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BoxCD: Leveraging Contrastive Probabilistic Box Embedding for
Effective and Efficient Learner Modeling

Anonymous Author(s)∗

Abstract
In digital education, Cognitive Diagnosis (CD) is essential for mod-
eling learners’ cognitive states, such as problem-solving ability and
knowledge proficiency, by analyzing their response data, like an-
swer correctness. However, traditional CD methods struggle with
effectiveness and efficiency. They fail to capture the diversity and
uncertainty of learners’ cognitive states. Additionally, response
prediction can be time-consuming. To address these issues, we pro-
pose BoxCD, a contrastive probabilistic box embedding model for
cognitive diagnosis. BoxCD utilizes high-dimensional axis-aligned
hyper-rectangles (boxes) to represent learners and exercises, with
the volume of intersecting boxes used to predict learners’ responses.
This approach effectively captures semantic diversity and uncer-
tainty while enhancing diagnostic effectiveness. To stabilize box
embeddings, we integrate contrastive learning objectives with re-
sponse prediction goals, optimizing the distance between positive
and negative samples of learner and exercise boxes to improve uni-
formity. Additionally, we develop a rank-based response prediction
method that leverages the geometric properties of box embeddings
to efficiently assess learners’ response correctness. Comprehensive
experiments on two real-world datasets demonstrate that BoxCD
outperforms traditional CD models in both effectiveness and effi-
ciency, showcasing its potential to enhance personalized learning
in digital education platforms.

ACM Reference Format:
Anonymous Author(s). 2024. BoxCD: Leveraging Contrastive Probabilistic
Box Embedding for Effective and Efficient Learner Modeling. In . ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Digital education platforms such as Coursera.com offer a wealth of
learning resources, such as exercises, within a flexible online envi-
ronment. This convenience attracts an increasing number of learn-
ers from diverse fields, such as law, engineering, and academia [16].
As online learning expands, there is a growing need for effective
tools to assess learners and support personalized learning. A key ac-
tivity in online learning is “practice”, where learners independently
select and complete exercises. By analyzing learners’ response data
(e.g., correctness of answers), Cognitive Diagnosis (CD) models can
evaluate their cognitive states, such as problem-solving ability [10]
or proficiency in specific knowledge concepts [33]. For instance,
a CD model may diagnose a learner’s mastery probability of the
mathematical concept function as 0.7. The results of CD assessments
facilitate personalized services, including exercise recommenda-
tions [13] and adaptive testing [32, 40]. Thus, research on CD for
accurately assessing learners is of significant importance.

Since directly measuring learners’ cognitive states is challenging,
mainstream CD approaches obtain them indirectly [28]. They rep-
resent both learners’ cognitive states and the features of practiced
exercises (e.g., difficulty) as trainable vectors [5, 8], as illustrated in

Learner

Exercise
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Learner

Exercise

Difficulty

State

Low High

Bad

Good

Overlap

(a) (b)

Figure 1: Modeling framework for CD. (a) Learners and exer-
cises are represented as vectors (points). (b) In BoxCD, these
vector representations are transformed into box embeddings.

Figure 1 (a). These vectors are optimized together by fitting learners’
observed responses using a diagnosis function 𝑓 (·). While effective,
existing CD methods still face challenges in terms of effective-
ness and efficiency. Regarding effectiveness, current vectorized
representations of learners and exercises inadequately capture their
diversity and uncertainty. For instance, a learner’s cognitive state
and an exercise’s features fluctuate within specific ranges depend-
ing on the context. In a formal testing environment, stress and
anxiety can impair performance, while learners may excel in daily
practice due to reduced pressure. Consequently, the difficulty of
exercises and other characteristics may also vary due to changes
in learning states. Modeling such semantic diversity and uncer-
tainty using single points in vector space is insufficient. In terms
of efficiency, current methods predict the probability of a learner
correctly answering an exercise using neural networks [8], dot
products [24], or logistic-like functions [10]. These calculations, pri-
marily involving neural networks, are time-consuming, especially
when applied to large volumes of exercises in real-world educa-
tional platforms. It renders them unsuitable for rapid online services
like adaptive testing [40]. Although some platforms use offline com-
putation and store responses for timely online retrieval, the initial
computation for each trained CD model is still time-consuming.
In summary, there is a pressing need for a more comprehensive
solution to enhance the effectiveness and efficiency of CD tasks.

Recently, geometric embedding techniques, such as probabilis-
tic box embeddings [6, 23], have shown promise in addressing
the current limitations of CD. Probabilistic box embeddings rep-
resent objects (e.g., learners and exercises) as high-dimensional
axis-aligned hyper-rectangles. The interactions between these ob-
jects, such as the probability of a learner correctly answering an
exercise, are quantified by the volume of their intersecting boxes.
As shown in Figure 1 (b), mapping learners and exercises into box
representations allows for a natural modeling of their diversity and
uncertainty. Moreover, it becomes straightforward to determine
whether the learner boxes and exercise boxes overlap in space. This
property enables us to efficiently identify which exercises a learner
can answer correctly, thereby intuitively reducing the time required
for response predictions across numerous exercises.
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However, integrating probabilistic box embeddings into CDmod-
els presents several technical challenges: (1) Stabilizing Box Em-
beddings. Learners’ online learning can be irregular, often focusing
only on problems they excel at, leading to sparse response records
for most learners [38]. Box embeddings optimized on sparse records
are prone to instability [23]. Furthermore, compared to traditional
vector embeddings, box embeddings optimized by calculating inter-
secting volumes are more susceptible to overlap [18]. This overlap
can hinder the differentiation of learners’ and exercises’ representa-
tions, counteracting the goal of intelligent education to distinguish
between various learner types and the interactions between learners
and exercises. To address this, we propose combining contrastive
learning objectives to enhance the uniformity of box represen-
tations by bringing positive pairs closer together and separating
negative pairs. However, this approach is limited by the second
challenge: (2) Training Dilemma from Disjoint Boxes.When
the learner and exercise boxes are disjoint, the gradient from the
vanilla training loss of CD (i.e., predicting responses based on box
intersections) vanishes, as shown by [6]. Similarly, for a pair of sep-
arated contrast training samples, the contrastive learning loss does
not provide gradients for further movement. (3)High Efficiency in
Response Prediction.While assessing the correctness of learners’
responses based on box overlap may seem straightforward visually,
formalizing this useful prior mathematically and integrating it into
the CD model remains an unresolved issue.

To address these three limitations, we propose a contrastive prob-
abilistic Box embedding model for Cognitive Diagnosis (BoxCD)
to achieve an effective and efficient learner modeling. By utilizing
probabilistic box embeddings, we can better represent learners and
exercises in cognitive diagnosis tasks. The volume of overlap be-
tween learner and exercise boxes serves as the basis for response
predictions. This method offers satisfactory psychological inter-
pretability within the context of CD. To tackle the first limitation,
BoxCD combines contrastive learning objectives with the intrinsic
response prediction goal of CD, optimizing the distance between
positive and negative samples of learner and exercise boxes. Figure 4
illustrates that the distribution of learner and exercise boxes be-
comes more uniform after applying contrastive learning. To address
the second limitation, we employ a Gumbel-based volume calcula-
tion objective [6] to prevent gradient vanishing. After learning the
box embeddings, we implement a rank-based response prediction
method using box intersections to quickly determine whether each
learner can answer the exercises correctly. Since the probability
of answering incorrectly for unpracticed exercises is zero, there is
no need to predict the performance for such cases. Consequently,
this narrows the scope of exercises for which the probability of
answering correctly needs further prediction, thereby improving
efficiency. Comprehensive experimental results on two real-world
datasets demonstrate that the proposed BoxCD outperforms tra-
ditional CD models with vector embeddings in both effectiveness
and efficiency.

2 Related Work
2.1 Cognitive Diagnosis
As a fundamental task, cognitive diagnosis (CD) has been exten-
sively studied in educational psychology for decades [2, 20]. Its

primary aim is to profile learners’ implicit cognitive states, such
as their abilities or proficiency in specific knowledge concepts, by
analyzing observed practice records (e.g., correct and incorrect re-
sponses). Existing research on CD operates under the assumption
that learners’ knowledge proficiency correlates with their prac-
tice performance, following the psychological Monotonicity as-
sumption [33]. Consequently, diagnosis is achieved by predicting
learners’ practice responses [8]. The diagnostic results of CD can
be applied to various intelligent applications, including exercise
recommendation [14] and adaptive testing [32], prompting the de-
velopment of numerous CD models in recent years. Early studies,
such as IRT [10] and MIRT [1], as well as matrix factorization
approaches like MCD [24], focus on modeling learners’ answer-
ing processes by predicting the probability of correct responses,
utilizing latent factors to represent learners’ abilities. However,
these methods often lack interpretability, as they cannot provide
explicit multidimensional diagnostic results for each knowledge
concept. To enhance interpretability, subsequent CD models have
aimed to incorporate knowledge concepts related to questions, al-
lowing for a diagnosis of learners’ proficiency across all knowledge
concepts [2, 5, 8, 22, 26, 30, 36–38]. NCDM [33], one of the most
representative models, employs neural networks to capture com-
plex interactions, moving beyond the linear interaction functions
used in earlier works (e.g., IRT and MIRT).

In summary, existing CD studies represent learners’ cognitive
states through trainable vectors. However, as discussed in our intro-
duction, this approach has limitations regarding both effectiveness
and efficiency.

2.2 Probabilistic Box Embedding
Probabilistic box embeddings [29, 31] have been developed to model
objects as high-dimensional, axis-aligned hyperrectangles. These
box embeddings exhibit strong representational capabilities, espe-
cially for transitive relations. However, optimizing them using stan-
dard gradient descent techniques presents significant challenges.
To address this, [17] employs Gaussian convolution to smooth the
edges of the boxes, effectively alleviating the zero gradient problem.
Additionally, [6] utilizes the Gumbel distribution to tackle local
identifiability issues.

Recently, several applications based on box representations have
emerged. For example, Query2Box [27] leverages box embeddings
for logical reasoning within knowledge graphs, encoding queries
and entities as boxes. Other studies [4, 18, 19, 23] aim to capture
user interests by examining the intersections of items users have
interacted with for recommendation tasks. However, to the best of
our knowledge, research on the application of box embeddings in
educational contexts remains unexplored.

3 Background
In this section, we first demonstrate the basic setup of Cognitive Di-
agnosis (CD). Then, we briefly introduce how the previous attempts
model the CD task with vector embeddings. Finally, we define the
key notions and operations of box embeddings that will be used to
implement the BoxCD model.
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3.1 Basic Setup of CD
Notions. In a CDmodel, there are𝑁 learnersU = {𝑢1, 𝑢2, . . . , 𝑢𝑁 },

𝑀 exercises E = {𝑒1, 𝑒2, . . . , 𝑒𝑀 } and 𝐶 knowledge concepts. Each
learner 𝑢𝑖 ’s cognitive state (e.g., problem-solving ability or knowl-
edge proficiency) and each exercise 𝑒 𝑗 ’s features (e.g., difficulty) are
represented as trainable embeddings such as vector embeddings or
box embeddings. Each exercise tests one or more of the 𝐶 knowl-
edge concepts. The responses of the learners are provided in triples
R = {(𝑢𝑖 , 𝑒 𝑗 , 𝑦𝑖, 𝑗 )}, where 𝑦𝑖, 𝑗 (either 1 or 0, as training label) indi-
cates whether the learner𝑢𝑖 answered exercise 𝑒 𝑗 correctly. Overall,
the input data for training a CD model includes each response data
𝑅𝑖, 𝑗 = (𝑢𝑖 , 𝑒 𝑗 , 𝑦𝑖, 𝑗 ) ∈ R, as well as corresponding vector or box
embeddings of learner 𝑢𝑖 and exercise 𝑒 𝑗 .

Given the above input, the goal of a CD model 𝑓 (·) is to: (1)
infer the cognitive state of each learner, and (2) predict learners’
responses to unpracticed exercises.

Optimization. Since directly obtaining learners’ true cognitive
states as training labels is challenging [2], existing CD models opti-
mize these states indirectly by fitting learners’ responses to specific
exercises (i.e., whether they answer correctly) based on observed
response data. Through joint training, these models can optimize
learners’ abilities or proficiency on specific knowledge concepts, as
indicated by the exercises they have practiced. Additionally, they
can derive meaningful exercise features, such as difficulty.

To ensure the interpretability of diagnostic results, CD models
adhere to the psychologicalMonotonicity assumption [34], which
posits that the probability of a correct response increases with the
learner’s cognitive state.

3.2 Modeling CD with Vector Embedding
In vector embedding setups, the cognitive state of each learner
𝑢𝑖 ∈ U and the feature of each exercise 𝑒 𝑗 ∈ E are represented as
𝑑-dimensional vectors, u𝑖 and e𝑗 , respectively. For ability-focused
models, 𝑑 = 1 for single-aspect models such as IRT [10], and 𝑑 ∈ R+

for multi-aspect models such as MIRT [1]. For proficiency-focused
models such as NCDM [33] and RCD [8], 𝑑 always equals the num-
ber of knowledge concepts 𝐶 , where 𝑢𝑖,𝑐 indicates the mastery
probability of learner 𝑖 on concept 𝑐 tested by exercise 𝑗 . After
training by fitting learner responses, vectors of learner cognitive
states and exercise features, and parameters of the CD model 𝑓 (·)
are jointly optimized.

To meet the Monotonicity assumption, diagnosis function 𝑓 (·)
should be monotonically increasing (e.g., Sigmoid) or be the neural
network with non-negative weights, ensuring 𝜕𝑓 (·)/𝜕u𝑖 ≥ 0.

3.3 Probabilistic Box Embedding
Notions. In probabilistic box embeddings [6, 23], given an object

𝑥 (e.g., the learner or exercise in our context), a 𝑑-dimensional
box embedding (i.e., an axis-aligned hyper-rectangle) is used to
represent it, in which the parameters contain two vectors that
correspond to the lower and upper boundaries of the box in 𝑑

dimensions, i.e., x∧ and x∨, respectively. Let 𝑏𝑜𝑥 (𝑥) associate the
box embedding of object 𝑥 , and we have

𝑏𝑜𝑥 (𝑥) =
〈
x∧, x∨

〉
=

〈[
𝑥∧1 , 𝑥

∨
1
]
,
[
𝑥∧2 , 𝑥

∨
2
]
, . . . ,

[
𝑥∧
𝑑
, 𝑥∨

𝑑

]〉
∈ R1 .

(1)

The the volume of𝑏𝑜𝑥 (𝑥) is the interval lengths of the𝑑-dimensional
boundaries as follows:

𝑉 (𝑏𝑜𝑥 (𝑥)) =
𝑑∏

𝑘=1

(
𝑥∨
𝑘
− 𝑥∧

𝑘

)
∈ R1 . (2)

Below, we introduce two existing box operations.

Intersection of TwoBoxes. Given the box representations𝑏𝑜𝑥 (𝑎)
and 𝑏𝑜𝑥 (𝑏) of any two objects 𝑎 and 𝑏, we can obtain their overlap-
ping region, a 𝑑-dimensional box, 𝑏𝑜𝑥 (𝑎) ∩ 𝑏𝑜𝑥 (𝑏) by intersection:

𝑏𝑜𝑥 (𝑎) ∩ 𝑏𝑜𝑥 (𝑏) = ⟨[𝑎1 ∩ 𝑏1] , [𝑎2 ∩ 𝑏2] , . . . , [𝑎𝑑 ∩ 𝑏𝑑 ]⟩ , (3)

where the 𝑘-dimensional lower and upper boundaries of 𝑏𝑜𝑥 (𝑎) ∩
𝑏𝑜𝑥 (𝑏) are calculated by 𝑎𝑘 ∩ 𝑏𝑘 =

[
max

(
𝑎∧
𝑘
, 𝑏∧

𝑘

)
,min

(
𝑎∨
𝑘
, 𝑏∨

𝑘

)]
.

If two boxes are disjoint, it means there always exists at least one
dimension 𝑘 such that max

(
𝑎∧
𝑘
, 𝑏∧

𝑘

)
> min

(
𝑎∨
𝑘
, 𝑏∨

𝑘

)
.

The volume of 𝑏𝑜𝑥 (𝑎) ∩ 𝑏𝑜𝑥 (𝑏) is calculated by:

𝑉 (𝑏𝑜𝑥 (𝑎) ∩ 𝑏𝑜𝑥 (𝑏)) =
𝑑∏

𝑘=1
max

(
0,min

(
𝑎∨
𝑘
, 𝑏∨

𝑘

)
−max

(
𝑎∧
𝑘
, 𝑏∧

𝑘

))
∈ R1 .

(4)
The Eq. (4) ensures the volume of 𝑉 (𝑏𝑜𝑥 (𝑎) ∩ 𝑏𝑜𝑥 (𝑏)) is always
non-negative, even ifmin

(
𝑎∨
𝑘
, 𝑏∨

𝑘

)
might be smaller thanmax

(
𝑎∧
𝑘
, 𝑏∧

𝑘

)
.

Union of Multiple Boxes. Given a set of box representations
𝑏𝑜𝑥 (𝑥1), 𝑏𝑜𝑥 (𝑥2), . . . , 𝑏𝑜𝑥 (𝑥𝑛) of multiple objects 𝑥1, 𝑥2, . . . , 𝑥𝑛 , we
can obtain their union region, a 𝑑-dimensional box, 𝑏𝑜𝑥 (𝑥1) ∪
𝑏𝑜𝑥 (𝑥2) ∪ . . . ∪ 𝑏𝑜𝑥 (𝑥𝑛) by union:

𝑏𝑜𝑥 (𝑥1) ∪ 𝑏𝑜𝑥 (𝑥2) ∪ . . . ∪ 𝑏𝑜𝑥 (𝑥𝑛)
=

〈[
𝑥1,1 ∪ 𝑥2,1 ∪ . . . ∪ 𝑥𝑛,1

]
,
[
𝑥1,2 ∪ 𝑥2,2 ∪ . . . ∪ 𝑥𝑛,2

]
,

. . . ,
[
𝑥1,𝑑 ∪ 𝑥2,𝑑 ∪ . . . ∪ 𝑥𝑛,𝑑

]
∈ R𝑑 ,

(5)

where the𝑘-dimensional lower and upper boundaries of𝑏𝑜𝑥 (𝑥1,𝑘 )∪
𝑏𝑜𝑥 (𝑥2,𝑘 ) ∪ . . . ∪ 𝑏𝑜𝑥 (𝑥𝑛,𝑘 ) are calculated by 𝑥1,𝑘 ∪ 𝑥2,𝑘 ∪ . . . ∪
𝑥𝑛,𝑘 =

[
min

(
𝑥∧1,𝑘 , 𝑥

∧
2,𝑘 , . . . , 𝑥

∧
𝑛,𝑘

)
,max

(
𝑥∨1,𝑘 , 𝑥

∨
2,𝑘 , . . . , 𝑥

∨
𝑛,𝑘

)]
. The

union operation ensures that the boundaries span the entire re-
gion covered by all the boxes in each dimension.

The volume of 𝑛 boxes’ union is calculated by:
𝑉 (𝑏𝑜𝑥 (𝑥1) ∪ 𝑏𝑜𝑥 (𝑥2) ∪ . . . ∪ 𝑏𝑜𝑥 (𝑥𝑛))

=

𝑑∏
𝑘=1

(
max

(
𝑥∨1,𝑘 , 𝑥

∨
2,𝑘 , . . . , 𝑥

∨
𝑛,𝑘

)
−min

(
𝑥∧1,𝑘 , 𝑥

∧
2,𝑘 , . . . , 𝑥

∧
𝑛,𝑘

))
∈ R1 .

(6)

The above introduction lays the foundation for exploring BoxCD
in the context of box embeddings in § 4.1.

4 BoxCD Model
In this section, we first give the basic formulation and optimization
of BoxCD (see § 4.1). Then, we introduce an additional contrastive
box learning objective in the optimization process of BoxCD (see
§ 4.2), which addresses the first technical challenge by enhancing
the discrimination of box representations. Afterwards, a Gumbel-
based volume objective [6] is adopted to mitigate the second chal-
lenge of the gradient vanishing issue.

3
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4.1 Formulation of BoxCD
In BoxCD, each learner 𝑢𝑖 ∈ U and each exercise 𝑒 𝑗 ∈ E are
represented as 𝑑-dimensional box embeddings, denoted as 𝑏𝑜𝑥 (𝑢𝑖 )
and 𝑏𝑜𝑥 (𝑒 𝑗 ), respectively. Specifically, we have:

𝑏𝑜𝑥 (𝑢𝑖 ) =
〈
u𝑖,∧, u𝑖,∨

〉
=

〈[
𝑢
𝑖,∧
1 , 𝑢

𝑖,∨
1

]
,

[
𝑢
𝑖,∧
2 , 𝑢

𝑖,∨
2

]
, . . . ,

[
𝑢
𝑖,∧
𝑑

, 𝑢
𝑖,∨
𝑑

]〉
,

𝑏𝑜𝑥 (𝑒 𝑗 ) =
〈
e𝑗,∧, e𝑗,∨

〉
=

〈[
𝑒
𝑗,∧
1 , 𝑒

𝑗,∨
1

]
,

[
𝑒
𝑗,∧
2 , 𝑒

𝑗,∨
2

]
, . . . ,

[
𝑒
𝑗,∧
𝑑

, 𝑒
𝑗,∨
𝑑

]〉
.

(7)

For the CD task, given the box embeddings of the learner and
the exercise, it needs to predict the probability 𝑦𝑖, 𝑗 that learner 𝑢𝑖
answers exercise 𝑒 𝑗 correctly, the same as vector embedding-based
CD. However, it is intractable to still apply neural networks, dot
product or logistic-like functions, used in vector-based CD models,
to predict response due to the complex structure within the box
representations. Instead, we determine the predicted probability
𝑦𝑖, 𝑗 by the volume of the intersection of their respective boxes,

𝑦𝑖, 𝑗 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑
(
𝑉

(
𝑏𝑜𝑥 (𝑢𝑖 ) ∩ 𝑏𝑜𝑥 (𝑒 𝑗 )

) )
, (8)

where 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (·) is the Sigmoid function 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) = 1/(1 + 𝑒−𝑥 ),
mapping the overlapping volume to a range of 0 to 1.

It is worth noting that, the intersection-based prediction (Eq. (8))
has the following spotlights: (S1: cognitive diagnosis-oriented)
The intersection of the learner’s box and the exercise’s box serves as
a reflection of the learner’s response to the exercise, which aligns
with the intrinsic training objective of cognitive diagnosis. (S2:
psychological interpretability) This equation upholds the Mono-
tonicity assumption commonly foundational in traditional CD mod-
els (as discussed in § (3.1)). The volume of the overlapping boxes
between the learner and the exercise is monotonically proportional
to the region of the learner’s box, continuing until the learner’s
box completely encompasses the exercise box. This characteristic
ensures psychological interpretability.

To optimize BoxCD, the predicted probability 𝑦𝑖, 𝑗 ∈ (0, 1) is
required to closely match the true response 𝑦𝑖, 𝑗 ∈ {0, 1}. We adopt
the binary cross-entropy loss as the optimization objective, which
is defined as:

L𝑟𝑒𝑠
𝑖, 𝑗 = −𝑦𝑖, 𝑗 log(𝑦𝑖, 𝑗 ) − (1 − 𝑦𝑖, 𝑗 ) log(1 − 𝑦𝑖, 𝑗 ). (9)

4.2 Contrastive Box Learning Objective
To address the first challenge of stabilizing box embeddings, we
incorporate two contrastive learning objectives into the BoxCD
training process. The contrastive learner-learner objective aims
to pull similar learner box representations closer together while
pushing dissimilar ones further apart, thereby facilitating the learn-
ing of discriminative cognitive states among learners. Meanwhile,
the contrastive learner-exercise objective aligns learner box
representations with the exercise boxes they can correctly answer,
while distancing them from exercises they cannot solve or have not
yet practiced. This approach enhances response prediction through
learner and exercise box intersection operations. As a result, the
learned box embeddings become both stable and distinguishable.

Given a batch of training data, denoted as R𝑏 , each entry cor-
responds to a response record (𝑢𝑖 , 𝑒 𝑗 , 𝑦𝑖, 𝑗 ) ∈ R𝑏 . For constructing
two contrastive learning objectives, we pair each learner in the

batch with both positive and negative samples, including learners
and exercise samples.

Contrastive Learner-learner Objective. For a learner 𝑢𝑖 , we
define the positive learner samples as the 𝑝 most similar learners
in the batch, while the negative learner samples consist of the 𝑞
least similar learners. To compute the similarity between learners,
we employ a straightforward operation widely used in prior re-
search [21], which involves calculating similarity scores based on
their response records. Specifically, we represent each learner 𝑢𝑖
by an 𝑀-dimensional vector r, where 𝑟𝑢,𝑗 takes on values of 1, 0,
or -1, indicating whether the learner answered exercise 𝑗 correctly,
incorrectly, or did not practice it, respectively. It is important to
note that 𝑟𝑢,𝑗 includes information about unpracticed exercises,
differing slightly from 𝑦𝑢,𝑗 introduced in the background section.
The similarity score between a pair of learners 𝑢𝑖 and 𝑢𝑖′ is then
computed using their response vectors r𝑢𝑖 and r𝑢𝑖′ , denoted as
𝑠𝑖𝑚(r𝑢𝑖 , r𝑢𝑖′ ). In our implementation, 𝑠𝑖𝑚(·) is defined as Cosine
Similarity due to its simplicity; however, other similarity functions,
such as the inner product, could also be utilized.

After obtaining the similarity scores for each pair of learners
within the batch, we can easily select the 𝑝 most similar learners as
positive samplesU𝑏

𝑖
+ and the 𝑞 least similar learners as negative

samples U𝑏
𝑖
− for each learner 𝑢𝑖 in the batch. Based on this, the

contrastive learner-learner learning objective is defined as follows:

L𝑐𝑙𝑙
𝑖, 𝑗 = −

∑︁
𝑢+
𝑖
∈U𝑏

𝑖
+

(
𝑏𝑜𝑥 (𝑢𝑖 ) ∩ 𝑏𝑜𝑥 (𝑢+𝑖 )

)
+

∑︁
𝑢−
𝑖
∈U𝑏

𝑖
−

(
𝑏𝑜𝑥 (𝑢𝑖 ) ∩ 𝑏𝑜𝑥 (𝑢−𝑖 )

)
.

(10)

Contrastive Learner-exercise Objective. For a learner 𝑢𝑖 , the
positive exercise samples consist of the exercises that 𝑢𝑖 has cor-
rectly answered in the training batch, while the negative exercise
samples include those that𝑢𝑖 has either answered incorrectly or has
not practiced within the same batch. We denote the positive and
negative exercise sets in the batch for learner 𝑢𝑖 as E𝑏

𝑖
+ and E𝑏

𝑖
− ,

respectively. Formally, the contrastive learner-exercise objective
can be expressed as:

L𝑐𝑙𝑒
𝑖, 𝑗 = −

∑︁
𝑒+
𝑗
∈E𝑏

𝑖
+

(
𝑏𝑜𝑥 (𝑢𝑖 ) ∩ 𝑏𝑜𝑥 (𝑒+𝑗 )

)
+

∑︁
𝑒−
𝑗
∈E𝑏

𝑖
−

(
𝑏𝑜𝑥 (𝑢𝑖 ) ∩ 𝑏𝑜𝑥 (𝑒−𝑗 )

)
.

(11)

4.3 Gumbel-based Volume Objective
Directly optimizing box embeddings using the basic overlapping
volume, i.e., Eq. (4), presents the second challenge of gradient van-
ishing, when two boxes do not intersect. This phenomenon hinders
gradient-based training methods from effectively optimizing the
model to meet the instinctive response prediction goals in CD,
Eq. (8). Additionally, it complicates the process of ensuring that pos-
itive pairs overlap and negative pairs are separated in contrastive
learning tasks, Eq. (10) and Eq. (11).

To address this issue, we draw inspiration from the work of Das-
gupta et al. [6] and propose treating the standard box embeddings as
Gumbel boxes. In this approach, we assume that the parameters of
the box embeddings follow independent Gumbel distributions. Con-
sequently, overlapping boxes, such as box(𝑢𝑖 ) ∩ box(𝑒 𝑗 ), are gener-
ated from these Gumbel distributions based on their corresponding
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vanilla box embeddings box(𝑢𝑖 ) and box(𝑒 𝑗 ). This methodology
ensures that all parameters remain active in gradient updates, even
when the boxes are disjoint. Formally, the Gumbel distributions are
defined as follows:

𝑓 (𝑥 ; 𝜇, 𝛽) = 1
𝛽
exp

(
−𝑥 − 𝜇

𝛽
− exp

(
−𝑥 − 𝜇

𝛽

))
, (12)

where 𝛽 controls the scale of the distribution, and 𝜇 governs the
mean of the distribution. To avoid confusion, we denote the new
lower and upper boundaries of overlapping boxes𝑏𝑜𝑥 (𝑢𝑖 )∩𝑏𝑜𝑥 (𝑒 𝑗 )
following Gumbel distributions as 𝜇∧

𝑖 𝑗
and 𝜇∨

𝑖 𝑗
. Each dimension 𝑘 of

𝜇∧
𝑖 𝑗
and 𝜇∨

𝑖 𝑗
is calculated by

𝜇∧
𝑖 𝑗,𝑘

:= min
(
𝑢∨
𝑖,𝑘
, 𝑒∨

𝑗,𝑘

)
∼ Gumbel

(
−𝛽 ln

(
𝑒
−

𝑢∧
𝑖,𝑘
𝛽 + 𝑒

−
𝑢∧
𝑗,𝑘

𝛽

)
, 𝛽

)
,

𝜇∨
𝑖 𝑗,𝑘

:= max
(
𝑢∧
𝑖,𝑘
, 𝑒∧

𝑗,𝑘

)
∼ Gumbel

(
𝛽 ln

(
𝑒

𝑢∨
𝑖,𝑘
𝛽 + 𝑒

𝑢∨
𝑗,𝑘

𝛽

)
, 𝛽

)
.

(13)

Next, the overlapping volume is calculated by the expected length
for each dimension,

𝑉 (𝑏𝑜𝑥 (𝑢𝑖 ) ∩ 𝑏𝑜𝑥 (𝑒 𝑗 )) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

(
E

[
max

(
0, 𝜇∨

𝑖 𝑗,𝑘
− 𝜇∧

𝑖 𝑗,𝑘

)] )
= 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

(
𝑑∏

𝑘=1
𝛽 log

(
1 + 𝑒

−
(
𝜇∨
𝑖 𝑗,𝑘

−𝜇∧
𝑖 𝑗,𝑘

)
/𝛽−2𝛾

))
,

(14)

where 𝛾 is Euler-Mascheroni constant. The detailed derivation and
proof are given in [6]. Equipped with Eq. (14) to calculate the over-
lapping volume, the above loss functions Eq. (9), Eq. (10) and Eq. (11)
can be optimized across different training scenarios.

4.4 Model Training
To jointly learn the discriminative box embeddings for cognitive
diagnosis, we integrate the response fitting task (Eq. (9)) with the
additional contrastive box learning tasks (Eq. (10) and Eq. (11)) to
obtain the final loss function:

L =
∑︁

R𝑏⊂R

1
|R𝑏 |

∑︁
𝑅𝑖,𝑗 ∈R𝑏

(
L𝑟
𝑖, 𝑗 + 𝛼

(
L𝑐𝑙𝑙
𝑖, 𝑗 + L𝑐𝑙𝑒

𝑖, 𝑗

))
. (15)

where R𝑏 ∈ R denote a batch of response data and 𝛼 is a coefficient
to control the contrastive learning influence.

5 Response Inference & Cognitive State Output
After the training stages, we can obtain the optimized discrimina-
tive box embeddings for each learner 𝑢𝑖 ∈ U and exercise 𝑒 𝑗 ∈ E
through model inference. In this section, we will first demonstrate a
highly efficient rank-based response prediction strategy (see § 5.1)
to address the third technical challenge related to response pre-
diction efficiency. Subsequently, we will introduce the process of
obtaining numeric representations of learners’ cognitive states (see
§ 5.2), which serves as a crucial foundation for further personalized
applications in digital education [14, 32].

5.1 Efficient Response Prediction
To enhance the efficiency of response predictions for exercises
that each learner has not yet practiced, we leverage the geometric
properties of box embeddings. This approach streamlines the com-
putation required to determine whether the boxes overlap, allowing
us to efficiently assess whether each learner can correctly answer
a given exercise. Since the probability of answering incorrectly
for unpracticed exercises is zero, there is no need to predict the
performance for such cases. Consequently, this narrows the scope
of exercises for which the probability of answering correctly needs
further prediction, thereby improving efficiency.

Response Correctness Inference. As mentioned above, box
𝑏𝑜𝑥 (𝑢𝑖 ) of the learner 𝑢𝑖 and the box 𝑏𝑜𝑥 (𝑒 𝑗 ) of the exercise 𝑒 𝑗
that 𝑢𝑖 cannot correctly answer are disjoint when there exists at
least one dimension 𝑘 such that max(𝑢∧

𝑖,𝑘
, 𝑒∧

𝑗,𝑘
) > min(𝑢∨

𝑖,𝑘
, 𝑒∨

𝑗,𝑘
).

This means the following two situations:
• The lower bound 𝑢∧

𝑖,𝑘
of the learner box 𝑏𝑜𝑥 (𝑢𝑖 ) is larger

than the upper bound 𝑒∨
𝑗,𝑘

of the exercise box 𝑏𝑜𝑥 (𝑒 𝑗 ).
• The upper bound 𝑢∨

𝑖,𝑘
of the learner box 𝑏𝑜𝑥 (𝑢𝑖 ) is smaller

than the lower bound 𝑒∧
𝑗,𝑘

of the exercise box 𝑏𝑜𝑥 (𝑒 𝑗 ).
Based on the above two cases, the key point in determining

whether the learner box 𝑏𝑜𝑥 (𝑢𝑖 ) and the exercise box 𝑒 𝑗 overlap or
are disjoint is to compare the size of their boundaries in each dimen-
sion 𝑘 , i.e., 𝑢∧

𝑖,𝑘
and 𝑒∨

𝑗,𝑘
, or 𝑢∨

𝑖,𝑘
and 𝑒∧

𝑗,𝑘
, respectively. Therefore, we

sort the lower and upper boundaries of each dimension 𝑘 for each
exercise 𝑒 𝑗 ∈ E. The ascending sorted box indices with respect to
the lower and upper bound sets are denoted as

{
𝑒∧
𝑘,1, 𝑒

∧
𝑘,2, . . . , 𝑒

∧
𝑘, | E |

}
and

{
𝑒∨
𝑘,1, 𝑒

∨
𝑘,2, . . . , 𝑒

∨
𝑘, | E |

}
, respectively. Hereby, the sorted lower

and upper bound sets, [𝑏𝑜𝑥 (E)]∧
𝑖,𝑘

and [𝑏𝑜𝑥 (E)]∨
𝑖,𝑘
, are given as:

[𝑏𝑜𝑥 (E)]∧
𝑖,𝑘

=

{(
𝑒∧
𝑘,1

)∧
𝑘
,

(
𝑒∧
𝑘,2

)∧
𝑘
, . . . ,

(
𝑒∧
𝑘, | E |

)∧
𝑘

}
,

[𝑏𝑜𝑥 (E)]∨
𝑖,𝑘

=

{(
𝑒∨
𝑘,1

)∨
𝑘
,

(
𝑒∨
𝑘,2

)∨
𝑘
, . . . ,

(
𝑒∨
𝑘, | E |

)∨
𝑘

}
.

(16)

For each dimension𝑘 , the lower bound𝑢∧
𝑘
and upper bound𝑢∨

𝑘
of

the learner box serve as keys for searching within the sorted upper
bounds [𝑏𝑜𝑥 (E)]∧

𝑖,𝑘
and lower bounds [𝑏𝑜𝑥 (E)]∨

𝑖,𝑘
of the exercise

sets E, respectively. The search operation identifies two position
indices 𝑒+

𝑖
and 𝑒−

𝑖
, ensuring that

(
𝑒∧
𝑘,𝑒+

𝑖

)∧
𝑘
< 𝑢∨

𝑖,𝑘
≤

(
𝑒∧
𝑘,𝑒+

𝑖
+1

)∧
𝑘
and(

𝑒∨
𝑘,𝑒−

𝑖
−1

)∨
𝑘
≤ 𝑢∧

𝑖,𝑘
<

(
𝑒∨
𝑘,𝑒−

𝑖

)∨
𝑘
. Exercises indexed between 𝑒+

𝑖,𝑘
and

𝑒−
𝑖,𝑘

indicate that learners can correctly respond, denoted as E+
𝑖
,

while those before 𝑒+
𝑖,𝑘

and after 𝑒−
𝑖,𝑘

are exercises they cannot solve
correctly, denoted as E−

𝑖
.

Correct Response Probability Calculation. After obtaining
the exercise sets E+

𝑖
and E−

𝑖
for each learner, we can first ensure

that the probability that 𝑢𝑖 correctly answers each exercise in E−
𝑖

is always 0 since the learner 𝑢𝑖 cannot correctly solve them. This
step narrows down the cost of calculated probabilities. Then, we
can infer the probability that each learner 𝑢𝑖 correctly answers
each exercise 𝑒 𝑗 ∈ E+

𝑖
by input the learner box embedding 𝑏𝑜𝑥 (𝑢𝑖 )

and each exercise box embedding 𝑏𝑜𝑥 (𝑒 𝑗 ), 𝑒 𝑗 ∈ E+
𝑖
to our model
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and calculate the probability 𝑦𝑖, 𝑗 = 𝑉 (𝑏𝑜𝑥 (𝑢𝑖 ) ∩ 𝑏𝑜𝑥 (𝑒 𝑗 )) based on
Eq. (14).

Time Complexity Analysis. The set of unpracticed exercises
for each learner 𝑢𝑖 ∈ U is denoted as E𝑖 := E+

𝑖
∪ E−

𝑖
, with an

average probability 𝑝𝑖 = |E+
𝑖
|/|E𝑖 | of answering correctly. This

indicates that the box representing learner𝑢𝑖 has a probability 𝑝𝑖 of
intersecting with each exercise’s box, while the average probability
of disjointness is (1 − 𝑝𝑖 ).

Next, we discuss the time complexity. The total time cost consists
of two components:

• Infer response correctness. By utilizing a classical sorting algo-
rithm (e.g., Quick Sort [12]), the time complexity for sorting
the 𝑑-dimensional box embeddings of E𝑢𝑖∼U |E𝑖 | unpracticed
exercises can be expressed as: 𝑂

(
E𝑢𝑖∼U𝑑 · |E𝑖 | logE𝑢𝑖∼U |E𝑖 |

)
.

• Infer response probability. The time cost for this operation is
determined by the expected size ofE𝑢𝑖∼U |E+

𝑖
|, resulting in a time

complexity of: 𝑂
(
E𝑢𝑖∼U

(
𝑑 · |E+

𝑖
|
) )

⇔ 𝑂
(
E𝑢𝑖∼U (𝑑 · |E𝑖 | · 𝑝𝑖 )

)
.

5.2 Learner Cognitive State Output
Traditional vector embedding-based CD models typically diagnose
either the latent problem-solving ability or the mastery probability
of specific knowledge concepts. In contrast, BoxCD utilizes the flex-
ibility of box operations to simultaneously represent both aspects
of cognitive states, thereby offering a more comprehensive learner
model. We present a Case Study in Appendix C to illustrate the
diagnostic output generated by BoxCD.

Problem-solving Ability. Problem-solving ability positively
correlates with the probability of answering correctly, which can
be represented by the intersection volume of the learner’s and
exercise boxes. To encapsulate each learner 𝑢𝑖 ’s problem-solving
ability, we define their box embedding 𝑏𝑜𝑥 (𝑢𝑎

𝑖
) based on overall

response performance. To achieve this, we introduce a novel box
accumulation operation defined as follows:

Box Accumulation

The accumulation of multiple boxes, specially cus-
tomized for BoxCD, refers to the process of sum-
ming a set of boxes with any overlap among them
is considered only once. Given 𝑛 box representations
𝑏𝑜𝑥 (𝑥1), 𝑏𝑜𝑥 (𝑥2), . . . , 𝑏𝑜𝑥 (𝑥𝑛), the accumulated box is de-
noted as

⊕𝑛
𝑖=1 𝑏𝑜𝑥 (𝑥𝑖 ), of which volume is calculated by

summing the individual volumes of each box with any
overlapping volume counted once:

𝑉

(⊕𝑛

𝑖=1
𝑏𝑜𝑥 (𝑥𝑖 )

)
=

𝑛∑︁
𝑖=1

𝑑∏
𝑘=1

(
𝑥∨
𝑖,𝑘

− 𝑥∧
𝑖,𝑘

)
−

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑛+1

𝑉 (𝑏𝑜𝑥 (𝑥𝑖 ) ∩ 𝑏𝑜𝑥 (𝑥 𝑗 )) ∈ R1 .

(17)

The learner ability is reflected by the accumulation of all the
intersections between 𝑢𝑖 ’s original box embeddings 𝑏𝑜𝑥 (𝑢𝑖 ) and

each exercise box representation 𝑏𝑜𝑥 (𝑒 𝑗 ) with 𝑗 = 1, 2, . . . , 𝑀 .

𝑏𝑜𝑥 (𝑢𝑎𝑖 ) =
⊕𝑀

𝑗=1
(
𝑏𝑜𝑥 (𝑢𝑖 ) ∩ 𝑏𝑜𝑥 (𝑒 𝑗 )

)
. (18)

We calculate the single-aspect ability using the accumulation vol-
ume operation: u𝑎

𝑖
= 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

(
𝑉

(
𝑏𝑜𝑥 (𝑢𝑎

𝑖
)
))

∈ R1. This approach
aligns with traditional CD models with 𝑑 = 1, such as IRT. To
capture multi-aspect abilities, akin to MIRT and MCD, we need to
define a box flatten operation that transforms the accumulation box
into a 𝑑-interval tie, resulting in a 𝑑-dimensional vector, as follows:

Flatten of Multiple Boxes

Flattening multiple boxes involves projecting the multiple
box embeddings into a flat vector space. Given a set of box
representations 𝑏𝑜𝑥 (𝑥1), 𝑏𝑜𝑥 (𝑥2), . . . , 𝑏𝑜𝑥 (𝑥𝑛), flattening
over them can be achieved by:
≍ (𝑏𝑜𝑥 (𝑥1), 𝑏𝑜𝑥 (𝑥2), . . . , 𝑏𝑜𝑥 (𝑥𝑛))
=

〈[
∥ 𝑎1,1, 𝑎2,1, . . . , 𝑎𝑛,1 ∥

]
,
[
∥ 𝑎1,2, 𝑎2,2, . . . , 𝑎𝑛,2 ∥

]
,

. . . ,
[
∥ 𝑎1,𝑑 , 𝑎2,𝑑 , . . . , 𝑎𝑛,𝑑 ∥

]
∈ R𝑑 ,

(19)

where the 𝑘-dimensional of vector
≍ (𝑏𝑜𝑥 (𝑥𝑘 ), 𝑏𝑜𝑥 (𝑥𝑘 ), . . . , 𝑏𝑜𝑥 (𝑥𝑘 )) is the cumulative
length of 𝑛 intervals without repeatedly considering
overlappng regions,

∥ 𝑎1,𝑘 , 𝑎2,𝑘 , . . . , 𝑎𝑛,𝑘 ∥=
𝑛∑︁
𝑖=1

(
𝑥∨
𝑖,𝑘

− 𝑥∧
𝑖,𝑘

)
−

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑛+1

max
(
0,min

(
𝑥∨
𝑖,𝑘
, 𝑥∨

𝑗,𝑘

)
−max

(
𝑥∧
𝑖,𝑘
, 𝑥∧

𝑗,𝑘

))
∈ R1 .

(20)

Then, we have u𝑎
𝑖
= 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

(
≍

(
𝑏𝑜𝑥 (𝑢𝑎

𝑖
)
))

∈ R𝑑 , where each
element 𝑢𝑎

𝑖,𝑘
denotes an ability factor in one of the 𝑑 aspects.

Knowledge Mastery Probability. BoxCD computes learners’
mastery probability of specific knowledge concepts in two steps.
First, it obtains knowledge concept embeddings; second, it calcu-
lates knowledge mastery by fusing knowledge and learner embed-
dings, following a similar pipeline proposed in [8, 33]. Specifically,
BoxCD represents the box embedding of each knowledge concept
𝑐𝑘 as the union of all exercise boxes that assess 𝑐𝑘 :

𝑏𝑜𝑥 (𝑐𝑘 ) = 𝑏𝑜𝑥 (𝑥1) ∪ 𝑏𝑜𝑥 (𝑥2) ∪ . . . ∪ 𝑏𝑜𝑥 (𝑥𝑛) (21)

which is a popular operation for representing knowledge concepts
in vector embedding-based CD models [33]. Subsequently, the mas-
tery box embedding concerning knowledge concept 𝑐𝑘 is deter-
mined by the intersection of the learner’s box 𝑏𝑜𝑥 (𝑢𝑖 ) and the box
representing the knowledge concept 𝑏𝑜𝑥 (𝑐𝑘 ). The scalar mastery
probability is represented as the box volume,𝑉 (𝑏𝑜𝑥 (𝑢𝑖 ) ∩ 𝑏𝑜𝑥 (𝑐𝑘 )),
which corresponds to 𝑢𝑖,𝑘 in traditional CD models, such as NCDM.
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Dataset Model ACC ↑ AUC ↑ F1-score ↑ RMSE ↓

ASSIST

IRT 65.63 70.90 79.25 47.31
MIRT 65.64 68.61 79.25 48.95
MCD 67.26 73.47 79.94 45.38
NCDM 73.63 76.73 80.25 42.64
KaNCD 73.05 76.58 81.60 42.67
RCD 72.81 76.75 80.54 42.39
DCD 61.49 62.77 70.91 47.34

ID-CDM 73.16 76.54 80.83 42.76
BoxCD 73.87 77.25 82.31 42.23

Junyi

IRT 68.21 78.35 80.10 43.46
MIRT 72.20 78.33 80.97 42.48
MCD 73.04 79.90 81.46 41.91
NCDM 72.86 78.06 80.75 42.40
KaNCD 76.14 81.18 82.87 40.45
RCD 76.95 82.29 83.20 39.84
DCD 76.41 78.01 80.48 42.19

ID-CDM 65.95 68.82 69.97 53.06
BoxCD 77.38 82.83 83.69 39.21

Table 1: Performance comparison. The best performance is
highlighted in bold. ↑ (↓) means the higher (lower) score the
better (worse) performance, the same as below.

6 Experiments
6.1 Experimental Settings

Datasets. We evaluate BoxCD and the baseline models on two
representative datasets: ASSIST [7] and Junyi [3]. The statistics for
these datasets are provided in Table 4, with more detailed descrip-
tions in Appendix A.

Baselines. The baselines include typical latent factor models
from educational psychology, such as IRT [10], MIRT [1], the ma-
trix factorization-based MCD [24], and deep learning models like
NCDM [33], RCD [8], KaNCD [34], ID-CDM [16], and DCD [39].
More details about the baselines are provided in Appendix B.

Evaluation. Since cognitive states are not directly observable,
CDMs are generally evaluated through student performance predic-
tion tasks on test datasets [2]. To evaluate prediction performance,
we use ACC, AUC, and F1-score as metrics for binary classification
(thresholded at 0.5) based on whether the response is correct. Addi-
tionally, we apply RMSE as a regression metric for correct response
probability, following previous work [8].

Implementation. We split all datasets into training, validation,
and test sets using a 7:1:2 ratio. For IRT, the dimension size 𝑑 is
set to 1, while for other models, 𝑑 corresponds to the number
of knowledge concepts. The mini-batch size is 256. During train-
ing, we select the learning rate 𝑙𝑟 from {0.001, 0.002, 0.005, 0.01},
with 𝑝, 𝑞 ∼ {3, 5, 10}, 𝛼 ∼ {0.1, 0.5, 1, 5, 10}, 𝛽 = 1, and 𝛾 = 1.
The optimal setups are 𝑙𝑟 = 0.002, 𝑝 = 5, 𝑞 = 5, 𝛼 = 1 for AS-
SIST, and 𝑙𝑟 = 0.002, 𝑝 = 5, 𝑞 = 10, 𝛼 = 1 for Junyi. All net-
work parameters are initialized using Xavier initialization [9]. Each
model is implemented in PyTorch [25] and optimized with the
Adam optimizer [15]. Each experiment is repeated five times, and
the average scores are reported. All experiments are conducted
on a Linux server equipped with two 3.00GHz Intel Xeon Gold
5317 CPUs and one Tesla A100 GPU. Our code is available at
https://anonymous.4open.science/r/BoxCD.

Model Latency (s) ↓ on Assist Latency (s) ↓ on Junyi
Correctness Probability Correctness Probability

IRT 8.21 6.14 14.63 8.52
BoxCD (𝑑=1) 4.62 5.07 7.73 8.38

MIRT 16.86 12.11 24.93 17.79
MCD 11.82 7.67 17.22 11.29
NCDM 10.58 8.42 20.50 11.57
KaNCD 27.03 17.93 40.13 24.61
RCD 34.52 24.06 303.52 244.26
DCD 18.81 11.38 20.59 16.31

ID-CDM 12.85 12.82 22.79 22.76
BoxCD 4.03 6.13 9.34 11.22

Table 2: The latency time on predicting the response correct-
ness and the correct response probability on test data.

6.2 Prediction Results and Analysis
Effectiveness. Table 1 presents the prediction performance of

BoxCD compared to baseline models in the learner response predic-
tion task. BoxCD consistently exceeds the performance of baseline
models across all datasets. These gains primarily result from model-
ing both learners and exercises as boxes in the latent space. Baseline
models use fixed vector representations for CD modeling, which
do not accommodate fluctuations in learner states and exercise
semantic uncertainty.

Efficiency. We compare the inference efficiency of each model
by measuring the prediction time on test sets. Table 2 displays
the inference time for predicting both binary response correct-
ness and correct response probability. Specifically, we include the
BoxCD with the 𝑑 = 1 setting to compare it with IRT (𝑑 = 1). The
following observations can be made: (1) Compared to vectorized
response prediction (i.e., all the baselines), we achieve better av-
erage inference latency. This improvement arises because we can
filter out a large proportion of incorrect response predictions using
fast rank-based operations, demonstrating the efficiency of the pro-
posed box embedding-based operation. (2) Baseline models predict
probabilities faster than they determine correctness since current
vector-based CDmodels first infer the probability of correctness and
then classify responses based on a threshold. In contrast, BoxCD
operates differently: it first classifies the correctness and only calcu-
lates the probability for items corresponding to correct responses.
Consequently, BoxCD’s correctness classification is faster than the
probability computation.

Ablation Study. We investigate the effects of each key compo-
nent of BoxCD. The results in Figure 2 illustrate the performance
of BoxCD under various conditions: the basic BoxCD defined in
§ 4.1 (denoted as vanilla), removal of the contrastive learner-learner
loss (w/o L𝑐𝑙𝑙 ), removal of the contrastive learner-exercise loss
(w/o L𝑐𝑙𝑒 ), and removal of the Gumbel-based volume objective
(w/o Gumbel) across two datasets. The results reveal the following:
(1) Removing any component negatively impacts BoxCD’s perfor-
mance. (2) Incorporating either contrastive loss, when paired with
Gumbel-based optimization, enhances the accuracy of the vanilla
model. However, the effect of the contrastive loss diminishes when
the Gumbel mechanism is removed, indicating that Gumbel-based
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Figure 2: Prediction accuracy of ablation study.

0.700

0.710

0.720

0.730

0.740

0.750

0.760

0.770

0.780

0.1 0.5 1.0 5.0 10.0
𝛼

ACC

𝑞

𝑝

ASSIST

Junyi

3

5

10

103 5

0.7356 0.7385 0.7362

0.7379 0.7387 0.7387

0.7374 0.7343 0.7293

Figure 3: ACC scores of BoxCD with: (Left) varying sampling
numbers, and (Right) different 𝛼 values.

optimization is crucial for mitigating gradient vanishing in the
context of contrastive learning.

6.3 Parameters Sensitivity
Impact of Sampling Number. Figure 3 (left part) illustrates the

impact of the number of positive (𝑝) and negative (𝑞) sample selec-
tions in the learner’s contrastive loss on ASSIST data. As shown
in the figure, with the increase in either 𝑝 or 𝑞, the model per-
formance begins to rise, indicating that introducing contrastive
learning among learners enhances the model. However, once a cer-
tain threshold is reached, the performance stabilizes, suggesting
that the gains from contrastive learning are limited.

Impact of 𝛼 . Figure 3 illustrates the impact of the parameter
𝛼 in the final loss function (Eq. (15)) on model performance. We
observe that the model performs optimally when 𝛼 is around 1.
Both excessively small and large values of 𝛼 result in a decline in
prediction performance.

6.4 Box Representation Analysis
Uncertainty. We compare the uncertainty captured by BoxCD

(e.g., fluctuations in learner states) with statistical uncertainty from
the data to evaluate the rationality of the box representation. The
interval length in each dimension reflects uncertainty: longer in-
tervals indicate higher uncertainty, while shorter intervals suggest
lower uncertainty. More response records for a learner or task
result in more accurate modeling and reduced uncertainty [35].
Table 3 presents the mean interval lengths of box representations
for all learners and exercises, normalized to the 0-1 range using
min-max scaling [11]. It also shows the average number of exercises
attempted by each learner and the average number of learners per
exercise. The Junyi dataset has more learners per exercise but fewer
exercises per learner compared to ASSIST, indicating lower uncer-
tainty in exercise boxes but higher uncertainty in learner boxes.
Consequently, the mean interval lengths for learner boxes in Junyi
are higher, while those for exercise boxes are lower, validating the
effectiveness of BoxCD’s uncertainty modeling.

Statistic ASSIST Junyi

Interval mean of learner boxes 0.4217 0.5322
Interval mean of exercise boxes 0.7124 0.6923
Interacted exercise number per learner 66.99 39.34
Interacted learner number per exercise 15.71 109.73
Table 3: Statistic results for uncertainty analysis.

Vanilla BoxCD BoxCD

Figure 4: The visualization of learner and exercise boxes.

Visualization. To investigate the contribution of contrastive
learning loss to box modeling, we visualize the learner and exercise
boxes generated by both BoxCD and the vanilla BoxCD (i.e., the
basic version from § 4.1, which does not incorporate contrastive
learning). For visualization, we transform both the learner and
exercise boxes into vectors using the flatten operation. Figure 4
demonstrates that the vanilla model, lacking box contrastive learn-
ing, results in data points clustering together, particularly among
learner points. In contrast, BoxCD effectively prevents the aggre-
gation of each box, leading to a more uniform distribution. This
highlights the importance of differentiation between learners and
exercises in education [5].

7 Conclusion
This work focuses on assessing learners’ cognitive states in the ed-
ucational context through Cognitive Diagnosis (CD). It highlights
the challenges of existing CD methods regarding effectiveness and
efficiency. These challenges stem from their reliance on vectorized
representations, which fail to capture the diversity and uncertainty
of learners and exercises. Additionally, the time-consuming nature
of response predictions exacerbates these issues. To address these
challenges, we propose a contrastive probabilistic Box embedding
model for Cognitive Diagnosis (BoxCD). This model employs prob-
abilistic box embeddings to represent learners and exercises more
accurately in CD tasks. We also introduce contrastive learning ob-
jectives to enhance the stability of the box embeddings. Finally,
we present a rank-based response prediction method that lever-
ages box intersections for faster predictions. Experimental results
demonstrate that BoxCD significantly outperforms existing mod-
els, underscoring its potential to enhance personalized learning
experiences on digital education platforms. As educational tech-
nologies continue to evolve, BoxCD represents a vital advancement
in harnessing cognitive diagnosis to better support learner success.
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A Dataset

Statistic ASSIST Junyi

Number of learners 4,163 1,000
Number of questions 17,746 835
Number of knowledge concepts 123 835
Number of concepts per exercise 1.21 1
Number of response records 267,416 353,835
#correct records / #incorrect records 65.77% 65.17%

Table 4: The statistics of two datasets.

We conduct experiments on two real-world datasets: ASSIST [7]
and Junyi [3]. The statistics of these datasets are summarized in
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Table 4. For all datasets, we retain the first-time exercise-answering
records for the same learner-exercise pairs to facilitate cognitive
diagnosis, aligning with common practices in previous studies [33].
Detailed information on the datasets and preprocessing methods is
provided below:

• ASSIST (ASSISTments 2009-2010 “skill builder”) [7]
This dataset is an open resource collected by the ASSIST-
ments online tutoring system1, which has become a popular
benchmark for cognitive diagnosis. We retain learners with
more than 15 response records in ASSIST to ensure that
each learner has sufficient data for diagnosis. Addition-
ally, since ASSIST does not provide the knowledge concept
graph required by the baseline RCD [8], we employ a sta-
tistical method proposed in RCD to automatically generate
the knowledge concept graph.

• Junyi [3] This dataset comprises online learning logs col-
lected from Junyi Academy, a Chinese online educational
platform2. It explicitly provides knowledge concept graphs,
which support the baseline model (i.e., RCD [8]) that re-
quires knowledge concept connections. Junyi is increas-
ingly used for evaluating online education tasks [5, 8]. We
randomly select 1,000 learners with more than 15 practice
records to ensure sufficient data for diagnosis.

B Baseline
The baselines include the typical latent factor models derived from
educational psychology, i.e., IRT [10],MIRT [1], theMatrix Factorization-
based MCD [24], and the deep learning-based models NCDM [33],
RCD [8], KaNCD [34], ID-CDM [16] and DCD [39].
• IRT [10]: IRT models unidimensional learners and exercises’

features with a logistic-like function.
• MIRT [1] extends the representation of learners and exercises in

IRT from one-dimensional to multidimensional.
• MCD [24] predicts learner performance by factoring score matrix

and get learners and exercises’ latent vectors.
• NCDM [33] is one of the most popular deep learning-based CD

methods, whichmodels high-order and complex student-exercise
interaction functions with MLPs.

• KaNCD [34] extends NCDM by extending NeuralCD with the
knowledge associations consideration into NCDM to improve
the diagnostic results.

• RCD [8] is the first KCG-based cognitive diagnosis model, in-
troducing relations between knowledge concepts and modeling
these relations using a graph structure.

• ID-CDM [16] extends the previous CD methods to extract the
initial features of learners and exercises from response data.

• DCD [39] disentangles learner representations to learn discrimi-
native learner cognitive states.

C Case Study
We present the cognitive state diagnosis results obtained using
BoxCD. Specifically, we randomly selected a learner (ID=250) from
the Junyi dataset, whose overall correct rate is 0.7713. Figure 5

1https://sites.google.com/site/assistmentsdata/
2https://www.junyiacademy.org/

Knowledge Concept Correct Rate

Algebra 0.77
Function 0.72
Advanced Vector 0.68
Derivative 0.57
Basic Trigonometry 0.55
Number 0.43

Table 5: Response statistics of a learner.

Figure 5: The visualization of the learner proficiency on sev-
eral knowledge concepts learned by BoxCD.

shows the cognitive state learned by BoxCD based on § 5.2, in-
cluding the learner’s overall ability (0.6732) and the mastery levels
across six knowledge concepts. Additionally, we calculate the cor-
rect response rates on exercises related to each knowledge concept
based on the learner’s original response data, summarized in Ta-
ble 5. The diagnosed ability aligns with the learner’s overall correct
rate, and the mastery levels of knowledge concepts positively cor-
relate with their accuracy on the corresponding exercises, adhering
to the psychological monotonicity assumption [33]. This correla-
tion reflects the rationality of the BoxCD diagnostic output. These
numerical representations of learners’ cognitive states serve as a
crucial foundation for further personalized applications in digital
education [13, 32].
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