
ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

SCALING SPARSE AUTOENCODER CIRCUITS FOR IN-
CONTEXT LEARNING

Dmitrii Kharlapenko∗
ETHZ
dkharlapenko@ethz.ch

Stepan Shabalin∗

Georgia Institute of Technology
sshabalin3@gatech.edu

Neel Nanda, Arthur Conmy
Joint senior authors

ABSTRACT

Sparse autoencoders (SAEs) are a popular tool for interpreting large language
model activations, but their utility in addressing open questions in interpretability
remains unclear. In this work, we demonstrate their effectiveness by using SAEs
to deepen our understanding of the mechanism behind in-context learning (ICL).
We identify abstract SAE features that (i) encode the model’s knowledge of which
task to execute and (ii) whose latent vectors causally induce the task zero-shot.
This aligns with prior work showing that ICL is mediated by task vectors. We
further demonstrate that these task vectors are well approximated by a sparse
sum of SAE latents, including these task-execution features. To explore the ICL
mechanism, we adapt the sparse feature circuits methodology of Marks et al.
(2024) to work for the much larger Gemma-1 2B model, with 30 times as many
parameters, and to the more complex task of ICL. Through circuit finding, we
discover task-detecting features with corresponding SAE latents that activate earlier
in the prompt, that detect when tasks have been performed. They are causally linked
with task-execution features through the attention and MLP sublayers.

1 INTRODUCTION

Sparse autoencoders (SAEs) have emerged as a promising method for interpreting large language
model (LLM) activations (Ng, 2011; Bricken et al., 2023; Cunningham et al., 2023). However,
current SAE research typically focuses on either analyzing individual features or performing high-
level interventions without examining downstream effects. In this work, we demonstrate SAEs’
broader potential by using them to interpret in-context learning (ICL), a fundamental LLM capability
that enables models to adapt to new tasks from examples alone (Brown et al., 2020).

Recent work has shown that ICL behaviors can be captured by task vectors - internal representations
that can be extracted and used to induce zero-shot task performance (Todd et al., 2024; Hendel
et al., 2023). However, these vectors were difficult to interpret naively using SAEs. We address this
challenge by developing the Task Vector Cleaning (TVC) algorithm, which decomposes task vectors
into interpretable sparse features while preserving their functional properties.

Applying TVC to the Gemma-1 2B model (Team et al., 2024), we identify two key components of
the ICL mechanism: task-execution features that implement specific operations, and task-detection
features that identify which operation to perform. By extending the Sparse Feature Circuits methodol-
ogy (Marks et al., 2024), we demonstrate how these components interact through attention and MLP
layers to enable ICL behavior.

Our main contributions are:

1. We scale sparse feature circuit finding to Gemma-1 2B, a model 10 – 35× larger than those
previously studied with comparable depth in mechanistic interpretability (Wang et al., 2022;
Marks et al., 2024).

*Equal contribution.

1

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

2. We identify and characterize two core ICL circuit components: task-detection features
and task-execution features, revealing how they interact to process information across the
prompt.

3. We develop TVC, a novel sparse decomposition method that enables precise analysis of task
vectors and their constituent features.

2 BACKGROUND

2.1 SPARSE AUTOENCODERS (SAES)

Sparse autoencoders (SAEs) are neural networks designed to learn efficient representations of data
by enforcing sparsity in the hidden layer activations (Elad, 2010). In the context of language
model interpretability, SAEs decompose high-dimensional activations into interpretable features
(Cunningham et al., 2023; Bricken et al., 2023). The encoding step is as follows, with f denoting the
pre-activation features and Wenc and benc the encoder weights and biases respectively:

f(x) = σ(Wencx + benc) (1)

For JumpReLU SAEs (Rajamanoharan et al., 2024b), the activation function and decoder are (with
H being the Heaviside step function, θ the threshold parameter and Wdec/bdec the decoder affine
parameters):

x̂(f) = Wdec(f ⊙H(f − θ)) + bdec (2)

In our work, we train SAEs on residual stream activations and attention outputs, and also train
transcoders on MLP layers using the improved Gated SAE architecture (Rajamanoharan et al.,
2024a).

2.2 SPARSE FEATURE CIRCUITS

Sparse Feature Circuits (SFCs) (Marks et al., 2024) identify causal subgraphs of SAE features that
explain specific model behaviors. The method involves decomposing model activations using SAEs,
calculating their Indirect Effect (IE) on target behaviors, and analyzing connections between causally
relevant features. In practice, attribution patching (Syed et al., 2023) approximates IEs for efficient
computation across many components.

2.3 TASK VECTORS

Task vectors capture the essence of a task demonstrated in a few-shot prompt, allowing the model
to apply this learned task to new inputs without explicit fine-tuning (Hendel et al., 2023; Todd
et al., 2024). They can be extracted from the model’s hidden states and, when added to the model’s
activations in a zero-shot setting, can induce task performance without explicit context. Consider the
following prompt (Example 1) for an antonym task, where boxes represent distinct tokens:

BOS Follow the pattern : \n

hot → cold \n

big → small \n

fast → slow

Example 1: All token types in an example
input: prompt , input , arrow , output ,

newline (target tokens for calculating
the loss on included).

n-shot ICL
prompts Task vectors SAE

features

Training
weights

Cleaned
weights

Reconstruct
TV

L1 normTask loss

Loss
Optimize

0-shot ICL
prompts

...hot -> cold...

...tall ->

on layer L

10-20 features
noisy

2-4 features
interpretable

Figure 1: Overview of the task vector cleaning algo-
rithm (see Figure 7; TV stands for task vector).

2

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Task vectors are collected by averaging the residual stream of → tokens at a specific layer across
multiple ICL prompts for a given task. For our experiments, we selected layer 12 as the target layer
in the Gemma 1 2B model, where task vectors showed the strongest effects.

3 DISCOVERING TASK-EXECUTION FEATURES

3.1 DECOMPOSING TASK VECTORS

Initial attempts to decompose task vectors using direct SAE reconstruction or inference-time opti-
mization (Smith, 2024) encountered significant limitations. Direct reconstruction produced noisy
results with excessive non-zero features that reduced task performance, while ITO failed to maintain
effect on loss with sparse feature sets. To address these challenges, we developed the Task Vector
Cleaning (TVC) algorithm. This novel method optimizes SAE decomposition weights θ ∈ RdSAE

through a three-step process:

1. Initialize weights from standard SAE decomposition
2. Reconstruct the task vector and measure performance on zero-shot prompts
3. Optimize weights using loss function L = LNLL(θ) + λ∥θ∥1

5 10 15

−0.4

−0.2

0 Reconstruction type
Cleaning

SAE reconstruction

ITO (20)

Original Task vector

ITO (5)

Layer

A
ve

ra
ge

 re
la

tiv
e

lo
ss

 c
ha

ng
e

Figure 2: Performance comparison of recon-
struction methods across layers, showing TVC
maintains effectiveness through layer 14.

0

0.2

0.4

0.6

0.8

10μ 2 5 100μ 2 5 0.001 2 5 0.01 2 5 0.1
0

0.2

0.4

0.6

L1 coefficient

R
el

at
iv

e
lo

ss
 d

ec
re

as
e

TV
 L

0
fr

ac
tio

n

Figure 3: TVC evaluation across L1 coeffi-
cients, showing consistent feature reduction
while maintaining performance.

Extensive evaluation across multiple model scales and architectures demonstrated that TVC consis-
tently reduces active features by 50-80% while preserving or improving task performance (Figure 3).
The algorithm revealed interpretable ”task-execution features” characterized by anticipatory activation
patterns - they activate on arrow tokens right before the task completion (89.8% of activation mass,
details in Appendix F). They can also partially replace task vectors themselves.

3.2 STEERING EXPERIMENTS

To validate our executing features’ causal relevance, we conducted steering experiments on zero-shot
prompts using features extracted by our cleaning algorithm. The results (Figure 4) show strong task
specificity - most tasks have a single highly effective feature that minimally affects unrelated tasks.
Features from related tasks, such as translations, show partial cross-task effects, suggesting shared
mechanisms. Detailed results across multiple models are available in Appendix F.

4 APPLYING SFC TO ICL

When applying SFC to analyze the ICL circuit, we aggregated Indirect Effects (IEs) over meaningful
token categories (prompt , input , arrow , output , newline) from Example 1. This aggregation
enabled us to better understand how features influenced different components of the ICL prompt
structure.

Our evaluations demonstrated that the modified approach successfully scales to larger models while
maintaining the ability to identify task-specific circuits. Using circuits of 500 nodes, we achieved an

3

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

5579
16490
2930
26594
11618
29144
1878
850
15356
7491
6594
8633
15554
1830
13458
11172
11173
26987
27268
14612
32320
12943
9662

es_en
it_en
fr_en

plural_singular
antonyms
algo_first

algo_second
location_country

location_continent
present_simple_past_simple

person_profession
present_simple_past_perfect

algo_last
present_simple_gerund

singular_plural
football_player_position

person_language
location_language
location_religion

country_capital
en_it
en_fr
en_es

0

0.2

0.4

0.6

0.8

1
Effect strength

Feature

Ta
sk

Figure 4: Heatmap showing the effect of
steering with individual task-execution
features for each task. Most features
boost exactly one task, with a few excep-
tions for similar tasks like translating to
English. Full and unfiltered versions of
the heatmap are available in Appendix F.

location_continent
football_player_position
location_religion
location_language
person_profession
location_country
country_capital
person_language
singular_plural
present_sim

ple_past_sim
ple

antonym
s

plural_singular
present_sim

ple_past_perfect
present_sim

ple_gerund
en_it
it_en
en_fr
en_es
fr_en
es_en
algo_last
algo_first
algo_second

location_continent
football_player_position

location_religion
location_language
person_profession

location_country
country_capital

person_language
singular_plural

present_simple_past_simple
antonyms

plural_singular
present_simple_past_perfect

present_simple_gerund
en_it
it_en
en_fr
en_es
fr_en
es_en

algo_last
algo_first

algo_second

0

0.5

1
Effect strength

Executor

D
et

ec
to

r

Figure 5: Heatmap showing the causal effect of
the top task-detection features of each task, on
the activation of the top task-execution features
for every task. Averaged across all initial non-
zero activations in all tasks.

average faithfulness of 0.6 across tasks, with strong task specificity evident in cross-task ablation
studies (see Appendix E.2 for detailed results).

4.1 TASK-DETECTION FEATURES

Our SFC analysis revealed a second crucial component of the ICL mechanism: task-detection features.
Unlike executor features that activate before task completion, these features activate specifically on
output tokens where tasks are completed in the training data. We identified layer 11 as optimal for

these features, preceding the layer 12 task-execution features (Figure 2).

To validate the causal relationship between detection and execution features, we conducted ablation
experiments, matching the strongest features of each type based on their steering effects. Our
analysis (Figure 5) showed that disabling task-detection features significantly reduced the activation
of corresponding task-execution features, confirming their interdependence. Detailed results and
token type activation patterns (Table 2) are available in Appendix G.

5 RELATED WORK

Mechanistic Interpretability Mechanistic interpretability studies how neural networks process
information through identifiable features and circuits (Olah et al., 2020). Features represent meaning-
ful directions in the network’s latent space, while circuits are interpretable computation subgraphs
formed by feature interactions. While early work focused on manual circuit discovery in vision
models (Cammarata et al., 2020), recent advances have enabled automated discovery in language
models through patching techniques (Wang et al., 2022) and sparse autoencoders (Marks et al., 2024).

In-Context Learning (ICL) In-context learning enables models to adapt to new tasks using
only prompt examples (Brown et al., 2020). While early work identified induction heads as a key
mechanism (Olsson et al., 2022), recent research shows they are insufficient to explain complex task
behaviors. Particularly relevant to our work, Hendel et al. (2023) and Todd et al. (2024) discovered
task vectors - strong directional signals that enable zero-shot task performance, though their internal
composition remained unexplained. Recent findings by Park et al. (2024) demonstrate that language
models adapt to new tasks by reorganizing existing object representations, suggesting our task
execution features may manifest differently across various task types.

Sparse Autoencoders Sparse autoencoders (SAEs) address the challenge of superposition in neural
networks, where interpretable features are misaligned with network directions (Elhage et al., 2022).
Recent advances have improved SAE training (Rajamanoharan et al., 2024b) and enabled their

4

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

application to circuit discovery (Cunningham et al., 2023). Our work builds on these foundations,
particularly incorporating transcoders (Dunefsky et al., 2024) for analyzing MLP circuits in the
Gemma-1 model.

6 REPRODUCIBILITY STATEMENT

We are committed to fostering reproducibility and advancing research in the field of mechanistic
interpretability. To support this goal, we plan to release the following resources upon successful
acceptance of this paper:

1. Two JAX libraries optimized for TPU:

• A library for Sparse Autoencoder (SAE) training
• A library for SAE inference and model analysis, built upon Penzai with our custom

Llama and Gemma ports

2. A full suite of SAEs for Gemma 2B, along with a dataset of their max activating examples

3. Two custom dashboards used in our analysis:

• A dashboard for browsing max activating examples
• An interactive dashboard for exploring extracted Sparse Feature Circuits (SFC)

These resources will enable researchers to replicate our experiments, extend our work, and conduct
their own investigations using our tools and methodologies. The release of our custom dashboards
will provide additional transparency and facilitate a deeper exploration of our results. Due to the
complexity of our infrastructure, we only share anonymized versions of our analysis, cleaning, and
SFC scripts, which still require our JAX libraries to run. We hope that reviewers will find this, along
with the detailed methodologies described in the paper, sufficient evidence of reproducibility.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong
Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai,
Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg,
Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J.
Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin,
Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev
Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui
Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo,
Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes,
Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker,
Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa,
Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael
Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song,
Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan
Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping
Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali
Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong
Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and
Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone, 2024.
URL https://arxiv.org/abs/2404.14219.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection.

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff, and Dan
Roth. Rethinking the role of scale for in-context learning: An interpretability-based case study at
66 billion scale. URL http://arxiv.org/abs/2212.09095.

5

https://arxiv.org/abs/2404.14219
http://arxiv.org/abs/2212.09095

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Joseph Bloom. Open source sparse autoencoders for all residual stream layers of gpt2-small, 2024.
URL https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/
2023/monosemantic-features/index.html.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-
shot learners. In Advances in Neural Information Processing Systems, volume 33, pp.
1877–1901, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, et al. Thread: Circuits. Distill, 2020. doi:
10.23915/distill.00024. https://distill.pub/2020/circuits.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Unveiling induction heads: Provable
training dynamics and feature learning in transformers. URL http://arxiv.org/abs/
2409.10559.

Tom Conerly, Adly Templeton, Trenton Bricken, Jonathan Marcus, and Tom Henighan. Up-
date on how we train saes, 2024. URL https://transformer-circuits.pub/2024/
april-update/index.html#training-saes.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, et al. Sparse autoencoders find highly interpretable
features in language models, 2023. URL https://arxiv.org/abs/2309.08600.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can GPT
learn in-context? language models implicitly perform gradient descent as meta-optimizers. URL
http://arxiv.org/abs/2212.10559.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, et al. The llama 3 herd of
models, 2024. URL https://arxiv.org/abs/2407.21783.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable llm feature
circuits, 2024. URL https://arxiv.org/abs/2406.11944.

Michael Elad. Sparse and Redundant Representations: From Theory to Applications in Signal
and Image Processing. Springer, New York, 2010. ISBN 978-1-4419-7010-7. doi: 10.1007/
978-1-4419-7011-4.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy Models of Superposition.
arXiv preprint arXiv:2209.10652, 2022.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes.

6

https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD
http://github.com/jax-ml/jax
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://distill.pub/2020/circuits
http://arxiv.org/abs/2409.10559
http://arxiv.org/abs/2409.10559
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://arxiv.org/abs/2309.08600
http://arxiv.org/abs/2212.10559
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.11944

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė, Karina Nguyen,
Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying large
language model generalization with influence functions, 2023. URL https://arxiv.org/
abs/2308.03296.

Xiaochuang Han, Daniel Simig, Todor Mihaylov, Yulia Tsvetkov, Asli Celikyilmaz, and Tianlu Wang.
Understanding in-context learning via supportive pretraining data. URL http://arxiv.org/
abs/2306.15091.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors, 2023. URL
https://arxiv.org/abs/2310.15916.

Daniel D. Johnson. Penzai + treescope: A toolkit for interpreting, visualizing, and editing models as
data, 2024. URL https://arxiv.org/abs/2408.00211.

Patrick Kidger and Cristian Garcia. Equinox: neural networks in jax via callable pytrees and filtered
transformations, 2021. URL https://arxiv.org/abs/2111.00254.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2, 2024. URL https://arxiv.org/abs/
2408.05147.

Johnny Lin. Neuronpedia: Interactive reference and tooling for analyzing neural networks, 2023.
URL https://www.neuronpedia.org. Software available from neuronpedia.org.

Arvind Mahankali, Tatsunori B. Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. URL http:
//arxiv.org/abs/2307.03576.

Samuel Marks, Can Rager, Eric J. Michaud, et al. Sparse feature circuits: Discovering and editing in-
terpretable causal graphs in language models. Computing Research Repository, arXiv:2403.19647,
2024. URL https://arxiv.org/abs/2403.19647.

Andrew Ng. Sparse autoencoder. CS294A Lecture Notes, 2011. Unpublished lecture notes.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001. https:
//distill.pub/2020/circuits/zoom-in.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022. URL https://arxiv.org/
abs/2209.11895.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent.
URL http://arxiv.org/abs/2212.07677.

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen. What in-context learning “learns” in-context:
Disentangling task recognition and task learning. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp.
8298–8319. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.527.
URL https://aclanthology.org/2023.findings-acl.527.

Core Francisco Park, Andrew Lee, Ekdeep Singh Lubana, Yongyi Yang, Maya Okawa, Kento Nishi,
Martin Wattenberg, and Hidenori Tanaka. Iclr: In-context learning of representations, 2024. URL
https://arxiv.org/abs/2501.00070.

7

https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2308.03296
http://arxiv.org/abs/2306.15091
http://arxiv.org/abs/2306.15091
https://arxiv.org/abs/2310.15916
https://arxiv.org/abs/2408.00211
https://arxiv.org/abs/2111.00254
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://www.neuronpedia.org
http://arxiv.org/abs/2307.03576
http://arxiv.org/abs/2307.03576
https://arxiv.org/abs/2403.19647
https://distill.pub/2020/circuits/zoom-in
https://distill.pub/2020/circuits/zoom-in
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
http://arxiv.org/abs/2212.07677
https://aclanthology.org/2023.findings-acl.527
https://arxiv.org/abs/2501.00070

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Senthooran Rajamanoharan. Improving ghost grads, 2024. URL
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/
progress-update-1-from-the-gdm-mech-interp-team-full-update#
Improving_ghost_grads.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János
Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
coders, 2024a. URL https://arxiv.org/abs/2404.16014.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders, 2024b. URL https://arxiv.org/abs/2407.14435.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
emergence of non-bayesian in-context learning for regression. URL http://arxiv.org/
abs/2306.15063.

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers learn in-context
by gradient descent? URL http://arxiv.org/abs/2310.08540.

Chenglei Si, Dan Friedman, Nitish Joshi, Shi Feng, Danqi Chen, and He He. Measuring inductive
biases of in-context learning with underspecified demonstrations. In Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
11289–11310. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.632.
URL https://aclanthology.org/2023.acl-long.632.

Lewis Smith. Replacing sae encoders with inference-time optimisation, 2024.
URL https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/
full-post-progress-update-1-from-the-gdm-mech-interp-team#
Replacing_SAE_Encoders_with_Inference_Time_Optimisation.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit
discovery, 2023. URL https://arxiv.org/abs/2310.10348.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, et al. Gemma:
Open models based on gemini research and technology, 2024. URL https://arxiv.org/
abs/2403.08295.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, et al. Function vectors in large language models. In
Proceedings of the 2024 International Conference on Learning Representations, 2024.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: A circuit for indirect object identification in GPT-2 small, 2022. URL
https://arxiv.org/abs/2211.00593.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun.
Label words are anchors: An information flow perspective for understanding in-context learn-
ing. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language Processing, pp. 9840–9855. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.609. URL https:
//aclanthology.org/2023.emnlp-main.609.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
models are latent variable models: Explaining and finding good demonstrations for in-context
learning, 2024. URL https://arxiv.org/abs/2301.11916.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. URL http://arxiv.org/abs/2111.02080.

8

https://arxiv.org/abs/2406.17557
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://arxiv.org/abs/2404.16014
https://arxiv.org/abs/2407.14435
http://arxiv.org/abs/2306.15063
http://arxiv.org/abs/2306.15063
http://arxiv.org/abs/2310.08540
https://aclanthology.org/2023.acl-long.632
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://arxiv.org/abs/2310.10348
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2211.00593
https://aclanthology.org/2023.emnlp-main.609
https://aclanthology.org/2023.emnlp-main.609
https://arxiv.org/abs/2301.11916
http://arxiv.org/abs/2111.02080

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing, 2024. URL https://arxiv.org/abs/2406.08464.

Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni. Pretraining data mixtures enable narrow model
selection capabilities in transformer models. URL http://arxiv.org/abs/2311.00871.

9

https://arxiv.org/abs/2406.08464
http://arxiv.org/abs/2311.00871

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

A MODEL AND DATASET DETAILS

For our experiments, we utilized the Gemma 1 2B model, a member of the Gemma family of open
models based on Google’s Gemini models (Team et al., 2024). The model’s architecture is largely
the same as that of Llama (Dubey et al., 2024) except for tied input and output embeddings and a
different activation function for MLP layers, so we could reuse our infrastructure for loading Llama
models. We train residual and attention output SAEs as well as transcoders for layers 1-18 of the
model on FineWeb (Penedo et al., 2024).

Our dataset for circuit finding is primarily derived from the function vectors paper (Todd et al., 2024),
which provides a diverse set of tasks for evaluating the existence and properties of function vectors in
language models. We supplemented this dataset with three additional algorithmic tasks to broaden
the scope of our analysis:

• Extract the first element from an array of length 4
• Extract the second element from an array of length 4
• Extract the last element from an array of length 4

The complete list of tasks used in our experiments with task descriptions is as follows:

Task ID Description
location continent Name the continent where the given landmark is located.
football player position Identify the position of a given football player.
location religion Name the predominant religion in a given location.
location language State the primary language spoken in a given location.
person profession Identify the profession of a given person.
location country Name the country where a given location is situated.
country capital Provide the capital city of a given country.
person language Identify the primary language spoken by a given person.
singular plural Convert a singular noun to its plural form.
present simple past simple Change a verb from present simple to past simple tense.
antonyms Provide the antonym of a given word.
plural singular Convert a plural noun to its singular form.
present simple past perfect Change a verb from present simple to past perfect tense.
present simple gerund Convert a verb from present simple to gerund form.
en it Translate a word from English to Italian.
it en Translate a word from Italian to English.
en fr Translate a word from English to French.
en es Translate a word from English to Spanish.
fr en Translate a word from French to English.
es en Translate a word from Spanish to English.
algo last Extract the last element from an array of length 4.
algo first Extract the first element from an array of length 4.
algo second Extract the second element from an array of length 4.

This diverse set of tasks covers a wide range of linguistic and cognitive abilities, including geographic
knowledge, language translation, grammatical transformations, and simple algorithmic operations.
By using this comprehensive task set, we aimed to thoroughly investigate the in-context learning
capabilities of the Gemma 1 2B model across various domains.

B SAE TRAINING

Our Gemma 1 2B SAEs are trained with a learning rate of 1e-3 and Adam betas of 0.0 and 0.99
for 150M (±100) tokens of FineWeb (Penedo et al., 2024). The methodology is overall similar to
(Bloom, 2024). We initialize encoder weights orthogonally and set decoder weights to their transpose.
We initialize decoder biases to 0. We use Rajamanoharan (2024)’s ghost gradients variant (ghost
gradients applied to dead features only, loss multiplied by the proportion of death features) with the
additional modification of using softplus instead of exp for numerical stability. A feature is considered

10

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

dead when its density (according to a 1000-batch buffer) is below 5e-6 or when it has not fired in
2000 steps. We use Anthropic’s input normalization and sparsity loss for Gemma 1 2B (Conerly et al.,
2024). We found it to improve Gated SAE training stability. We modified it to work with transcoders
by keeping track of input and output norms separately and predicting normed outputs.

We convert our Gated SAEs into JumpReLU SAEs after training, implementing algorithms like TVC
and SFC in a unified manner for all SAEs in this format (including simple SAEs). The conversion
procedure involves setting thresholds to replicate the effect of the gating branch. For further details,
see Rajamanoharan et al. (2024b).

We use 4 v4 TPU chips running Jax (Bradbury et al., 2018) (Equinox (Kidger & Garcia, 2021)) to
train our SAEs. We found that training with Huggingface’s Flax LM implementations was very slow.
We reimplemented LLaMA (Dubey et al., 2024) and Gemma (Team et al., 2024) in Penzai (Johnson,
2024) with a custom layer-scan transformation and quantized inference kernels as well as support
for loading from GGUF compressed model files. We process an average of around 4400 tokens per
second, which makes training SAEs and not caching LM activations the main bottleneck. For this
and other reasons, we don’t do SAE sparsity coefficient sweeps to increase TPU utilization.

For caching, we use a distributed ring buffer which contains separate pointers on each device to allow
for processing masked data. The (in-place) buffer update is in a separate JIT context. Batches are
sampled randomly from the buffer for each training step.

We train our SAEs in bfloat16 precision. We found that keeping weights and scales in bfloat16
and biases in float32 performed best in terms of the number of dead features and led to a Pareto
improvement over float32 SAEs.

For training Phi 3 (Abdin et al., 2024) SAEs, we use data generated by the model unconditionally,
similarly to (Xu et al., 2024)1. The resulting dataset we train the model on contains many math
problems and is formatted as a natural-seeming interaction between the user and the model.

Each SAE training run takes us about 3 hours. We trained 3 models (a residual SAE, an attention
output SAE, and a transcoder) for each of the 18 layers of the model. This is about 1 week of v4-8
TPU time.

Our SAEs and training code will be made public after paper acceptance.

C EXAMPLE CIRCUITS

An example output of our circuit cleaning algorithm can be found in Figure 6. We can see the flow of
information through a single high-IE attention feature from a task-detection feature (activating on
output tokens) to transcoder and residual execution features (activating on arrow tokens). The feature
activates on antonyms on the detection feature #11050: one can assume the first sequence began as
“Short Term Target”, making the second half an antonym.

We will release a web interface for viewing maximum activating examples and task feature circuits.

D TASK VECTOR CLEANING ALGORITHM

The task vector cleaning algorithm is a novel approach we developed to isolate task-relevant features
from task vectors. Figure 7 provides an overview of this algorithm.

Our process begins with collecting residuals for task vectors using a batch of 16 and 16-shot prompts.
We then calculate the SAE features for these task vectors. We explored two methods: (1) calculating
feature activation and then averaging across tokens, and (2) averaging across tokens first and then
calculating the task vector. They had similar performances.

The cleaning process is performed on a training batch of 24 pairs, with evaluation conducted on an
additional 24 pairs. All prompts are zero-shot. An example prompt is as follows:

1Phi-3 is trained primarily with instruction following data, making it an aligned chat model.

11

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Figure 6: An example of a circuit found using our SFC variant. We focused on a subcircuit with high
indirect effects. Maximum activating examples from the SAE training distribution are included.

n-shot ICL
prompts Task vectors SAE

features

Training
weights

Cleaned
weights

Reconstruct
TV

L1 normTask loss

Loss
Optimize

0-shot ICL
prompts

...hot -> cold...

...tall ->

on layer L

10-20 features
noisy

2-4 features
interpretable

Figure 7: An overview of our Task Vector Cleaning algorithm. TV stands for Task Vector.

BOS Follow the pattern : \n

tall → short \n

· · ·

old → young \n

hot → cold

Example 2: The steered token is highlighted in red. Loss is calculated on the yellow token.

12

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

The algorithm is initialized with the SAE reconstruction as a starting point. It then iteratively steers
the model on the reconstruction layer and calculates the loss on the training pairs. To promote sparsity,
we add the L1 norm of weights with coefficient λ to the loss function. The algorithm implements
early stopping when the L0 norm remains unchanged for n iterations.

1 def tvc_algorithm(task_vector, model, sae):
2 initial_weights = sae.encode(task_vector)
3 def tvc_loss(weights, tokens):
4 task_vector = sae.decode(weights)
5 mask = tokens == self.separator
6 model.residual_stream[layer, mask] += task_vector
7 # loss only on the ``output" tokens,
8 # ignoring input and prompt tokens
9 loss = logprobs(model.logits, tokens, ...)

10 return loss + l1_coeff * l1_norm(weights)
11 weights = initial_weights.copy()
12 optimizer = adam(weights, lr=0.15)
13 last_l0, without_change = 0, 0 # early stopping
14 for _ in range(1000):
15 grad = jax.grad(tvc_loss)(weights, tokens)
16 weights = optimizer.step(grad)
17 if l0_norm(weights) != last_l0:
18 last_l0, without_change = l0_norm(weights), 0
19 elif without_change >= 50:
20 break
21 return weights

Algorithm 1: Pseudocode for Task Vector Cleaning.

The hyperparameters λ, n, and learning rate α can be fixed for a single model. We experimented with
larger batch sizes but found that they did not significantly improve the quality of extracted features
while substantially slowing down the algorithm due to gradient accumulation.

The algorithm takes varying amounts of time to complete for different tasks and models. For Gemma
1, it stops at 100-200 iterations, which is close to 40 seconds at 5 iterations per second.

It’s worth noting that we successfully applied this method to the recently released Gemma 2 2B and
9B models using the Gemma Scope SAE suite (Lieberum et al., 2024). It was also successful with the
Phi-3 3B model (Abdin et al., 2024) and with our SAEs, which were trained similarly to the Gemma
1 2B SAEs.

D.1 L1 SWEEPS

To provide more details about the method’s effectiveness across various models and SAE widths, we
conducted L1 coefficient sweeps with our Phi-3 and Gemma 1 2B SAEs, as well as Gemma Scope
Gemma 2 SAEs. We chose two SAE widths for Gemma 2 2B and 9B: 16k and 65k. For Gemma 2
2B we also sweeped across several different target SAE L0 norms. We studied only the optimal task
vector layer for each model: 12 for Gemma 1, 16 for Gemma 2, 18 for Phi-3, and 20 for Gemma 2
9B. We used a learning rate of 0.15 with the Gemma 1 2B, Phi-3, and Gemma 2 2B 65k models, 0.3
with Gemma 2 2B 16k, and 0.05 with 200 early stopping steps for Gemma 2 9B.

Figures 8, 9, 10 compare TVC and ITO against original task vectors. The X-axis displays the
fraction of active task vector SAE features used. The Y-axis displays the TV loss delta, calculated
as (LTV − LMethod)/LZero, where LTV is the loss from steering with the task vector, LMethod

is the loss after it has been cleaned using the corresponding method, and LZero is the uninformed
(no-steering) model loss. This metric shows improvement over the task vector relative to the loss of
the uninformed model. Points were collected from all tasks using 5 different L1 coefficient values.

We observe that our method often improves task vector loss and can reduce the number of active
features to one-third of those in the original task vector while maintaining relatively intact performance.
In contrast, ITO rarely improves the task vector loss and is almost always outperformed by TVC.

13

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

Method
ITO
TVC

Gemma 1

TV L0 fraction

TV
 lo

ss
 d

el
ta

Figure 8: Performance of ITO and TVC across different tasks and optimization parameters compared
to task vectors for Gemma 1 2B. The Y-axis shows relative improvement over task vector loss, while
the X-axis shows the fraction of active TV features used. Metric calculation details are available in
D.1

0 0.5 1 1.5

−0.4

−0.2

0

0.2

0.4
Method

ITO
TVC

Phi-3

TV L0 fraction

TV
 lo

ss
 d

el
ta

Figure 9: Performance of ITO and TVC across different tasks and optimization parameters compared
to task vectors for Phi-3. The Y-axis shows relative improvement over task vector loss, while the
X-axis shows the fraction of active TV features used. Metric calculation details are available in D.1

Figures 11, 12 and 13 show task-mean loss decrease (relative to no steering loss) and remaining TV
features fraction plotted against L1 sweep coefficients. We see that L1 coefficients between 0.001
and 0.025 result in relatively intact performance, while significantly reducing the amount of active
SAE features. From Figure 12 we can notice that the method performs better with higher target l0
SAEs, being able to affect the loss with just a fraction of active SAE features.

E DETAILS OF OUR SFC IMPLEMENTATION

E.1 IMPLEMENTATION DETAILS

Our implementation of circuit finding attribution patching is specialized for Jax and Penzai.

We first perform a forward-backward pass on the set of prompts, collecting residuals and gradients
from the metric to residuals. We collect gradients with jax.grad by introducing “dummy” zero-
valued inputs to the metric computation function that are added to the residuals of each layer. Note
that we do not use SAEs during this stage.

14

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

0 0.5 1 1.5 2

−0.5

0

0.5

Method
ITO
TVC

Gemma 2 65k

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2

−0.5

0

0.5

Method
ITO
TVC

Gemma 2 16k

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2

Method
ITO
TVC

Gemma 2 2B 16k (23 l0)

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6 Method
ITO
TVC

Gemma 2 2B 16k (335 l0)

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2
Method

ITO
TVC

Gemma 2 2B 65k (21 l0)

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.6

−0.4

−0.2

0

0.2

0.4

Method
ITO
TVC

Gemma 2 2B 65k (244 l0)

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Method

ITO
TVC

Gemma 2 9B 65k

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

0.4

Method
ITO
TVC

Gemma 2 9B 16k

TV L0 fraction

TV
 lo

ss
 d

el
ta

Figure 10: Performance of ITO and TVC across different tasks and optimization parameters compared
to task vectors for Gemma 2 Gemma Scope SAEs. The Y-axis shows the relative improvement over
the loss from steering with a task vector, while the X-axis shows the fraction of active TV features
used. Metric calculation details are available in Appendix D.1.

We then perform an SAE encoding step and find the nodes (residual, attention output, and transcoder
SAE features and error nodes) with the highest indirect effects using manually computed gradients
from the metric. After that, we find the features with the top K indirect effects for each layer and
position mask and treat them as candidates for circuit edge targets. We compute gradients with
respect to the metric to the values of those nodes, propagate them to “source features” up to one layer
above, and multiply by the values of the source features. This way, we can compute indirect effects
for circuit edges and prune the initially fully connected circuit. However, like Marks et al. (2024), we
do not perform full ablation of circuit edges.

We include a simplified implementation of node-only SFC in Algorithm 2.

1 # resids_pre: L x N x D - the pre-residual stream at layer L
2 # resids_mid: L x N x D - the middle of the residual stream

15

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0.4

0.6

0.8

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0.2

0.4

0.6

Gemma 1

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

0.6

Phi-3

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

0.6

0.8

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

0.6

Gemma 2 2B 65k (128 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

0.8

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

Gemma 2 2B 16k (78 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

Figure 11: L1 coefficient sweeps across different models and SAEs. All metrics are averaged across
all tasks. Error bars show the standard deviation of the average for each case. Metric calculation
details are available in D.1.

16

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

Gemma 2 2B 16k (23 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.5

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

Gemma 2 2B 16k (335 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

Gemma 2 2B 65k (21 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.5

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

Gemma 2 2B 65k (244 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

Figure 12: L1 coefficient sweeps across different target SAE sparsities and widths for Gemma 2 2B.
All metrics are averaged across all tasks. Error bars show the standard deviation of the average for
each case. Metric calculation details are available in Appendix D.1.

17

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

−0.2

0

0.2

0.4

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

0.6

Gemma 2 9B 65k

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

−0.2

0

0.2

0.4

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

Gemma 2 9B 16k

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

Figure 13: L1 coefficient sweeps across two SAE widths for Gemma 2 9B. All metrics are averaged
across all tasks. Error bars show the standard deviation of the average for each case. Metric calculation
details are available in D.1.

3 # (between attention and MLP) at layer L
4 # grads_pre: L x N x D - gradients from the metric to resids_pre
5 # grads_mid: L x N x D - gradients from the metric to resids_mid
6 # all of the above are computed with a forward and backward
7 # pass without SAEs
8

9 # saes_resid: L - residual stream SAEs
10 # saes_attn: L - attention output SAEs
11 # transcoders_attn: L - transcoders predicting resids_pre[l+1]
12 # from resids_mid[l]
13

14 def indirect_effect_for_residual_node(layer):
15 sae_encoding = saes_resid[layer].encode(
16 resids_pre[layer])
17 grad_to_sae_latents = jax.vjp(
18 saes_resid[layer].decode,
19 sae_encoding
20)(grads_pre[l])
21 return (grad_to_sae_latents * sae_encoding).sum(-1)
22

23 def indirect_effect_for_attention_node(layer):
24 sae_encoding = saes_attn[layer].encode(
25 resids_mid[layer] - resids_pre[layer])
26 grad_to_sae_latents = jax.vjp(
27 saes_attn[layer].decode,
28 sae_encoding
29)(grads_mid[l])
30 return (grad_to_sae_latents * sae_encoding).sum(-1)
31

32 def indirect_effect_for_transcoder_node(layer):
33 sae_encoding = transcoders[layer].encode(

18

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

34 resids_mid[layer])
35 grad_to_sae_latents = jax.vjp(
36 transcoders[layer].decode,
37 sae_encoding
38)(grads_pre[l+1])
39 return (grad_to_sae_latents * sae_encoding).sum(-1)

Algorithm 2: Pseudocode for Sparse Feature Circuits indirect effect calculation.

E.2 SFC EVALUATION DETAILS

We evaluated our SFC modifications through comprehensive ablation studies, measuring faithfulness
using the metric:

Faithfulness(C) =
m(C)−m(∅)

m(M)−m(∅)
(3)

where m(C) represents performance with circuit C, m(∅) the baseline, and m(M) the full model’s
performance. Our ablation studies targeted both the discovered circuit C and its complement

0 500 1000 1500
0

0.2

0.4

0.6

Number of nodes

Fa
ith

fu
ln

es
s

(a) Faithfulness of C

0 500 1000 1500

0.2

0.4

0.6

0.8

1

Number of nodes

Fa
ith

fu
ln

es
s

(b) Faithfulness of M \ C

Figure 14: Faithfulness measurements for cir-
cuits and their complements.

location_continent
football_player_position
location_religion
location_language
person_profession
location_country
country_capital
person_language
singular_plural
present_sim

ple_past_sim
ple

antonym
s

plural_singular
present_sim

ple_past_perfect
present_sim

ple_gerund
en_it
it_en
en_fr
en_es
fr_en
es_en
algo_last
algo_first
algo_second

location_continent
football_player_position

location_religion
location_language
person_profession

location_country
country_capital

person_language
singular_plural

present_simple_past_simple
antonyms

plural_singular
present_simple_past_perfect

present_simple_gerund
en_it
it_en
en_fr
en_es
fr_en
es_en

algo_last
algo_first

algo_second

−0.5

0

0.5

Faithfullness change

Tested task

A
bl

at
ed

 ta
sk

Figure 15: Cross-task impact of circuit ablation,
showing strong task specificity.

M \ C, removing nodes according to their IE thresholds. As shown in Figure 14, circuits of 500
nodes achieved an average faithfulness of 0.6 across tasks. Cross-task ablation studies (Figure 15)
demonstrated strong task specificity, with performance impacts largely confined to target tasks and
closely related tasks like translation pairs. We focused our analysis on intermediate layers 10-17
of the model’s 18 total layers. This choice was motivated by two factors: earlier layers primarily
process token-level information rather than task-specific features, and our analysis showed more
reliable IE approximations in these intermediate layers. This differs from previous work (Marks
et al., 2024) which excluded fewer early layers (2 out of 6 versus our 10 out of 18), reflecting the
increased complexity of analyzing larger models and ICL tasks. Appendix E.3 contains more details
on faithfulness approximation quality. The results demonstrate that our modified SFC approach
successfully scales to analyze complex ICL mechanisms in larger language models while maintaining
the ability to identify task-specific circuits and their interactions.

19

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

E.3 IE APPROXIMATION QUALITY

Our IE calculation approach, which aggregates effects across all tokens of the same type, resulted
in each layer having a limited number of non-zero nodes. This allowed us to directly examine
the impact of disabling each of these nodes. We assessed the quality of the IE approximation by
calculating correlation coefficients between the actual effects and their approximations. To further
reduce computation time, we focused exclusively on nodes from the “input,” “output,” and “arrow”
groups. Figure 16 displays the correlations averaged across all tasks for all SAE types combined,
while Figure 17 presents the metric for each SAE type separately.

5 10 15

0.4

0.5

0.6

0.7

Layer

C
or
re
la
tio

n

Figure 16: Average correlation of predicted and actual IEs across tasks for “input”, “output” and
“arrow” non-zero nodes.

Overall, we observe that the approximation quality remains relatively low before layer 6, which is
much deeper in the model than layer 2, as reported by the original SFC paper. Non-residual stream
SAEs begin to show adequate performance only in the last third of the model. This may be due to
the quality of our trained SAEs, the increased task complexity, or token type-wise aggregation, and
warrants further investigation. This is the primary reason our analysis focuses mainly on layers 10-15.

5 10 15

0.2

0.4

0.6

0.8 SAE Type
Attention Out
Residual
Transcoder

Layer

C
or

re
la

tio
n

Figure 17: Average correlation of predicted and actual IEs across tasks for “input”, “output” and
“arrow” non-zero nodes for different SAE types.

F STEERING WITH TASK-EXECUTION FEATURES

To evaluate the causal relevance of our identified ICL features, we conducted a series of steering
experiments. Our methodology employed zero-shot prompts for task-execution features, measuring
effects across a batch of 32 random pairs.

We set the target layer as 12 using Figure 2 and extracted all task-relevant features on it using our
cleaning algorithm. To determine the optimal steering scale, we conducted preliminary experiments
using manually identified task-execution features across all tasks. Through this process, we estab-
lished an optimal steering scale of 15, which we then applied consistently across all subsequent
experiments.

For each pair of tasks and features, we steered with the feature and measured the relative loss
improvement compared to the model’s task performance on a prompt without steering. This relative
improvement metric allowed us to quantify the impact of each feature on task performance.

20

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Token Type Mass (%)
arrow 89.80
output 6.46
input 3.2
newline 0.54
prompt 0.00

Table 1: Activation masses for
executor features across dif-
ferent token types, averaged
across all tasks. We can no-
tice they activate largely on
arrow tokens.

To normalize our results and highlight the most significant effects, we applied several post-processing
steps:

• We clipped the effect to be no more than 1, thus ignoring any instances of loss increase.

• We then normalized the effects for all features within the same task to be in the 0 to 1 range.

• To remove clutter and highlight important features, we set effects lower than 0.2 to 0.

• Finally, we removed features with low maximum effect across all tasks to reduce the size of
the resulting diagram. The full version of this diagram is present in Figure 18.

Prompt example with the steered token highlighted in red. Loss is calculated on the yellow token:

BOS Follow the pattern : \n

hot → cold

Example 3: Task-execution steering setup. The steered token is highlighted in red and the loss is
calculated on the yellow token.

5579
16490
2930
26594
11618
29144
1878
850
15356
7491
6594
8633
15554
1830
13458
11172
11173
26987
27268
14612
32320
12943
9662
22906
10720
19097
19112
24925
7106
27401
25576
7739
211
18803
2539
20832
7578
5991
6413
6780
23906
9600
17636

es_en
it_en
fr_en

plural_singular
antonyms
algo_first

algo_second
location_country

location_continent
present_simple_past_simple

person_profession
present_simple_past_perfect

algo_last
present_simple_gerund

singular_plural
football_player_position

person_language
location_language
location_religion

country_capital
en_it
en_fr
en_es

0

0.2

0.4

0.6

0.8

1
Effect strength

 ● Feature is in task vector | ● Feature is present after cleaning
Feature

Ta
sk

● ● ● ●
● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ●
● ● ●

● ● ● ●
● ●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ●
● ●

● ● ●
● ● ●
● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

●
● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ●

●
● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ●
● ● ● ● ● ●

Figure 18: Full version of the heatmap in Figure 4 showing the effect of steering with individual
task-execution features for each task. The features present in the task vector of the corresponding
task are marked with dots (i.e. from the naive SAE reconstruction baseline in Section 3.1). Green
dots show the features that were extracted by cleaning. Red dots are features present in the original
task vector. Not all original features from the task vectors are present.

21

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

We also share the version of Figure 18 without normalization and value clipping. It is present in
Figure 20. We see that task vectors generally contain just a few task-execution features that can boost
the task themselves. The remaining features have much weaker and less specific effects.

F.1 NEGATIVE STEERING

To further explore the effects of the executor feature, we also conducted negative steering experiments.
The setup involved a batch of 16 ICL prompts, each containing 32 examples for each task. We
collected all features from the cleaned task vectors for every task. Similar to positive steering, we
steered with features on arrow tokens, but this time multiplying the direction by -1. Prompts this time
contained several arrow tokens, and we steered on all of them simultaneously.

An important distinction from positive steering is that performance degradation in negative steering
may occur due to two factors: (1) our causal intervention on the ICL circuit and (2) the steering scale
being too high. To address this, we measured accuracy across all pairs in the batch instead of loss, as
accuracy does not decrease indefinitely. We also observed that features no longer share a common
optimal scale. Consequently, for each task pair, we iterated over several scales between 1 and 30.
For each feature, we then selected a scale that reduced accuracy by at least 0.1 for at least one task.
Steering results at this scale were used for this feature across all tasks.

Figure 19 displays the resulting heatmap. While we observe some degree of task specificity — and
even note that some executing features from Figure 18 have their expected effects — we also find that
negative steering exhibits significantly lower task specificity. Additionally, we observe that non-task-
specific features have a substantial impact in this experiment. This suggests that steering experiments
alone may not suffice for a comprehensive analysis of the ICL mechanism, thus reinforcing the
importance of methods such as our modification of SFC.

19112

23682

25576

22136

18803

12943

15554

19097

14612

6780

20832

2539

7491

15356

16490

6413

26594

16996

27401

32643

9600

26987

11173

9662

17636

850

11618

6594

13458

26924

7739

18840

16340

5991

24925

27268

9790

11172

5579

10720

7578

2930

8633

algo_second
algo_last

antonyms
location_country

location_language
present_simple_gerund

location_continent
football_player_position

person_profession
present_simple_past_perfect

location_religion
singular_plural

en_it
en_fr
en_es

algo_first
present_simple_past_simple

country_capital
plural_singular

person_language
es_en
it_en
fr_en

0

0.05

0.1

Accuracy decrease

 ● Feature is present after cleaning
Feature

Ta
sk

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

Figure 19: Negative steering heatmap. Displays accuracy decrease after optimal scale negative
steering on full ICL prompts. Green circles show which features were present in the cleaned task
vector of the corresponding task. More details in Appendix F.1.

F.2 GEMMA 2 2B POSITIVE STEERING

Additionally, we conducted zero-shot steering experiments with Gemma 2 2B 16k and 65k SAEs.
Contrary to Gemma 1 2B, task executors from Gemma 2 2B did not have a single common optimal
steering scale. Thus, we added an extra step to the experiment: for each feature and task pair, we
performed steering with several scales from 30 to 300, and then selected the scale that had maximal
loss decrease on any of the tasks. We then used this scale for this feature in application to all other
tasks. Figure 21a and Figure 21b contain steering heatmaps for Gemma 2 2B 16k SAEs and Gemma
2 2B 65k SAEs respectively.

We observe a relatively similar level of executor task-specificity compared to Gemma 1. One notable
difference between 16k and 65k SAEs is that 65k cleaned task vectors appear to contain more features
with a strong effect on the task. However, this may be due to the l1 regularization coefficient being
too low.

22

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

5579
16490
2930
26594
11618
29144
1878
850
15356
7491
6594
8633
15554
1830
13458
11172
11173
26987
27268
14612
32320
12943
9662
22906
10720
19097
19112
24925
7106
27401
25576
7739
211
18803
2539
20832
7578
5991
6413
6780
23906
9600
17636

es_en
it_en
fr_en

plural_singular
antonyms
algo_first

algo_second
location_country

location_continent
present_simple_past_simple

person_profession
present_simple_past_perfect

algo_last
present_simple_gerund

singular_plural
football_player_position

person_language
location_language
location_religion

country_capital
en_it
en_fr
en_es

0

0.2

0.4

0.6

0.8

Relative loss decrease

 ● Feature is in task vector | ● Feature is present after cleaning
Feature

Ta
sk

● ● ● ●
● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ●
● ● ●

● ● ● ●
● ●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ●
● ●

● ● ●
● ● ●
● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

●
● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ●

●
● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ●
● ● ● ● ● ●

Figure 20: Unfiltered version of the heatmap in Figure 22 showing the effect of steering with
individual task-execution features for each task. The features present in the task vector of the
corresponding task are marked with dots. Green dots show the features that were extracted by
cleaning. Red dots are the features present in the original task vector. Since the chart only contains
features from cleaned task vectors, not all features from the original task vectors are present.

G TASK-DETECTION FEATURES

For our investigation of task-detection features, we employed a methodology similar to that used for
task execution features, with a key modification. We introduced a fake pair to the prompt and focused
our steering on its output. This approach allowed us to simulate the effect of the detection features
the way it happens on real prompts. Table 2 and Figure 22 again show task and token specificity.

Our analysis revealed that layers 10 and 11 were optimal for task detection, with performance notably
declining in subsequent layers. We selected layer 11 for our primary analysis due to its proximity
to layer 12, where we had previously identified the task execution features. This choice potentially
facilitates a more direct examination of the interaction between detection and execution mechanisms.

The steering process for detection features followed the general methodology outlined in Appendix F,
including the use of a batch of 32 random pairs, extraction of task-relevant features, and application
of post-processing steps to normalize and highlight significant effects. The primary distinction lies in
the application of the steering to the prompt.

This approach allowed us to create a comprehensive representation of the causal relationships between
task-detection features and the model’s ability to recognize specific tasks, as visualized in Figure 22.

BOS Follow the pattern : \n

X → Y \n

hot → cold

Example 4: Task-detection steering setup. The steered token is highlighted in red and the loss is
calculated on the yellow token.

H ICL INTERPRETABILITY LITERATURE REVIEW

This section will cover work on understanding ICL not mentioned in Section 5.

Raventós et al. provides evidence for two different Bayesian algorithms being learned for linear
regression ICL: one for limited task distributions and one that is similar to ridge regression. It

23

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

14671
12646
15511
13692
10140
7464
13623
16315
10300
12540
15966
5640
13804
4592
493
12777
12966
4285
16176
6574
725
8646
7107
15358
5211
7355
11720
2683
4012
817
14059
4766
10466
3157
12647
16222
6112
8941
12131
12721
12944
4820
3442
5774
16370
5496
2707
13976
6628

en_fr
algo_last

en_it
antonyms
algo_first

location_continent
present_simple_gerund

country_capital
football_player_position

person_profession
location_country

algo_second
en_es

person_language
location_language
location_religion

it_en
fr_en
es_en

present_simple_past_perfect
singular_plural

present_simple_past_simple
plural_singular

0

0.2

0.4

0.6

0.8

Relative loss decrease

 ● Feature is in task vector | ● Feature is present after cleaning
Feature

Ta
sk

● ●
● ● ● ●
● ●
●

● ●
●
● ●

●
● ● ●
● ● ●

● ● ● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ●
● ● ●

●
● ● ● ●

● ● ●
● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ●

● ● ● ● ●

(a) Gemma 2 2B 16k

62633
34706
36382
58571
43597
59184
59579
13705
46729
21497
17288
3681
43234
18981
4579
34279
61107
33770
43713
57004
19054
37576
1782
7595
47139
21438
2950
2702
10180
46288
62501
14000
7454
5460
31307
45242
58958
29733
11226
28700
65211
710
55907
9407
38942
5503
24372
38998
25490
27393
15110
56016
21586
38724
32682
4520
60430
54547
27146
39700
3304
25795

es_en
fr_en
it_en

en_es
algo_first

location_language
plural_singular

antonyms
location_continent

location_country
person_profession

location_religion
person_language

en_it
en_fr

algo_last
football_player_position

present_simple_gerund
present_simple_past_simple
present_simple_past_perfect

singular_plural
algo_second

country_capital

0

0.2

0.4

0.6

0.8

Relative loss decrease

 ● Feature is in task vector | ● Feature is present after cleaning
Feature

Ta
sk

● ●
● ● ● ● ● ● ● ●

● ● ● ●
● ● ●
● ● ● ● ●
● ● ●

● ● ● ● ●
● ●

● ● ● ●
● ● ● ●

● ●
● ● ●
● ● ● ● ● ●

● ●
● ● ● ●

● ● ● ● ● ● ●
● ● ●

● ●
● ● ● ●

● ● ● ● ● ●
● ●

●
● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

(b) Gemma 2 2B 65k

Figure 21: Unfiltered positive steering heatmap for Gemma 2 2B SAEs showing the effect of steering
with individual task-execution features for each task. Steering scales were optimized for each feature.
The features present in the task vector of the corresponding task are marked with dots. Green dots
show the features that were extracted by cleaning. Red dots are the features present in the original
task vector. Since the chart only contains features from cleaned task vectors, not all features from the
original task vectors are present.

Token Type Mass (%)
output 96.76
input 3.22
newline 0.01
arrow 0.0
prompt 0.0

Table 2: Activation masses for task-detection
features across different token types, averaged
across all tasks. We can notice that they acti-
vate almost exclusively on output tokens.

8446
19628
29228
11459
26436
19916
21327
31123
13529
11050
1322
1132
32115
3466
7928
10884
99 25337
10685
25334
27001
15764

present_simple_gerund
present_simple_past_perfect

plural_singular
algo_last

location_country
location_continent
person_profession

football_player_position
present_simple_past_simple

es_en
fr_en
it_en

country_capital
antonyms

singular_plural
person_language

algo_second
algo_first

location_religion
en_fr
en_it

location_language
en_es

0

0.2

0.4

0.6

0.8

1
Effect strength

Feature

Ta
sk

Figure 22: Heatmap showing the effect of
steering with the task-detection feature most
relevant to each task, on every task. We see
that task detection features are typically spe-
cific to the task, with exceptions for similar
tasks.

also intriguingly shows that the two solutions lie in different basins of the loss landscape, a phase
transition necessary to go from one to the other. While interesting, it is not clear if the results apply
to real-world tasks.

24

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

The existence of discrete task detection and execution features hinges on the assumption that in-
context learning works by classifying the task to perform and not by learning a task. Pan et al. aims
to disentangle the two with a black-box approach that mixes up outputs to force the model to learn
the task from scratch. Si et al. look at biases in task recognition in ambiguous examples through
a black-box lens. We find more clear task features for some tasks than others but do not consider
whether this is linked to how common a task is in pretraining data.

Xie et al. proposes that in-context learning happens because language models aim to model a latent
topic variable to predict text with long-range coherence. Wang et al. (2024) show following the two
proposed steps rigorously improves results in real-world models. However, they do not endeavor to
explain the behavior of non-finetuned models by looking at internal representations; instead, they aim
to improve ICL performance.

Han et al. use a weight-space method to find examples in training data that promote in-context
learning using a method akin to Grosse et al. (2023), producing results similar to per-token loss
analyses in Olsson et al. (2022), and, similarly to the studies mentioned above, finds that those
examples involve long-range coherence. Our method is also capable of finding examples in data that
are similar to ICL, and we find crisp examples for many tasks being performed Appendix I.

Bansal et al. offers a deeper look into induction heads, scaling up Olsson et al. (2022) the way we
scale up Marks et al. (2024). Crucially, it finds that MLPs in later layers cannot be removed while
preserving ICL performance, indirectly corroborating our findings from Section 4.1. Chen et al. come
up with a proof that states that gradient flow converges to a generalized version of the algorithm
suggested by Olsson et al. (2022) when trained on n-gram Markov chain data.

Garg et al. studies the performance of toy models trained on in-context regression various function
classes. Yadlowsky et al. find that Transformers trained on regression with multiple function classes
have trouble combining solutions for learning those functions. Oswald et al. construct a set of weights
for linear attention Transformers that reproduce updates from gradient descent and find evidence for
the algorithm being represented on real models trained on toy tasks. Mahankali et al. proves that
this algorithm is optimal for single-layer transformers on noisy linear regression data. Shen et al.
questions the applicability of this model to real-world transformers. Bai et al. finds that transformers
can switch between multiple different learning algorithms for ICL. Dai et al. find multiple similarities
between changes made to model predictions from in-context learning and weight finetuning.

While important, we do not consider this direction of interpreting transformers trained on regression
for concrete function classes through primarily white-box techniques. Instead, we aim to focus on
clear discrete tasks which are likely to have individual features.

The results of Wang et al. are perhaps the most similar to our findings. The study finds “anchor tokens”
responsible for aggregating semantic information, analogous to our “output tokens” (Section 2.3) and
task-detection features. They tackle the full circuit responsible for ICL bottom-up and intervene on
models using their understanding, improving accuracy. Like this paper, they do not deeply investigate
later attention and MLP layers. Our study uses SAE features to find strong linear directions on output
and arrow tokens corresponding to task detection and execution respectively, offering a different
perspective. Additionally, we consider over 20 diverse token-to-token tasks, as opposed to the 4 text
classification datasets considered in Wang et al..

I MAX ACTIVATING EXAMPLES

This section contains max activating examples for some executor and detector features for Gemma
1 2B, as described in (Bricken et al., 2023). They are computed by iterating over the training data
distribution (FineWeb) and sampling activations of SAE features that fall within disjoint buckets for
the activation value of span 0.5. We can observe that the degree of intuitive interpretability depends
on the amount of task-similar contexts in the training data and SAE width.

We also provide max activating examples for Gemma 2 2B executor features from Figures 21b and
21a. These max activating examples are taken from the Neuronpedia (Lin, 2023) and are available in
Figures 26 and 25.

Here we can notice the main difference between executors and detectors: executors mainly activate
before the task completion, while detectors activate on the token that completes the task. We also

25

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

(a) Max activating examples for the antonyms executor
feature 11618.

(b) Max activating examples for the English to for-
eign language translation executor feature 26987.

(c) Max activating examples for the translation to En-
glish executor feature 5579.

(d) Max activating examples for the “next comes
gerund form” executor feature 15554.

(e) Max activating examples for the prediction of city/-
country feature 850.

(f) Max activating examples for the person’s occu-
pation executor feature 13458.

Figure 23: Max activating examples for executor features from Figure 4.

26

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

(a) Max activating examples for the antonyms de-
tector feature 11050.

(b) Max activating examples for the English to foreign
language switch detector feature 7928.

(c) Max activating examples for the gerund form
detector feature 8446.

(d) Max activating examples for the translation to En-
glish detector feature 31123.

(e) Max activating examples for the country detec-
tor feature 11459.

(f) Max activating examples for the journalist feature
26436. (The strongest detector for the person profession
task).

Figure 24: Max activating examples for detector features from Figure 22.

27

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

(a) Max activating examples for the language pre-
diction executor feature 13804.

(b) Max activating examples for the repetition executor
feature 12646. Extracted from the algo last TV.

(c) Max activating examples for the cap-
ital prediction executor feature 16315. (d) Max activating examples for the translation feature 493.

Figure 25: Max activating examples for Gemma 2 2B 16k executor features from Figure 21a.

(a) Max activating examples for the antonyms
executor feature 45288.

(b) Max activating examples for the foot-
ball player position executor feature 18981.

(c) Max activating examples for the per-
son profession executor feature 46729.

(d) Max activating examples for translation to English executor
feature 62633.

Figure 26: Max activating examples for Gemma 2 2B 65k executor features from Figure Figure 21b.

28

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

found that in Gemma 1 2B detector features for some tasks were split between several token-level
features (like the journalism feature in Figure 24f), and they did not create a single feature before the
task executing features activated. We attribute this to the limited expressivity of the SAEs that we
used.

29

	Introduction
	Background
	Sparse Autoencoders (SAEs)
	Sparse Feature Circuits
	Task Vectors

	Discovering Task-Execution Features
	Decomposing task vectors
	Steering Experiments

	Applying SFC to ICL
	Task-Detection Features

	Related work
	Reproducibility Statement
	Model and dataset details
	SAE Training
	Example circuits
	Task Vector Cleaning Algorithm
	L1 Sweeps

	Details of our SFC implementation
	Implementation details
	SFC Evaluation Details
	IE approximation quality

	Steering with task-execution features
	Negative steering
	Gemma 2 2B positive steering

	Task-Detection Features
	ICL interpretability literature review
	Max Activating Examples

