
Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting

Zhining Liu 1 Ze Yang 1 Xiao Lin 1 Ruizhong Qiu 1 Tianxin Wei 1 Yada Zhu 2 Hendrik Hamann 2 3

Jingrui He 1 Hanghang Tong 1

Abstract

Time-series forecasting plays a critical role in
many real-world applications. Although increas-
ingly powerful models have been developed and
achieved superior results on benchmark datasets,
through a fine-grained sample-level inspection,
we find that (i) no single model consistently out-
performs others across different test samples, but
instead (ii) each model excels in specific cases.
These findings prompt us to explore how to adap-
tively leverage the distinct strengths of various
forecasting models for different samples. We in-
troduce TIMEFUSE, a framework for collective
time-series forecasting with sample-level adaptive
fusion of heterogeneous models. TIMEFUSE uti-
lizes meta-features to characterize input time se-
ries and trains a learnable fusor to predict optimal
model fusion weights for any given input. The
fusor can leverage samples from diverse datasets
for joint training, allowing it to adapt to a wide
variety of temporal patterns and thus generalize
to new inputs, even from unseen datasets. Ex-
tensive experiments demonstrate the effectiveness
of TIMEFUSE in various long-/short-term fore-
casting tasks, achieving near-universal improve-
ment over the state-of-the-art individual models.
Code is available at https://github.com/
ZhiningLiu1998/TimeFuse.

1. Introduction
Time series forecasting is pivotal in a variety of real-world
scenarios and has been studied with immense interest across
many domains, such as finance (Sezer et al., 2020), en-
ergy management (Deb et al., 2017; Hoffmann et al., 2020),
traffic planning (Li et al., 2015; Yuan & Li, 2021), health-
care (Ye et al., 2023), and climate science (Lim & Zohren,
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Figure 1. Sample-level inspection2 reveals that each time series
model excels in a considerable fraction of test samples, highlight-
ing their unique strengths for certain types of input. TIMEFUSE

adaptively leverages the strengths of different models for each
input time series, achieving dynamically fused forecasting that
outperforms the best individual model on up to 95.1% samples.

2021; Fu et al., 2025). Due to the complexity and dynamics
of real-world systems, observed time series often exhibit
intricate temporal characteristics arising from a mixture of
seasonality, trends, abrupt changes, and multi-scale depen-
dencies, which in turn present significant challenges for
time-series modeling (Lim & Zohren, 2021; Wang et al.,
2024a). In recent years, researchers have been striving to
create increasingly sophisticated models (Zhou et al., 2022;
Wu et al., 2023; Wang et al., 2024c) designed to capture and
predict such temporal dynamics more effectively.

Despite the significant advancements in time series model-
ing with increasingly better performance achieved on bench-
mark datasets, a closer inspection applying a more fine-

2Results collected using 14 models on 7 forecasting datasets
with 96 prediction steps following the optimal settings for each
model reported in Wu et al. (2023) and Wang et al. (2024b).
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grained, sample-level lens presents quite a different picture,
as illustrated in Figure 1. Specifically, we analyzed the
performance of popular high-performing models across 7
commonly used forecasting datasets on all test samples
and presented the percentage of samples where each model
ranked first. Our analysis highlights two intriguing findings:
(i) there is no universal winner: even the latest models that
achieve state-of-the-art results on most benchmark datasets,
were top-performing on only up to 23.2% of test samples;
(ii) each model has distinct and notable strengths: even
for the bottom-ranked models, they still ranked first on a
non-negligible fraction of test samples. These findings un-
derscore that no single model consistently outperforms the
others, but instead, each model bears its unique strengths
and weaknesses, often excelling in capturing specific types
of temporal patterns, e.g., TimeMixer (Wang et al., 2024a)
with explicit multiscale mixing is good at handling samples
with high spectral complexity, while non-stationary trans-
former (Liu et al., 2022) can be more suitable for handling
samples with low stationarity. This highlights the potential
benefits of a strategy that does not rely solely on a single
model, which prompts our research question:

How can we harness different models’ diverse and comple-
mentary capabilities for better time-series forecasting?

In answering this question, we introduce TIMEFUSE, a
novel ensemble time-series forecasting framework that en-
ables sample-level adaptive fusion of heterogeneous mod-
els based on the unique temporal characteristics of each
input time series. Unlike traditional ensemble strategies that
statically combine different models, TIMEFUSE learns a
dynamic fusion strategy that adaptively combines models
at test time, unlocking the potential of model diversity in a
highly targeted manner. Specifically, TIMEFUSE contains
two core components: a meta-feature extractor that captures
the temporal patterns of the input time series, and a learn-
able fusor that predicts the optimal combination of model
outputs for each input. We employ a diverse set of meta-
features to comprehensively characterize the input time se-
ries, including statistical (e.g., skewness, kurtosis), temporal
(e.g., stationarity, change rate), and spectral (e.g., dominant
frequency, spectral entropy) descriptors. The fusor then
leverages the meta-features to predict the optimal weights
for combining the base models. During meta-training, we
train the fusor to minimize the fused forecasting error across
a broad spectrum of samples with diverse dynamics, thus
improving its adaptability to unseen temporal patterns.

The design of TIMEFUSE bears several key advantages: (i)
Versatility: The meta-training process of TIMEFUSE is
decoupled from the training of base models, allowing us
to integrate various models with diverse architectures into
the model zoo and harness their distinct strengths for joint
forecasting. (ii) Generalizability: Benefiting from the us-

age of meta-features, the fusor can be jointly trained using
samples from different datasets, thereby generalizing to a
broader range of temporal patterns and input characteris-
tics, and thus achieving strong zero-shot performance on
datasets unseen during meta-training. (iii) Interpretabil-
ity: TIMEFUSE operates in a transparent and interpretable
manner. Users can examine the fusor outputs to see how
different models contribute to the fused prediction. Addi-
tionally, the learned fusor weights offer insights into how
specific input temporal properties (e.g., stationarity, spectral
complexity) align with the strengths of different models.
(iv) Performance: Extensive experiments and analysis con-
firm TIMEFUSE’s efficacy in real-world forecasting tasks.
By adaptively leveraging the unique strengths of different
models, TIMEFUSE unlocks more accurate predictions than
the state-of-the-art base model on up to 95.1% of samples,
achieving near-universal performance improvements across
various benchmark long/short-term forecasting tasks.

To sum up, our contributions are in threefold: (i) Novel
Framework: We introduce a novel framework that tran-
sitions the focus from an individual model to a sample-
level adaptive ensemble approach for time series forecasting.
This shift provides a fresh perspective and promotes a more
holistic understanding of model capabilities. (ii) Practical
Algorithm: We present TIMEFUSE, a versatile solution for
fine-grained adaptive time-series model fusion. It learns and
selects the optimal model combination based on the char-
acteristics of the input time series in an interpretable and
adaptive manner, thereby unlocking more accurate predic-
tions. (iii) Empirical Study: Systematic experiments and
analysis across a diverse range of real-world tasks and state-
of-the-art models validate the effectiveness of TIMEFUSE,
highlighting its strong capability as a versatile tool for tack-
ling complex time series forecasting challenges.

2. Preliminaries
Notations We begin by defining the basic notations and
concepts used in this work. For multivariate time-series
forecasting with d variables, the objective is to predict the
values of each variable over the next Tout time steps based
on observations from the most recent Tin time steps. For-
mally, let Xin ∈ RTin×d denote an input time series, where
Tin represents the number of input time steps, and d is the
number of variables or features. Formally, let Xin ∈ RTin×d

denote an input time series, the forecast output is denoted
as Xout ∈ RTout×d. A base time forecasting model is rep-
resented as a function f : RTin×d → RTout×d, mapping the
input time series to the predicted output series. Many mod-
els with distinct architectural designs (Zhou et al., 2022; Wu
et al., 2023; Wang et al., 2024a) have been developed to
capture various temporal patterns for precise forecasting.

In this work, we utilize multiple forecasting models, col-
lectively forming a set F = {f1, f2, . . . , fk}, which we
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Figure 2. The TIMEFUSE framework for ensemble time-series forecasting, best viewed in color.

refer to as the model zoo. Each fi in F is an independently
trained model, offering diverse predictions for a given in-
put. As shown in Figure 1, different time series modeling
techniques offer unique advantages; therefore, we aim to
develop a fusion mechanism to adaptively harness the di-
verse and complementary capabilities of different models.
Formally, we provide the problem definition as follows.

Problem 1 (Sample-level Adaptive Fusion for Time-Series
Forecasting). Consider a model zoo F = {f1, f2, . . . , fk}
that consists of k independently trained time-series fore-
casting models fi : RTin×d → RTout×d with diverse archi-
tectures. The problem is to design an adaptive ensemble
forecasting mechanism that for any input time series Xin ,
it dynamically leverages the strengths of each model in F
based on the characteristics of Xin to get the optimal fused
prediction X̂fuse with respect to the ground truth Xout.

3. Methodology
This section presents the TIMEFUSE framework for collec-
tive time-series forecasting with sample-level adaptive fu-
sion. It has two main components: a meta-feature extractor
responsible for extracting key statistical and temporal fea-
ture descriptors from the input time series, and a learnable
model fusor trained to predict the optimal fusion weights
based on the meta-features. An overview of the proposed
TIMEFUSE framework is shown in Fig. 2.

3.1. Time Series Meta-feature Extraction
We start by presenting the foundation of TIMEFUSE: char-
acterizing input time series data by extracting meta-features.

Why not raw features? To achieve a dynamic ensemble
based on input time-series, one could directly train a fusor
using the raw features Xin. Despite its simplicity, there are
several fundamental drawbacks: (i) Task Dependency: Fore-
casting tasks differ greatly in feature dimensions and input
lengths, making the fusor task-specific brings increasing
training costs while reducing flexibility. (ii) Risk of Over-

fitting: Raw features, often complex and high-dimensional,
can include unnecessary information and noise, raising
the likelihood of overfitting, especially with limited meta-
training data. (iii) Lack of Semantic Interpretability: The
complexity of raw features also makes it challenging to
intuitively understand and interpret the fusor’s behavior.

Benefits of meta-features. Drawing on existing research
in feature-based time-series analysis (Henderson & Fulcher,
2021; Barandas et al., 2020), we opt to extract key meta-
features that simplify the high-dimensional data by retaining
only critical statistical and temporal information. This ap-
proach brings several benefits: (i) Versatility: Meta-features
are task-agnostic descriptors that standardize input features
across various tasks, enhancing the fusor’s adaptability and
aiding in generalization through cross-task training. (ii) Ro-
bustness: Reducing dimensionality helps filter out noise
and redundant information, minimizing overfitting risks and
improving generalization on new data. We now detail the
meta-feature set used. (iii) Interpretability: Meta-features
provide clear semantics, such as periodicity and spectral
density, making it easier to analyze such features and under-
stand how the fusor performs.

Meta-feature details. Drawing on prior research in time-
series feature extraction, we meticulously crafted a set of
meta-features that characterize time-series properties from
four distinct perspectives: (i) Statistical: Describe the dis-
tribution characteristics and basic statistics of the input time
series, such as the tendency, dispersion, and symmetry of
the data. (ii) Temporal: Capture the time dependency and
dynamic patterns of the input sequence by depicting how
the input sequence evolves, such as long-term trends, recur-
rent cycles, and rate of change. (iii) Spectral: Derived by
analyzing the time series in the frequency domain, such as
power spectral density and spectral entropy. They highlight
the prominence of periodic components and the complex-
ity of the signal. (iv) Multivariate: Reflect the relation-
ships among different dimensions in multivariate series, like

3



Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting

Table 1. Description of TIMEFUSE meta-features.
Feature Description Formula
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al

mean Average value of the series. 1
T

∑T
t=1 x

(i)
in [t]

std Variability of the series.

√
1
T
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t=1

(
x
(i)
in [t]−mean

)2

min Lowest value in the series. mint x
(i)
in [t]

max Highest value in the series. maxt x
(i)
in [t]

skewness Asymmetry of the series distribution.
1
T

∑T
t=1

(
x

(i)
in [t]−mean

)3

(std)3

kurtosis Sharpness of the series distribution.
1
T
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t=1

(
x

(i)
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(std)4 − 3
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autocorr mean Average first-order temporal dependency. acf(x(i)
in , lag = 1)

stationarity Ratio of stationary features, determined by ADF(x(i)
in ) < 0.05

roc mean Change rate between consecutive steps. 1
T−1

∑T−1
t=1

x
(i)
in [t+1]−x

(i)
in [t]

x
(i)
in [t]

roc std Variability in the change rate. std
(

x
(i)
in [t+1]−x

(i)
in [t]

x
(i)
in [t]

)
autoreg coef Mean of the AR(1) coefficients. 1

K

∑K
i=1 ϕ

(i)

residual std Standard deviations of AR(1) residuals. 1
K

∑K
i=1 std(ϵ(i))
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freq mean Average energy in the frequency domain. 1
|f |

∑
f PSD(x

(i)
in )

freq peak Dominant periodicity. argmaxf PSD(x
(i)
in )

spectral entropy Complexity in the frequency domain. −
∑

f p(f) log p(f), p(f) =
PSD(f)∑

PSD(f)

spectral skewness Asymmetry of the spectral distribution.
∑

f(A(f)−Ā)
3(√∑

f(A(f)−Ā)
2
)3

spectral kurtosis Sharpness of the spectral distribution.
∑
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4(∑

f(A(f)−Ā)
2
)2

spectral variation Variability of the spectrum over time. 1
T−1

∑T−1
t=1
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f (S(f, t+ 1)− S(f, t))
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cov mean Average linear relationship strength. mean
(

cov(x(i)
in ,x

(j)
in )

)
cov max Strongest linear relationship. max cov(x(i)

in ,x
(j)
in )

cov min Weakest linear relationship. min cov(x(i)
in ,x

(j)
in )

cov std Variability in linear relationships. std
(

cov(x(i)
in ,x

(j)
in )

)
crosscorr mean Average dependency between features. mean

(
corr(x(i)

in ,x
(j)
in )

)
crosscorr std Variability in dependencies. std

(
corr(x(i)

in ,x
(j)
in )

)
cross-correlation and covariance. These features help de-
scribe the dependency structures between variables. We
use the average value across all input variables to compute
the non-multivariate meta-features. These meta-features
are defined and summarized in Table 1. Through ablation
studies and comparative analysis, we demonstrated that
these 24 features match the performance of a more complex
TSFEL (Barandas et al., 2020) feature set containing 165
variables, with significant contributions from each domain
to the overall forecasting performance. This indicates that
our features offer a comprehensive description of the multi-
faceted nature of the input time series, effectively supporting
the subsequent adaptive model fusion process.

3.2. Adaptive Model Fusion with Learnable Fusor
With the meta-characterization of the input time series es-
tablished, we next explore how to achieve sample-level
adaptive model fusion by training a learnable fusor.

Fusor architecture. Formally, let ΨΘ : Rd∗ → Rk be the
model fusor parameterized by Θ, and ℑ : RTin×d → Rd∗

be
the meta feature extraction operator where d∗ is the number
of meta-features. Given a model zoo F = {f1, f2, . . . , fk}
consisting of k models and an input time-series Xin ∈
RTin×d, our fusor ΨΘ(·) takes the meta-features x∗

in :=
ℑ(Xin) ∈ Rd∗

as input and outputs a weight vector w ∈ Rk,
where each element wi represents the contribution of the
i-th model fi in the final prediction. We employ a softmax
function to normalize w for numerical stability and facili-
tate training. The final fused forecasting results X̂∗

out is then
derived by X̂∗

out :=
∑k

i=1 wifi(Xin). Prioritizing inter-
pretability and efficiency, our fusor is a single-layer neural
network that learns a linear mapping Θ ∈ Rd∗×k between
meta-features and model weights. We note that this sim-
ple architecture is sufficient for effectively and accurately
capturing the relationship between meta-features and model

capabilities. Using more complex model structures does not
enhance performance yet compromises the simplicity that
benefits runtime efficiency and interpretability.

Training objective. To achieve accurate fused forecasting,
we train the fusor to predict the optimal model weight vector
that minimizes the forecasting error of the fused output X̂∗

out
w.r.t the ground truth Xout. Formally, given the model fusor
ΨΘ(·) and meta feature extraction operatorℑ(·), the training
objective of fusor Ψ(·; Θ) is:

argmin
Θ

E
(Xin,Xout)∼Dval

L
(
X̂∗

out,Xout

)
where X̂∗

out :=

k∑
i=1

Ψ(ℑ(Xin); Θ)(i)fi(Xin).

(1)

This objective encourages the model fusor to predict opti-
mal weights such that the combined predictions from each
model fi approximate the ground-truth output Xout. Here
the L(·, ·) can be any loss function. In our use case, pre-
dictions from different models on the same input can vary
significantly due to their distinct architectures, thus we use
Huber loss (Huber, 1992) to prevent outlying individual
models from affecting the stability of fusor training. The
fusor is trained on the held-out validation set Dval (not used
during base model training) to optimize fused forecasting
performance on unseen data, this also prevents the potential
overfitting of the base models from affecting the fusor’s
generalization capabilities.

Independent meta-training dataset & pipeline. As im-
plied by Equation 1, the meta training of TIMEFUSE only
depends on the meta-featuresℑ(Xin), predictions from base
models fi(Xin),∀1 ≤ i ≤ k, and the ground truth label
Xout. Consequently, the fusor meta-training is decoupled
from the base model training, allowing meta-training dataset
to be independently collected and stored. Formally, let
D∗ be the meta-training dataset, each sample can be repre-
sented by a triplet (x∗

in, X̂out,Xout), where x∗
in := ℑ(Xin) ∈

Rd∗
is the meta-feature vector of the input time series,

X̂out := [f1(Xin), f2(Xin), · · · , fk(Xin)] ∈ Rk×Tout×d is
a 3-dimensional tensor storing the base model predictions,
and Xout is the ground truth. The independence of meta-
training also benefits TIMEFUSE ’s extensibility: adding
new models can be done by simply incorporating their pre-
dictions into the tensor X̂out and training a new fusor on the
updated meta-training set. With the above formulations, we
can now rewrite the meta-training objective as:

argminΘ E(x∗
in,X̂out,Xout)∼D∗ L

(
Ψ(x∗

in; Θ)⊤ · X̂out,Xout

)
. (2)

Cross-task meta-training with data mixing. Lastly, ben-
efiting from the task-agnostic meta-features, the fusor can
be trained jointly using diverse data from multiple forecast-
ing tasks, thus better generalizing across diverse temporal
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Table 2. Long-term forecasting results. All results are averaged from 4 prediction lengths {96, 192, 336, 720} with input length 96. A
lower MSE or MAE indicates a better prediction, we highlight the 1st and 2nd best results. See Table 11 in Appendix for the full results.

Metric: TFuse TXer TMixer PAttn iTF TNet PTST DLin FreTS FEDF NSTF LightTS InF AutoF
MSE / MAE (Ours) (2024) (2024) (2024) (2024) (2023) (2023) (2023) (2023) (2022) (2022) (2022) (2021) (2021)

ETTh1 0.430 0.433 0.444 0.445 0.450 0.440 0.464 0.453 0.521 0.489 0.460 0.455 0.452 0.451 0.460 0.457 0.481 0.469 0.439 0.458 0.647 0.572 0.522 0.500 1.059 0.808 0.545 0.512
ETTh2 0.365 0.395 0.377 0.401 0.393 0.411 0.383 0.404 0.383 0.407 0.409 0.422 0.381 0.409 0.564 0.519 0.529 0.500 0.426 0.445 0.532 0.492 0.654 0.581 2.222 1.223 0.457 0.465
ETTm1 0.369 0.388 0.382 0.397 0.386 0.401 0.397 0.397 0.422 0.417 0.410 0.418 0.388 0.402 0.404 0.408 0.410 0.418 0.616 0.524 0.530 0.473 0.421 0.421 0.843 0.668 0.584 0.517
ETTm2 0.274 0.319 0.274 0.322 0.275 0.323 0.286 0.331 0.292 0.336 0.298 0.333 0.289 0.334 0.355 0.402 0.350 0.390 0.308 0.351 0.518 0.439 0.362 0.409 1.224 0.849 0.337 0.368
Weather 0.240 0.270 0.241 0.271 0.244 0.273 0.268 0.285 0.260 0.281 0.259 0.285 0.257 0.278 0.265 0.317 0.258 0.304 0.333 0.375 0.289 0.309 0.269 0.318 0.834 0.668 0.341 0.382

Electricity 0.163 0.260 0.171 0.270 0.185 0.275 0.215 0.294 0.180 0.270 0.196 0.297 0.204 0.294 0.225 0.319 0.209 0.296 0.222 0.333 0.196 0.296 0.238 0.339 0.358 0.437 0.240 0.346
Traffic 0.419 0.272 0.466 0.287 0.513 0.306 0.555 0.358 0.422 0.282 0.624 0.331 0.482 0.308 0.673 0.419 0.599 0.376 0.711 0.445 0.641 0.352 0.755 0.472 1.315 0.728 0.652 0.402

patterns and input characteristics. However, implementing
cross-task meta-training in practice faces two challenges:
(i) The inconsistency in the dimensions of X̂out and Xout
across tasks prevents the uniform storage and mixed re-
trieval of data from different tasks. (ii) Imbalanced training
sample sizes across tasks can degrade the fusor’s perfor-
mance on tasks with fewer samples. We propose a sim-
ple batch-level mixing and balancing strategy to address
these issues. Specifically, given m meta-training datasets
{D∗

1 ,D∗
2 , · · · ,D∗

m} derived from different forecasting tasks,
we oversample all datasets to match the size of the largest
task (max0≤i≤m(|D∗

i |)) to balance the data distribution.
All oversampled datasets collectively form the joint meta-
training dataset D∗

joint. Further, to prevent overfitting issues
that might arise from consecutive training on oversampled
data from a single task, we alternate training batches from
each task within each training step. This dynamic training
data mixing promotes the fusor’s generalization across var-
ious task distributions. Algorithm 1 summarizes the main
procedure of TIMEFUSE.

Algorithm 1 TIMEFUSE

Require: model zoo F : {f1, f2, . . . , fk}; forecasting
dataset D : {(X(i)

in ,X
(i)
out ) | 0 ≤ i ≤ n}.

1: Initialize: meta-training set D∗ ← ∅.
2: for (Xin,Xout) ∈ D do
3: # collect meta-training data
4: Extract meta-features x∗

in ← ℑ(Xin) ∈ Rd∗
;

5: Prediction tensor X̂out ←
[
fi(Xin)

]k
i=1
∈ Rk×Tin×d;

6: Forecasting ground truth Xout ∈ RTout×d;
7: Update D∗ ← D∗ ∪ (x∗

in, X̂out,Xout);
8: end for
9: while not converged do

10: # model fusor training
11: Update the model fusor Ψ(·; Θ) with Eq. (2)

argminΘ E(x∗
in,X̂out,Xout)∼D∗ L

(
Ψ(x∗

in; Θ)⊤ · X̂out,Xout
)
.

12: end while
13: Return: a TIMEFUSE model fusor Ψ(·; Θ)

4. Experiments
We conduct extensive experiments to evaluate the effective-
ness of TIMEFUSE, covering long-term and short-term fore-

casting, including 16 real-world benchmarks and 13 base
forecasting models. The detailed model and experiment
configurations are presented in Appendix A.

Datasets. For long-term forecasting, we evaluate our
method on seven widely-used benchmarks, including the
ETT datasets (with 4 subsets: ETTh1, ETTh2, ETTm1,
ETTm2), Weather, Electricity, and Traffic, following prior
studies (Wang et al., 2024a; Wu et al., 2023; 2021). For
short-term forecasting, we use PeMS (Chen et al., 2001),
which encompass four public traffic network datasets
(PEMS03/04/07/08), along with the EPF (Lago et al., 2021a)
datasets for electricity price forecasting on five major power
markets (NP, PJM, BE, FR, DE) spanning six years each. A
detailed description of these datasets is provided in Table 7.

Base Models. To assess TIMEFUSE’s ability to unlock
superior forecasting performance based on state-of-the-art
models, we choose 13 well-known powerful forecasting
models as baselines. This includes recently developed ad-
vanced forecasting models such as TimeXer (2024c) that
exploits exogenous variables, TimeMixer (2024a) with de-
composable multiscale mixing, and patching-based mod-
els PAttn (2024) and PatchTST (2023). Other strong
competitors are also compared against, including iTrans-
former (2024a), TimesNet (2023), FedFormer (2022),
FreTS (2024), DLinear (2023a), Non-stationary Trans-
former (2022), LightTS (2022), InFormer (2021), and Auto-
Former (2021).

Setup. To ensure a fair comparison, we employed the
TSLib (Wang et al., 2024b) toolkit to implement all base
models, using the optimal hyperparameters provided in the
official training configurations. We trained all base models
using L2 loss on the training sets of each task, and collected
meta-training data on the validation sets. For each prediction
length, we jointly trained a fusor using data from different
tasks and reported the performance of fused predictions on
the test set. More reproducibility details are in Appendix A.

4.1. Main Results

Long-term forecasting. As shown in Table 2, by dy-
namically leveraging and combining the strengths of dif-
ferent base models, TIMEFUSE consistently outperforms
the state-of-the-art individual models across all tasks, cov-
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Table 3. Short-term forecasting results on PEMS datasets, averaged from 3 prediction lengths {6, 12, 24} with input length 96. Lower
MAE/RMSE/MAPE indicates better prediction, we highlight the 1st and 2nd best results. See Table 12 in Appendix for the full results.

Datasets Metric TFuse TXer TMixer PAttn iTF TNet PTST DLin FreTS FEDF NSTF LightTS InF AutoF
(Ours) (2024) (2024) (2024) (2024) (2023) (2023) (2023) (2023) (2022) (2022) (2022) (2021) (2021)

PEMS03
MAE 16.005 17.900 18.283 19.222 17.420 19.349 19.499 22.028 18.634 31.446 20.337 18.140 20.842 35.842

RMSE 24.971 27.206 28.435 30.442 27.385 30.715 30.722 35.324 29.437 44.941 31.677 27.624 32.398 52.636
MAPE 0.135 0.170 0.159 0.157 0.146 0.168 0.164 0.196 0.153 0.297 0.179 0.168 0.179 0.341

PEMS04
MAE 20.268 22.513 23.631 25.925 23.245 23.028 26.591 27.743 24.817 37.439 22.855 22.237 23.155 42.046

RMSE 32.207 34.199 36.922 40.859 36.913 36.076 40.871 42.768 38.646 53.473 35.973 34.702 37.252 59.421
MAPE 0.167 0.210 0.201 0.205 0.190 0.197 0.224 0.253 0.204 0.316 0.195 0.194 0.195 0.351

PEMS07
MAE 22.988 26.695 26.489 28.946 25.934 27.977 30.641 33.365 28.304 53.631 28.978 26.005 30.211 62.726

RMSE 36.241 39.512 41.222 44.996 40.938 44.423 45.864 50.174 43.382 73.015 45.328 39.791 48.006 84.144
MAPE 0.110 0.142 0.129 0.138 0.126 0.138 0.157 0.176 0.139 0.278 0.145 0.131 0.148 0.348

PEMS08
MAE 16.468 18.613 19.114 19.920 17.978 20.367 20.623 22.513 19.172 35.569 19.712 18.103 22.870 36.078

RMSE 25.882 27.960 29.601 31.494 28.661 31.869 31.946 35.039 30.249 50.437 30.643 27.875 35.085 50.548
MAPE 0.103 0.126 0.125 0.121 0.111 0.131 0.132 0.143 0.118 0.223 0.128 0.117 0.150 0.246

Table 4. Short-term forecasting results on the EPF datasets with predict length 24 and input length 168 following Wang et al. (2024c).
Metric: TFuse TXer TMixer PAttn iTF TNet PTST DLin FreTS FEDF NSTF LightTS InF AutoF

MSE / MAE (Ours) (2024) (2024) (2024) (2024) (2023) (2023) (2023) (2023) (2022) (2022) (2022) (2021) (2021)

NP 0.229 0.260 0.243 0.271 0.264 0.290 0.275 0.299 0.260 0.287 0.244 0.281 0.276 0.294 0.297 0.311 0.311 0.321 0.331 0.365 0.276 0.291 0.299 0.318 0.287 0.326 0.417 0.401
PJM 0.085 0.185 0.097 0.194 0.118 0.229 0.110 0.215 0.097 0.197 0.114 0.216 0.105 0.209 0.104 0.211 0.122 0.231 0.133 0.239 0.132 0.235 0.109 0.212 0.132 0.216 0.138 0.251
BE 0.378 0.241 0.379 0.242 0.415 0.276 0.396 0.264 0.404 0.277 0.401 0.274 0.404 0.261 0.459 0.315 0.437 0.311 0.474 0.332 0.396 0.253 0.444 0.297 0.543 0.369 0.481 0.311
FR 0.386 0.198 0.396 0.212 0.444 0.245 0.448 0.255 0.420 0.228 0.427 0.230 0.409 0.219 0.420 0.254 0.403 0.236 0.456 0.273 0.465 0.240 0.473 0.258 0.479 0.264 0.559 0.292
DE 0.429 0.407 0.458 0.422 0.469 0.437 0.472 0.434 0.466 0.435 0.472 0.433 0.527 0.457 0.508 0.457 0.511 0.452 0.626 0.529 0.506 0.455 0.489 0.442 0.593 0.494 0.629 0.517

ering a large variety of time series with varying fre-
quencies, numbers of variables, and real-world applica-
tion domains. We also note that the optimal individual
model varies across different tasks and metrics: while
TimeXer (Wang et al., 2024a) excels in most long-term fore-
casting tasks by modeling exogenous variables, other mod-
els like TimeMixer (Wang et al., 2024a), iTransformer (Liu
et al., 2024a), and FedFormer (Zhou et al., 2022) still emerge
as top performers in certain tasks. In contrast, the proposed
TIMEFUSE consistently achieves superior results across
different tasks by integrating their advantages, surpassing
the task-specific best models. Compared with these SOTA
models, TIMEFUSE achieved an average MSE reduction
of 3.61%/6.88%/11.77%/8.39% across seven datasets w.r.t
TXer/Tmixer/PAttn/iTF, respectively, demonstrating the effi-
cacy and versatility of the proposed TIMEFUSE framework.

Short-term forecasting. TIMEFUSE also demonstrates
superb performance in short-term forecasting tasks. As
shown in Table 3, on the PEMS datasets, while iTransformer
achieves the overall best performance for this task, models
like TimeXer and the MLP-based LightTS also emerge as
top performers in many cases. By dynamically leverag-
ing their respective strengths, TIMEFUSE achieves univer-
sally enhanced performance, consistently delivering optimal
forecasting results across all scenarios. Compared to the
top three individual models: TimeXer, iTransformer, and
LightTS, TIMEFUSE achieves an average MAPE reduction
of 20.46%, 9.89%, and 15.37%, respectively. On the EPF
datasets reported in Table 4, while TimeXer exhibits sig-
nificant advantages at the dataset level, TIMEFUSE still
consistently achieves more accurate forecasting across all
five tasks by integrating the capabilities of different models

via sample-level adaptive fusion. This further underscores
the unique strengths of different models and the importance
of combining them with adaptive model fusion.

Comparison with ensemble methods. We further com-
pared the performance of TIMEFUSE with commonly used
mean/median ensemble for heterogeneous model fusion. To
fully unlock the potential of static ensembling, we further
adopt a top-k model selection strategy based on the valida-
tion performance, and test the mean/median ensemble of
the top-k models. Figure 3 shows the results on long-term
forecasting datasets. We observed that: (1) the adaptive fu-
sion strategy of TimeFuse consistently outperformed static
ensemble strategies across all tasks, even though the static
ensembles also equipped a model filtering strategy based on
the validation performance. (2) The optimal model set for
static ensemble differs significantly across different datasets,
e.g., mean ensemble achieves the best result with 10 mod-
els included on the ETTh1 dataset, while only the top 2
models are needed on the traffic dataset. In practice, find-
ing the optimal model set for each dataset is cumbersome,
highlighting the limitations of static ensemble strategies. In
contrast, TIMEFUSE dynamically learns the optimal ensem-
ble strategy for each sample (and thus dataset), which we
will discuss further in the following section.

4.2. Further Analysis

TIMEFUSE learns adaptive fusion strategies. To intu-
itively grasp how TIMEFUSE learns different fusion strate-
gies across various datasets and samples, Figure 4 shows the
average model fusion weights on different datasets given
by TIMEFUSE, with variation bars indicating standard de-
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Figure 3. Comparison between TIMEFUSE and static ensemble methods with validation top-k model filtering.
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Figure 4. Visualization of the average model fusion weights by TIMEFUSE across datasets, with variation bars showing standard deviations
between samples within the dataset. TIMEFUSE adaptively produces diverse ensemble strategies, effectively supporting tasks that benefit
from either a broad model ensemble (e.g., ETTh1/m1) or a more selective integration of specific models (e.g., Electricity/Traffic).

viations among samples within each dataset. It can be ob-
served that TIMEFUSE adaptively generates diverse ensem-
ble strategies. Notably, on some datasets (e.g., ETTh1/m1)
TIMEFUSE opts for a dynamic ensemble of a variety of mod-
els, while on others (e.g., Electricity/Traffic), it selectively
ensembles only a few specific models. This echoes the ob-
servations in Figure 3, where some datasets benefit from
a broad model ensemble and others from a more selective
integration, further demonstrating TIMEFUSE’s ability to
learn effective and adaptive ensemble strategies.
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Figure 5. TIMEFUSE

achieves increasingly
better forecasting per-
formance as more base
models are included in
the model zoo.

TIMEFUSE improves with a more diverse model zoo. To
assess whether TIMEFUSE can leverage emerging models
to further enhance its capabilities, we check how the fused
forecasting performance changes as new models are intro-
duced into the model zoo. Specifically, we test TIMEFUSE
on long-term forecasting datasets with a prediction length
of 96, starting with a model zoo that contains only Informer
and Autoformer, with newer models added sequentially as
per the order in Table 2 (from right to left). Figure 5 shows
the average MAE and MSE on 7 datasets. We can observe
that TimeFuse achieves increasingly better forecasting per-
formance as more diverse base models are integrated. This
indicates that TIMEFUSE benefits from the capabilities of

new models and the added diversity they bring to the model
zoo, allowing for continuous performance improvement as
more advanced forecasting models emerge in the future.

Zero-shot generalization to unseen datasets. As men-
tioned before, TIMEFUSE operates on top of task-agnostic
meta-features. This allows it to be jointly trained on vari-
ous datasets to enhance its generalizability, and further, to
perform inference on any datasets, even unseen during meta-
training (i.e., zero-shot generalization). To verify this, we
evaluate zero-shot TIMEFUSE on both long- (predict length
96) and short-term (PEMS with predict length 6) forecasting
tasks. For each target dataset, we trained a fusor with all
other datasets, and then tested it on the target dataset. As
shown in Table 5, zero-shot TIMEFUSE still outperforms the
best individual model in most cases, demonstrating robust
zero-shot generalization performance.

Table 5. Zero-shot performance of TIMEFUSE.

Dataset
Normal Zero-shot Best Individual

TIMEFUSE TIMEFUSE Model
MSE MAE MSE MAE MSE MAE

ETTh1 0.3667 0.3911 0.3707 0.3961 0.3770 0.3981
ETTh2 0.2803 0.3338 0.2817 0.3348 0.2854 0.3376
ETTm1 0.3060 0.3505 0.3078 0.3505 0.3178 0.3563
ETTm2 0.1701 0.2542 0.1721 0.2568 0.1712 0.2560
Weather 0.1546 0.2046 0.1552 0.2048 0.1574 0.2047

Electricity 0.1334 0.2312 0.1355 0.2336 0.1405 0.2406
Traffic 0.3881 0.2552 0.3907 0.2602 0.3936 0.2686

Datasets
Normal Zero-shot Best Individual

TIMEFUSE TIMEFUSE Model
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PEMS03 14.266 22.235 0.118 14.273 22.257 0.118 14.941 23.314 0.122
PEMS04 18.936 30.338 0.154 19.023 30.467 0.154 20.073 31.934 0.168
PEMS07 21.205 33.432 0.099 21.297 33.523 0.100 22.243 34.950 0.109
PEMS08 14.930 23.570 0.090 14.933 23.571 0.090 15.661 24.577 0.095
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Table 6. Ablation and comparative study of meta-features.

Datasets Ours TSFEL Ablation Feature Set

Statistical Temporal Spectral Multivariate

L
on

g-
te

rm

ETTh1 0.3911 0.3938 0.3978 0.4007 0.4010 0.3986
ETTh2 0.3338 0.3343 0.3406 0.3418 0.3393 0.3409
ETTm1 0.3505 0.3516 0.3552 0.3578 0.3558 0.3575
ETTm2 0.2542 0.2550 0.2578 0.2579 0.2566 0.2553
Weather 0.2046 0.2042 0.2074 0.2088 0.2096 0.2081

Electricity 0.2312 0.2327 0.2363 0.2367 0.2364 0.2361
Traffic 0.2552 0.2572 0.2590 0.2626 0.2661 0.2607

Avg. 0.2887 0.2898 0.2934 0.2952 0.2950 0.2939

Sh
or

t-
te

rm

PEMS03 14.266 14.270 14.521 14.584 14.593 14.547
PEMS04 18.936 18.939 19.235 19.485 19.410 19.346
PEMS07 21.205 21.308 21.696 21.902 21.894 21.905
PEMS08 14.930 14.950 15.189 15.371 15.318 15.264

Avg. 17.334 17.367 17.660 17.836 17.804 17.765

Ablation and comparative study of meta-features. We
also conducted experiments to validate the effectiveness of
the meta-features used. We compare our 24-variable meta-
feature set with a more complex TSFEL (Barandas et al.,
2020) feature set comprising 165 variables, and perform an
ablation study by removing features of each domain from
the meta-feature set. The MAE of long/short-term forecast-
ing (with predict length 96/6) is shown in Table 6. It can be
observed that our meta-feature set offers a comprehensive
description of the multifaceted nature of the input time se-
ries, matching the performance of the complex TSFEL set,
with significant contributions from each domain.

Visualization of the learned fusor weights. Finally, we
note that the fusor essentially learns a mapping of how spe-
cific input temporal properties (e.g., stationarity, spectral
complexity) correspond to the strengths of different mod-
els. We visualized the learned fusor weights on long-term
forecasting datasets in Figure 6 (showing a subset of meta-
features for clarity). Take the meta-feature “stationarity” as
an example, it corresponds to large negative weights for the
non-stationary transformer, suggesting that this model is
weighted more heavily when inputs show lower stationarity,
aligning with its ability to handle non-stationary dynamics.
Similarly, TimeMixer’s advantage in modeling complex fre-
quency patterns through multi-scale mixing is also reflected
in the learned fusor weights. We note that these advantages
are relative: they indicate a model’s relative strength in han-
dling samples with specific properties compared to others
in the model zoo. Nonetheless, such understanding can help
users grasp the relative strengths and weaknesses of different
models and provide insights for further improvement.

Comparison with AutoML baselines and more analysis.
We include additional experiments in Appendix B to fur-
ther validate the robustness and practicality of TIMEFUSE.
These include comparisons with advanced ensemble strate-
gies such as portfolio-based, zero-shot, and AutoML-driven
methods, as well as pretrained foundation models (Sec-

Figure 6. Visualization of the learned fusor weights.

tion B.3). We also report the inference efficiency of the
fusor relative to base models (Section B.1), and evaluate per-
formance under up to 512 long input horizons (Section B.2).
The results demonstrate that TIMEFUSE remains effective,
efficient, and adaptable across diverse forecasting scenarios.

5. Related Works
Time-series Forecasting. Time-series forecasting is a piv-
otal research area with rich real-world applications (Lim
& Zohren, 2021). Numerous time-series modeling tech-
niques have been proposed, each with its unique focus. Tra-
ditional statistical methods (Anderson, 1976) can handle
periodic trends but struggle with complex nonlinear dynam-
ics. Later works based on recurrent (Lai et al., 2018) and
convolutional (Franceschi et al., 2019) neural networks can
model more complex temporal patterns but still have diffi-
culty with long-range dependencies due to the Markovian
assumption or limited receptive field. TimesNet (Wu et al.,
2023) addresses this by transforming 1D series into 2D for-
mats, enhancing pattern recognition over distances. Mean-
while, Transformer-based models like PatchTST (Nie et al.,
2023) and iTransformer (Liu et al., 2024a) leverage self-
attention to model long-range dependencies. More recent
studies further suggest improving forecasts by multiscale
mixing (Wang et al., 2024a) or integrating exogenous vari-
ables (Wang et al., 2024c) or multimodal knowledge (Li
et al., 2025). Despite these advancements, our sample-level
inspection shows that no single model excels universally,
prompting research into leveraging the diverse strengths of
various models for enhanced joint forecasting.

Ensemble Learning. Ensemble learning is a generic strat-
egy to get robust predictions by aggregating outputs from
multiple models (Mienye & Sun, 2022). Typical ensemble
methods often employ quickly trainable weak base learners
like decision trees (Sagi & Rokach, 2018). Research on
time-series forecasting ensembles has been limited due to
the complexity of time-series data modeling. To name a
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few, Kourentzes et al. (2014) and Oliveira & Torgo (2015)
explore the potential of mean/median and bagging ensem-
bles in time series forecasting tasks. Yu et al. (2017) im-
plement additive forecasting using multiple MLPs across
varied feature sets, a method similar to random subspace
ensembles (Ho, 1998), and Choi & Lee (2018) further inte-
grates multiple LSTMs. However, these studies are confined
to a single-model architecture, focusing on training multi-
ple same-type models based on different dataset views for
a static homogeneous ensemble. Our work, in contrast,
enables dynamic heterogeneous ensemble of models with
various architectures. By employing sample-level adaptive
model fusion, we dynamically integrate the strengths of
different models to achieve superior joint forecasting.

6. Conclusion
We present TIMEFUSE, a versatile framework for ensemble
time-series forecasting with sample-level adaptive model
fusion. It learns and selects the optimal model combination
based on the characteristics of the input time series in an
interpretable and adaptive manner, thereby unlocking more
accurate predictions. In all our experiments, TIMEFUSE
consistently achieved new state-of-the-art performance by
dynamically leveraging different models’ strengths at test
time, highlighting its strong capability as a versatile tool for
tackling complex time series forecasting challenges.

Impact Statement
This paper presents a novel learning-based ensemble time-
series forecasting framework, whose goal is to achieve more
accurate forecasting by adaptively fusing different models
for each input time series at test time. Like other research
focused on time series forecasting, our work has potential so-
cial impacts, but none of which we feel must be highlighted
here.
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Appendix

A. Reproducibility Details
A.1. Dataset Descriptions

Long-term forecasting datasets. We conduct long-term
forecasting experiments on 7 well-established real-world
datasets, including: (1) ETT (Zhou et al., 2021) contains
2-year electricity transformer temperature datasets collected
from two separate counties in China. It contains four subsets
where ETTh1 and ETTh2 are hourly recorded, and ETTm1
and ETTm2 are recorded every 15 minutes. Each data point
records the oil temperature and 6 power load features. The
train/val/test is 12/4/4 months. (2) Weather (Zhou et al.,
2021) records 21 meteorological factors collected every
10 minutes from the Weather Station of the Max Planck

Biogeochemistry Institute in 2020. (3) Electricity (ecl)
includes hourly electricity consumption data for 2 years
from 321 clients. The train/val/test is 15/3/4 months. (4)
Traffic (Wu et al., 2023) records hourly road occupancy
rates measured by 862 sensors of San Francisco Bay area
freeways.

Short-term forecasting datasets. We test the short-term
forecasting performance on the PEMS (tra) dataset for traffic
flow forecasting following TimeMixer (Wang et al., 2024a),
and EPF (Lago et al., 2021b) datasets for electricity price
prediction following TimeXer (Wang et al., 2024c). The
PEMS dataset contains four public traffic network datasets
(PEMS03, PEMS04, PEMS07, PEMS08) that record the
traffic flow data collected by sensors spanning the freeway
system in the State of California. The EPF dataset con-
tains five datasets representing five different day-ahead elec-
tricity markets (NP: Nord Pool; PJM: Pennsylvania-New
Jersey-Maryland; BE: Belgium; FR: France; DE: German)
spanning six years each.

The detailed statistics of each dataset are given in Table 7.

A.2. Evaluation Metric Details

Regarding metrics, we utilize the mean square error (MSE)
and mean absolute error (MAE) for all long-term forecast-
ing tasks and EPF datasets for short-term forecasting fol-
lowing (Wang et al., 2024c). For the PEMS dataset, we
follow the metrics of TimeMixer (Wang et al., 2024a) to
report the mean absolute error (MAE), root mean squared
error (RMSE), and mean absolute percentage error (MAPE)
on the unnormalized test set. Let X

(i)
out ∈ RTout×d and

X̂
(i)
out ∈ RTout×d be the ground truth and model prediction

results of the i-th sample, these metrics are computed as
follows:

MSE =

F∑
i=1

(X
(i)
out − X̂

(i)
out )

2,

MAE =

F∑
i=1

|X(i)
out − X̂

(i)
out |,

RMSE = (MSE)
1
2 ,

MAPE =
100

F

F∑
i=1

|X(i)
out − X̂

(i)
out |

|X(i)
out |

.

A.3. Implementation Details

Base Forecasting Models. To assess TIMEFUSE’s abil-
ity to unlock superior forecasting performance based on
the state-of-the-art time-series models, we chose 13 well-
known powerful forecasting models as our baselines. They
include recently developed advanced forecasting models
such as TimeXer (Wang et al., 2024c) that exploits exoge-
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Table 7. Dataset detailed descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks Dataset #Variates Input Length Predict Length Dataset Size Frequency Description

Long-term
Forecasting

ETTm1 7 96 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Electricity Transformer Temperature

ETTm2 7 96 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Electricity Transformer Temperature

ETTh1 7 96 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Electricity Transformer Temperature

ETTh2 7 96 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Electricity Transformer Temperature

Electricity 321 96 {96, 192, 336, 720} (18317, 2633, 5261) 1 hour Electricity Consumption

Weather 21 96 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Climate Feature

Traffic 862 96 {96, 192, 336, 720} (12185, 1757, 3509) 1 hour Road Occupancy Rates

Short-term
Forecasting

PEMS03 358 96 {6, 12, 24} (15617, 5135, 5135) 5min Traffic Flow

PEMS04 307 96 {6, 12, 24} (10172, 3375, 3375) 5min Traffic Flow

PEMS07 883 96 {6, 12, 24} (16911, 5622, 5622) 5min Traffic Flow

PEMS08 170 96 {6, 12, 24} (10690, 3548, 265) 5min Traffic Flow

EPF-NP 1 168 24 (36500, 5219, 10460) 1 hour Electricity Price

EPF-PJM 1 168 24 (36500, 5219, 10460) 1 hour Electricity Price

EPF-BE 1 168 24 (36500, 5219, 10460) 1 hour Electricity Price

EPF-FR 1 168 24 (36500, 5219, 10460) 1 hour Electricity Price

EPF-DE 1 168 24 (36500, 5219, 10460) 1 hour Electricity Price

nous variables to enhance forecasting, TimeMixer (Wang
et al., 2024a) with decomposable multiscale mixing for mod-
eling distinct patterns in different sampling scales, patching-
based transformer models like PAttn (Tan et al., 2024) and
PatchTST (Nie et al., 2023) that model the global depen-
dencies over temporal tokens of time series, and iTrans-
former (Liu et al., 2024a) that applies the attention on the
inverted dimensions to capture multivariate correlations be-
tween variate tokens. Other strong competitive models
including TimesNet (Wu et al., 2023), FedFormer (Zhou
et al., 2022), FreTS (Yi et al., 2024), DLinear (Zeng et al.,
2023a), Non-stationary Transformer (Liu et al., 2022),
LightTS (Zhang et al., 2022), InFormer (Zhou et al., 2021),
and AutoFormer (Wu et al., 2021). To ensure a fair compar-
ison, we employed the TSLib (Wang et al., 2024b) toolkit1

to implement all base models, the optimal hyperparameters
for each model-dataset pair are used if provided in the of-
ficial training configurations. Unless otherwise specified
in the training configuration, all models are trained for 10
epochs using an ADAM optimizer (Kingma, 2014) with L2
loss, we also perform early stopping with a patience of 3
based on validation set loss to prevent overfitting. All ex-
periments are conducted on a single NVIDIA A100 80GB
GPU.

TIMEFUSE details. We use Pytorch (Paszke et al., 2019)
to implement the fusor, which is a single-layer neural net-
work that learns a linear mapping Θ ∈ Rd∗×k from meta-
features to model weights. For all long-term forecasting
tasks (i.e., ETTh1/h2/m1/m2, Weather, Electricity, Traffic),
we collect meta-training data from their validation sets as

1https://github.com/thuml/
Time-Series-Library

described in Section 3.2, then jointly train a single fusor and
test its dynamic ensemble prediction performance on each
task’s test set. Similarly, we conduct joint fusor training and
testing on the PEMS and EPF datasets for short-term fore-
casting. The fusor is optimized using the ADAM (Kingma,
2014) optimizer and Huber loss, with a batch size of 32 and
a learning rate of 1e-3.

B. Additional Experiments and Analysis
B.1. Inference Efficiency

We benchmark the runtime efficiency of the TIMEFUSE
fusor relative to its base models. Table 8 reports batch infer-
ence time (batch size 32, prediction length 96) across long-
term forecasting datasets. It can be observed that thanks
to its simple architecture (a single-layer neural network),
the fusor introduces negligible overhead. It is significantly
faster than transformer-based models and is on par with
lightweight models like DLinear. This makes TIMEFUSE
practical for latency-sensitive applications and large-scale
deployments.

B.2. Forecasting with Extended Input Horizons

We assess how TIMEFUSE performs under longer input
lookback lengths (L = 336 and L = 512). Table 9 shows
the forecasting results across seven long-term datasets. We
observe that while models such as PatchTST and PAttn
benefit from longer input sequences, others like TimeXer,
iTransformer, or TimesNet show mixed or degraded
performance. In contrast, TIMEFUSE consistently improve
or maintain strong performance across all input lengths
by dynamically leveraging each model’s strengths. This
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Table 8. Batch inference time (in milliseconds) of the TimeFuse fusor and each base model on long-term forecasting datasets (predict
length 96, batch size 32). All runtime results are collected from a Linux server with NVIDIA V100-32GB GPU.

Datasets #Variates TimeFuse TXer TMixer PAttn iTF TNet PTST DLin FreTS FEDF NSTF LightTS InF AutoF
(Ours) (2024) (2024) (2024) (2024) (2023) (2023) (2023) (2023) (2022) (2022) (2022) (2021) (2021)

ETTh1 7

0.145

2.37 7.77 1.72 2.25 17.30 1.96 0.80 1.41 52.52 7.05 1.29 13.04 35.07
ETTh2 7 2.41 7.18 1.58 2.42 23.11 3.13 0.53 1.11 50.86 12.68 1.20 6.83 35.41
ETTm1 7 2.42 6.59 1.67 2.32 26.90 1.61 0.90 1.14 51.48 13.58 1.27 6.86 37.59
ETTm2 7 2.37 8.71 1.63 2.16 20.75 3.24 0.64 1.20 51.38 12.93 1.39 7.04 28.35

electricity 321 6.83 10.22 2.22 3.61 1237.25 3.16 0.78 1.87 51.47 65.95 1.57 13.23 39.84
weather 21 2.32 9.41 2.10 3.55 22.02 2.96 0.78 1.56 52.93 13.01 1.56 8.38 40.43
traffic 862 5.99 9.39 2.57 4.61 1034.37 3.03 0.79 1.76 53.25 14.46 1.65 8.85 41.15

demonstrates its robustness to changes in temporal context
and model behaviors.

B.3. Comparison with AutoML and Advanced
Ensemble Baselines

To further validate the robustness of TIMEFUSE, we com-
pare its performance with several strong baselines:

Advanced ensemble strategies: We include three repre-
sentative methods: (1) Forward selection, a greedy Caruana-
style ensemble (Caruana et al., 2004) that sequentially
adds models to minimize validation loss; (2) Portfolio-
based ensemble, which selects a subset of models based
on overall validation performance and averages their predic-
tions (Feurer et al., 2022); (3) Zero-shot ensemble, which
computes similarity between input meta-features and train-
ing tasks to weight base models without retraining (Feurer
et al., 2022).

AutoML ensemble (AutoGluon-TimeSeries): A fully
automated ensemble system that combines 24 diverse base
models using multi-layer stacking and weighted averaging,
optimized through validation scores (Shchur et al., 2023). It
supports probabilistic forecasting but is limited to univariate
targets.

Foundation model (Chronos-Bolt-Base): A large pre-
trained transformer model for univariate time-series fore-
casting (Ansari et al., 2024). We evaluate both its zero-shot
performance and a fine-tuned version using the AutoGluon
API. Note that Chronos is trained with short prediction
horizons and does not natively support multivariate or long-
range forecasting tasks.

All methods are evaluated across 16 datasets from three
task types: long-term multivariate, short-term multivariate,
and short-term univariate forecasting. As summarized in
Table 10, TIMEFUSE consistently achieves the best average
performance across all three categories.

Static nature of traditional ensembles. Traditional en-
semble strategies such as forward selection and portfolio-
based ensembling determine static model weights based on

aggregate validation performance across the training dataset.
While effective in capturing coarse-level model strengths,
they fail to account for input-dependent variability at in-
ference time. Consequently, their fusion strategies cannot
adapt to diverse temporal patterns or regime shifts in test
data. In contrast, TIMEFUSE dynamically adjusts fusion
weights for each input instance using meta-features, en-
abling finer-grained modeling and improved generalization.

Limitations of zero-shot ensembling. Zero-shot ensem-
ble methods attempt to address adaptivity by computing
similarity between new inputs and previously seen datasets
using meta-features. However, their conditioning granu-
larity is limited to dataset-level similarity, rather than per-
sample adaptivity, and their effectiveness depends heavily
on the diversity and coverage of training tasks.

Chronos-Bolt and the challenge of generalization.
Chronos-Bolt, a pretrained foundation model, is optimized
for short-horizon univariate tasks with a maximum predic-
tion length of 64. While fine-tuning improves performance
on some benchmarks, its architectural constraints and train-
ing objectives make it ill-suited for long-term or multivari-
ate forecasting. In our evaluations, Chronos yields unstable
or degenerate predictions (e.g., extremely high MSE on
ETTm2 and Traffic) under such settings.

AutoGluon and inference inefficiency. AutoGluon-
TimeSeries, while offering flexible ensembling over a wide
model zoo, is currently restricted to univariate forecasting.
Its ensemble predictions are computed independently for
each variate, which leads to prohibitive computational costs
in high-dimensional settings. Additionally, many of its
constituent models (e.g., Prophet, ARIMA) do not support
GPU acceleration, resulting in hours-long inference times
for large datasets such as Electricity (321 variates)
and Traffic (862 variates). These limitations hinder its
applicability in real-time or resource-constrained scenarios.

Taken together, these results highlight the advantage of
TIMEFUSE as a lightweight, flexible, and input-aware en-
semble framework that generalizes well across forecasting
settings with varying dimensionality, horizon length, and
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Table 9. Performance of TimeFuse and base models with increasing input context length L. The results ranked first**/second*/third
are highlighted. Given limited time, we run PatchTST and models newer than it except for TimeMixer, which encounters OOM on
V100-32GB GPU when training with lookback length 336 or higher. Generally, longer L benefit PatchTST and PAttn on specific datasets,
but not for the rest 3 base models. TimeFuse shows a consistent advantage under various L.
Lookback Dataset TimeFuse PatchTST TimeXer PAttn iTransformer TimesNet
Length (L) MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

L = 96

ETTh1 0.367** 0.391** 0.379* 0.400* 0.382 0.403 0.390 0.405 0.447 0.444 0.389 0.412
ETTh2 0.280** 0.334** 0.292 0.345 0.285* 0.338* 0.299 0.345 0.300 0.350 0.337 0.371
ETTm1 0.306** 0.350** 0.327 0.366 0.318* 0.356* 0.336 0.365 0.356 0.381 0.334 0.375
ETTm2 0.170** 0.254** 0.186 0.269 0.171* 0.256* 0.180 0.267 0.186 0.272 0.189 0.266
weather 0.155** 0.205** 0.172 0.213 0.157* 0.205* 0.189 0.226 0.175 0.216 0.169 0.219

electricity 0.133** 0.231** 0.180 0.273 0.140* 0.242 0.196 0.276 0.149 0.241* 0.168 0.272
traffic 0.388** 0.255** 0.458 0.298 0.429 0.271 0.551 0.362 0.394* 0.269* 0.590 0.314

Average 0.257** 0.289** 0.285 0.309 0.269* 0.296* 0.306 0.321 0.287 0.310 0.311 0.319

L = 336

ETTh1 0.370** 0.392** 0.403 0.417 0.397 0.413 0.386* 0.404* 0.435 0.441 0.438 0.450
ETTh2 0.274** 0.333** 0.286* 0.345 0.297 0.353 0.288 0.344* 0.307 0.364 0.367 0.417
ETTm1 0.279** 0.331** 0.295* 0.350 0.306 0.356 0.298 0.345* 0.315 0.363 0.319 0.367
ETTm2 0.155** 0.245** 0.173 0.261 0.169* 0.261 0.170 0.258* 0.179 0.273 0.187 0.275
weather 0.140** 0.191** 0.154* 0.204* 0.158 0.209 0.158 0.206 0.171 0.223 0.164 0.220

electricity 0.130** 0.228** 0.147 0.251 0.153 0.258 0.143* 0.239* 0.169 0.274 0.191 0.297
traffic 0.387** 0.267** 0.405 0.291 0.412 0.297 0.404* 0.282* 0.442 0.330 0.605 0.345

Average 0.248** 0.284** 0.266 0.303 0.270 0.307 0.264* 0.297* 0.288 0.324 0.324 0.339

L = 512

ETTh1 0.364** 0.393** 0.381* 0.404* 0.389 0.413 0.381 0.407 0.435 0.444 0.434 0.450
ETTh2 0.274** 0.332** 0.290 0.348 0.286* 0.349 0.287 0.347* 0.309 0.371 0.390 0.424
ETTm1 0.282** 0.334** 0.296* 0.350 0.307 0.358 0.301 0.347* 0.321 0.367 0.337 0.379
ETTm2 0.157** 0.248** 0.169* 0.260 0.171 0.260 0.171 0.260* 0.180 0.273 0.191 0.278
weather 0.138** 0.190** 0.151* 0.203 0.157 0.208 0.153 0.202* 0.166 0.220 0.157 0.215

electricity 0.127** 0.225** 0.144 0.249 0.148 0.255 0.138* 0.236* 0.165 0.270 0.196 0.302
traffic 0.376** 0.262** 0.391* 0.289 0.399 0.290 0.392 0.277* 0.434 0.325 0.597 0.329

Average 0.245** 0.283** 0.260 0.301 0.265 0.305 0.260* 0.296* 0.287 0.324 0.329 0.340

temporal complexity.

C. Full Results
Due to space constraints, we report the average performance
scores across all prediction lengths for long-term forecasting
datasets and short-term forecasting PEMS datasets in the
main content. Detailed experimental results are provided in
Tables 11 and 12, which show that TIMEFUSE consistently
delivers robust performance at various prediction lengths
and consistently outperforms the task-specific best individ-
ual models across different datasets and metrics.

D. Discussion on Limitations and Future
Directions

While TIMEFUSE demonstrates strong performance across
diverse forecasting tasks, several limitations remain that
point to promising directions for future work.

Distribution Shift. TIMEFUSE relies on meta-training
data to learn its sample-wise fusion strategy, and its per-
formance can be influenced by distribution shifts between
meta-train (validation) and meta-test (test) sets. We ob-

served that some base models perform strongly on the meta-
training set but yield different behavior on the test set, which
may affect fusion decisions. In some cases, excluding such
models from the model zoo has been observed to improve
results. Future work may investigate data augmentation (Lin
et al., 2024; He et al., 2025; 2024; Li et al., 2025; Yan et al.,
2023a; 2024b;c; Xu et al.; Zheng et al., 2024b; Feng et al.,
2022; Jing et al., 2024b; Zeng et al., 2024b; Wei et al., 2025;
2022), adaptation (Yoo et al., 2025a;b; 2024; Zeng et al.,
2025; Wu et al., 2024; Bao et al., 2023; Wei et al., 2020),
and generation (Jing et al., 2024a; Xu et al., 2024b; Qiu
et al., 2024c;b; Wei et al., 2024b;a) techniques to enrich
meta-training distributions and support better adaptation un-
der potential distribution shifts (Fu et al., 2022; Bao et al.,
2025; Lin et al., 2025; Qiu et al., 2024a; Qiu & Tong, 2024;
Tieu et al., 2025; Wei et al., 2021; Wei & He, 2022).

Fusor Expressiveness. The current fusor architecture is
designed to be simple for general applicability and com-
putational efficiency. As the diversity of tasks increases,
exploring more expressive fusor models that can capture
complex meta-level patterns becomes an appealing direc-
tion. Careful design is needed to balance model complexity
and generalization, particularly when meta-training data is
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limited.

Task Contribution Balance. To address the imbalance in
the number of training samples across tasks, we currently
adopt a straightforward oversampling strategy. While effec-
tive in some settings, this approach may not always capture
the optimal balance across tasks with differing sample sizes.
Alternative resampling strategies (Liu et al., 2020b;a; 2021;
2024b; Yan et al., 2023b) from the imbalanced classifica-
tion literature may offer a more flexible and adaptive way
to enhance training efficiency and model robustness across
tasks.

Incorporating Spatial or Graph Structure. Many multi-
variate time series are associated with spatial structure, such
as traffic or weather sensors distributed over geographic
regions, where nearby sensors often record similar measure-
ments. These spatial dependencies are often represented
using graph structures (Fu et al., 2024a; Ban et al., 2024;
Zou et al., 2025) and analyzed using graph mining tech-
niques (Yan et al., 2021b;a; 2022; Li et al., 2023; Lin et al.,
2024; Roach et al., 2020; Jing et al., 2022) or learning on
graphs (Fu et al., 2024b; Tieu et al., 2024; Zheng et al.,
2024a; Qiu et al., 2023; 2022; Xu et al., 2024a; Zheng et al.,
2024c; Wang et al., 2025; Jing et al., 2021; 2024c; Zeng
et al., 2023b;c; 2024a). Extending the TIMEFUSE frame-
work to explicitly incorporate such spatial or graph-based
information could enable more adaptive fusion strategies,
particularly for applications where spatial relationships play
a central role (Wang et al., 2023; Yan et al., 2024a; Fu et al.,
2024c; Fang et al., 2025).

These challenges present opportunities to further enhance
the robustness, adaptability, and efficiency of TIMEFUSE in
future iterations.
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Table 10. Performance comparison between TimeFuse and (i) advanced ensemble solutions, (ii) AutoML ensemble AutoGluon
(with ‘high quality’ presets), and (iii) pretrained time-series model Chronos-Bolt-Base (finetune/influence with the
AutoGluon API). We test the prediction length of 96/24 for long/short-term forecasting due to limited time. The results ranked
first**/second*/third are highlighted.

Task Dataset Metric
Ours Advanced Ensemble AutoML Ensemble Foundation Model

TimeFuse Forward Portfolio ZeroShot AutoGluon ChronosBolt ChronosBolt
Selection Ensemble Ensemble (24 models) Finetuned Zeroshot

L
on

g-
te

rm
Fo

re
ca

st
in

g
M

ul
tiv

ar
ia

te

ETTh1 MSE 0.367** 0.380 0.381 0.373* 0.422 0.414 0.490
MAE 0.391** 0.399 0.400 0.397* 0.437 0.397 0.403

ETTh2 MSE 0.280** 0.284 0.284* 0.298 0.309 1.405 1411793.085
MAE 0.334** 0.341* 0.341 0.361 0.356 0.385 68.569

ETTm1 MSE 0.306** 0.309 0.308* 0.328 42.945 0.930 8927.445
MAE 0.350** 0.358 0.357* 0.372 0.492 0.488 1.505

ETTm2 MSE 0.170** 0.173* 0.173 0.177 3412923.439 2.037 5908821.446
MAE 0.254** 0.261* 0.262 0.271 219.784 1.035 289.118

electricity MSE 0.133** 0.137 0.136* 0.150 OOT 0.353 13507.261
MAE 0.231** 0.240 0.240* 0.255 OOT 0.280 2.041

weather MSE 0.155** 0.167 0.159* 0.164 0.211 0.219 0.218
MAE 0.205** 0.233 0.218* 0.219 0.263 0.258 0.256

traffic MSE 0.388** 0.405 0.397* 0.467 OOT 0.904 24684.662
MAE 0.255** 0.267 0.262* 0.299 OOT 0.340 2.048

Avg. MSE 0.257** 0.265 0.263* 0.279 682593.465 11.609 1052533.515
MAE 0.289** 0.300 0.297* 0.311 44.266 0.598 51.992

Sh
or

t-
te

rm
Fo

re
ca

st
in

g
M

ul
tiv

ar
ia

te

PEMS03
MAE 18.551** 19.226 18.886* 19.669 37.392 44.713 45.925

RMSE 28.966** 29.867 29.398* 30.700 58.613 72.054 73.835
MAPE 0.158** 0.163 0.159* 0.164 0.235 0.306 0.384

PEMS04
MAE 22.610** 23.643 22.900* 24.985 33.367 32.949 37.422

RMSE 35.355** 36.889 36.098* 38.930 50.031 50.661 55.908
MAPE 0.189** 0.207 0.192* 0.204 0.262 0.278 0.355

PEMS07
MAE 26.105** 27.755 27.434* 29.487 61.004 61.704 64.239

RMSE 40.763** 42.742 42.382* 44.976 90.104 94.850 98.631
MAPE 0.128** 0.142 0.137* 0.148 0.289 0.334 0.370

PEMS08
MAE 19.125** 20.225 19.924* 21.150 40.538 26.423 29.556

RMSE 29.748** 31.326 30.696* 32.709 52.422 39.718 43.971
MAPE 0.123** 0.133 0.133* 0.137 0.216 0.168 0.199

Avg.
MAE 21.598** 22.712 22.286* 23.823 43.075 41.447 44.285

RMSE 33.708** 35.206 34.643* 36.829 62.792 64.321 68.086
MAPE 0.149** 0.161 0.155* 0.163 0.250 0.271 0.327

Sh
or

t-
te

rm
Fo

rc
as

tin
g

U
ni

va
ri

at
e

NP MSE 0.229** 0.235 0.234* 0.245 0.235 0.255 0.264
MAE 0.260** 0.277 0.277 0.279 0.267* 0.275 0.279

PJM MSE 0.085* 0.086 0.086 0.087 0.084** 0.090 0.092
MAE 0.185* 0.191 0.189 0.191 0.182** 0.187 0.191

BE MSE 0.378* 0.397 0.400 0.403 0.407 0.373** 0.428
MAE 0.241** 0.254 0.255 0.260 0.270 0.248* 0.262

FR MSE 0.386 0.391 0.392 0.399 0.379* 0.376** 0.434
MAE 0.198** 0.209 0.208 0.207* 0.220 0.211 0.225

DE MSE 0.429** 0.455 0.451 0.452 0.437* 0.503 0.553
MAE 0.407* 0.438 0.435 0.434 0.389** 0.424 0.455

Avg. MSE 0.301** 0.313 0.312 0.318 0.308* 0.319 0.354
MAE 0.258** 0.274 0.273 0.274 0.265* 0.269 0.282

• OOT: Out-of-time, AutoGluon inference takes over 3 hours. This is due to several reasons: (i) AutoGluon is for univariate forecasting and must repeatedly
predict each of the 321/862 variates on the electricity/traffic dataset. (ii) The predict length significantly influences the inference time of some AutoGluon base
models. (iii) A large part of AutoGluon base models cannot be accelerated by GPU.

• Chronos/AutoGluon abnormally high error on long-term forecast tasks: We carefully checked the pipeline and confirmed these results. We believe this is
because Chronos cannot handle long-term forecasting that extends over its predict length (64) used in pretraining.
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Table 11. Full long-term forecasting results.
Forcast TFuse TXer TMixer PAttn iTF TNet PTST DLin FreTS FEDF NSTF LightTS InF AutoF

MSE (Ours) (2024) (2024) (2024) (2024) (2023) (2023) (2023) (2023) (2022) (2022) (2022) (2021) (2021)

E
T

T
h1

96 0.367 0.382 0.378 0.390 0.447 0.389 0.379 0.396 0.400 0.377 0.540 0.435 0.963 0.524
192 0.415 0.429 0.441 0.437 0.519 0.439 0.427 0.445 0.451 0.420 0.635 0.494 1.020 0.557
336 0.462 0.467 0.500 0.498 0.554 0.494 0.478 0.487 0.509 0.458 0.781 0.549 1.030 0.555
720 0.476 0.499 0.479 0.533 0.563 0.516 0.522 0.513 0.563 0.502 0.632 0.612 1.222 0.543
Avg. 0.430 0.444 0.450 0.464 0.521 0.460 0.452 0.460 0.481 0.439 0.647 0.522 1.059 0.545

E
T

T
h2

96 0.280 0.285 0.290 0.299 0.300 0.337 0.292 0.341 0.342 0.348 0.397 0.435 1.764 0.385
192 0.358 0.363 0.387 0.383 0.382 0.405 0.381 0.482 0.440 0.424 0.532 0.561 2.201 0.451
336 0.404 0.412 0.427 0.423 0.424 0.459 0.418 0.593 0.538 0.457 0.569 0.683 2.173 0.490
720 0.417 0.448 0.469 0.428 0.426 0.434 0.433 0.840 0.796 0.476 0.631 0.937 2.750 0.504
Avg. 0.365 0.377 0.393 0.383 0.383 0.409 0.381 0.564 0.529 0.426 0.532 0.654 2.222 0.457

E
T

T
m

1

96 0.306 0.318 0.336 0.336 0.356 0.334 0.327 0.346 0.340 0.539 0.406 0.369 0.740 0.522
192 0.346 0.362 0.363 0.376 0.399 0.408 0.370 0.382 0.383 0.535 0.517 0.399 0.761 0.617
336 0.380 0.395 0.390 0.407 0.433 0.413 0.398 0.415 0.420 0.681 0.583 0.430 0.872 0.640
720 0.443 0.452 0.456 0.467 0.501 0.486 0.458 0.473 0.497 0.709 0.614 0.488 0.998 0.557
Avg. 0.369 0.382 0.386 0.397 0.422 0.410 0.388 0.404 0.410 0.616 0.530 0.421 0.843 0.584

E
T

T
m

2

96 0.170 0.171 0.175 0.180 0.186 0.189 0.186 0.193 0.195 0.211 0.307 0.209 0.744 0.306
192 0.238 0.236 0.236 0.246 0.252 0.263 0.246 0.285 0.277 0.271 0.591 0.300 0.937 0.283
336 0.295 0.295 0.297 0.308 0.315 0.320 0.310 0.385 0.370 0.328 0.497 0.393 1.278 0.330
720 0.392 0.393 0.394 0.408 0.413 0.421 0.415 0.556 0.560 0.420 0.679 0.545 1.938 0.428
Avg. 0.274 0.274 0.275 0.286 0.292 0.298 0.289 0.355 0.350 0.308 0.518 0.362 1.224 0.337

W
ea

th
er

96 0.155 0.157 0.161 0.189 0.175 0.169 0.172 0.196 0.184 0.280 0.175 0.196 0.519 0.284
192 0.203 0.204 0.207 0.234 0.225 0.225 0.220 0.239 0.223 0.330 0.235 0.242 0.577 0.300
336 0.260 0.261 0.263 0.287 0.280 0.281 0.279 0.281 0.272 0.328 0.335 0.290 0.971 0.353
720 0.341 0.340 0.344 0.362 0.361 0.359 0.355 0.345 0.354 0.394 0.412 0.350 1.266 0.426
Avg. 0.240 0.241 0.244 0.268 0.260 0.259 0.257 0.265 0.258 0.333 0.289 0.269 0.834 0.341

E
le

ct
ri

ci
ty 96 0.133 0.140 0.156 0.196 0.149 0.168 0.180 0.210 0.189 0.195 0.171 0.213 0.330 0.201

192 0.151 0.157 0.170 0.197 0.164 0.187 0.187 0.210 0.192 0.202 0.184 0.222 0.357 0.221
336 0.168 0.177 0.187 0.212 0.178 0.204 0.204 0.223 0.207 0.229 0.203 0.242 0.352 0.252
720 0.199 0.211 0.228 0.254 0.227 0.225 0.246 0.258 0.247 0.262 0.225 0.277 0.394 0.287
Avg. 0.163 0.171 0.185 0.215 0.180 0.196 0.204 0.225 0.209 0.222 0.196 0.238 0.358 0.240

Tr
af

fic

96 0.388 0.429 0.474 0.551 0.394 0.590 0.458 0.697 0.565 0.654 0.615 0.769 1.056 0.673
192 0.409 0.448 0.501 0.539 0.412 0.615 0.469 0.647 0.568 0.660 0.650 0.728 1.307 0.632
336 0.421 0.472 0.528 0.549 0.423 0.635 0.483 0.653 0.600 0.740 0.641 0.737 1.416 0.632
720 0.457 0.515 0.548 0.581 0.458 0.656 0.517 0.694 0.661 0.792 0.658 0.785 1.480 0.673
Avg. 0.419 0.466 0.513 0.555 0.422 0.624 0.482 0.673 0.599 0.711 0.641 0.755 1.315 0.652

Forcast TFuse TXer TMixer PAttn iTF TNet PTST DLin FreTS FEDF NSTF LightTS InF AutoF
MAE (Ours) (2024) (2024) (2024) (2024) (2023) (2023) (2023) (2023) (2022) (2022) (2022) (2021) (2021)

E
T

T
h1

96 0.391 0.403 0.398 0.405 0.444 0.412 0.400 0.411 0.412 0.418 0.502 0.444 0.780 0.495
192 0.420 0.435 0.430 0.439 0.483 0.442 0.432 0.440 0.443 0.444 0.565 0.478 0.794 0.517
336 0.444 0.449 0.460 0.470 0.502 0.471 0.464 0.465 0.481 0.467 0.652 0.510 0.780 0.514
720 0.477 0.493 0.472 0.499 0.525 0.494 0.506 0.510 0.540 0.503 0.570 0.569 0.880 0.523
Avg. 0.433 0.445 0.440 0.453 0.489 0.455 0.451 0.457 0.469 0.458 0.572 0.500 0.808 0.512

E
T

T
h2

96 0.334 0.338 0.341 0.345 0.350 0.371 0.345 0.395 0.397 0.391 0.420 0.473 1.074 0.417
192 0.384 0.389 0.401 0.395 0.400 0.415 0.404 0.479 0.449 0.437 0.487 0.538 1.202 0.453
336 0.421 0.424 0.435 0.430 0.432 0.454 0.435 0.542 0.509 0.468 0.514 0.598 1.230 0.486
720 0.439 0.453 0.469 0.444 0.445 0.448 0.452 0.661 0.644 0.486 0.548 0.714 1.386 0.503
Avg. 0.395 0.401 0.411 0.404 0.407 0.422 0.409 0.519 0.500 0.445 0.492 0.581 1.223 0.465

E
T

T
m

1

96 0.350 0.356 0.373 0.365 0.381 0.375 0.366 0.374 0.375 0.490 0.409 0.391 0.620 0.485
192 0.372 0.383 0.384 0.383 0.402 0.414 0.390 0.391 0.398 0.494 0.457 0.406 0.627 0.529
336 0.395 0.407 0.404 0.404 0.424 0.421 0.408 0.415 0.425 0.548 0.493 0.426 0.688 0.541
720 0.434 0.441 0.445 0.438 0.462 0.461 0.444 0.451 0.474 0.562 0.531 0.462 0.738 0.513
Avg. 0.388 0.397 0.401 0.397 0.417 0.418 0.402 0.408 0.418 0.524 0.473 0.421 0.668 0.517

E
T

T
m

2

96 0.254 0.256 0.258 0.267 0.272 0.266 0.269 0.293 0.285 0.294 0.338 0.308 0.631 0.344
192 0.297 0.299 0.298 0.308 0.312 0.312 0.306 0.361 0.351 0.329 0.467 0.375 0.746 0.341
336 0.335 0.338 0.339 0.347 0.353 0.348 0.349 0.429 0.404 0.364 0.435 0.435 0.889 0.365
720 0.392 0.394 0.399 0.403 0.406 0.406 0.411 0.523 0.519 0.416 0.518 0.519 1.131 0.422
Avg. 0.319 0.322 0.323 0.331 0.336 0.333 0.334 0.402 0.390 0.351 0.439 0.409 0.849 0.368

W
ea

th
er

96 0.205 0.205 0.208 0.226 0.216 0.219 0.213 0.256 0.239 0.349 0.227 0.255 0.515 0.348
192 0.247 0.247 0.251 0.264 0.258 0.264 0.256 0.299 0.274 0.384 0.277 0.299 0.539 0.361
336 0.287 0.290 0.292 0.301 0.298 0.304 0.298 0.331 0.318 0.366 0.343 0.337 0.734 0.388
720 0.342 0.340 0.344 0.349 0.351 0.354 0.347 0.382 0.387 0.399 0.390 0.383 0.883 0.432
Avg. 0.270 0.271 0.273 0.285 0.281 0.285 0.278 0.317 0.304 0.375 0.309 0.318 0.668 0.382

E
le

ct
ri

ci
ty 96 0.231 0.242 0.248 0.276 0.241 0.272 0.273 0.302 0.277 0.309 0.272 0.316 0.415 0.318

192 0.247 0.256 0.261 0.279 0.256 0.289 0.280 0.305 0.279 0.315 0.284 0.325 0.439 0.330
336 0.264 0.275 0.277 0.294 0.271 0.305 0.296 0.319 0.297 0.342 0.302 0.344 0.436 0.353
720 0.296 0.306 0.313 0.327 0.311 0.323 0.328 0.350 0.333 0.365 0.324 0.371 0.457 0.382
Avg. 0.260 0.270 0.275 0.294 0.270 0.297 0.294 0.319 0.296 0.333 0.296 0.339 0.437 0.346

Tr
af

fic

96 0.255 0.271 0.293 0.362 0.269 0.314 0.298 0.429 0.368 0.420 0.342 0.477 0.598 0.403
192 0.266 0.282 0.302 0.350 0.277 0.324 0.301 0.407 0.365 0.418 0.359 0.463 0.713 0.396
336 0.274 0.289 0.308 0.352 0.283 0.338 0.307 0.410 0.374 0.457 0.353 0.464 0.788 0.396
720 0.292 0.307 0.323 0.369 0.300 0.347 0.326 0.429 0.398 0.484 0.355 0.483 0.812 0.415
Avg. 0.272 0.287 0.306 0.358 0.282 0.331 0.308 0.419 0.376 0.445 0.352 0.472 0.728 0.402
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Table 12. Full short-term forecasting results.
Metric TFuse TXer TMixer PAttn iTF TNet PTST DLin FreTS FEDF NSTF LightTS InF AutoF
MAE (Ours) (2024) (2024) (2024) (2024) (2023) (2023) (2023) (2023) (2022) (2022) (2022) (2021) (2021)

PE
M

S0
3 6 14.266 15.883 15.811 15.529 14.941 17.665 16.319 17.085 15.709 31.027 16.918 15.429 20.130 23.146

12 15.197 17.469 15.910 18.443 16.947 18.784 19.216 20.927 18.079 33.682 23.130 17.821 20.280 35.126
24 18.551 20.349 23.130 23.694 20.372 21.599 22.962 28.073 22.113 29.629 20.963 21.169 22.115 49.254

Avg. 16.005 17.900 18.283 19.222 17.420 19.349 19.499 22.028 18.634 31.446 20.337 18.140 20.842 35.842

PE
M

S0
4 6 18.936 21.105 21.373 21.092 20.128 21.695 21.726 21.818 21.011 40.668 21.227 20.073 22.521 27.033

12 19.259 22.019 19.572 24.621 22.390 22.668 25.555 26.567 23.872 37.758 22.952 21.478 22.779 39.194
24 22.610 24.416 29.948 32.061 27.217 24.722 32.492 34.845 29.569 33.891 24.387 25.161 24.166 59.911

Avg. 20.268 22.513 23.631 25.925 23.245 23.028 26.591 27.743 24.817 37.439 22.855 22.237 23.155 42.046

PE
M

S0
7 6 21.205 26.042 23.542 23.228 22.243 26.487 25.604 25.027 23.077 56.636 28.244 22.694 29.543 48.333

12 21.654 25.627 22.127 27.409 25.061 27.380 28.721 31.468 27.044 57.879 28.580 25.365 29.789 63.533
24 26.105 28.416 33.799 36.199 30.498 30.064 37.596 43.600 34.793 46.379 30.111 29.955 31.301 76.314

Avg. 22.988 26.695 26.489 28.946 25.934 27.977 30.641 33.365 28.304 53.631 28.978 26.005 30.211 62.726

PE
M

S0
8 6 14.930 16.740 16.637 16.456 15.661 18.946 16.639 18.028 16.439 40.313 17.693 15.751 20.979 26.978

12 15.348 18.163 15.687 18.872 17.215 19.943 20.023 21.191 18.378 36.794 19.814 17.467 22.934 36.776
24 19.125 20.937 25.019 24.430 21.057 22.213 25.207 28.321 22.699 29.598 21.629 21.090 24.698 44.481

Avg. 16.468 18.613 19.114 19.920 17.978 20.367 20.623 22.513 19.172 35.569 19.712 18.103 22.870 36.078

Metric TFuse TXer TMixer PAttn iTF TNet PTST FreTS FEDF NSTF LightTS DLin InF AutoF
RMSE (Ours) (2024) (2024) (2024) (2024) (2023) (2023) (2023) (2022) (2022) (2022) (2022) (2021) (2021)

PE
M

S0
3 6 22.235 23.876 24.497 24.313 23.314 28.235 25.664 27.315 24.730 44.167 26.435 23.861 31.024 33.683

12 23.711 26.522 24.578 29.237 26.724 29.713 29.729 33.507 28.502 48.111 35.845 27.169 31.499 50.224
24 28.966 31.220 36.229 37.774 32.117 34.198 36.772 45.149 35.078 42.545 32.752 31.840 34.672 74.000

Avg. 24.971 27.206 28.435 30.442 27.385 30.715 30.722 35.324 29.437 44.941 31.677 27.624 32.398 52.636

PE
M

S0
4 6 30.338 31.934 33.606 33.612 32.180 34.250 33.790 34.495 33.210 58.083 33.788 32.030 36.552 40.349

12 30.929 33.554 31.238 38.856 35.739 35.574 39.076 40.904 37.265 53.603 36.031 33.865 36.780 55.733
24 35.355 37.109 45.923 50.108 42.821 38.403 49.747 52.904 45.463 48.733 38.099 38.212 38.422 82.180

Avg. 32.207 34.199 36.922 40.859 36.913 36.076 40.871 42.768 38.646 53.473 35.973 34.702 37.252 59.421

PE
M

S0
7 6 33.432 37.931 36.471 36.319 34.950 41.903 37.786 38.507 35.841 76.475 43.350 35.161 47.256 64.889

12 34.528 38.109 35.089 42.679 39.564 43.602 43.247 47.167 41.573 78.103 44.804 38.917 47.676 83.471
24 40.763 42.496 52.107 55.990 48.301 47.763 56.559 64.849 52.731 64.466 47.829 45.295 49.086 104.071

Avg. 36.241 39.512 41.222 44.996 40.938 44.423 45.864 50.174 43.382 73.015 45.328 39.791 48.006 84.144

PE
M

S0
8 6 23.570 24.859 25.930 26.133 24.869 29.863 26.181 28.614 26.140 56.395 27.592 24.577 32.029 38.493

12 24.328 27.116 24.738 29.882 27.467 31.215 30.742 32.961 29.110 52.460 30.628 27.043 35.299 50.732
24 29.748 31.906 38.135 38.467 33.646 34.530 38.916 43.542 35.498 42.456 33.707 32.004 37.927 62.418

Avg. 25.882 27.960 29.601 31.494 28.661 31.869 31.946 35.039 30.249 50.437 30.643 27.875 35.085 50.548

Metric TFuse TXer TMixer PAttn iTF TNet PTST FreTS FEDF NSTF LightTS DLin InF AutoF
MAPE (Ours) (2024) (2024) (2024) (2024) (2023) (2023) (2023) (2022) (2022) (2022) (2022) (2021) (2021)

PE
M

S0
3 6 0.118 0.153 0.139 0.126 0.122 0.151 0.134 0.144 0.127 0.296 0.145 0.132 0.176 0.230

12 0.130 0.165 0.142 0.150 0.142 0.162 0.169 0.187 0.147 0.307 0.203 0.164 0.175 0.316
24 0.158 0.193 0.197 0.195 0.173 0.191 0.190 0.256 0.184 0.287 0.189 0.208 0.187 0.477

Avg. 0.135 0.170 0.159 0.157 0.146 0.168 0.164 0.196 0.153 0.297 0.179 0.168 0.179 0.341

PE
M

S0
4 6 0.154 0.201 0.186 0.171 0.169 0.183 0.181 0.195 0.174 0.323 0.180 0.168 0.189 0.243

12 0.160 0.206 0.169 0.192 0.181 0.193 0.220 0.248 0.197 0.324 0.197 0.181 0.193 0.332
24 0.189 0.223 0.247 0.253 0.221 0.215 0.270 0.316 0.241 0.302 0.209 0.232 0.202 0.478

Avg. 0.167 0.210 0.201 0.205 0.190 0.197 0.224 0.253 0.204 0.316 0.195 0.194 0.195 0.351

PE
M

S0
7 6 0.099 0.135 0.113 0.109 0.109 0.130 0.130 0.121 0.112 0.282 0.143 0.110 0.144 0.279

12 0.104 0.138 0.108 0.129 0.122 0.134 0.144 0.169 0.132 0.305 0.140 0.128 0.145 0.373
24 0.128 0.154 0.166 0.175 0.146 0.150 0.197 0.238 0.172 0.247 0.151 0.154 0.154 0.391

Avg. 0.110 0.142 0.129 0.138 0.126 0.138 0.157 0.176 0.139 0.278 0.145 0.131 0.148 0.348

PE
M

S0
8 6 0.090 0.112 0.104 0.097 0.095 0.120 0.101 0.109 0.098 0.243 0.112 0.098 0.139 0.181

12 0.097 0.124 0.102 0.115 0.106 0.129 0.132 0.135 0.113 0.225 0.127 0.113 0.150 0.254
24 0.123 0.142 0.170 0.150 0.132 0.146 0.162 0.186 0.143 0.202 0.145 0.140 0.161 0.301

Avg. 0.103 0.126 0.125 0.121 0.111 0.131 0.132 0.143 0.118 0.223 0.128 0.117 0.150 0.246
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