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Abstract

When building a world model, a common assumption is that the environment
has a single, unchanging underlying causal rule, like applying Newton’s laws to
every situation. However, in truly open-ended environments, the apparent causal
mechanism may drift over time because the agent continually encounters novel
contexts and operates within a limited observational window. This brings about
a problem that, when building a world model, even subtle shifts in policy or
environment states can alter the very observed causal mechanisms. In this work, we
introduce the Meta-Causal Graph as world models for open-ended environments,
a minimal unified representation that efficiently encodes the transformation rules
governing how causal structures shift across different latent world states. A single
Meta-Causal Graph is composed of multiple causal subgraphs, each triggered
by meta state, which is in the latent state space. Building on this representation,
we introduce a Causality-Seeking Agent whose objectives are to (1) identify
the meta states that trigger each subgraph, (2) discover the corresponding causal
relationships by agent curiosity-driven intervention policy, and (3) iteratively refine
the Meta-Causal Graph through ongoing curiosity-driven exploration and agent
experiences. Experiments on both synthetic tasks and a challenging robot arm
manipulation task demonstrate that our method robustly captures shifts in causal
dynamics and generalizes effectively to previously unseen contexts.

1 Introduction

World models [21, 62, 70] have emerged as a critical component in reinforcement learning, enabling
agents to simulate and plan in complex environments. These models aim to capture the underly-
ing dynamics of the environment, allowing agents to predict future states and evaluate potential
actions [23, 21, 62, 55]. However, simply learning which variables correlate can mislead an agent
when the world’s dynamics change. Recently, causality has been adopted to improve world models
for interactive and complex environments, since causal rules—describing how one factor brings about
another—capture the underlying data-generation process and yield more robust and generalizable
decision-making [36, 59]. While many existing approaches incorporate notions of causality, they
typically fail to capture the open-world causal relationships.

To identify the underlying world rules, traditional causal models rely predominantly on observational
data [46], implicitly assuming a fixed causal structure. In open-ended environments, although the
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Figure 1: Illustration of the Meta-Causal Graph concept and the Curious Causality-Seeking Agent
framework. Ground Truth: The causal relationship between pushing and opening depends on the
latent state (locked vs. unlocked). Limitations of Existing Approaches: Problem 1: Single uniform
causal graphs fail to capture context-dependent variations in causal relationships; Problem 2: Domain
modeling requires a priori knowledge of state labels, limiting generalization to novel contexts. Our
Approach: Curious Causality-Seeking Agents actively intervene to verify causal relationships and
discover the critical meta states that determine when causal structures change, enabling the agent to
build a comprehensive Meta-Causal Graph without requiring predefined domain labels.

ground-truth causal laws remain unchanged, the observational data is collected through local, context-
limited exploration. Under conditions of partial observability, this invariance becomes obscured
within a limited observational window, giving rise to the illusion of shifting causal relationships—a
rule valid in one context may break down in another. For instance, the "push → open" relation holds
for an unlocked door, but this relation vanishes when the door is locked. In this case, the same action
produces no effect, leaving the true causal mechanism ambiguous. Traditional causal modeling in
such scenarios faces two main challenges: (1) methods that learn a single uniform (time series-based)
causal graph neglect these context-dependent changes [47], and (2) lack of an active curiosity-driven
exploration strategy, which makes it struggle to adapt to discover the global causal rules in rich,
unseen variations of potential open-ended worlds [29, 31].

To deal with these two challenges, we propose the Meta-Causal Graph to describe the world, which
is a unified structure that captures how causal relationships evolve across different states. Rather
than relying on a uniform graph, the Meta-Causal Graph is a minimal representation that contains
multiple causal subgraphs, each corresponding to a particular meta state. Transitions between these
meta states “trigger” the activation of the appropriate subgraph, allowing us to model shifts in causal
influence, such as when a locked door severs the "push → open" link. We introduce a framework
termed Curious Causality-Seeking Agent, which actively explores interventions to uncover the
Meta-Causal Graph. The main contributions of this work are given below:

Theoretically, we derive sufficient conditions ensuring that strategically chosen families of interven-
tions uniquely identify meta-causal graphs, overcoming observational limitations.

Methodologically, we design a framework which leverages a curiosity-driven exploration strategy
where agents selectively intervene in the environment to learn a causal world model. First, we employ
interventional verification to directly test whether specific variables causally influence others under
different state conditions. Unlike methods relying solely on observational data, our approach actively
intervenes on variables to establish causal links. Second, we introduce a targeted exploration strategy
designed to discover meta states, critical configurations where causal structure changes.

Empirically, our approach demonstrates substantial improvements over purely observational baselines
in simulated benchmarks, showcasing its capability to accurately recover complex causal structures.
By explicitly modeling and reasoning about these causal relationships through active interventions,
our proposed method significantly enhances the robustness and adaptability of world models.

2 Preliminaries

In this work, we employ causal modeling to construct world models. We begin by introducing
fundamental definitions and terminology related to causal graphs and interventions.

Causal Graph. A causal subgraph is formalized as a directed acyclic graph (DAG) G = ([p], E),
where the vertex set [p] = {1, 2, . . . , p} indexes a collection of random variables X = {Xi}pi=1 with
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joint density f(X). The edge set E ⊆ [p]× [p] encodes direct causal relationships between variables.
For each node i ∈ [p], we write PaG(i) for its set of parents. An edge i→ j ∈ E indicates that Xi

exerts a direct causal influence on Xj .

Intervention. Directly learning the causal structure from observational data is often insufficient,
as it can lead to multiple possible causal graphs that share the same v-structures. To resolve this
ambiguity, we can use interventions to break the observational ambiguity. Intervention is a powerful
tool in causality. An intervention refers to the manipulation of a variable within a causal model, often
represented by the do-operator. For example, consider intervening on state Xk, where the system
originally takes the value Xk = xk. An intervention is performed by setting the state variable to a
new value, as in do(Xi = x′

i), such as setting “door open” to true in the environment.

During world-model learning, we perform a sequence of environment interventions to reveal causal
structure. To better formalize the intervention influence, in this paper, we introduce the notion of an
intervention target. At intervention step k, we select a single variable Xi as the target, which we
denote by the intervention target Ik = {i}, where i ∈ [p]. Applying an intervention do(XIk = x′)
removes all incoming causal links into Xi. Concretely, if G is the original DAG, the intervention
graph G(k) is obtained by removing every edge of the form j → i, ∀ j ∈ PaG(i), from G. This
modified graph accurately reflects the altered generative process under the do-operation on Xi.
Definition 1 (Intervention graph [27]). Let D = ([p], E) be a DAG with vertex set [p] and edge set
E, and I ⊂ [p] an intervention target. The intervention graph of D is the DAG D(I) = ([p], E(I)),
where E(I) := {a→ b | a→ b ∈ E, b /∈ I}.

Given I, the Interventional Markov Equivalence is defined as follows:
Definition 2 (Interventional Markov Equivalence [27]). Two DAGs D1 and D2 are interventional
Markov equivalent given a set of intervention target I if D1 and D2 have the same skeleton and the
same v-structures, and D

(I)
1 and D

(I)
2 have the same skeleton and the same v-structures for all I ∈ I .

Then the Interventional Markov Equivalence Class (I-MEC) is the set of DAGs that are interven-
tional Markov equivalent to each other given a set of intervention targets I . Given a set of intervention
targets I, we can determine the I-MEC of the system. However, the DAGs in the I-MEC are not
unique. We denote the set of DAGs in the I-MEC as DI . Although DAGs in DI share the same
skeleton and v-structures, they may contain edges with different directions.

3 Meta-Causal Graph: Definition and Identifiability

In this section, we present our Meta-Causal Graph for a world formulation. We begin by defining the
Meta-Causal Graph, which is a compact causal graph comprising multiple context-specific causal
subgraphs, varying from latent meta states in Section 3.1. Then, we show the identifiability of meta
states in Section 3.2 and their indicated causal subgraphs in Section 3.3 by interventions.

3.1 Meta-Causal Graph

We consider an environment whose states are represented by a set of variables X = {Xi}i∈[p] ∈ X ,
such that the “door open” is a state in the environment. X in the environment can be intervened on
by manipulating its values directly or influenced by taking actions indirectly. Then, the Meta-Causal
Graph is defined on the environment state as follows:
Definition 3 (Meta-Causal Graph). The Meta-Causal GraphMG consists of a collection of causal
subgraphsMG = {Gu}u∈U , where each Gu corresponds to a distinct meta state u ∈ U . The
causality skeleton matrix Mu is a binary matrix where Mu[i, j] = 1 indicates that variable i is
a parent of variable j (i.e., i ∈ Pa(j)) in the causal graph Gu. A state-to-meta state mapping
C : X → U assigns each system observation x ∈ X to its active meta state u = C(x). We call
MG = ({Gu}, C) a Meta-Causal Graph if the following conditions are satisfied:

1. There exists a ground truth mapping C : X → U determining the real meta states.

2. Causality skeleton matrices of causal subgraphs are sufficiently different. For all u ̸= u′,
Mu ̸= Mu′ , i.e., there exists an index (i, j) such that Mu[i, j] ̸= Mu′ [i, j].
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The underlying Meta-Causal Graph in the environment is assumed to be invariant; however, its
complete identification requires two steps: (1) identification of latent meta states, and (2) identification
of the causal subgraph corresponding to each meta state.

3.2 Identifiability of Meta States

In this subsection, we will discuss the identifiability of the meta states from the environment. We first
introduce the concept of swap-label equivalence between two mappings.
Definition 4 (Swap-Label Equivalence). Two mappings C1 : X → U1 and C2 : X → U2 are swap-
label equivalent if there exists a permutation g : U1 → U2 such that C2(x) = g(C1(x)),∀x ∈ X .

The definition indicates that if we can identify the meta states up to an permutation transformation,
we say that the meta states are identifiable up to label swapping. We then show that the meta states
are identifiable up to swap-label equivalence under the following assumption.
Assumption 1 (Mixed Data Structure Learning). LetMG = {Gi}K be a Meta-Causal Graph with
K causal subgraphs corresponding to distinct meta states u ∈ U . Consider a dataset D where each
sample is generated from one of these causal subgraphs. Let SD ⊆ {1, 2, ...,K} denote the indices
of causal subgraphs that actually contributed samples to D. When learning a single causal graph
Ĝ from the mixed dataset D (treating all samples as if they were generated from a single causal
subgraph), the estimated parent set for each variable Xj in Ĝ satisfies:

PaĜ(Xj) =
⋃

i∈SD

PaGi
(Xj) ∀j ∈ [p]. (1)

Under this assumption, the unified graph from pooled data contains the union of all direct parent–child
edges present in each causal subgraph. Consequently, the latent meta state are identifiable as follows.

Theorem 1 (Identifiability of Meta States). Under Assumption 1, the learned mapping Ĉ : X → Û
is swap-label equivalent to the ground truth mapping C : X → U .

Identifiability when number of meta states is unknown: In practice, we often overparameterize the
meta state space by choosing more clusters than actually exist. We prove that this overparameterization
does not harm identifiability: even with excess clusters, each true causal subgraph can still be
recovered. The following theorem shows that, provided the number of clusters is sufficiently large,
the underlying subgraph structures are identifiable up to the observational equivalence.
Definition 5. Two mappings C1 : X → U1 and C2 : X → U2 are observationally equivalent if there
exists a mapping ϕ : U1 → U2 such that C2(x) = ϕ(C1(x)) for all x ∈ X .

Intuitively, observational equivalence refers to the condition where two mappings from states to meta
states produce the same partitioning of observations, possibly up to relabeling.
Theorem 2 (Identifiability of Overparameterized Meta States). Under Assumption 1, if the learned
mapping Ĉ : X → Û satisfies |Û | > |U |, the learned mapping Ĉ is observationally equivalent to the
ground truth mapping C : X → U .

3.3 Identification of Causal Subgraphs

In this subsection, we demonstrate that causal subgraphs for each meta state become uniquely
identifiable once edge directionality is determined through interventions.

3.3.1 Causal Subgraph Identification

We employ multiple interventions to determine the causal structure of environment, represented
as intervention target indicator set I = {Ik}Kk=1, where Ik ⊂ {[p]} comprises the indices of
intervened variables selected from state variable set X = {Xi}i∈[p] at intervention step k. These
intervention sets are collected from historical data or agent interactions. We establish sufficient
conditions ensuring causal graph edge identifiability through appropriate interventional selection.
Proposition 1 (Identifiability of Causal Subgraph). The causal subgraph D can be uniquely identified
if there exists an intervention target indicator set I such that for all edges a→ b ∈ D, there exists an
intervention target I ∈ I such that |I ∩ {a, b}| = 1.
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This proposition establishes that causal subgraph identifiability requires edge-specific interventions
targeting single connected variables, enabling directional determination.

4 Curious Causality-Seeking Agents for Open-Ended World Modeling

We propose a novel framework to learn the Meta-Causal Graph through a Causality-Seeking Agent.
Our approach comprises three core components: (1) curiosity-driven interventional exploration in an
open-ended world, (2) Meta-Causal Graph discovery from agent experience, and (3) continual world
model learning and updating. Together, these components enable the agent to actively discover and
refine causal structures in open-ended environments.

4.1 Curiosity-Driven Interventional Exploration in Open-Ended Worlds

Accurate identification of the Meta-Causal Graph cannot rely solely on passive experience. First,
causal structures inferred from purely observational trajectories often suffer from edge misorientation.
Second, an agent’s experience typically spans only a limited subset of world states, leaving parts of
the causal graph unobserved. To reveal the full Meta-Causal Graph in an open-ended environment,
the agent must complement passive observation with targeted, curiosity-driven interventions that
actively probe uncertain causal relations.

Curiosity Reward. Our framework treats curiosity as a general intrinsic signal that can be instanti-
ated in multiple forms. Specifically, we experimented with the following formulations:

(1) Edge-Entropy. Iedge
t =

∑
i,j∈[p] H

(
M̂C(Xt)[i, j]

)
, where M̂C(Xt)[i, j] ∈ [0, 1] denotes the

posterior probability of an edge from variable i to j in the current meta state C(Xt), and H(·) is the
Shannon entropy. This term prioritizes interventions on the most uncertain parts of the causal graph.

(2) Prediction Uncertainty. Iunc
t = H

[
pθ(xt+1 | xt, at)

]
, where pθ(xt+1 | xt, at) is the world

model’s predictive distribution over the next state given current state–action pair (xt, at). Higher
entropy indicates epistemic uncertainty about future transitions.

(3) Feature Discrepancy. I feat
t =

∥∥E(xt+1)−Eθ(x̂t+1)
∥∥2
2
, where ϕ(·) is the learned feature encoder

and Eθ(x̂t+1) is the predicted feature of the next state x̂t+1. This term measures reconstruction error
in the feature space, highlighting dynamics that the model fails to capture.

(4) Predictive-Distribution Discrepancy. Inll
t = − log pθ(xt+1 | xt, at), which is the surprisal or

negative log-likelihood of the observed transition.

Any of these intrinsic terms can be used as the curiosity reward Rt to select interventions, and in our
main results we adopt the edge-entropy variant as the default while other forms yield comparable
behaviors (see Table 9).

Intervention Verification. After executing curiosity-guided interventions, we validate and refine
the learned causal structures by directly estimating causal effects. For each variable Xi, we perform
interventions do(Xi=x′

i) and observe the resulting changes in other variables. We estimate the causal
effect of Xi on Xj as

∆ij = logP (Xt+1
j | Xt,do(Xi=x′

i))− logP (Xt+1
j | Xt).

We integrate these effects into a mask-refinement loss

Lmask = −λ1

∑
{(i,j):|∆ij |>τ}

log M̂ij + λ2

∑
{(i,j):|∆ij |<τ}

log M̂ij ,

where τ ≥ 0 controls sensitivity.

Interventional Reachability. In realistic environments, not all variables are directly intervenable.
To formalize which causal relations are identifiable under such constraints, we introduce interventional
reachability. We define an intervention operator F ∈ {0, 1}N×N where F [k, i] = 1 if and only
if state k can be obtained from state i by a single allowed intervention, and a transition operator
T ∈ {0, 1}N×N for the environment’s natural dynamics after intervention. The composite TF
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models one intervention–transition cycle, and nonzero entries of (TF )kz0 enumerate states reachable
within k cycles. A state is reachable if and only if some finite k satisfies [(TF )kz0][i] > 0. These
constraints define the feasible set of causal interventions. Details are given in Appendix E.

4.2 Meta-Causal Graph Discovery from Agent Experience

Given trajectories collected through curiosity-driven interventions, the agent infers a structured
representation of causal dependencies that vary across latent meta states. The goal is to jointly learn
(i) the discrete latent variable C(Xt) indicating the current meta state, and (ii) the corresponding
causal skeleton matrix MC(Xt) that governs the local dynamics.

Representation Learning. To model context-dependent causal dependencies from trajectories
generated by curiosity-driven interventions, we discretize the latent dynamics of the environment
using a vector-quantized variational auto-encoder (VQ-VAE) [31]. The encoder maps concatenated
state–action pairs (xt, at) into a latent vector ze, which is quantized to the nearest codebook entry zu
associated with a meta state u. Each codebook entry defines a distribution over causal structures, from
which the causal skeleton matrix MC(Xt) is sampled. Further details are provided in Appendix E.

Effect of Lossy Representation. The latent representation learned through vector quantization is
inherently lossy due to imperfect mapping. Such lossy representations may distort the underlying
causal factors and thus influence the identification of both meta states and their associated causal
subgraphs. We provide an error bound of lossy representation in the following.
Proposition 2 (Effect of Representation Accuracy on Misclassification). Given a set of ground-truth
meta states U = {u} and corresponding codebook entry index Û = {ûk}, let pk =

∑
u∈U µup

u
k

denote the probability that a sample x is mapped to codebook entry zûk
. Then, under the lossy

representation induced by encoder, the probability of misclassification is

P (misclassification) = 1−
∑
k

∑
u∈U

µup
u
k(1− pk + pukµu)

n.

When n(pk + pukµu)≪ 1, this can be approximated as

P (misclassification) ≈
∑
k

[
p2k −

∑
u

(µup
u
k)

2

]
.

Adaptive Codebook Fusion. To prevent redundant meta states resulted from overparamterization
and maintain a minimal representation, we adopt an Adaptive Codebook Fusion mechanism. During
training, codebook entries encoding similar latent embeddings and producing comparable decoded
causal skeleton matrices are automatically merged. This fusion step is integrated into the quantization
update, requires no extra supervision, and reallocates capacity for novel meta states.

4.3 Transition Probability Learning

The previous subsections describe how to identify the parent set of each state variable, PaGu
(Xj),

using the learned causal skeleton matrix Mθ. In this section, we demonstrate how to leverage the
confirmed causal skeleton to quantify inter-variable causal effects, thereby grounding and validating
the transition probabilities of the world model for next-state prediction. We train our model by
maximizing the log-likelihood of the observed sequences, thereby learning the transition dynamics.

LMLE = − logP (Xt+1
j |PaGu

(Xj)).

The complete world model learning objective. To encourage the discovery of parsimonious causal
structures that capture essential relationships while avoiding spurious connections, we incorporate a
sparsity regularization term: Lsparse = ∥M̂θ∥1, where ∥M̂θ∥1 denotes the L1 norm of the causal skele-
ton probability matrix, promoting sparsity in the learned causal graphs. The complete optimization
objective integrates multiple components is as follows:

L = LMLE + λsparseLsparse + λmaskLmask + λquantizationLquantization.

Training proceeds by alternating among interventional exploration, causal subgraph updating, world
model learning, and codebook refinement. Algorithm 1 summarizes the complete learning procedure.
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Table 1: Prediction accuracy on OOD states in the Chemical environment. The number of noisy
nodes in the downstream tasks is denoted as n. All values are reported in percentage (%).

Algorithm Fork Chain

n=2 n=4 n=6 n=2 n=4 n=6

GNN 36.29±3.45 25.80±3.48 21.58±3.44 29.22±3.39 23.28±4.98 20.53±6.96
MLP 31.11±1.69 30.44±2.28 32.39±1.76 28.66±3.65 26.52±4.26 24.15±4.17
NCD 41.60±5.08 37.47±2.13 42.27±1.82 40.04±6.21 37.47±2.98 41.19±1.66
FCDL 57.82±9.90 49.29±8.90 47.70±6.68 50.66±10.10 48.81±8.91 48.05±5.86
Modular 26.53±3.45 24.73±5.61 26.73±8.31 25.24±4.68 24.94±4.81 25.09±5.91
NPS 40.56±4.61 26.81±4.37 23.02±4.27 38.73±2.63 27.69±4.28 24.45±3.84
CDL 35.59±1.85 35.82±1.40 42.22±1.39 34.90±1.59 36.52±1.72 42.06±1.29
GRADER 37.93±1.06 38.94±1.63 45.74±2.25 36.82±3.12 37.41±2.84 43.48±4.14
Oracle 33.87±1.34 36.48±1.80 42.47±0.75 34.63±1.78 38.31±2.48 42.87±2.08
Sandy-Mixure 31.93±0.16 32.47±0.0161 33.72±2.11 30.08±3.12 29.31±5.18 27.43±2.20
Transformer 25.13±0.63 24.37±2.58 21.90±2.35 29.62±0.65 30.37±2.81 29.78±1.08

MCG (wo mask loss) 58.18±14.51 51.70±8.58 46.04±8.56 47.75±7.52 46.19±5.87 47.94±6.60
MCG (wo intervention verification) 48.28±8.15 43.48±5.05 46.54±3.72 50.36±8.05 50.55±6.83 48.72±4.42
MCG (ours) 63.18±13.94 50.47±9.87 50.04±8.56 51.99±6.58 49.78±4.11 49.69±5.14

Table 2: Average episode rewards on downstream tasks for each environment. The number of noisy
nodes introduced in the downstream tasks is denoted as n.

Algorithm Chain Fork Magnetic
n=2 n=4 n=6 n=2 n=4 n=6

GNN 6.89±0.28 6.38±0.28 6.56±0.53 6.61±0.92 6.15±0.74 6.95±0.78 2.23 ± 0.90
MLP 7.39±0.65 6.63±0.58 6.78±0.93 6.49±0.48 5.93±0.71 6.84±1.17 2.10 ± 0.22
NCD 9.60±1.52 8.86±0.23 10.32±0.37 10.95±1.63 9.11±0.63 9.11±0.63 2.85 ± 0.47
FCDL 11.16±3.5 10.39±2.84 10.62±2.52 13.98±2.01 13.36±2.14 12.91±2.40 2.77 ± 0.45
Modular 6.61±0.63 7.01±0.55 7.04±1.07 6.05±0.70 5.65±0.50 6.43±1.00 0.88 ± 0.52
NPS 6.92±1.03 6.88±0.79 6.80±0.39 5.82±0.83 5.75±0.57 5.54±0.80 0.91 ± 0.69
CDL 8.71±0.55 8.65±0.38 10.23±0.50 9.37±1.33 8.23±0.40 9.50±1.18 1.10 ± 0.67
Oracle 8.47±0.69 8.85±0.78 10.29±0.37 7.83±0.87 8.04±0.62 9.66±0.21 0.95 ± 0.55
Sandy-Mixture 6.81±0.17 6.73±0.20 7.07±0.26 6.95±0.21 6.71±0.20 7.03±0.40 1.63 ± 0.02
Transformer 6.45±0.28 6.73±0.18 7.31±0.33 6.54±0.18 6.68±0.27 7.00±0.39 2.13 ± 0.01

MCG(ours) 13.82±3.84 12.49±2.39 12.45±1.37 14.65±2.75 14.06±2.64 13.28±2.04 3.19 ± 0.14

5 Related Work

World Models. World models [21, 62, 70] enable agents to summarize past interactions, predict
future states in the environment, and evaluate candidate actions [23, 21, 55, 26, 25]. However,
methods that rely solely on statistical correlations often break down when environmental conditions
shift, undermining their ability to generalize robustly [59, 77, 18, 19].

Causal Discovery for Open-Ended World. Causal discovery provides a rigorous framework for
modeling the generative processes that govern complex systems, revealing how one variable brings
about changes in another. By explicitly representing cause–effect relationships, causal methods
yield more compact and invariant descriptions of reality than do purely statistical correlations
[36, 44, 81, 5, 8, 9, 15, 45]. Causal representation learning provides a useful tool to learn causal
structure, which aims to recover causally meaningful latent factors and structures, enabling invariance
and transfer in downstream tasks [64, 48, 39, 80, 79, 78]. However, most of the work of causal
representation learning focusses on learning a static causal structures passively from observational
data.

However, identifying causal structure from observational data alone is a challenge since multiple
directed acyclic graphs can entail the same conditional independencies and v-structures [76]. To
resolve these ambiguities, researchers have turned to the collection of active causal interventional
data by actively perturbing variables to distinguish among candidate graphs [52, 33, 72, 6, 66]. More
recent work has even addressed settings with unknown intervention targets [27, 28, 14, 41].

Despite these advances, most causal discovery algorithms presume a single uniform, context-
independent causal graph [47, 2, 43, 71, 83, 67, 82, 7] in the world. Some recent methods have
sought to learn causal structures in changing world [57, 10, 75, 58, 49, 32, 31, 34], but they typically
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(c) Downstream rewards on Chain.
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(d) Downstream rewards on Fork.

Figure 2: Performance with different numbers of meta states. (a-b) show prediction accuracy on
Chain and Fork environments respectively, while (c-d) show corresponding downstream rewards.
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Figure 3: Comparison of causal patterns discovered with different numbers of meta states. When the
number of meta states is set to 2, the model learns two distinct causal patterns (a,d) that correspond
to the meta states. With 4 meta states, the model learns four patterns (b,c,e,f), where some patterns
share similarities (Patterns 1 and 3), while others occur with lower frequency (Pattern 4) as shown in
the frequency distributions (g,h).

require strong prior knowledge [57, 29] or complete access to a known dynamic model [10], and they
lack active, curiosity-driven exploration strategies for open-ended environments [56].

We introduce an intervention-driven framework that empowers an agent to actively probe its surround-
ings in order to uncover context-dependent causal graphs. By combining targeted interventions with a
curiosity-driven exploration policy, our approach adaptively reveals the global causal rules governing
rich, previously unseen environments. Extended related work could be found in Appendix C.

6 Experiments

We evaluate our method by examining the following research questions: (1) Does our method learn a
more accurate causal world model? (Table 1) (2) Does it enhance performance on downstream tasks?
(Table 2) (3) How does overparameterization affect our method’s performance? (Figure 2) (4) Do the
curiosity-driven reward and intervention verification improve the learned causal world model quality?
(Table 1, Table 2) (5) Does our method enable more accurate causal subgraph learning? (Figure 5)

6.1 Experiment Setup

We compare our method against several baselines: MLP, a dense model that predicts transition
dynamics p(xt+1|xt, at); Modular, a modular network with separate modules for each state vari-
able; GNN [40], a graph neural network for predicting transition dynamics; NPS [2], which
learns sparse and modular dynamics; CDL [77], which learns a static causal model from data;
GRADER [13], which learns a static causal model using conditional independence tests; Sandy-
Mixure [57], which uses Jacobian matrices of MLP layers to learn the local causal graph; Trans-
former [73], which infers causal graphs by attention; NCD [31], a neural causal discovery algorithm
for learning causal graphs for each sample; and FCDL [31] learns causal graph to facilitate the
robustness for reinforcement learning. Please check Appendix B for details of the experimental setup.
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Algorithm 1 Curious Causality-Seeking Meta Causal World Modeling

Require: Observational states X , meta state embedding space U , initial codebook embeddings {eu},
encoder E, decoder D, hyperparameters λsparse, λmask, λquantization

1: Initialize encoder parameters ϕ, decoder parameters θ, and embeddings {zu}u∈U

2: while not converged do
3: Compute embedding assignment: u← argminu∈U ∥Eϕ(X)− zu∥22
4: Compute causal skeleton probabilities matrix: M̂u ← D(eu)

5: Sample causal skeleton matrix Mu[i, j] ∼ GumbelSoftmax(M̂u[i, j])
6: Select intervention do(Xi = x′

i) maximizing reward Rt in Section 4.1
7: Perform intervention and record resulting state transitions
8: Estimate causal effects ∆ij from interventions and update causal mask parameters via Lmask

9: Predict next state Xt+1
j from parent set PaGu

(Xj) and update world model via LMLE
10: Encourage sparsity in causal graph via Lsparse
11: Update embedding codebook {eu} via Lquantization
12: end while
13: return Learned causal subgraphs Gu, world model parameters, and embeddings {eu}

Chain

Full Fork

Causal Graphs Chain

Fork

Figure 4: Visualization of environments:
(top) Chemical; (bottom) Magnetic.

6.2 Environments

Chemical [39] We use the Chemical environment to
evaluate the performance of the proposed method on
learning the causal graphs in a system with multiple
causal structures. There are several causal graphs (full,
fork, chain) in the Chemical environment and the causal
graph depends on the state of the objects. We use two set-
tings of the Chemical environment: (1) full-fork (Fork)
and (2) full-chain (Chain). Magnetic [31] The Magnetic
environment is a robot arm manipulation task (Figure 4).
This environment is built based on the Robosuite suite.
Please refer to Appendix B for more details.

6.3 Experiment Results

Prediction Accuracy. We evaluate the prediction ac-
curacy of our proposed method in comparison to several
baseline approaches. To systematically assess robust-
ness, we introduce varying levels of noise to the state
information. For the full-fork and full-chain tasks, we corrupt the values of 2, 4, and 6 nodes, respec-
tively, to measure performance degradation under increasing noise. In the magnetic environment, we
assess prediction accuracy when box position coordinates and ball/box color properties are corrupted,
thereby testing the model’s performance under partial observability. All experiments are conducted
eight times, with results averaged. As shown in Table 1, our method consistently achieves the highest
prediction accuracy across nearly all baselines, demonstrating its effectiveness in learning a more
accurate causal world model.

Downstream Task We evaluate our method against baselines on the Chemical downstream task,
using the trained model to predict future states with the learned model for decision making. As shown
in Table 2, our approach achieves the highest reward, demonstrating its effectiveness in learning a
more accurate causal world model.

Overparameterization We evaluate our method using 2, 4, 8, and 16 meta states, with results
presented in Figure 3. Performance declines markedly when using fewer meta states than actually
exist, as the model fails to capture distinct causal structures. Conversely, overparameterized models
consistently outperform underparameterized ones, empirically validating Theorem 2. The learned
causal graphs with codebook sizes of 2 and 4 reveal that with 2 meta states, the model learns two
distinct causal graphs (Pattern 1 and Pattern 2) corresponding to the two meta states, consistent
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(a) Causal graph of Full.
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(b) Causal graph of Chain.

Figure 5: Comparison of learned causal graphs in the Chemical task: left—MCG (ours); mid-
dle—reference (FCDL); right—ground truth.

with Theorem 1. With 4 meta states, some codes correspond to similar underlying causal graphs
(as shown by the similarity between Pattern 1 and Pattern 3), while codes representing significantly
different causal graphs (such as Pattern 4) occur less frequently, minimally affecting overall model
performance. This demonstrates the model’s capacity to consolidate redundant representations when
overparameterized, aligning with our theoretical findings.

Ablation Study We conduct ablation studies to evaluate the effectiveness of the proposed method.
We remove the following components from the proposed method: (1) the causal loss Lmask and (2) the
reward function. The first ablation study aims to test the effectiveness of the intervention verification,
while the second ablation study aims to test the effectiveness of the active intervention exploration.
The results are shown in Table 2. Overall, the proposed method outperforms the ablation methods.
The performance drop of removing the causal loss Lmask indicates that the incorporation of the causal
loss can help the model learn a more accurate causal world model. The performance drop of removing
the reward function indicates that the curiosity-based reward function can help the agent learn a more
accurate causal world model through active exploration.

Partial Observation We modify the Chemical environment to explicitly simulate challenges arising
from limited observation windows. This experimental setup evaluates how our method performs
as new variables gradually become observable. The results indicate that our approach remains
robust under partial observability and shows strong potential for handling more realistic, dynamically
evolving environments. The results are shown in Table 8.

Efficiency We compare baselines with longer training rounds and more parameters to show efficiency
of our method. Results are reported in Table 10 and Table 11.

Causal Subgraph We visualize the learned causal subgraphs in Figure 5. It is evident that the
proposed method successfully captures the underlying causal structures of the environment.

Additional results are in Appendix B and the source code is included in the supplementary materials.

7 Conclusion, Limitation and Future Work

In this work, we introduced a method to model the environment using the Meta-Causal Graph that
explicitly captures how causal relationships evolve across different environmental contexts-meta
state. Our approach addresses two critical limitations in existing causal world models: the inability of
uniform causal graphs to capture context-dependent changes and the lack of active exploration making
it hard to learn the open-world environment. We theoretically established the identifiability of meta
states and their corresponding causal subgraphs, and developed the Curious Causality-Seeking Agent
framework that actively explores environments through interventions guided by a curiosity-driven
reward function. Our empirical evaluations demonstrated that our method outperforms existing
approaches across both synthetic tasks and a challenging robot arm manipulation task.

Limitation and Future Work Despite these advances, real-world exploration remains subject to
inherent constraints: certain states are fundamentally unreachable via any sequence of interventions,
and the implications of such unobservability for causal inference have yet to be analyzed (see
Appendix A.8). Moreover, interventions incur costs, and practical agents must operate within limited
budgets. Future research will investigate the impact of unreachable states on the identifiability
and accuracy of learned causal structures, and will develop budget-aware exploration strategies to
optimally allocate limited intervention resources.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims presented in the abstract and introduction accurately reflect
the scope and contributions of our work, which are supported by Section 3 and Section 6.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We explicitly discuss limitations in Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide complete proofs for all theoretical results in Section 3. For
Theorem 1 and Theorem 2, we state the key assumption (Assumption 1) and provide detailed
proofs in Appendix A. Similarly, for Proposition 1 on subgraph identifiability, we list all
assumptions and include complete proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes all necessary information for reproduction, including
the algorithm pipeline 1, the experimental setup, and the hyperparameters used in the
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

17



some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly open source environments and release code in the supplemen-
tary file.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the necessary details in Section 6 and Appendix B, including
hyperparameters and the type of optimizer used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean and standard deviation of prediction accuracy and standard
deviation, and we provide the necessary information to understand how they were computed.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the necessary information about the compute resources used in our
experiments in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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A Theoretical Analysis and Discussion

This section establishes the theoretical foundations for identifying meta states and their corresponding
causal subgraphs within our proposed framework. We present a comprehensive analysis of identifia-
bility conditions under two distinct scenarios: swap-label equivalence and observational equivalence.
The former addresses cases where meta states can be permuted without altering the underlying causal
structure, while the latter examines situations involving overparameterization where the learned
model contains more meta states than the ground truth. Additionally, we introduce intervention
reachability to formalize which causal relationships are identifiable via feasible interventions.

A.1 Summary of Key Results

Our theoretical analysis yields key results on the identifiability of meta states and causal structures:

Swap-Label Equivalence: Under Assumption 1, we demonstrate that the learned mapping function is
swap-label equivalent to the ground truth mapping (Theorem 1). This equivalence ensures that while
the specific labels assigned to meta states may differ between learned and ground truth mappings,
the underlying causal relationships remain preserved. The proof demonstrates that any departure
from this equivalence leads to higher L1 norm of causal skeleton matrices and thus contradicts the
optimality principle underlying our framework.

Observational Equivalence: For overparameterized scenarios where the learned model contains
more meta states than the ground truth, we prove that observational equivalence is maintained
(Theorem 2). This result demonstrates that introducing additional meta states does not compromise
the recovery of true causal relationships, since the learned mapping consistently preserves the same
causal skeleton matrices across all states.

Intervention Reachability: We formalize the mathematical framework for determining which in-
terventions are feasible given environmental constraints. Through matrix representations of state
transitions and intervention capabilities, we establish conditions under which specific causal relation-
ships can be identified through sequential interventions (Theorem 3). This analysis provides practical
guidance for experimental design in causal discovery.

Structural Assumptions: Our results rely on Assumption 1, which posits that learning from mixed
datasets yields causal graphs encompassing the union of all contributing causal relationships. This
assumption is both theoretically justified and practically reasonable, as it ensures comprehensive
coverage of causal dependencies present in heterogeneous data sources.

The theoretical framework presented in this section provides rigorous guarantees for the identifiability
of causal structures while accommodating practical constraints inherent in real-world applications,
thereby establishing the soundness of our proposed methodology.

A.2 Swap-Label Equivalence

In the context of Meta-Causal Graphs, swap-label equivalence captures the invariance of causal
structure under permutation of meta state labels. This phenomenon arises when different labelings of
meta states yield identical causal relationships across the state space.

Consider a Meta-Causal Graph G with meta states {u1, u2} and corresponding causal subgraphs
{Mu1

,Mu2
}, as illustrated in Figure 6a. An alternative Meta-Causal Graph Ĝ with meta states

{û1, û2} and subgraphs {M̂û1
, M̂û2

} is shown in Figure 6b.

Two mappings C : X → U and Ĉ : X → Û are swap-label equivalent if there exists a bijection
g : U → Û such that for any state x ∈ X , the causal skeleton matrices satisfy:

MC(x) = M̂g(C(x)) = M̂Ĉ(x)

This equivalence ensures that the learned mapping Ĉ preserves the same causal structure as the ground
truth mapping C, despite potentially different meta state assignments. As illustrated in Figure 6, such
permutations preserve the fundamental causal relationships within the Meta-Causal Graph.
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(b) Label-swapped meta states (û1, û2) with
corresponding subgraphs M̂û1 and M̂û2 .

Figure 6: Swap-label equivalence in Meta-Causal Graphs. Left: Ground truth Meta-Causal Graph
with meta states {u1, u2} and corresponding causal subgraphs {Mu1

,Mu2
}. Right: Learned Meta-

Causal Graph with meta states {û1, û2} and subgraphs {M̂û1
, M̂û2

}. Despite different meta state
labels, both mappings produce identical causal skeleton matrices for any state x ∈ X , demonstrating
structural equivalence under label permutation.

A.3 Proof of Theorem 1

Proof. Consider the reconstruction objective for learning causal skeleton matrices from mixed data.
For any clustering Ĉ : X → Û , let M̂û denote the learned skeleton matrix for meta state û. Under
Assumption 1, this matrix satisfies:

M̂û[i, j] = I

 ⋃
x:Ĉ(x)=û

MC(x)[i, j] = 1


Now consider two cases:

Case 1: Ĉ perfectly aligns with C up to label permutation. Then there exists a bijection g : U → Û

such that Ĉ(x) = g(C(x)) for all x ∈ X . In this case, M̂g(u) = Mu for each u ∈ U , achieving
perfect reconstruction of individual causal structures.

Case 2: Ĉ merges states from different true meta states. Then there exist x1, x2 ∈ X with C(x1) =

u1 ̸= u2 = C(x2) but Ĉ(x1) = Ĉ(x2) = û. By Assumption 1:

M̂û = Mu1
∪Mu2

where ∪ denotes element-wise logical OR. Since Mu1
̸= Mu2

, we have M̂û ̸= Mu1
and M̂û ̸= Mu2

.

Let ∥ · ∥1 denote the L1 norm. For binary matrices, ∥M∥1 equals the number of edges in the
corresponding causal graph. Since the union operation can only add edges (never remove them), we
have:

∥M̂û∥1 = ∥Mu1 ∪Mu2∥1 ≥ max{∥Mu1∥1, ∥Mu2∥1}

Moreover, since Mu1 ̸= Mu2 , there exists at least one position (i, j) where Mu1 [i, j] ̸= Mu2 [i, j].

∥M̂û∥1 > ∥Mu1
∥1 and ∥M̂û∥1 > ∥Mu2

∥1

Consider the expected L1 norm under each partition. For the true partition C:

Ex∼X [∥MC(x)∥1] =
∑
u∈U

P (C(x) = u) · ∥Mu∥1

For the suboptimal partition Ĉ that merges distinct meta states:

Ex∼X [∥M̂Ĉ(x)∥1] =
∑
û∈Û

P (Ĉ(x) = û) · ∥M̂û∥1

Since merging increases the L1 norm (as shown above), and each merged cluster û has ∥M̂û∥1 >
∥Mu∥1 for the constituent true meta states u, we have:

Ex∼X [∥M̂Ĉ(x)∥1] > Ex∼X [∥MC(x)∥1]
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(a) Two meta states: partition (left) and Meta-Causal
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(b) Three meta states: partition (left) and Meta-Causal
Graph (right).

Figure 7: Observational equivalence under overparameterization. Left: Ground truth Meta-Causal
Graph with meta states {u1, u2} and causal subgraphs {Mu1

,Mu2
}. Right: Overparameterized Meta-

Causal Graph with three meta states {û1, û2, û3} and subgraphs {M̂û1 , M̂û2 , M̂û3}. Despite the
additional meta state, both mappings produce identical causal skeleton matrices for any state x ∈ X ,
demonstrating that overparameterization preserves causal structure.

A.4 Observational Equivalence

Observational equivalence captures scenarios where learned meta state mappings preserve causal
structure despite overparameterization. Formally, two mappings C : X → U and Ĉ : X → Û are
observationally equivalent if for every state x ∈ X : MC(x) = M̂Ĉ(x), where MC(x) and M̂Ĉ(x) are
the causal skeleton matrices corresponding to the assigned meta states. This equivalence ensures that
the learned mapping Ĉ captures identical causal relationships as the ground truth mapping C, even
when the learned meta state space Û is larger than the true space U . Overparameterization may result
in redundant meta states, but the essential causal structure remains preserved.

Figure 7 illustrates this concept. Left: Ground truth Meta-Causal Graph with meta states {u1, u2}
and subgraphs {Mu1 ,Mu2}. Right: Learned overparameterized Meta-Causal Graph with three meta
states {û1, û2, û3} and corresponding subgraphs {M̂û1

, M̂û2
, M̂û3

}. Despite having an additional
meta state, both mappings yield identical causal skeleton matrices for any given state x ∈ X ,
demonstrating observational equivalence under overparameterization.

A.5 Proof of Theorem 2

Proof. We prove that despite overparameterization, the learned mapping preserves the causal structure
of the ground truth mapping.

Let Ûactive = {û ∈ Û : ∃x ∈ X s.t. Ĉ(x) = û} denote the set of meta states that are actually assigned
to some state in X .

Step 1: We first establish that the learned mapping cannot merge distinct true meta states. Suppose
for contradiction that there exist x1, x2 ∈ X such that:

C(x1) = u1 ̸= u2 = C(x2) but Ĉ(x1) = Ĉ(x2) = û

By Assumption 1, the learned causal skeleton matrix would be:

M̂û = Mu1 ∪Mu2

Since Mu1
̸= Mu2

, we have ∥M̂û∥1 > max{∥Mu1
∥1, ∥Mu2

∥1}, increasing the expected structural
complexity as shown in Theorem 1. This contradicts optimal clustering.

Step 2: Since distinct true meta states cannot be merged, each active learned meta state û ∈ Ûactive

corresponds to exactly one true meta state. That is, for each û ∈ Ûactive, there exists a unique u ∈ U

such that: {x : Ĉ(x) = û} ⊆ {x : C(x) = u}

Step 3: For any x ∈ X , if Ĉ(x) = û and the corresponding true meta state is u, then by Assumption 1:

M̂û = Mu

Therefore, MC(x) = M̂Ĉ(x) for all x ∈ X , establishing observational equivalence.
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(a) Ground truth: graph (left) and skeleton matrix
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(b) Over-parameterized: learned graph (left) and
skeleton matrix (right).

Figure 8: Illustration of Theorem 2. Each pair places the graph (left) alongside its causal skeleton
matrix (right): (a) ground truth; (b) overparameterized solution.

A.6 Disscussion on Assumption 1

Assumption 2. LetMG = {Gi}K be a Meta-Causal Graph with K causal subgraphs corresponding
to distinct meta states u ∈ U . Consider a dataset D where each sample is generated from one of
these causal subgraphs. Let SD ⊆ {1, 2, ...,K} denote the indices of causal subgraphs that actually
contributed samples to D. When learning a single causal graph Ĝ from the mixed dataset D (treating
all samples as if they were generated from a single causal subgraph), the estimated parent set for
each variable Xj in Ĝ satisfies:

PaĜ(Xj) =
⋃

i∈SD

PaGi
(Xj) ∀j ∈ [p]. (2)

Assumption 1 states that learning from mixed data generated by multiple causal subgraphs yields a
unified graph capturing the union of all parent-child relationships across contributing subgraphs.

Figure 10 illustrates this assumption. The left panel shows the causal skeleton matrices Mu of
individual subgraphs that contribute data to D. The right panel shows the learned causal skeleton
matrix M̂ from the pooled dataset. Red elements highlight the union property where edges present in
any contributing subgraph appear in the learned graph.

Mathematically, this relationship can be expressed as:

M̂ [i, j] = I

[ ⋃
u∈SD

Mu[i, j] = 1

]
∀i, j ∈ [p], (3)

where I[·] is the indicator function, ensuring that an edge (i, j) exists in the learned graph if and only
if it exists in at least one contributing subgraph.

This assumption is well-motivated: when data from multiple causal mechanisms are pooled without
knowledge of their source, standard causal discovery algorithms tend to include all statistically
supported edges to avoid missing true causal relationships. Violating this assumption would imply
that the learning algorithm systematically ignores genuine causal relationships present in the data,
leading to incomplete and potentially misleading causal models.

Assumption 1 shows that the L1 norm of the learned causal skeleton matrix is larger than the L1
norm of the causal skeleton matrix of the contributing graphs. This also provides a way to show that
the underparameterization of meta states will lead to the failure of learning the causal graph.

Figure 9 shows an example of underparameterization. The upper figure shows the ground truth
causal graph with three meta states and the corresponding causal skeleton matrix. The lower figure
shows the learned graph with two meta states and the corresponding causal skeleton matrix. The
underparameterization of the learned graph leads to the learned causal skeleton matrix different from
the ground truth causal skeleton matrix (Equation 3).

However, overparameterization does not lead to the failure of learning the causal graph.
Figure 8 shows an example of overparameterization. Although we may assign dif-
ferent meta states to states which are generated from the same causal graph, the
data to learn each causal graph is still generated from the same causal graph.
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Figure 9: Illustration of the Assumption 1. The left figure shows the ground truth causal graph with
three meta states and the corresponding causal skeleton matrix. The right figure shows the learned
graph with two meta states and the corresponding causal skeleton matrix.
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Figure 10: Illustration of the Assumption 1. The
left side shows the causal skeleton matrices of
causal graphs which contribute to the dataset for
generating the data. The right side shows the
learned causal skeleton matrices of the causal
graph from the dataset. The elements in red high-
light the differences between them.

A.7 Proof of Proposition 1

Proof. We prove that the given intervention con-
dition ensures unique identifiability by showing
that no two distinct DAGs can be intervention-
ally Markov equivalent under I.

Let DI denote the interventional Markov equiv-
alence class (I-MEC) of DAGs that are interven-
tionally Markov equivalent to D given I.

Step 1: Consider any edge i → j in the true
causal graph D. By assumption, there exists
I ∈ I such that exactly one of {i, j} is in I .

Case 1: If i ∈ I and j /∈ I , then in the inter-
vention graph D(I), all edges into node i are
removed, but the edge i → j (if it exists) re-
mains. Consider any DAG D′ with the reversed
edge j → i. In D′(I), this edge would be re-
moved since i ∈ I , creating different interven-
tion graphs: D(I) ̸= D′(I).

Case 2: If j ∈ I and i /∈ I , then in D(I), all edges into j (including i→ j) are removed. A DAG D′

with edge j → i would retain this edge in D′(I) since i /∈ I , again yielding D(I) ̸= D′(I).

Step 2: Since every edge i → j ∈ D satisfies the intervention condition, every edge direction
is uniquely determined by the interventional data, ensuring that for any DAG D′ ∈ DI , we have
D(I) = D′(I) for all I ∈ I.

Step 3: The intervention condition ensures that any edge orientation different from that in D
would create distinguishable intervention graphs, contradicting interventional Markov equivalence.
Therefore, |DI | = 1, meaning D is uniquely identifiable.

Remark 1. Score-based causal discovery methods identify structures only up to a Markov equiva-
lence class, since different directed graphs can encode the same set of conditional independencies.
Interventions, however, can break this equivalence: by actively perturbing variables, one can dis-
tinguish among graphs within the same class. For instance, in a causal chain A → B → C, an
intervention on A affects C only through B. If B is not held fixed, a purely observational method
might incorrectly infer a direct edge A → C. To fully recover the underlying structure, multiple
interventions, potentially on more than one variable, are required.

In our framework, this issue is addressed in two complementary steps. First, using interventional
comparison (Proposition 1), we detect edge existence by contrasting causal subgraphs obtained
from distinct interventions. Second, within each intervention subgraph, we apply a score-based
refinement guided by structural minimality (Theorem 1). This ensures that adding spurious edges
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such as A → C would increase model complexity without improving fit, allowing the true causal
structure to be uniquely identified.

A.8 Reachability of Interventions

Environmental constraints often prevent direct manipulation of every state variable in practice. We
consider a subset Sc ⊆ [p] of variables permitting direct intervention, while others require multi-
step sequences or remain unreachable. We define intervention reachability: a state is reachable if
attainable from the current state via finite allowable intervention sequences.

Each state variable Xi takes ni discrete values, represented using one-hot encoding as zi ∈ {0, 1}ni

where exactly one element equals 1. The complete system state is z = z1⊗ z2⊗ · · · ⊗ zp ∈ {0, 1}N ,
where ⊗ denotes the Kronecker product and N =

∏p
i=1 ni.

Remark 2. The Kronecker product of one-hot vectors remains one-hot. If z1 ∈ {0, 1}m and z2 ∈
{0, 1}n are one-hot vectors, then z = z1⊗z2 ∈ {0, 1}mn is also one-hot, with z[nr+v] = z1[r]z2[v]
for r ∈ [m], v ∈ [n]. Since zzz1 and zzz2 are one-hot encoded vectors, we have zzz1[r] ∈ {0, 1} and
zzz2[v] ∈ {0, 1}.
Therefore, zzz[nr + v] ∈ {0, 1} and there exists only one nr + v such that zzz[nr + v] = 1.

Thus, zzz is a one-hot encoded vector. Therefore, the Kronecker product of one-hot encoded vectors is
still a one-hot encoded vector.

The Kronecker product zzz is a one-hot encoded vector, which can represent the state of the system.

We define two key matrices:

• Intervention Matrix F ∈ {0, 1}N×N : F [i, j] = 1 if state j can be directly reached from
state i through intervention on variables in Sc.

• Transition Matrix T ∈ {0, 1}N×N : T [i, j] = 1 if the system naturally transitions from
intervened state i to state j.

Given a state vector z ∈ {0, 1}N , the intervention operation z′ = Fz produces:

z′[k] =

N∑
i=1

F [k, i]z[i]

Since z is one-hot, z′[k] > 0 if and only if there exists an index i such that z[i] = 1 and F [k, i] = 1.
This means state k is directly reachable from the current state i through intervention. The non-zero
elements of Fz thus indicate all states achievable by a single intervention step.

Similarly, the transition operation z′′ = Tz′ yields:

z′′[k] =
N∑
i=1

T [k, i]z′[i]

Here, z′′[k] > 0 indicates that state k can be reached from some intervened state i where z′[i] > 0
and T [k, i] = 1. This captures the natural system dynamics following intervention.

Combining these operations, the complete system evolution under intervention is:

zt+1 = TFzt

This composition first applies interventions (via F ) to determine immediately accessible states, then
applies system dynamics (via T ) to find the resulting states after natural transitions. The non-zero
elements in (TF )kz0 represent all states reachable within k intervention-transition cycles from z0.

Theorem 3 (Reachability Analysis). A state corresponding to index i is reachable from initial state
z0 if and only if there exists k ≥ 0 such that [(TF )kz0][i] > 0.

Proof. We prove both directions of the equivalence.
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(⇒): If state i is reachable from z0, then by definition there exists a finite sequence of intervention-
transition steps that leads from z0 to a state where the i-th component is active. This sequence
corresponds to some power k of the operator TF , hence [(TF )kz0][i] > 0.

(⇐): If [(TF )kz0][i] > 0 for some k ≥ 0, then by the definition of matrix-vector multiplication, there
exists a computational path through k iterations of intervention-transition operations that activates
the i-th state component, demonstrating reachability.

The reachability analysis has direct consequences for causal structure learning:

Corollary 1 (Intervention Feasibility). The state corresponding to index i is feasible from initial
state z0 by intervention if and only if there exists k ≥ 0 such that [F (TF )kz0][i] > 0.

Proof. This follows directly from Theorem 3. Here, F (TF )kz0 represents states accessible for
intervention after k cycles, where the leading F captures the final intervention step.

This constraint fundamentally limits causal discovery scope in practical settings. The Curious
Causality-Seeking Agent must therefore operate within feasible intervention constraints while maxi-
mizing causal structure identification. We provide an example to illustrate these results.

Case 1. Consider a system with two binary variables x1, x2, yielding four possible states as shown
in Table 3. As z1 and z2 are one-hot encoded vectors, the Kronecker product of z1 and z2 is a

Table 3: One-hot encoding of x1 and x2 and their Kronecker product.
x1 x2 z1 z2 z = z1 ⊗ z2
0 0 [1, 0]⊤ [1, 0]⊤ [1, 0, 0, 0]⊤

1 0 [0, 1]⊤ [1, 0]⊤ [0, 1, 0, 0]⊤

0 1 [1, 0]⊤ [0, 1]⊤ [0, 0, 1, 0]⊤

1 1 [0, 1]⊤ [0, 1]⊤ [0, 0, 0, 1]⊤

4-dimensional one-hot encoded vector, which can represent the state of the system. The space
of the system can be represented as Z = {[1, 0, 0, 0]⊤, [0, 1, 0, 0]⊤, [0, 0, 1, 0]⊤, [0, 0, 0, 1]⊤}. For
zi, zj ∈ Z , if zj can be reached from zi by intervening on xi, we can denote this as F [i, j] = 1.

Intervention Constraints: Suppose only x1 can be directly intervened. The intervention matrix F
allows transitions between states that differ only in x1:

F =

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


System Dynamics: After intervention, assume the system exchanges the values of x1 and x2. The
transition matrix becomes:

T =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Reachability Analysis: Starting from z0 = [1, 0, 0, 0]⊤ (state (0, 0)):

Step 1: Direct intervention possibilities:

Fz0 =

110
0


States 1 and 2 are accessible for intervention.
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Step 2: After one intervention-transition cycle:

TFz0 =

101
0


The system can reach states 1 and 3.

Step 3: Interventions possible from these new states:

F (TFz0) = F

101
0

 =

111
1


All states become reachable for intervention within two cycles, demonstrating that despite initial
constraints, the system’s dynamics enable full state space exploration.

A.9 Action as Intervention

Our method identifies context-dependent causal graphs (meta-graphs) via interventions. Actions are
how the curiosity-driven agent realizes those interventions. When actions can directly intervene each
state (e.g., a chemical environment), we deploy targeted interventions to isolate edges and quickly
distinguish meta states and their subgraphs. When not all interventions are feasible, we rely on the
reachability assumption.

Verification Results. We add a new experiment based on a manipulation task to demonstrate that
our method can handle cases where actions cannot intervene on all variables. We also modify this
environment to test generalization. The results show that our method maintains strong performance
and generalizes well, even when only a subset of variables is directly intervenable.

Table 4: Performance on partial-intervention manipulation tasks.
Reward Small Magnetic Force (×0.02) High Ball Density (×10) Extra Table Friction

MLP 4.011 ± 0.030 3.999 ± 0.038 3.886 ± 0.241
FCDL 4.482 ± 0.622 4.451 ± 0.657 4.193 ± 0.655
MCG 6.173 ± 0.255 5.083 ± 0.245 5.517 ± 0.134

A.10 Lossy Representation and Misclassification Probability

We analyze how lossy representation affects the probability of mapping samples to prototype embed-
dings. Table 5 summarizes the key notations used in this derivation.

We assume that for each state x with true meta state C(x) = u, the probability that it is mapped by
the encoder to the codebook entry index ûk is puk = P (Ĉ(x) = ûk | C(x) = u). This probability
reflects the representation power and discriminability of the encoder, indicating how likely samples
of the same true meta state are mapped to different codebook entry.

From Definition 5, Ĉ(x) and C(x) are observationally equivalent if, for all ûk ∈ Û and all x1, x2 ∈
{x | Ĉ(x) = ûk}, it holds that C(x1) = C(x2).

The probability that Ĉ(x) and C(x) are observationally equivalent is given by

P (C(x) = u,∀x′ ∈ x | Ĉ(x) = ûk, C(x′) = u) = (1− pk + pukµu)
n,

where n is the number of samples.

Hence, the overall probability of observational equivalence is

Pequiv =
∑
k

pk
∑
u∈U

µu(1− pk + pukµu)
n.
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Table 5: Notation summary.
Symbol Meaning
U = u Ground-truth meta states
Û = ûk Prototype (codebook) embeddings
C(x) True meta state of sample x

Ĉ(x) Codebook entry selected by encoder
µu Prior probability of state x with true meta state u

pk =
∑

u∈U µup
u
k Probability of mapping sample x to codebook entry eûk

The probability that all samples assigned to the same codebook entry index Ĉ(x) belong to different
true meta states is

Pdiff =
∑
k

∑
u∈U

(pk − µup
u
k)(1− pk + pukµu)

n.

The probability of misclassification, i.e., that a codebook entry corresponds to mixed true meta states,
is

Pmisclass = 1−
∑
k

pk
∑
u∈U

(1− pk + pukµu)
n.

Considering lossy representation, the misclassification probability simplifies to

P (misclassification) = 1−
∑
k

∑
u∈U

µup
u
k(1− pk + pukµu)

n.

If n(pk + pukµu)≪ 1, we approximate

P (misclassification) ≈ n
∑
u

∑
k

µup
u
k(pk − pukµu) =

∑
k

[
p2k −

∑
u

(µup
u
k)

2

]
.

In a more accurate representation, for each codebook entry index k, the distribution of µup
u
k concen-

trates on a single true state—one puk increases while others decrease, thereby increasing
∑

u(µup
u
k)

2

and reducing each term
[
p2k −

∑
u(µup

u
k)

2
]
. Consequently, higher representation accuracy mono-

tonically decreases the overall misclassification probability, reaching zero when each prototype
corresponds purely to one true meta state.

B Experimental Details

B.1 Environment

Chemical. We evaluate our method’s performance on learning context-dependent causal structures
using the Chemical environment [39]. This environment consists of 10 objects, each capable of taking
one of 5 color states. An action selects a target object and changes its state, triggering cascading
changes to all dependent objects according to the underlying causal graph. The objective is to match
each object’s color to a specified target configuration.

The Chemical environment features multiple causal structures that switch dynamically based on
the system state, making it ideal for evaluating Meta-Causal Graph learning. We consider two
experimental settings in this environment:

Full-Fork (Fork): The causal structure alternates between two graphs depending on the root node’s
color. When the root node is red, a fork structure is active; otherwise, a fully-connected structure
governs the system dynamics.

Full-Chain (Chain): The causal structure alternates between full and chain configurations. A red
root node activates the chain structure, while other colors trigger the fully-connected structure.

These settings test our agent’s ability to: (1) discover the latent meta states (root node colors)
that determine causal structure transitions, (2) learn the corresponding causal subgraphs through
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interventional exploration, and (3) generalize to unseen state configurations during evaluation. During
the test, some nodes are corrupted with noise. The agent needs to learn the causal graph to match the
colors of nodes to the target. The agent starts from a random color configuration and must transform
a 10-node graph to match a target color pattern. Actions intervene on nodes, changing their color and
that of all their descendants according to the hidden causal graph. The episode reward is the negative
Hamming distance to the target (0 for a perfect match).

Magnetic. The Magnetic environment is a robot arm manipulation task built on the Robosuite
framework (Figure 4). The environment contains two objects: a fixed box and a movable ball, whose
colors indicate their magnetic properties. When both objects are red, they exhibit magnetic attraction,
causing the ball’s trajectory to be influenced by the box’s position. The magnetic properties of each
object are randomly assigned at the beginning of each episode.

B.2 Reinforcement Learning Algorithm

For fair comparison, we use the same model based reinforcement learning algorithm for all the
baselines and our method. We use the cross-entropy method (CEM) [61] to sample the action based
on the predicted transition dynamics. The detailed hyper-parameters are shown in the Table 6.

Table 6: CEM parameter.

CEM parameters Chemical Magneticfull-fork full-chain
Planning length 3 3 1
Number of candidates 64 64 64
Number of top candidates 32 32 32
Number of iterations 5 5 5
Exploration noise N/A N/A 1e-4
Exploration probability 0.05 0.05 N/A
Action type Discrete Discrete Continous

B.3 Environment Configurations

The detailed environment configurations are shown in Table 7.

Table 7: Environment configurations

Paramters Chemical MagneticFork Chain
Training step 1.5× 105 1.5× 105 2× 105

Optimizer Adam Adam Adam
Learning rate 1e-4 1e-4 1e-4
Batch size 256 256 256
Initial step 1000 1000 1500
Max episode length 25 25 25
Action type Discrete Discrete Continous

B.4 Partial Observability

Table 8: Prediction accuracy under partial observability in the Chemical environment.
Prediction Accuracy n = 2 n = 4 n = 6

MLP 31.93 ± 0.16 32.47 ± 1.61 33.72 ± 2.11
FCDL 63.75 ± 13.75 53.89 ± 11.95 52.11 ± 16.43

MCG (ours) 73.52 ± 9.56 63.71 ± 5.79 57.05 ± 14.63
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(a) Causal subgraph of Full.
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(b) Causal subgraph of Fork.
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(c) Causal subgraph of Chain.

Figure 11: Comparison of learned causal graphs in task Chemical. MCG (ours) is the proposed
method and the reference is the causal graph learned by FCDL.
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B.5 Extended Results

We visualize the learned causal subgraphs in Figure 11. The results demonstrate that our method
effectively captures the underlying causal structures of the environment.

B.6 Compute Resources and Environment Details

Most experiments were conducted on a server equipped with an AMD EPYC 7V13 64-Core Processor
(24 physical cores), supporting 32-bit and 64-bit modes, with 96 MiB L3 cache and 12 MiB L2 cache.
The machine was equipped with an NVIDIA A100 PCIe GPU with 80GB memory (driver version
575.51.03, CUDA version 12.9).

B.7 Code and Demo

The code is available at https://github.com/zhiyu-zhao-ucas/Meta-Causal-Graph.git,
and demonstrations can be found at https://sites.google.com/view/meta-causal-world.

B.8 Prediction accuracy for three intrinsic terms

Table 9: Prediction accuracy for three intrinsic terms. All values are reported in percentage %.

Intrinsic Term Fork Chain

n=2 n=4 n=6 n=2 n=4 n=6

Prediction Uncertainty 52.25± 16.73 59.46± 22.38 52.25± 28.46 59.52± 8.82 54.81± 5.47 59.28± 5.03
Feature Discrepancy 46.11± 8.38 41.17± 5.67 43.67± 2.47 56.01± 13.13 51.88± 7.22 58.27± 8.53
Predictive-Distribution Discrepancy 54.23± 8.72 46.27± 9.74 43.92± 1.85 36.83± 3.11 40.33± 4.89 45.40± 2.83
Edge-Entropy 63.18±13.94 50.47±9.87 50.04±8.56 51.99±6.58 49.78±4.11 49.69±5.14

B.9 Efficiency

We compare other methods (GNN and MLP) with longer training rounds and more parameters to
show efficiency of our method. Results are reported in Table 10 and Table 11.

Table 10: Comparison under the same model size. We evaluate the efficiency of our method by
comparing MCG with GNN and MLP trained for longer rounds and with larger parameter counts.

Acc n=2 Acc n=4 Acc n=6 Reward n=2 Reward n=4 Reward n=6

GNN (30k round) 38.13 25.81 20.75 6.83 6.06 6.83
GNN (25k round) 36.37 26.55 20.73 6.84 5.98 6.19
MLP (30k round) 30.47 28.94 27.84 6.20 6.13 6.71
MLP (25k round) 31.47 30.32 30.42 6.18 6.03 6.23

MCG (10k round) 47.01 48.37 46.35 11.96 10.83 10.70
MCG (12k round) 48.30 48.40 47.28 12.45 10.77 10.84
MCG (15k round) 71.56 59.17 49.58 14.65 14.06 13.28

Table 11: Comparison under the same number of training rounds. MCG is compared with GNN and
MLP models trained for the same number of rounds but with different model sizes (parameter counts
shown in parentheses).

Acc n=2 Acc n=4 Acc n=6 Reward n=2 Reward n=4 Reward n=6

MLP (parameter ×3.71) 24.65 25.05 23.71 6.29 6.50 7.93
GNN (parameter ×1.66) 37.58 30.61 30.05 6.34 6.49 7.90

MCG (parameter ×1) 71.56 59.17 49.58 14.65 14.06 13.28
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C Extended Related Work

C.1 World Models

Contemporary research on world models can be delineated along two principal trajectories, each
characterized by fundamentally divergent objectives. The first research trajectory conceptualizes
world models as instrumental components, primarily serving either as predictive mechanisms to
facilitate planning processes or as training apparatuses for policy optimization. Conversely, the
second research trajectory approaches world models as generative frameworks, with the explicit
objective of predicting future environmental states with high fidelity.

Within the first trajectory, numerous approaches leverage world models as predictive mechanisms
to facilitate planning processes. Notable exemplars include methodologies employing Monte Carlo
Tree Search (MCTS) to identify optimal action sequences [65, 12, 17] and techniques utilizing cross-
entropy methods to efficiently sample continuous actions [25]. Complementary to these, a substantial
corpus of research utilizes world models to augment policy learning, wherein the learned dynamics
models either provide supplementary supervision signals or function as synthetic environments
for policy optimization. This subcategory encompasses seminal works such as Dreamer [22, 23,
24], SimPLe [38], IRIS [53], ∆-IRIS [54], and DART [1]. These methodologies predominantly
employ model-based reinforcement learning frameworks, wherein learned dynamics models generate
synthetic data to facilitate policy model training.

The second trajectory is predominantly focused on the development of sophisticated generative
models designed to predict future environmental states with high verisimilitude. Representative
examples include DIAMOND [3], Navigation world models [4], Oasis [11], and The Matrix [16].
These models are engineered to capture the underlying stochastic dynamics of complex environments
and generate realistic future states conditioned on current states and selected actions.

Notwithstanding these advancements, it is imperative to acknowledge that methodologies relying
predominantly on statistical correlations frequently exhibit performance degradation when confronted
with distributional shifts in environmental conditions, thereby compromising their capacity for robust
generalization across diverse scenarios.

C.2 Causal Discovery for World Models

Causal discovery offers a rigorous analytical framework for addressing the inherent challenges
associated with distributional shifts in world models. By elucidating and exploiting causal relation-
ships rather than mere statistical correlations, these methodologies significantly enhance both the
interpretability and generalization capabilities of learned models, thereby facilitating more robust
decision-making processes in complex, non-stationary environments.

The methodological landscape of causal discovery can be taxonomized into two principal categories:
constraint-based approaches and score-based approaches. Constraint-based methodologies, exempli-
fied by the PC algorithm [68], employ conditional independence tests to systematically infer causal
relationships among variables. Conversely, score-based approaches utilize statistical evaluation
metrics to assess the plausibility of alternative causal structures. Prominent instantiations include the
Greedy Equivalence Search (GES) [51], which implements a greedy search algorithm to optimize a
predefined scoring function, and methods leveraging the Bayesian Information Criterion (BIC). Both
methodological paradigms endeavor to recover causal graphs by identifying the Markov equivalence
class of the underlying causal structure. Nevertheless, it is imperative to acknowledge that the
causal graph learned through these approaches is not uniquely identifiable, as multiple distinct causal
architectures can manifest identical conditional independence relationships.

To mitigate this fundamental identifiability challenge, contemporary advancements in causal discov-
ery have increasingly focused on incorporating interventional data to enhance the discriminability of
causal structures [69, 52, 33, 72, 6, 66, 37]. Despite these methodological innovations, a significant
limitation persists: these approaches frequently operate under the restrictive assumption that the
underlying causal graph remains temporally invariant throughout the learning process. This station-
arity assumption may be violated in dynamic environments, wherein causal structures can evolve
temporally due to myriad factors.
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C.3 Comparison with FCDL

Motivation and Comparison to Context-Dependent Causality. The initial motivation for our
work came from a fundamental question: Why do causal discovery methods often fail in open-ended
environments?

We observed that causal models aim to describe the rules of the world. However, in open-ended
settings (e.g., open-ended games, multi-agent systems, or LLM-based dialogue), no single observation
window can capture all possible events. This leads to instability: a causal relation valid in one context
may fail in another. For example, Newtonian physics holds at the macroscopic level but breaks down
at the quantum scale. FCDL also emphasizes this issue (but it’s not the first one), arguing that a
complete causal law must account for variation across different contexts. Therefore, our high-level
motivation aligns with them. many previous works have explored this motivation context-dependent
causal structures.

However, FCDL is not the first one discusses about context-dependent causality. The idea of context-
dependent causality was formally introduced by earlier Huang et al. [29], and also discussed earliest
in Chapter 10 of Pearl’s Causality [56].

Exploration and the Limitation of Passive Learning. A key challenge in scaling up to open-ended
worlds is how to explore effectively. Relying solely on random exploration or limited observed data
is insufficient to discover hidden causal mechanisms. For instance, in scientific discovery, new causal
knowledge often emerges only after targeted investigation of paradoxes. Similarly, in dialogue agents,
causal relationships may even reverse depending on the context. Unlike prior works including FCDL
and Huang et al. [29], which rely solely on observation passive data, our method explicitly considers
the unobserved causal space, and how newly explored data may lead to shifts in both the causal graph
and the context boundary.

Causality-Seeking Agent. We aims to go beyond passive modeling to active exploration for causal
discovery. Our curiosity and intervention-based strategy address a core limitation of data-driven
methods: the inability to discover unknown causal structures. Our primary theoretical contribution
is the construction of a formal intervention-based meta-causal graph, with associated theorems and
learning framework.

C.4 Connections to Model-Based RL and Probabilistic Graphical Models

Our framework can be viewed as a special case of model-based RL (MBRL): we learn a world
model and use it to plan. The difference lies in the causal structure we learn and use. Classical
factored or relational MBRL methods learn structured predictive models [20, 42, 60], which improve
sample-efficiency but typically remain correlational. By contrast, we explicitly model a Meta-causal
graph whose edges carry interventional semantics (actions are treated as interventions), and we
pair structure learning with intervention design and identifiability analysis for context-dependent
mechanisms (meta states).

From the viewpoint of probabilistic graphical models (PGMs), our method instantiates a structural
causal model (SCM) with a discrete context variable u (the meta state): each context selects a
graph Gu and its causal skeleton Mu, while the decoder D outputs a probabilistic mask M̂u that
we discretize via Gumbel reparameterization. This preserves the graphical factorization of a PGM
but endows it with interventional semantics in the sense of Pearl’s do-calculus [56]. Practically,
this differs from standard PGM-based world models by (i) targeting causal edges rather than solely
predictive factors, (ii) using curiosity-driven interventions to break equivalence classes, and (iii)
handling changing mechanisms via meta states with an adaptive, minimal codebook.

Finally, our curiosity module is compatible with latent-variable exploration used in POMDP-style
MBRL: intrinsic objectives (entropy, feature discrepancy, predictive-NLL, accuracy) can be plugged
in as information-seeking criteria, but here they are aimed at reducing uncertainty over causal
structure (meta states and edges), not only over hidden state trajectories.
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D Theoretical Connections between Meta-Causal Graphs, Open-Endness,
and Gödel Machines

Open-endedness is defined in terms of continuous novelty and learnability, highlighting its significance
for creating artificial superhuman intelligence (ASI) [30]. Additionally, the Gödel Machine concept
proposed encapsulates self-referential improvement mechanisms through formal proof-driven code
rewriting. Here, we analyze the theoretical relationships between the MCG framework, open-
endedness, and the Gödel Machine [63].

D.1 Open-Endness and Meta-Causal Graphs

The Meta-Causal Graph framework establishes connections with open-endedness and self-improving
systems. Open-endedness is characterized by continuous generation of novelty within comprehensible
boundaries, a foundational requirement for advanced artificial intelligence systems. Our MCG
framework demonstrates key open-ended properties in several fundamental ways:

First, the curious causality-seeking agent operationalizes open-ended exploration through a curiosity-
driven intervention strategy. By maximizing entropy-based reward signals focused on regions
of causal uncertainty, the agent persistently generates novel interventions and discoveries. This
mechanism directly addresses the novelty requirement of open-endedness, as the agent autonomously
uncovers and probes previously uncharted causal relationships and latent meta states.

The MCG framework maintains interpretability by organizing new causal knowledge within an
explicit meta-causal graph. As new mechanisms are discovered, they are systematically integrated,
ensuring ongoing comprehensibility despite growing complexity. Vector quantization further enables
efficient and semantically clear assignment of novel observations to distinct meta states.

The MCG framework thus marks a step toward genuinely open-ended learning systems capable
of autonomously exploring, understanding, and adapting to complex, dynamic environments with
evolving causal structures.

D.2 Gödel Machines and Meta-Causal Graphs

It is important to note that while the MCG framework does not implement Gödel Machine-style
code-level self-rewriting, its core mechanism nevertheless embodies a form of self-improvement
focused on its own knowledge structure (the Meta-Causal Graph). The curious causality-seeking
agent, driven by curiosity-based rewards, actively collects new data and, upon encountering prediction
failures or high uncertainty, dynamically refines and expands its set of causal subgraphs and meta
state mappings. This process ensures the agent can continually update and improve its world model
in open environments, achieving self-correction and knowledge-level self-evolution.

E Implementation Details

E.1 Meta-Causal Graph Learning from Experience

We learn causal subgraphs under latent meta states from agent experience. Following FCDL’s
pioneering use of the VQ-VAE architecture for causal-graph discovery [31], we adopt the original
VQ-VAE framework of van den Oord et al. [74] to learn the causal subgraph for each meta state.
Specifically, the process contains two steps: (1) identifying the latent meta state, which activates a
specific causal subgraph, and (2) learning the subgraph from the agent’s explored experience data.

Identifying Latent Meta State: We embed the observed state and assign it to a corresponding
meta state u ∈ U by vector quantization as follows. We define the meta state assignment as
C(x) = argminu∈U

∥∥E(x) − zu
∥∥2
2
, where E : X → Rd is an encoder mapping the observed

state x to a d-dimensional embedding, and {zu}u∈U ⊂ Rd is a learnable codebook of prototype
embeddings, each representing a distinct meta state.

Subgraph Learning: After obtaining the embedding zu for a given state, we employ a decoder
network D : Rd → [0, 1]p×p to predict a probability matrix M̂u, which estimates the underlying
causal skeleton matrix Mu of Gu. Each entry M̂u[i, j] denotes the probability that the directed edge
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i→ j is present in causal subgraph associated with meta state u. We then sample each Mu[i, j] from
Bernoulli(M̂u[i, j]) using the Gumbel-Softmax reparameterization [35, 50], enabling end-to-end
gradient-based learning of the discrete structure. To update the codebook, we use the following
update rule:

Lquantization = ∥sg(Eϕ(X))− zu∥22 + β∥sg(zu)− Eϕ(X))∥22,
where sg(·) is the stop-gradient operator. The first term is the reconstruction loss and the second term
is the commitment loss to avoid the output of the encoder growing arbitrarily [74].
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