defined in Cui
and Du [2022]. In fact, no policy can satisfy unilateral concentrability in this case, and we get a
vacuous guarantee out of their analysis.

In some sense, the contrast between our result from Lemma 3 and those of Cui and Du [2022] is
analogous to the classical analysis of offline RL methods (see e.g. [Chen and Jiang, 2019]) and
pessimistic offline RL techniques [Xie et al., 2021]. Without pessimism in offline RL, we end up with
vacuous guarantees, while the pessimistic results allow a non-trivial sub-optimality bound against
any policy well covered by the data collection policy. Similarly, the results of Cui and Du [2022]
offer a strong guarantee when the data collection policy is sufficiently exploratory, but are rendered
vacuous without this. In contrast, our analysis of the restricted Nash estimator offers an opportunistic
guarantee, where we are able to adaptively compete with all policies which are well covered by the
sampling policy.

D Proof of Lemma 1

Proof. We consider the following objective for α ∈ [0, 1] and τ, τ ′ ∈ R+

max
π

min
p∈P

min
π′

p(π, π′)− τKL (π‖πref) + τ ′αKL (π′‖πref) + τ ′(1− α)KL (π′‖πsample) (8)

Only looking at the inner minimization of π′, we get

min
π′

p(π, π′) + τ ′α
∑
y

π′(y) log
π′(y)

πref(y)
+ τ ′(1− α)

∑
y

π′(y) log
π′(y)

πsample(y)
(9)

min
π′

p(π, π′) + τ
∑
y

π′(y) log
π′(y)

πref(y)απsample(y)1−α (10)

and thus, the optimal solution for π′ can be written as

π′?(y) =
1

Z
πref(y)απsample(y)1−α exp

(
− 1

τ ′
p(π, y)

)
, (11)

with partition function Z. Plugging this back in the objective above gives

max
π

min
p∈P

p(π, π′)− τKL (π‖πref) + τ ′
∑
y

π′?(y) log
π′?(y)

πref(y)απsample(y)1−α (12)

= max
π

min
p∈P
−τ ′KL (π‖πref)− τ ′ logZ (13)

= max
π

min
p∈P
−τKL (π‖πref)− τ ′ log

∑
y

πref(y)απsample(y)1−α exp

(
− 1

τ ′
p(π, y)

)
(14)

= max
π

min
p∈P
−τKL (π‖πref)− τ ′ logEy∼παmix

exp

(
− 1

τ ′
p(π, y)

)
+ τ ′ logZ ′, (15)

where παmix(y) ∝ πref(y)απsample(y)1−α and Z ′ =
∑
y πref(y)απsample(y)1−α is a normalization

constant, independent of optimization parameters. Dropping this term gives us an equivalent opti-
mization objective in π. Setting α = 1/2 and τ ′ = 2τ completes the proof of the lemma.
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Figure 3: The horizontal axis in both plots represents the total number of learning steps. (Left) The
figure plots the KL (πt‖πref) on the vertical axis. Note that both P3O and P3O Restricted obtain
much smaller divergence from πref, compared with the non-pessimistic variants. The divergence is
particularly small for P3O Restricted, explaining its lower win-rate against πref in Figure 1. (Right)
The figure plots the length of summaries produced by πt across different time steps. The dotted line
represents the average length of summaries generated by πref. We note that while NashEMA and
NashEMA Restricted exhibit length hacking, both variants of P3O depict minimal length hacking for
longer periods of training. Prior works [Eisenstein et al., 2024] have observed long summaries to be a
predominant mode of overoptimization on this dataset, and hence we can conclude that pessimism
does effectively mitigate the issue.

E Proof of Lemma 2

Proof. Consider the log-sum-exp term with παmix(y) = 1
Z′πref(y)απsample(y)1−α and Z ′ =∑

y πref(y)απsample(y)1−α as

= logEy∼παmix
exp

(
− 1

τ ′
p(π, y)

)
= logEy∼π′

[
παmix(y)

π′(y)
exp

(
− 1

τ ′
p(π, y)

)]
(π′ arbitrary)

≥ Ey∼π′

[
log

(
παmix(y)

π′(y)
exp

(
− 1

τ ′
p(π, y)

))]
(Jensen’s inequality)

= − 1

τ ′
p(π, π′) + Ey∼π′ log

(
παmix(y)

π′(y)

)
= − 1

τ ′
p(π, π′)− KL (π′‖παmix) .

Setting α = 1/2, τ ′ = 2τ and taking the minimum over p ∈ P yields

min
p∈P
− logEy∼πmix(πref,πsample)

[
exp

(−p(π, y)

2τ

)]
≤ min

p∈P

p(π, π′)

2τ
− KL (π′‖πmix(πref, πsample)) .

(16)

Choosing π′ = πmix(π̄, πsample) gives the desired result with C =
−KL (πmix(π̄, πsample)‖πmix(πref, πsample)).

F Experiments

F.1 Additional Results

Figure 3 plots the KL divergence and the length of summaries produced by the policy at different
stages of learning. We note that for the same τ settings, NashEMA and NashEMA Restricted can
move quite far away from πref (Left) and also exhibit length hacking (Right). In contrast, P3O is
quite effective at staying close to πref while also improving and avoiding length hacking, especially
in the P3O Restricted cases, where policies produce summaries close to πref while also improving in
preference (see Figure 1).
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F.2 Detailed setup of the empirical evaluation

Hyper-parameters: Policy is trained for 20,000 steps. The learning rate for policy updates is fixed
at ηπ = 10−5, and the preference learning rate is searched between ηp ∈ {2.5× 10−5, 5× 10−5}.
We fix τ = 10−5 and sweep λ ∈ {1, 2, 4, 8, 16, 32, 64} (6). We set the exponentially moving average
(EMA) parameter to γ = 0.0025, and the set the context-length of input at 1024, whereas the
generation length is set to 128.

Evaluation: We save a checkpoint for policies at every 2,000 steps, and generate summaries from πt
for evaluation. To evaluate the learned model, we query Gemini 1.0 Ultra [Team et al., 2023] to judge
which summary is better for the given input context. The prompt for evaluation is as follows:

You are an expert summary rater who prefers very short and high quality summaries. Given a
document and two candidate summaries, say 1 if SUMMARY1 is very short and high quality,
and 2 if SUMMARY2 otherwise. Give a short reasoning for your answer.
ARTICLE: <article-here>
SUMMARY1: <summary-by-πt>
SUMMARY2: <summary-by-πref>.

To avoid any positional bias, we make two queries for each comparison, where we swap the order of
SUMMARY1 and SUMMARY2, and average out the wins over 100 generations to get an estimate of
the win-rate.
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