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Abstract

Large Language Models (LLMs) have trans-001
formed natural language processing, yet their002
substantial model sizes often demand sig-003
nificant computational resources. To pre-004
serve computing resources and accelerate in-005
ference speed, it is crucial to prune redun-006
dant parameters, especially for experienced007
users who often need expert models tailored008
to specific downstream scenarios. However,009
current pruning methods primarily focus on010
maintaining models’ general capabilities, ei-011
ther requiring extensive post-training or per-012
forming poorly due to coarse-grained prun-013
ing. In this work, we design a Custom Pruning014
method (Cus-Prun) to prune a large general015
model into a smaller lightweight expert model,016
which is positioned along the “language”, “do-017
main” and “task” dimensions. By identify-018
ing and pruning irrelevant neurons of each di-019
mension, Cus-Prun creates expert models020
without any post-training. Our experiments021
demonstrate that Cus-Prun consistently out-022
performs other methods, achieving minimal023
loss in both expert and general capabilities024
across various models from different model025
families and sizes.026

1 Introduction027

Large language models (LLMs) (Achiam et al.,028

2023; Reid et al., 2024; Dubey et al., 2024; Team029

et al., 2024) have revolutionized the field of natural030

language processing (NLP), emerging as powerful031

tools with widespread applications across various032

languages (Cui et al., 2023; Yang et al., 2024a),033

domains (Li et al., 2023a; Roziere et al., 2023; Li034

et al., 2023b), and tasks (Azerbayev et al., 2024;035

Alves et al., 2024). However, the impressive per-036

formance of LLMs often comes at the cost of im-037

mense model sizes, mostly containing billions of038

parameters and thus demand significant computing039

resources (Goldstein et al., 2023; Musser, 2023).040

To address this issue, researchers have recently pro-041

posed various model pruning methods for LLMs. 042

These methods aim to reduce model parameters 043

while maintaining the overall performance through 044

techniques such as removal of unimportant struc- 045

tures (Ma et al., 2023; Men et al., 2024; Song et al., 046

2024), matrix approximation (Sharma et al., 2024; 047

Ashkboos et al., 2024), and extensive post-training 048

after pruning (Wang et al., 2024; Xia et al., 2024). 049

These existing pruning methods have primarily 050

focused on preserving the general capabilities of 051

the model, often evaluated using compound bench- 052

marks such as MMLU (Hendrycks et al., 2021) 053

consisting of a broad spectrum of tasks. While 054

aiming for overall versatility, they may not align 055

well with real-world user needs, which are usually 056

more specific and targeted. For instance, a user 057

might require a question-answering model tailored 058

specifically for the education domain in German. 059

Such specialized request in fact aligns well with the 060

fundamental motivation behind pruning: to create a 061

smaller model by eliminating unnecessary parame- 062

ters. In this context, “unnecessary” becomes much 063

clearer—parameters that are irrelevant to the spe- 064

cific use case can be considered redundant. Pruning 065

could therefore be leveraged to remove these irrel- 066

evant parameters, thereby producing a more spe- 067

cialized lightweight expert model for the desired 068

target. However, current pruning techniques pri- 069

marily focus on general capabilities, especially for 070

traditional NLP tasks in English, and often employ 071

coarse-grained pruning approaches, and sometimes 072

require extensive post-training after pruning (Xia 073

et al., 2024; Zhao et al., 2024a; Men et al., 2024). 074

Therefore, a more fine-grained and expert model 075

targeting approach is needed to effectively tailor 076

models to particular user needs while maintaining 077

the general performance. 078

In this work, we introduce a novel Custom 079

Pruning (Cus-Prun) method, designed to prune 080

a large general model into a small specialized 081

expert model tailored for specific scenarios. To 082
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Figure 1: Given a request for an expert model
across three dimensions (language, domain, and task),
Cus-Prun (i) identifies irrelevant neurons for each di-
mension using corresponding corpora, and (ii) prunes
overlapping irrelevant neurons across dimensions to
obtain the expert model.

achieve widespread utility and adaptability, we083

define the expert model by positioning the target084

user’s needs along three key dimensions: language085

(e.g., English, Chinese, Germain), domain (e.g., E-086

commerce, education), and task (e.g., QA, summa-087

rization). Then motivated by existing studies that088

certain neurons are responsible for certain func-089

tions (Zhao et al., 2024b; Tang et al., 2024; Liang090

et al., 2024), Cus-Prun identifies and preserves091

critical neurons that are more relevant to particular092

languages, domains, or tasks, while pruning less093

relevant ones, ultimately leading to a smaller ex-094

pert models. Specifically, as illustrated in Figure095

1, Cus-Prun first identifies irrelevant neurons for096

each dimension by assessing the impact of their097

removal on the generated output when processing098

corresponding corpus, which could be easily con-099

structed from the relevant plain text documents.100

Next, the expert model is constructed by pruning101

irrelevant neurons across all dimensions. Further-102

more, Cus-Prun’s flexibility allows it to focus103

on one, two, or all three dimensions (language, do-104

main, task) as needed, making it adaptable to a105

wide range of real-world applications where spe-106

cialized LLMs are required. In addition, the general107

capability is largely preserved because the pruning108

is fine-grained at the neuron level, allowing essen-109

tial neurons in the backbone to be mostly retained.110

We conduct comprehensive experiments to eval-111

uate the performance of Cus-Prun across various112

scenarios. Experimental results demonstrate that it113

consistently outperforms other pruning methods in114

all settings. For three-dimensional specific expert 115

models, Cus-Prun prunes 25.0% of parameters 116

while incurring only a 14% drop in expert capa- 117

bility (averaging across multilingual, multidomain, 118

and multitask datasets) and 12% on general capa- 119

bility (averaging performance on three representa- 120

tive compound NLP benchmarks) for Llama2-13B. 121

In contrast, others suffer a 38% reduction in ex- 122

pert capabilities, and the trend is consistent across 123

multiple models from different model families and 124

sizes, such as Mistral-Nemo-12B, Llama3-8B, and 125

Llama3-70B. For more focused applications, such 126

as two- or one-dimensional specific expert mod- 127

els (e.g., language-domain specific or language- 128

specific models), Cus-Prun also significantly sur- 129

passes other pruning methods, demonstrating its 130

versatility and effectiveness across various special- 131

ized settings. 132

2 Custom Pruning (Cus-Prun) 133

An expert model could be generally positioned 134

from three dimensions: “language” (L ∈ L), “do- 135

main” (D ∈ D), and “task” (T ∈ T), which can be 136

represented as LLMExp := (L,D, T ) ∈ L×D×T. 137

Specifically, the language dimension encompasses 138

various languages such as English, Spanish, and 139

Thai. The domain dimension covers different fields 140

like finance, legal, and medical. The task dimen- 141

sion includes various applications such as question- 142

answering, data-to-text, and summarization. In 143

this section, we propose a custom pruning method 144

named Cus-Prun to derive smaller expert models 145

with flexible customization granularity. 146

2.1 Foundational Custom Pruning 147

Drawing inspiration from recent LLM interpreta- 148

tion studies (Tang et al., 2024; Liang et al., 2024; 149

Zhao et al., 2024b) that many parameters in the 150

model are irrelevant to processing a specific “lan- 151

guage”, we hypothesize that this phenomenon can 152

be extended to other dimensions such as “domain” 153

and “task”, meaning that certain parameters re- 154

main unused when handling a specific dimension. 155

In contrast to other studies that examine redun- 156

dant layers (Song et al., 2024; Men et al., 2024) 157

or modules (Zhang et al., 2024), Cus-Prun in- 158

volves a more fine-grained investigation focusing 159

on redundant neurons, defined as individual rows 160

or columns in parameter matrices across all model 161

components, including attention and feed-forward 162

layers in language models. 163
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Concretely, when handling each dimension, we164

identify a specific set of irrelevant neurons in the165

original LLM, denoted as ÑL, ÑD, and ÑT for166

L, D, and T , respectively. Specifically, to identify167

irrelevant neurons corresponding to the selected168

dimension, we construct a corpus within that di-169

mension while ablating others. For example, to de-170

termine irrelevant neurons for a specific language171

LExp, we create a corpus set172

CLExp = {(LExp, D, T )|D ∈ D, T ∈ T}, (1)173

comprising documents in language LExp across var-174

ious domains D and tasks T . We then identify175

neurons that are consistently irrelevant across all176

documents in CLExp ,177

ÑLExp =
{

Neuron
∣∣Irrelevant to c, ∀c ∈ CLExp

}
, (2)178

where a neuron is considered irrelevant if its re-179

moval from the parameter matrix affects the gen-180

erated output below a specified threshold. For-181

mally, for i-th neuron in layer l, denoted as182

N
(l)
i , its relevance to document c is measured by183

|h\N(l)
i ,i

(c)− hi(c)|2, where hi(c) is the layer out-184

put and h\N(l)
i ,i

(c) is the output with the neuron185

removed. Furthermore, neurons with impact in the186

lowest σ% are considered irrelevant, where σ is a187

pre-defined pruning ratio.188

Similarly, we could establish corresponding cor-189

pus sets for other dimensions,190

CDExp = {(L,DExp, T )|L ∈ L, T ∈ T}, (3)191
192

CTExp = {(L,D, TExp)|L ∈ L, D ∈ D}, (4)193

to extract irrelevant neurons, ÑDExp and ÑTExp . Fi-194

nally, the expert model could constructed by195

LLMExp = LLM⊖
{
ÑLExp ∩ ÑDExp ∩ ÑTExp

}
, (5)196

where ⊖ represents removing the corresponding197

neurons from LLM. The overall algorithm is fur-198

ther illustrated in Algorithm 1.199

2.2 Adaptive Custom Pruning200

Besides three-dimensional expert models, require-201

ments involving constraints in one or two dimen-202

sions are also common in real-world applications203

(Roziere et al., 2023; Alves et al., 2024). For in-204

stance, a language-specific model or a domain-205

specific model is one-dimensional, whereas a206

language-domain-specific model (such as a Chi-207

nese Medical LLM) constrains two dimensions.208

Therefore, in this section, we extend Cus-Prun209

to prune expert models in different granularities.210

Algorithm 1 Adaptive Custom Pruning

Input: Original language model LLM, request
for expert model LLMExp with selected di-
mensions: LExp, DExp, TExp (any subset), re-
quest for pruning ratio σ.

1: // Construct specific corpora
for each selected dimension.

2: C = {}
3: if LExp is specified then
4: C = C ∪ {(LExp, D, T ) | D ∈ D, T ∈ T}
5: end if
6: if DExp is specified then
7: C = C ∪ {(L,DExp, T ) | L ∈ L, T ∈ T}
8: end if
9: if TExp is specified then

10: C = C ∪ {(L,D, TExp) | L ∈ L, D ∈ D}
11: end if
12: // Identify irrelevant neurons

for each selected dimension.
13: for all neuron N

(l)
i in LLM do

14: if ∀c ∈ C, N
(l)
i ∈ Ñ (c) then

15: Ñ ← Ñ ∪N
(l)
i

16: end if
17: end for
18: // Prune irrelevant neurons to

obtain expert model.
19: LLMExp = LLM⊖ Ñ
Output: LLMExp

Two-Dimensional Specific Expert Model With- 211

out losing generality, we use the language-domain 212

expert model as a concrete example, which requires 213

an expert model constrained in two dimensions: 214

language (LExp) and domain (DExp). We derive the 215

sets of irrelevant neurons ÑLExp and ÑDExp , and ob- 216

tain the expert model by pruning the original dense 217

model as follows: 218

LLMExp := LLM⊖ {ÑLExp ∩ ÑDExp}. (6) 219

One-Dimensional Specific Expert Model We 220

use the language-specific expert model as an ex- 221

ample, which focuses exclusively on optimizing 222

performance for a certain language (LExp), irre- 223

spective of domain or task. Similarly, we obtain the 224

language-specific corpus CLExp , then identify irrel- 225

evant neurons ÑLExp and extract the expert model 226

by 227

LLMExp := LLM⊖ {ÑLExp}. (7) 228

To enhance efficiency, we implement the paral- 229

lel neuron-detection method (Zhao et al., 2024b), 230

which accelerates the sequential calculations from 231

line14 to line16 in Algorithm 1. 232
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3 Preliminary Evaluation233

In this section, we conduct preliminary experiments234

to obtain an expert model that is specific in all235

three dimensions. This approach can be considered236

as the most fine-grained operation for developing237

coarse-grained expert models that are specific in238

one or two dimensions.239

Experiment Design To verify the effective-240

ness of Cus-Prun in obtaining expert models241

for specific use cases, we select three scenar-242

ios: Korean-Legal-Summarization (Hwang et al.,243

2022), English-Medical-Multiple Choice Ques-244

tions (García-Ferrero et al., 2024), and Chinese-E-245

commerce-Sentiment Analysis (Zhang et al., 2015),246

each named according to the pattern language-247

domain-task. For each scenario, we curate the248

corresponding corpus for each dimension. This249

curation can be done through manual collection250

or by automatically retrieving relevant documents251

online. In our preliminary study, without loss of252

generality, we employ a strong proprietary model1253

to generate a corpus containing 50 documents for254

each dimension. Detailed prompts can be found255

in Appendix A.1. The generated documents could256

then be used to determine the relevance of neurons257

for each dimension of each scenario.258

Experiment Setup We use Llama3-8B (Dubey259

et al., 2024) as the original dense model and set260

the pruning ratio at 25%. Performance is evalu-261

ated using Rouge-L (Lin, 2004) for Korean-Legal-262

Summary and accuracy score for another two tasks.263

For comparison, we use SliceGPT (Ashkboos et al.,264

2024) as the baseline which replaces each weight265

matrix with a smaller proxy matrix.266

Main Results Figure 2 presents the results and267

one concrete example for the original dense model,268

pruned model with SlideGPT, and pruned model269

with our proposed Cus-Prun method for three270

distinct use cases. We observe that Cus-Prun271

largely preserves the performance of the dense272

model, retraining 92%, 83%, and 94% of the273

original dense model performance on these three274

cases respectively. In contrast, the baseline275

method SliceGPT, which does not consider spe-276

cific use cases, largely underperforms compared277

to Cus-Prun. Overall, the results demonstrate278

that our proposed Cus-Prun method could ef-279

fectively obtain expert models tailored to specific280

1https://platform.openai.com/docs/
models/gpt-4o

Figure 2: Concrete examples of applying Cus-Prun to
prune 25% of Llama3-8B-Base’s parameters into three-
dimensional expert models. Numbers above each box
indicate performance on the whole test set, with the first
evaluated by Rouge-L, and the other two by accuracy.

use cases across different languages, domains, and 281

tasks that maintain high performance despite sub- 282

stantial pruning. 283

4 Foundational Custom Pruning 284

Assessment 285

As demonstrated by preliminary evaluation in Sec- 286

tion 3, Cus-Prun enables the creation of expert 287

language models tailored to specific languages, do- 288

mains, and tasks. However, when attempting a 289

more comprehensive evaluation, we find that bench- 290

mark datasets may not always be available and it 291

is difficult to conduct systematic evaluation. To 292

simplify our evaluation without losing generality, 293

we use two distinct corpora: one focusing inde- 294

pendently on a single dimension and another en- 295

compassing the remaining two dimensions. This 296

approach allows us to evaluate Cus-Prun’s per- 297

formance in multilingual, multidomain, and multi- 298

task settings. 299

Formally, in the multilingual setting, instead of 300

constructing CLExp , CDExp and CTExp independently, 301

we can construct two corpora, CLExp and C(D,T )Exp , 302

4
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Table 1: Main Results of Cus-Prun on multilingual setting with a pruning ratio of 25%, where “general capability”
is tested in English and averaged across several expert models, while “specific capability” is averaged across
languages. Results are expressed in Rouge-L in summarization tasks and in accuracy (%) for other datasets.

Method General Capability Multilingual Expert Multidomain Expert Multitask Expert
ARC-c GSM8K MMLU Avg. MGSM M3 XQuAD Sum Avg. MMCQ FTQA TSA AMSA Avg. MSum ASum AMCF Avg.

L
la

m
a3

-8
B Dense 70.7 58.3 63.1 64.1 41.2 49.1 63.4 32.9 46.7 51.8 23.9 67.1 95.9 59.8 76.6 16.2 78.2 57.0

LLMPrun. 26.3 2.5 24.2 17.7 1.1 24.0 13.6 23.2 15.5 0.0 0.0 61.8 76.0 34.5 62.2 21.8 80.0 54.7
SliceGPT 41.5 0.0 24.2 21.9 0.0 14.9 16.6 8.5 10.0 22.6 0.0 41.2 53.7 29.4 7.3 2.9 51.3 20.5
ShortGPT 38.3 0.0 28.6 22.3 0.0 26.9 0.0 2.7 7.4 3.2 0.0 38.6 35.7 19.4 4.1 4.8 43.8 17.6
Cus-Prun 62.4 37.0 54.7 51.4 30.1 41.5 52.6 31.5 38.9 42.9 20.6 61.8 87.6 53.2 68.4 12.8 75.5 52.2

M
is

tr
al

-1
2B Dense 82.6 68.5 50.4 67.2 51.7 43.8 49.2 25.4 42.5 54.6 26.6 69.4 92.4 60.8 88.7 3.0 78.6 56.4

LLMPrun. 22.5 2.7 30.7 18.6 2.1 27.8 19.0 23.2 18.0 0.0 0.0 51.0 20.9 18.0 59.3 0.5 2.8 20.9
SliceGPT 49.4 1.9 32.1 27.8 0.8 25.1 17.4 7.8 12.8 24.9 9.2 34.2 54.3 30.7 27.4 1.3 36.3 21.7
ShortGPT 37.8 0.0 33.9 23.9 2.9 27.0 18.0 5.0 13.2 31.4 7.2 39.2 52.5 32.6 26.2 0.2 42.7 23.0
Cus-Prun 67.5 43.4 43.8 51.6 34.3 39.2 40.7 23.1 34.3 47.9 25.1 67.3 83.7 56.0 83.5 3.4 72.8 50.9

L
la

m
a2

-1
3B Dense 50.3 31.4 53.4 45.1 17.5 30.4 44.1 24.9 29.2 25.2 0.0 42.7 84.1 38.0 70.0 7.4 44.3 40.6

LLMPrun. 22.4 2.1 23.6 16.0 1.1 22.8 3.8 17.7 11.3 0.0 0.0 9.7 0.0 2.4 21.6 4.8 0.0 8.8
SliceGPT 45.9 2.4 48.7 32.3 2.8 25.3 23.4 9.9 15.5 18.7 0.0 28.4 67.3 28.6 24.5 4.9 32.9 20.8
ShortGPT 39.5 3.8 37.2 26.8 2.4 23.0 24.7 11.3 15.3 16.9 0.0 34.6 69.8 30.3 23.8 5.2 39.1 22.7
Cus-Prun 48.3 20.8 50.0 39.7 12.7 26.2 34.2 24.1 24.3 25.6 0.0 38.5 68.3 33.1 64.5 6.7 42.9 38.0

L
la

m
a3

-7
0B Dense 84.1 82.7 78.8 81.9 69.5 71.1 69.1 36.6 61.6 72.1 55.3 83.6 96.2 76.8 84.2 17.3 81.8 61.1

LLMPrun. 69.1 26.0 53.2 49.4 16.8 43.7 43.0 29.0 33.1 27.3 1.0 51.0 50.3 32.4 10.2 13.7 20.6 14.8
SliceGPT 65.7 0.0 54.2 40.0 3.7 44.8 33.0 21.2 25.7 57.6 27.6 68.1 59.4 53.2 58.0 14.2 68.3 46.8
ShortGPT 59.4 5.6 75.5 46.8 11.9 43.1 38.8 24.0 29.5 58.4 32.2 67.5 64.9 55.8 59.6 13.9 65.8 46.4
Cus-Prun 68.4 53.2 66.6 62.7 43.1 57.7 59.8 34.3 48.7 68.2 43.9 81.4 87.8 70.3 80.4 15.7 77.5 57.9

where CLExp helps to identify irrelevant neurons303

in a specific language (ÑLExp) and C(D,T )Exp helps304

to identify irrelevant neurons in a specific domain-305

task combination (ÑDExp∩TExp). Formally speaking,306

Cus-Prun in Equation 5 is transferred to307

LLMExp = LLM⊖
{
ÑLExp ∩

(
ÑDExp ∩ ÑTExp

)}
≡ LLM⊖

{
ÑLExp ∩ ÑDExp∩TExp

}
.

(8)308

Note that this simplification is also applicable to309

CDExp , C(L,T )Exp and CTExp , C(L,D)Exp .310

4.1 Experiment Setup311

Benchmarks Although Cus-Prun focuses on312

obtaining expert LLMs, which are evaluated on313

the specifically chosen dataset, we also assess314

its general capabilities to ensure minimal loss315

of overall performance. Specifically, we em-316

ploy ARC-Challenge (Clark et al., 2018) (5-317

shots), GSM8K (Cobbe et al., 2021) (5-shots318

with CoT prompting (Wei et al., 2022)), and319

MMLU (Hendrycks et al., 2021) (5-shots) to rep-320

resent models general capability. It’s important321

to note that we utilize a generation task and im-322

plement CoT prompting method, a more challeng-323

ing setting that has not been previously evaluated324

by existing pruning techniques (Song et al., 2024;325

Sharma et al., 2024; Yang et al., 2024b; Zhang326

et al., 2024).327

Baselines We employ several pruning methods as 328

the baseline that do not require post-training after 329

pruning the model. (i) Dense represents the original 330

model without pruning; (ii) LLM-Pruner (Ma et al., 331

2023) adopts structural pruning that selectively re- 332

moves non-critical coupled structures based on gra- 333

dient information;2 (iii) SliceGPT (Ashkboos et al., 334

2024) replaces each weight matrix with a smaller 335

dense matrix, reducing the embedding dimension 336

of the network; (iv) ShortGPT (Men et al., 2024) di- 337

rectly deletes the redundant layers in LLMs based 338

on an importance score. Note that the pruning ratio 339

is set to 25% for all methods and all models. 340

Backbone Models We choose 4 models that 341

cover models from different series and different 342

sizes, including Llama3-8B-Base (Dubey et al., 343

2024), Mistral-Nemo-Base-24073(short as Mistral- 344

12B), Llama2-13B-Base (Touvron et al., 2023), 345

Llama3-70B-Base (Dubey et al., 2024). 346

4.2 Multilingual Setting 347

Dataset We employ several conventional multi- 348

lingual datasets for multilingual setting, which cov- 349

ers reasoning (MGSM (Shi et al., 2023), 5-shots), 350

multilingual knowledge (M3Exam (Zhang et al., 351

2023), 3-shots, abbreviated as M3), understanding 352

2To ensure a fair comparison, we evaluate its performance
before post-training, following Men et al. (2024).

3https://huggingface.co/mistralai/
Mistral-Nemo-Base-2407
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(XQuAD (Artetxe et al., 2020), 5-shots), and gener-353

ation (XLSum (Hasan et al., 2021), zero-shots, ab-354

breviated as Sum). Furthermore, we consider three355

languages spanning a range from high-resource to356

low-resource including German (De), Chinese (Zh)357

and Thai (Th). More detailed experiment settings358

are explained in Appendix A.3.1.359

Main Results Table 1 shows the performance360

of Cus-Prun on multilingual datasets, which is361

the average performance across languages and de-362

tailed results in each language is shown in Table 5,363

Table 6 and Table 7 in Appendix A.2. We find364

that Cus-Prun consistently outperforms other365

pruning methods in obtaining expert models for366

multilingual settings while maintaining its gen-367

eral capability. Specifically, for expert capabilities,368

Cus-Prun achieves a score of 38.9 on Llama3-369

8B, while other pruning methods achieve at most370

15.5. The scores are 34.3 for Mistral-12B, 24.3 for371

Llama2-13B, and 48.7 for Llama3-70B, all signifi-372

cantly higher than those of other pruning methods,373

which achieve at most 18.0, 15.5 and 33.1 for three374

models respectively.375

Moreover, the performance improvement of376

Cus-Prun is more pronounced in tasks requir-377

ing generation compared to direct classification.378

Specifically, Cus-Prun achieves a score of 30.1379

on MGSM for Llama3-8B, with scores of 34.3,380

12.7, and 43.1 for Mistral-12B, Llama2-13B, and381

Llama3-70B, respectively. In contrast, other prun-382

ing methods almost entirely lose the ability to gen-383

erate reasoning thoughts, achieving accuracy close384

to 0 for models other than Llama3-70B.385

4.3 MultilDomain Setting386

Dataset For the multidomain setting, we employ387

several domain-specific datasets, including medical388

domain multiply choices questions (MedMCQ (Pal389

et al., 2022), 3-shots, abbreviated as MMCQ),390

finance domain table question-answering (Fin-391

TQA (Chen et al., 2021), 8-shots, abbreviated392

as FTQA), social media domain sentiment anal-393

ysis (TSA (Kharde and Sonawane, 2016), 3-394

shots), and e-commerce domain sentiment analysis395

(AMSA (Zhang et al., 2015), 3-shots). Moreover,396

in multidomain setting, our focus is exclusively on397

the English language. Detailed experiment settings398

are explained in Appendix A.3.2.399

Main Results Table 1 shows the performance of400

Cus-Prun on multidomain setting. We find that401

Cus-Prun consistently outperforms other prun- 402

ing methods in both expert and general capabili- 403

ties. For expert capabilities, Cus-Prun achieves 404

a score of 53.2 on Llama3-8B, while other prun- 405

ing methods achieve at most 34.5. The scores are 406

56.0 for Mistral-12B, 33.1 for Llama2-13B, and 407

70.3 for Llama3-70B, all significantly higher than 408

those of other pruning methods, which achieve at 409

most 32.6, 30.3 and 55.8 for these three models 410

respectively. 411

4.4 MultiTask Setting 412

Dataset For the multitask setting, we employ 413

several task-specific datasets, including the med- 414

ical summarization task (MedSum (Abacha and 415

Demner-Fushman, 2019), 3-shots, abbreviated 416

as MSum), summarization task in e-commerce 417

(Amazon Summary (Wang et al., 2022; Brüel- 418

Gabrielsson et al., 2024), 3-shots, abbreviated as 419

ASum), counterfactual task in e-commerce (Ama- 420

zon Counterfactual (O’Neill et al., 2021), 3-shots, 421

abbreviated as AMCF). Similarly, in multitask set- 422

ting scenarios, our focus is exclusively on the En- 423

glish language. Detailed experiment settings are 424

explained in Appendix A.3.3. 425

Main Results Table 1 shows the performance 426

of Cus-Prun on multitask setting. We find 427

that except for LLM-Pruner under Llama3-8B, 428

Cus-Prun outperforms other pruning methods 429

in both expert and general capabilities. For ex- 430

pert capabilities, Cus-Prun achieves a score of 431

50.9 on Mistral-12B, while other pruning meth- 432

ods achieve at most 23.0. The scores are 38.0 for 433

Llama2-13B, and 57.9 for Llama3-70B, all signifi- 434

cantly higher than those of other pruning methods, 435

which achieve at most 22.7 and 46.8 for the two 436

models respectively. 437

4.5 Further Analysis 438

To optimize for specialized tasks rather than main- 439

taining general capabilities, we employ more ag- 440

gressive pruning ratios. We combine layer pruning 441

with our custom neuron pruning method in Algo- 442

rithm 1 and evaluate the approach on M3Exam, 443

MedMCQ, and Amazon Counterfactual (AMCon- 444

tFact) datasets using Llama3-8B. Detailed results 445

are shown in Table 3. We find that Cus-Prun con- 446

sistently maintains the model’s capabilities even at 447

higher pruning ratios. Specifically, when the prun- 448

ing ratio is increased to 45%, ShortGPT nearly 449

loses the capability of generating meaningful an- 450
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Table 2: Performance of Chinese-Medical ex-
pert model on MCQ task

Method General CMExam

Dense 59.3 50.6
LLM-Pruner 18.6 25.0
SliceGPT 27.8 26.9
ShortGPT 23.9 23.7
Cus-Prun 52.4 48.7 Figure 3: Chinese Medical LLM performance. Numbers are quality

on the whole test set evaluated by GPT4.

swers, while Cus-Prun still achieves scores of451

48.4 on MMLU and 50.6 on expert capabilities.452

Table 3: Aggressive pruning ratio on Llama3-8B.

Method Ratio Speedup MMLU Expert

Dense 0.0 1× 63.1 59.7

ShortGPT 25.0 1.3× 28.6 24.6
Cus-Prun 25.0 1.3× 51.9 53.3

ShortGPT 34.2 1.5× 20.8 18.5
Cus-Prun 35.0 1.5× 50.2 51.4

ShortGPT 43.8 1.8× 7.9 10.2
Cus-Prun 45.0 1.8× 48.4 50.6

5 Adaptive Custom Pruning Assessment453

In this section, we evaluate the generality of454

Cus-Prun in dynamic scenarios, including spe-455

cific expert models in two and one dimensions, as456

described in Section 2.2.457

5.1 Two Dimensions Specific Expert Model458

Experiment Settings We use Chinese-Medical459

as a concrete example of a two-dimensional expert460

model designed to perform a wide range of medi-461

cal tasks in Chinese. We adopt Mistral-12b as the462

backbone model and utilize corpus from Wikipedia463

for Chinese content and general medical corpus464

for medical knowledge. The performance of the465

target Chinese-Medical expert model is primarily466

evaluated on two datasets: CMExam (Liu et al.,467

2023) (5-shots), a Chinese medical multiple-choice468

question dataset, and HuatuoQA (Li et al., 2023a),469

a Chinese medical question-answering dataset. We470

assess the performance on CMExam using accu-471

racy metrics. For the latter, we sample a sub-testset472

of size 100 and use GPT-4 as the evaluator, which473

assigns a score from 0 to 5, representing its quality474

from low to high. Detailed prompts are listed in475

Appendix A.1.476

Main Results Table 2 presents the performance 477

of the Chinese-Medical LLM on CMExam and its 478

general capabilities. Our results indicate that the ex- 479

pert model pruned using Cus-Prun outperforms 480

models obtained through other pruning methods. 481

Specifically, Cus-Prun achieves a score of 48.7 482

on CMExam, while its general capability score 483

is 52.4. These results compare favorably to the 484

dense model, which scores 50.6 on CMExam and 485

59.3 on general capabilities. On the contrary, other 486

pruning methods nearly lose the general and spe- 487

cific capabilities. Furthermore, Figure 3 shows a 488

concrete example of Chinese-Medical LLM per- 489

formance on medical question-answering. We find 490

that Cus-Prun can produce smaller expert mod- 491

els that maintain their expert capabilities, as demon- 492

strated by its performance score of 2.9/5.0 com- 493

pared to 3.2/5.0 for the dense model. 494

5.2 One Dimension Specific Expert Model 495

Experiment Settings For evaluating the prun- 496

ing method under a one-dimensional expert model 497

setting, we focus on language-specific pruning, 498

showing how to transform a dense model into 499

language-specific variants. We consider three 500

linguistically diverse languages: German, Chi- 501

nese, and Thai. We conduct experiments based 502

on the Llama3-8b model. To identify language- 503

specific (while domain- and task-agnostic) neurons, 504

we employ a diverse range of corpora, including 505

Wikipedia, MGSM, and M3Exam, ensuring cover- 506

age of various domains and tasks. The effective- 507

ness of our pruning technique is then evaluated 508

using three held-out multilingual datasets includ- 509

ing XQuAD (Artetxe et al., 2020), XNLI (Conneau 510

et al., 2018), and XSum (Narayan et al., 2018). 511

Main Results Figure 4 illustrates the per- 512

formance of language-specific models using 513

Cus-Prun. By pruning 25% of the neurons from 514
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Figure 4: Performance of Cus-Prun in obtaining language-specific models.

the original model, Cus-Prun not only retains515

general performance but also preserves language-516

specific capabilities. For instance, the German-517

specific model scores 54.7 in general capabilities,518

48.3 on XQuAD, and 56.8 on XNLI, compared to519

the dense model’s scores of 64.1, 52.9, and 62.0,520

respectively. This trend is consistent for Chinese521

and Thai models as well. In contrast, ShortGPT522

struggles to maintain the model’s capabilities, par-523

ticularly in XQuAD and XLSUm, which require524

generative abilities.525

6 Related Work526

LLM Compression Given the high costs associ-527

ated with training, inferencing, and tuning LLMs,528

many studies explore methods to compress the529

model to conserve computing resources, including530

model compression (Zhu et al., 2023), quantiza-531

tion (Xu et al., 2023; Dettmers et al., 2024; Lin532

et al., 2024; Li et al., 2024), and pruning (Wang533

et al., 2019). In the context of pruning, spar-534

sity serves as a structural pruning (Li et al., 2022,535

2023c; Kurz et al., 2024; Zhao et al., 2024a; Huang536

et al., 2024), which doesn’t save computing re-537

sources but leverages GPU calculation properties538

for acceleration. In addition, some works develop539

unstructuraled pruning methods aimed at reduc-540

ing model parameters while maintaining general541

performance. They either employ extensive post-542

training (Ma et al., 2023; Xia et al., 2024; Mu-543

ralidharan et al., 2024), nor adopt coarse-grained544

pruning method at structure such as approximating545

all parameters (Zhao et al., 2024a), removing entire546

layers (Men et al., 2024), or eliminating network547

structures (Zhang et al., 2024). However, they fail548

to capture the model’s expert capability thus fail to549

be applied to more specific downstream scenarios.550

Customizing Model The rapid evolution of 551

LLMs has led to a growing need for customiza- 552

tion to meet specific requirements across various 553

fields. Language-specific models are being devel- 554

oped to address unique linguistic needs (Cui et al., 555

2023; Yang et al., 2024b), while domain-specific 556

models cater to specialized areas like healthcare 557

and software development (Li et al., 2023a; Roziere 558

et al., 2023; Li et al., 2023b). Task-specific models 559

further enhance performance for particular applica- 560

tions (Azerbayev et al., 2024; Alves et al., 2024). 561

However, correctly customizing these models re- 562

quires extensive fine-tuning with a tailored training 563

corpus. This challenge highlights the need for effi- 564

cient methods to acquire and refine expert models, 565

ensuring LLMs can be adapted effectively to meet 566

diverse industry demands. 567

7 Conclusion 568

LLMs offer impressive capabilities but come with 569

substantial computational costs. Efficient prun- 570

ing of redundant parameters is crucial for con- 571

serving resources and improving inference speed, 572

especially for users requiring specialized mod- 573

els for specific scenarios. Our proposed method, 574

Cus-Prun, creates smaller expert models with- 575

out post-training. By positioning models along 576

“language,” “domain,” and “task” dimensions and 577

pruning irrelevant neurons, Cus-Prun achieves 578

efficient expert model creation in a finer-grained 579

manner. Experimental results demonstrate that 580

Cus-Prun consistently outperforms existing tech- 581

niques on three-dimensional specific models. Fur- 582

thermore, Cus-Prun can be tailored to more re- 583

alistic scenarios by targeting just one or two di- 584

mensions, such as language-domain or language- 585

specific models. 586
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Limitation587

Despite the promising results of Cus-Prun, sev-588

eral limitations should be noted. First, while our589

method leverages three dimensions (language, do-590

main, and task) for pruning, certain crucial restric-591

tions cannot be fully captured within this frame-592

work, such as variations in query format or input593

structure. Second, whether pruned base models594

can effectively undergo post-training remains an595

open question that requires further investigation.596

This uncertainty about post-training capabilities597

could limit the model’s adaptability to new scenar-598

ios or requirements after pruning. These limitations599

suggest important directions for future research, in-600

cluding exploring additional dimensions for more601

comprehensive pruning strategies and investigating602

the relationship between pruning and post-training603

effectiveness.604
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A Appendix942

A.1 GPT-4o Prompts943

Task Prompt

Generation Generate a text document in {lan-
guage}/{domain}/{task}. Make sure
the documents is not fixed to one
{language}/{domain}/{task} or {lan-
guage}/{domain}/{task}. Ensure the
content is clear, concise, and appropriate
for the specified request. Use professional
and domain-specific terminology where
necessary.

Evaluation Evaluate the quality of the given answer
to the question. Provide a score from 0 to
5, where 0 represents very low quality and
5 represents very high quality. Question:
{question} Answer: {answer}.

Table 4: GPT-4o prompts for generating documents and
evaluating answer quality.

A.2 Detailed Results for Multilingual944

Detailed results for multilingual settings can be945

found in Table 5, Table 6 and Table 7 for German,946

Chinese and Thai correspondingly.947

A.3 Experiments Detailed Settings 948

A.3.1 Multilingual Settings 949

Experiment Details For multilingual setting, we 950

can obtain two corpora: CLExp and C(D,T )Exp . The 951

first corpus contains samples in a specific lan- 952

guage across various domains and tasks, while 953

the second corpus contains samples from a spe- 954

cific domain-task combination in other languages, 955

i.e., the target dataset in other languages. Specif- 956

ically, for CLExp we employ Wikipedia4 to con- 957

struct language-specific corpus covering various 958

domains and tasks. For C(D,T )Exp , we employ 959

the corresponding datasets in English, including 960

GSM8K (Cobbe et al., 2021) for MGSM, the En- 961

glish split of M3Exam5 for M3Exam, SQuAD (Ra- 962

jpurkar, 2016) for XQuAD, and XSum (Narayan 963

et al., 2018) for XLSum. 964

Hyperparameters, including the sizes of CLExp 965

and C(D,T )Exp , are determined using the validation 966

set of the XLSum dataset and then applied to test- 967

sets in other multilingual datasets. Furthermore, 968

accuracy is the metric used for ARC-c, GSM8K, 969

MMLU, MGSM, M3Exam, and XQuAD, while 970

Rouge-L (Lin, 2004) is used for XLSum. 971

A.3.2 Multidomain Settings 972

Settings For multidomain setting, we can obtain 973

two corpora: CDExp = {(L,DExp, T )|L ∈ L, T ∈ 974

T} and C(L,T )Exp = {(D, (L, T )Exp)|D ∈ D}. 975

The first corpus contains samples in a specific do- 976

main across various languages and tasks, while 977

the second corpus contains samples from a spe- 978

cific language-task combination across different 979

domains, i.e., the target dataset in other domains. 980

Specifically, for CDExp we employ specific domain 981

corpus, including English split of medical cor- 982

pus (García-Ferrero et al., 2024) for medical do- 983

main, general finance corpus for finance domain6, 984

general Twitter corpus (Kharde and Sonawane, 985

2016), and English split of Amazon corpus (Ke- 986

ung et al., 2020). For C(L,T )Exp , we employ the 987

corresponding datasets in general domains, includ- 988

ing CommonsenseQA (Talmor et al., 2019) for 989

MedMCQ, open table question-answering OTT- 990

QA (Chen et al., 2020) for FinTQA, general sen- 991

timent analysis (Attia et al., 2018) for TSA and 992

4https://huggingface.co/datasets/
wikimedia/wikipedia

5M3Exam is language-specific and does not utilize a trans-
lated parallel corpus.

6https://huggingface.co/datasets/
gbharti/finance-alpaca
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Table 5: Main Results of Cus-Prun on Germany with a pruning ratio of 25%, where “general capability” is tested
in English and averaged across several expert models, while “specific capability” is averaged across languages.
Results are expressed in Rouge-L in XLSum and in accuracy (%) for other datasets.

Model Method General Capability Expert Capability
ARC-c GSM8K MMLU Avg. MGSM M3Exam XQuAD XLSum Avg.

Llama3-8B

Dense 70.7 58.3 63.1 64.1 44.8 - 52.9 - 48.8
LLMPrun. 26.3 2.5 24.2 17.7 0.0 - 11.0 - 5.5
SliceGPT 41.5 0.0 24.2 21.9 0.0 - 9.8 - 4.9
ShortGPT 38.3 0.0 28.6 22.3 0.0 - 0.0 - 0.0
Cus-Prun 61.4 38.9 54.5 51.6 32.8 - 49.6 - 41.2

Mistral-12B

Dense 82.6 68.5 50.4 59.3 56.8 - 41.2 - 49.0
LLMPrun. 22.5 2.7 30.7 18.6 2.4 - 13.4 - 7.9
SliceGPT 49.4 1.9 32.1 27.8 0.8 - 15.5 - 8.2
ShortGPT 37.8 0.0 33.9 23.9 3.6 - 20.3 - 12.0
Cus-Prun 64.6 39.7 43.2 49.2 31.6 - 35.9 - 33.8

Llama2-13B

Dense 50.3 31.4 53.4 45.1 24.4 - 40.3 - 32.3
LLMPrun. 22.4 2.1 23.6 16.0 2.0 - 5.7 - 3.9
SliceGPT 45.9 2.4 48.7 32.3 3.6 - 18.1 - 10.9
ShortGPT 39.5 3.8 37.2 26.8 2.8 - 27.2 - 15.0
Cus-Prun 47.6 19.8 49.9 39.1 18.4 - 31.7 - 25.0

Llama3-70B

Dense 84.1 82.7 78.8 81.9 74.8 - 58.2 - 66.5
LLMPrun. 69.1 26.0 53.2 49.4 18.0 - 27.3 - 22.7
SliceGPT 65.7 0.0 54.2 40.0 0.0 - 17.3 - 8.7
ShortGPT 59.4 5.6 75.5 46.8 9.6 - 31.5 - 20.6
Cus-Prun 66.8 59.3 69.1 65.1 48.2 - 53.9 - 51.1

Table 6: Main Results of Cus-Prun on Chinese with a pruning ratio of 25%, where “general capability” is tested
in English and averaged across several expert models, while “specific capability” is averaged across languages.
Results are expressed in Rouge-L in XLSum and in accuracy (%) for other datasets.

Model Method General Capability Specific Capability
ARC-c GSM8K MMLU Avg. MGSM M3Exam XQuAD XLSum Avg.

Llama3-8B

Dense 70.7 58.3 63.1 64.1 43.6 55.1 78.7 49.1 56.6
LLMPrun. 26.3 2.5 24.2 17.7 2.4 23.6 21.3 32.8 20.0
SliceGPT 41.5 0.0 24.2 21.9 0.0 17.4 23.5 8.3 12.3
ShortGPT 38.3 0.0 28.6 22.3 0.0 28.3 0.0 3.1 7.9
Cus-Prun 60.5 25.7 49.4 45.2 36.0 44.7 65.6 46.3 48.2

Mistral-12B

Dense 82.6 68.5 50.4 59.3 53.2 47.8 62.2 33.0 49.1
LLMPrun. 22.5 2.7 30.7 18.6 2.8 30.7 31.8 32.6 24.5
SliceGPT 49.4 1.9 32.1 27.8 1.6 26.4 28.3 10.8 16.8
ShortGPT 37.8 0.0 33.9 23.9 4.4 28.2 29.1 7.2 17.2
Cus-Prun 68.3 43.2 39.5 50.3 38.4 40.7 50.6 30.3 40.0

Llama2-13B

Dense 50.3 31.4 53.4 45.1 21.6 36.5 59.8 35.3 38.3
LLMPrun. 22.4 2.1 23.6 16.0 1.2 23.3 3.8 25.1 13.4
SliceGPT 45.9 2.4 48.7 32.3 4.8 24.5 28.4 11.2 17.2
ShortGPT 39.5 3.8 37.2 26.8 4.4 22.9 24.6 13.7 16.4
Cus-Prun 48.6 20.7 51.9 40.4 14.8 28.2 47.3 34.4 31.2

Llama3-70B

Dense 84.1 82.7 78.8 81.9 68.4 76.1 81.3 55.3 70.3
LLMPrun. 69.1 26.0 53.2 49.4 16.8 47.5 56.1 41.3 40.4
SliceGPT 65.7 0.0 54.2 40.0 6.4 48.3 42.2 29.3 31.6
ShortGPT 59.4 5.6 75.5 46.8 12.4 45.5 44.6 36.1 34.7
Cus-Prun 72.3 48.5 65.2 62.0 40.8 61.7 66.9 51.6 55.3
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Table 7: Main Results of Cus-Prun on Thai with a pruning ratio of 25%, where “general capability” is tested
in English and averaged across several expert models, while “specific capability” is averaged across languages.
Results are expressed in Rouge-L in XLSum and in accuracy (%) for other datasets.

Model Method General Capability Specific Capability
ARC-c GSM8K MMLU Avg. MGSM M3Exam XQuAD XLSum Avg.

Llama3-8B

Dense 70.7 58.3 63.1 64.1 35.2 43.0 58.7 16.7 38.4
LLMPrun. 26.3 2.5 24.2 17.7 0.8 24.4 8.4 13.5 11.8
SliceGPT 41.5 0.0 24.2 21.9 0.0 12.3 16.6 8.7 9.4
ShortGPT 38.3 0.0 28.6 22.3 0.0 25.4 0.0 2.3 6.9
Cus-Prun 58.9 31.2 52.4 47.5 21.6 38.3 42.6 16.8 29.8

Mistral-12B

Dense 82.6 68.5 50.4 59.3 45.2 39.9 44.1 17.8 36.8
LLMPrun. 22.5 2.7 30.7 18.6 1.2 24.8 11.9 13.7 12.9
SliceGPT 49.4 1.9 32.1 27.8 0.0 23.8 8.4 4.7 12.3
ShortGPT 39.5 3.8 37.2 26.8 0.8 25.7 4.7 2.8 8.5
Cus-Prun 68.2 35.8 47.6 50.5 32.8 37.7 35.6 15.9 30.5

Llama2-13B

Dense 50.3 31.4 53.4 45.1 6.4 24.3 28.3 14.5 18.4
LLMPrun. 22.4 2.1 23.6 16.0 0.0 22.3 1.8 10.2 8.6
SliceGPT 45.9 2.4 48.7 32.3 0.0 26.2 23.7 8.6 14.6
ShortGPT 39.5 3.8 37.2 26.8 0.0 23.1 22.3 8.9 13.6
Cus-Prun 47.8 20.9 50.7 39.8 4.8 24.2 23.6 13.8 16.6

Llama3-70B

Dense 84.1 82.7 78.8 81.9 65.2 66.1 67.8 17.8 54.2
LLMPrun. 69.1 26.0 53.2 49.4 15.6 39.9 29.8 16.6 25.5
SliceGPT 65.7 0.0 54.2 40.0 4.8 41.3 39.6 13.2 24.7
ShortGPT 59.4 5.6 75.5 46.8 13.7 40.7 40.4 11.9 26.7
Cus-Prun 73.3 58.7 68.4 66.8 40.4 53.6 58.5 16.9 42.4

AMSA.993

Experiment Details Hyperparameters, including994

the sizes of CDExp and C(L,T )Exp , are determined995

using the validation set of the Amazon sentiment996

analysis dataset and then applied to testsets in other997

multidomain datasets. Furthermore, accuracy is the998

metric used for all datasets.999

A.3.3 Multitask Settings1000

Settings For multitask setting, we can obtain two1001

corpora: CTExp = {(L,D, TExp)|L ∈ L, D ∈ D}1002

and C(L,D)Exp = {(T, (L, S)Exp)|T ∈ T}. The first1003

corpus contains samples in a specific task across1004

various languages and domains, while the second1005

corpus contains samples from a specific language-1006

domain combination across different tasks, i.e., the1007

target dataset in other tasks. Specifically, for CTExp1008

we employ specific task corpus, including XSum1009

corpus (Abacha and Demner-Fushman, 2019) for1010

summarization task, general conterfact corpus71011

for counterfactual task. For C(L,D)Exp , we em-1012

ploy the corresponding datasets in other tasks, in-1013

cluding MedQCQ (Pal et al., 2022) for MedSum,1014

AMSA (Zhang et al., 2015) for AMSum and AM-1015

ContFact.1016

7https://huggingface.co/datasets/azhx/
counterfact-easy

Experiment Details Hyperparameters, including 1017

the sizes of CTExp and C(L,D)Exp , are determined us- 1018

ing the validation set of the Amazon counterfactual 1019

dataset and then applied to testsets in other mul- 1020

titask setting datasets. Furthermore, accuracy is 1021

the metric used for ARC-c, GSM8K, MMLU, and 1022

AMContFact, while Rouge-L (Lin, 2004) is used 1023

for MedSum and AMSum. 1024
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