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Abstract

Text-based Person Retrieval aims to retrieve001
person images that match the description given002
a text query. The performance of the TPR003
model relies on high-quality data. However,004
it is challenging to construct a large-scale, high-005
quality TPR dataset due to expensive annota-006
tion and privacy protection. Recently, Large007
Language Models (LLMs) have approached008
human performance on many NLP tasks, creat-009
ing the possibility to expand high-quality TPR010
datasets. This paper proposes the first LLM-011
based Data Augmentation (LLM-DA) method012
for TPR. LLM-DA uses LLMs to rewrite the013
text in the TPR dataset, achieving high-quality014
expansion concisely and efficiently. These015
rewritten texts are able to increase text diver-016
sity while retaining the original key semantic017
concepts. To alleviate hallucinations of LLMs,018
LLM-DA introduces a Text Faithfulness Filter019
to filter out unfaithful rewritten text. To balance020
the contributions of original and augmented021
text, a Balanced Sampling Strategy is proposed022
to control the proportion of original and aug-023
mented text used for training. LLM-DA is a024
plug-and-play method that can be integrated025
into various TPR models. Comprehensive ex-026
periments show that LLM-DA can improve the027
retrieval performance of current TPR models.028

1 Introduction029

Text-based Person Retrieval (TPR) (Jiang and Ye,030

2023) aims to retrieve person images that match the031

description given a text query, which is a sub-task032

of image-text retrieval (Chen et al., 2020a) and per-033

son re-identification (Re-ID) (Ye et al., 2021). TPR034

can assist in identifying individuals captured in035

surveillance footage based on textual descriptions.036

TPR has implications for surveillance and security037

applications, where identifying individuals based038

on textual descriptions can aid in law enforcement039

and public safety efforts.040

Current studies (Jiang and Ye, 2023; Bai et al.,041

Original Text

The man is wearing green pants and a green and black striped tank top. He has a buzz cut

and is wearing hot pink headphones around his neck.

Traditional Text Augmentation

Back Translation: The man is dressed in green pants and a green and black striped tank

top. He sports a buzz cut and is wearing hot pink headphones around his neck.

Random Deletion: The is wearing pants and a green and black striped tank top. He has a

buzz cut and is wearing hot pink around his neck.

Random Swap: The man is green pants wearing and a green and black striped tank top.

has a buzz He cut and is wearing hot pink around his neck headphones.

LLM-DA

1. The individual is sporting green pants paired with a green and black striped tank top,

boasting a clean-shaven head adorned with hot pink headphones dangling around the neck.

2. The man is adorned in green pants and a tank top featuring green and black stripes,

with pink headphones draped around his neck, complementing his buzz cut.

3. The man wears green pants along with a tank top adorned with green and black stripes.

Additionally, he sports a buzz cut hairstyle and carries pink headphones around his neck.

Figure 1: Original person image, original text, and aug-
mented text.

2023) on TPR mainly focus on extracting discrimi- 042

native feature representations and fine-grained fea- 043

ture alignment to achieve competitive retrieval per- 044

formance. As a multi-modal learning task, the per- 045

formance improvement of the TPR model relies on 046

high-quality data for supervised training. However, 047

it is challenging to construct a large-scale, high- 048

quality TPR dataset. Due to the following two 049

reasons: 1) Lack of data. Due to privacy protec- 050

tion, it is challenging to obtain large-scale person 051

images. 2) Lack of high-quality annotation. Text 052

annotation is tedious and inevitably introduces an- 053

notator biases. Therefore, the texts in the current 054

TPR datasets are usually short and cannot compre- 055

hensively describe the characteristics of the target 056

person. In order to solve this problem, Yang et 057

al. (Yang et al., 2023) construct a large-scale multi- 058

attribute dataset, MALS, for the pre-training of the 059

TPR task. It takes a lot of manpower and material 060

resources to construct MALS, and we are grateful 061

for their contribution to the TPR field. 062

In addition to constructing large-scale datasets, 063

data augmentation is also an effective way to ex- 064

pand data scale and facilitate model training. Com- 065

pared with dataset construction, data augmentation 066

has lower labor and material costs. Cao et al. (Cao 067

et al., 2024) conduct a comprehensive empirical 068

study on data augmentation in the TPR task, includ- 069
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ing image and text augmentation. Image augmen-070

tation methods include traditional removal and al-071

teration. Text augmentation methods include back072

translation, random deletion, etc. Most of these tra-073

ditional image augmentation methods can improve074

the retrieval performance of TPR models. However,075

we find that these traditional text augmentation076

methods do not significantly improve retrieval per-077

formance, and some methods even reduce retrieval078

performance. These text augmentation methods079

have limited improvement in text diversity. More080

seriously, some crude text augmentation methods,081

such as random deletion and random swap, can de-082

stroy the correct sentence structure and even change083

the original semantic concept of the text, as shown084

in Figure 1. These low-quality augmented texts can085

have a negative impact on model training.086

Recently, Large Language Models (LLMs) have087

approached or even surpassed human performance088

on many NLP tasks, creating the possibility to ex-089

pand high-quality TPR datasets. LLM can be used090

to rewrite the original text to generate new text,091

thereby achieving text augmentation. Thanks to the092

powerful semantic understanding and generation093

capabilities of LLMs, these rewritten texts are able094

to increase the diversity of vocabulary and sentence095

structure while retaining the original key concepts096

and semantic information. We first explore using097

LLM for data augmentation in the TPR task. Fig-098

ure 1 shows the augmented text we generated using099

the open-source LLM Vicuna (Chiang et al., 2023).100

The augmented text generated by LLM can enhance101

the diversity of the text while maintaining the cor-102

rect sentence structure. Although LLM has pow-103

erful generation capabilities, hallucinations have104

always been a thorny problem that LLM cannot105

solve. It is possible for LLM to generate augmen-106

tation text that does not meet expectations, which107

is an issue that needs to be addressed. In addition,108

how to balance the original data and augmented109

data to give full play to the role of data augmenta-110

tion is also a challenge that needs to be solved.111

This paper proposes the first LLM-based Data112

Augmentation (LLM-DA) method for TPR. LLM-113

DA uses LLMs to rewrite the text in the current114

dataset, achieving high-quality expansion concisely115

and efficiently. These rewritten texts are able to in-116

crease the diversity of vocabulary and sentences117

while retaining the original key semantic concepts.118

To alleviate hallucinations of LLMs, LLM-DA in-119

troduces a Text Faithfulness Filter (TFF) to filter120

out unfaithful rewritten text. To balance the contri-121

butions of original and augmented text, a Balanced 122

Sampling Strategy (BSS) is proposed to control 123

the proportion of original text and augmented text 124

used for training. LLM-DA neither changes the 125

original model architecture nor affects the form of 126

the original loss function. Therefore, LLM-DA is a 127

plug-and-play method that can be easily integrated 128

into various TPR models. The major contributions 129

of this paper are summarized as follows: 130

• We propose an LLM-DA method for TPR, using 131

LLMs to rewrite the text in the dataset, achieving 132

high-quality expansion. This is the first exploration 133

of using LLM for data augmentation in TPR. 134

• We propose a TFF to filter out unfaithful rewrit- 135

ten text to alleviate hallucinations in LLMs. 136

• We propose a BSS to control the proportion of 137

original text and augmented text used for training. 138

• LLM-DA can be plug-and-play integrated into 139

various TPR models. Comprehensive experiments 140

on TPR benchmarks show that LLM-DA can im- 141

prove the retrieval performance of TPR models. 142

2 Related work 143

2.1 Text-based Person Retrieval 144

TPR (Jiang and Ye, 2023) aims to retrieve person 145

images that match the description given a text query. 146

Feature extraction and alignment are the core steps 147

to achieving TPR. 148

Feature Extraction refers to extracting discrim- 149

inative features from input person images and text 150

descriptions. Li et al. (Li et al., 2017a,b) use 151

LSTM to extract text features and CNN to ex- 152

tract image features. Zhu et al. (Zhu et al., 2021) 153

use ResNet-50 (He et al., 2016) to extract image 154

features and Bi-GRU to extract text features. In 155

recent years, with the emergence of Transformer 156

(Vaswani et al., 2017) and BERT (Devlin et al., 157

2018), large-scale pre-trained models are used to 158

extract features. Han et al. (Han et al., 2021) 159

first introduce Contrastive Language-Image Pre- 160

Training (CLIP) (Radford et al., 2021) for feature 161

extraction. Yang et al. (Yang et al., 2023) apply 162

Swin Transformer (Liu et al., 2021) to extract im- 163

age features and BERT to extract text features. 164

Bai et al. (Bai et al., 2023) use the large-scale 165

vision-language pre-trained model ALBEF (Li 166

et al., 2021) to extract image and text features. 167

Feature Alignment refers to the process of ef- 168

fectively matching image and text features. Li et 169

al. (Li et al., 2017a) use cross-modal cross-entropy 170

loss for feature alignment. Li et al. (Li et al., 2017b) 171
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propose a RNN with gated neural Attention mech-172

anism to capture the relationship between images173

and text. In addition to loss functions and atten-174

tion mechanisms, recent studies (Zhu et al., 2021;175

Niu et al., 2020; Wang et al., 2020; Jing et al.,176

2020) use more complex models for feature align-177

ment. Zhu et al. (Zhu et al., 2021) use five different178

modules and loss functions for feature alignment.179

Jing et al. (Jing et al., 2020) propose a moment180

alignment network to solve the cross-domain and181

cross-modal alignment problems. Later studies et182

al. (Jiang and Ye, 2023) focus more on the fine-183

grained alignment of multimodalities. Yang et184

al. (Yang et al., 2023) incorporate the tasks of185

image-text contrastive Learning, image-text match-186

ing learning, and masked language modeling to187

impose the alignment constraints. Bai et al. (Bai188

et al., 2023) propose relationship-aware learning189

and sensitivity-aware learning.190

Most TPR studies focus on improving retrieval191

performance through the feature level, but high-192

quality data is crucial to improving the performance193

of supervised learning models. Privacy protection194

and annotation make building large-scale, high-195

quality datasets challenging. In order to solve this196

problem, Yang et al. (Yang et al., 2023) construct197

a large-scale TPR dataset, MALS, for pre-training,198

which takes a lot of manpower and material re-199

sources. In order to obtain large-scale, high-quality200

data at a low cost, this paper first considers using201

LLMs for data augmentation in TPR.202

2.2 Data Augmentation203

Data augmentation increases the diversity of the204

data and improves the robustness of the model by205

changing and expanding the original data. TPR206

datasets are usually constructed in the form of207

image-text pairs. Therefore, the data augmentation208

of TPR datasets requires considering both image209

augmentation and text augmentation.210

Image Augmentation. There are a lot of meth-211

ods of image augmentation. Commonly used tra-212

ditional methods include random cropping, flip-213

ping, scaling, etc. In addition, some novel im-214

age augmentation methods, such as Mixup (Zhang215

et al., 2017) and CutMix (Yun et al., 2019), are also216

widely used. Mixup randomly selects two images217

in each batch and mixes them in a certain ratio to218

generate a new image. Previous studies (Simonyan219

and Zisserman, 2014; Szegedy et al., 2016) have220

demonstrated that the data augmentation of images221

can effectively improve the generalization and ro-222

bustness of the model. In particular, Cao et al.(Cao 223

et al., 2024) point out that image augmentation can 224

improve the retrieval performance of TPR. 225

Text Augmentation. Text augmentation faces 226

more challenges because of the complexity, ab- 227

straction, flexibility, scarcity, and diversity of text. 228

EDA (Wei and Zou, 2019) is a simple text augmen- 229

tation method, including synonym replacement, 230

random insertion, etc. Back translation (Fadaee 231

et al., 2017) generates new sentences by translating 232

text into another language and then back. Although 233

back translation is widely used and has achieved 234

certain success, due to cultural differences between 235

different languages, it may lead to semantic in- 236

consistency. CutMixOut (Fawakherji et al., 2024) 237

combines Cutout (DeVries and Taylor, 2017) and 238

CutMix (Yun et al., 2019) to randomly replace and 239

remove text subsequences through a binary mask. 240

However, these methods may destroy the structural 241

and semantic information of sentences, and the aug- 242

mented texts lack diversity. With the widespread 243

application of LLMs, text augmentation can be per- 244

formed using LLMs. While ensuring the semantic 245

integrity of the sentence, LLMs can also increase 246

the diversity of sentence structure. Fan et al. (Fan 247

et al., 2024) improve CLIP performance by aug- 248

menting text with LLMs. Vertical applications such 249

as TPR are short on high-quality data and need to 250

be supplemented by high-quality data augmenta- 251

tion. However, there is currently no research on 252

using LLM to perform data augmentation on TPR. 253

2.3 Large Language Models 254

The Transformer architecture provides the basis for 255

the subsequent generation of LLMs. Radford et 256

al. (Radford et al., 2018) introduce GPT, which is 257

based on the Transformer architecture and serves 258

as the foundation for the advancement of LLMs. 259

Subsequently, the emergence of a series of GPT 260

models (Radford et al., 2019; Brown et al., 2020; 261

Achiam et al., 2023) further promotes the develop- 262

ment of this field. Moreover, the release of open- 263

sourced models like LLaMA (Touvron et al., 2023) 264

and GLM (Du et al., 2022), fine-tuned for various 265

tasks, has served as the backbone for numerous ap- 266

plications. Vicuna (Chiang et al., 2023) introduces 267

a more economical option with its 7B and 13B ver- 268

sions while maintaining impressive performance. 269

These models collectively achieve comparable per- 270

formances across various benchmarks, creating the 271

possibility to expand high-quality TPR datasets. 272

Although LLMs can perform well on many tasks, 273
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The man is wearing green pants and a green and black

striped tank top. He has a buzz cut and is wearing hot

pink headphones around his neck.

The man is adorned in green pants and a tank top

featuring green and black stripes, with pink headphones

draped around his neck, complementing his buzz cut.

Original Text

LLM TFF

Augmented Text

Image 

Encoder

Text 

Encoder

BSS

Original Text

Augmented Text

Regenerate

True

False

Loss Function

Image Embedding

Text Embeddings
Similarity Matrix

Figure 2: The framework of LLM-based Data Augmentation (LLM-DA) in TPR model training. LLM-DA introduces
a Text Faithfulness Filter (TFF) to alleviate the hallucinations of LLMs and a Balanced Sampling Strategy (BSS) to
balance the contributions of original text and augmented text.

there are still some problems that need to be solved274

when applying LLMs for text augmentation. One275

of the key issues is the hallucination, which refers276

to the situation where the grammatical correctness,277

fluency, and authenticity of the generated text are278

inconsistent with the original text or even inconsis-279

tent with the facts (Ye et al., 2023). Hallucination280

not only reduces the reliability of generated text281

but may also lead to an uneven quality of output282

text and sometimes even abnormal text. Therefore,283

it is necessary to slove the hallucination of LLMs.284

3 Methodology285

3.1 Preliminary286

TPR is defined as retrieving person images relevant287

to the description of a given text query. We denote288

V = {Vi}Ii=1 as a collection of person images and289

T = {Ti}Ii=1 as a collection of text descriptions,290

where Vi is a person image and Ti is a text descrip-291

tion. In TPR, given Ti, the goal is to find the most292

relevant Vi from V . Current TPR models generally293

follow a common framework, which contains an294

image encoder f img(·) and a text encoder f text(·).295

The similarity s(Vi, Ti) between Vi and Ti is com-296

puted based on the encoded image feature f img(Vi)297

and text feature f text(Ti). Finally, the retrieval re-298

sults are obtained by ranking the similarities.299

3.2 LLM-based Data Augmentation300

Figure 2 shows the framework of LLM-DA in TPR301

model training. LLM-DA first utilizes an LLM302

to rewrite the original text to generate augmented303

text. Then, to alleviate the hallucinations of LLMs,304

LLM-DA introduces a TFF to filter out unfaith-305

ful rewritten text. On the one hand, the faithfully306

rewritten text is used as augmented text for model307

Original Text Augmented Text

Prompt: “Rewrite this image caption.”

Open-Source LLM
Vicuna

The man is wearing green pants

and a green and black striped

tank top. He has a buzz cut and

is wearing hot pink headphones

around his neck.

The man is adorned in green

pants and a tank top featuring

green and black stripes, with

pink headphones draped around

his neck, complementing his

buzz cut.

ori

iT
aug

iT

Figure 3: Using LLM for text augmentation.

training. On the other hand, LLM-DA discards 308

the unfaithful rewritten text and uses LLM again 309

to rewrite the original text to generate augmented 310

text. Finally, to balance the contributions of origi- 311

nal text and augmented text, LLM-DA introduces 312

a BSS to control the proportion of original text and 313

augmented text used for training through sampling. 314

Through the BSS, the caculated similarity matrix 315

between person images and texts is a mixed sim- 316

ilarity matrix, which contains both the similarity 317

between the image and the original text and the sim- 318

ilarity between the image and the augmented text. 319

This mixed similarity matrix is used to calculate 320

the loss function and implement model training. 321

Figure 3 shows how to use LLMs to generate 322

augmented text. This paper chooses the LLM Vi- 323

cuna (Chiang et al., 2023) for text augmentation, 324

which is an open-source chatbot trained by fine- 325

tuning LLaMA on user-shared conversations col- 326

lected from ShareGPT. Preliminary evaluation us- 327

ing GPT-4 as a judge shows Vicuna achieves more 328

than 90% of the quality of OpenAI ChatGPT and 329

Google Bard. We concatenate the original text T ori
i 330

and prompt “Rewrite this image caption.” and en- 331

ter them into Vicuna together. Vicuna rewrites the 332

original text T ori
i and returns the augmented text: 333

T aug
i = LLM(Concat(T ori

i ,Prompt)). (1) 334

Thanks to the powerful generalization of LLMs, 335
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Figure 4: Distribution of s(T ori
i , T aug

i ) on the CUHK-
PEDES dataset.

most of the text rewritten using LLMs can maintain336

the same key concepts and semantic information337

as the original text. In addition, with the powerful338

generation capabilities of LLMs, using LLMs to339

rewrite text can enrich the diversity of text data.340

3.3 Text Faithfulness Filter341

Although LLMs have demonstrated powerful ca-342

pabilities in various tasks, hallucination is still a343

prominent problem with LLMs. In the process of344

using LLMs for text augmentation, we find that the345

rewritten text output by LLMs may not be semanti-346

cally consistent with the original text, and LLMs347

may even output text in other languages or garbled348

characters. We calculate the semantic similarity349

between the original text and the augmented text,350

as shown in Figure 4. More than 90% of the aug-351

mented text has a semantic similarity greater than352

0.6 with the original text. But there are still a small353

number of augmented texts that are semantically354

inconsistent with the original texts. To alleviate355

the hallucinations of LLMs, LLM-DA introduces a356

TFF to filter out unfaithful rewritten text.357

The architecture of TFF is shown in Figure 5.358

The purpose of TTF is to filter out augmented text359

that does not match the semantics of the original360

text. Therefore, there is a need to measure the361

semantic similarity between the original text and362

the augmented text. To this end, we introduce the363

Sentence Transformers framework to implement364

semantic similarity calculation. Sentence Trans-365

formers is a Python framework for state-of-the-art366

sentence, text and image embeddings. First, we use367

Sentence Transformers f st(·) to encode the orig-368

inal text T ori
i and augmented text T aug

i to obtain369

original text embedding f st(T
ori
i ) and augmented370

text embedding f st(T
aug
i ). Then, the semantic371

similarity between the original text and augmented372

The man is wearing green

pants and a green and black

striped tank top. He has a buzz

cut and is wearing hot pink

headphones around his neck.

The man is adorned in green

pants and a tank top featuring

green and black stripes, with

pink headphones draped around

his neck, complementing his

buzz cut.
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Figure 5: Text Faithfulness Filter (TFF).

text can be calculated using cosine similarity: 373

s(T ori
i , T aug

i ) =
f st(T

ori
i )⊤ · f st(T

aug
i )∥∥f st(T

ori
i )

∥∥ ∥f st(T
aug
i )∥

. (2) 374

We set a threshold α. When s(T ori
i , T aug

i ) < α, the 375

augmented text is considered to be semantically in- 376

consistent with the original text. LLM-DA discards 377

the unfaithful rewritten text and uses LLM again 378

to rewrite the original text to generate augmented 379

text. When s(T ori
i , T aug

i ) ≥ α, the augmented text 380

is considered to be semantically consistent with the 381

original text. The faithfully rewritten text is used 382

as an augmented text for model training. Through 383

TFF filtering, noise data in augmented text can be 384

effectively removed, and the quality of training data 385

can be improved. 386

3.4 Balanced Sampling Strategy 387

After obtaining the augmented text, the simplest 388

way to use the augmented text for training is to di- 389

rectly add the augmented text to the original dataset. 390

However, there may still be a small amount of noise 391

data in the augmented text, which can have a neg- 392

ative impact on model training. In addition, the 393

distribution of augmented text may be different 394

from that of original text. Introducing too much 395

augmented text for training may be detrimental to 396

the generalization of the model. Therefore, in order 397

to balance the contributions of original text and 398

augmented text, LLM-DA introduces a BSS to con- 399

trol the proportion of original text and augmented 400

text used for training through sampling. 401

We define T ∗
i as the text ultimately used for train- 402

ing. The process of BSS can be expressed as: 403

T ∗
i =

{
T ori
i , ri > β,

T aug
i , ri ≤ β,

(3) 404

where ri is a random number following a uniform 405

distribution with a value range of [0, 1]. β is a pre- 406

defined sampling threshold hyperparameter used 407
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to control the proportion of original text and aug-408

mented text for training. Balancing the contribu-409

tions of original text and augmented text can reduce410

the interference of noisy data on model training411

while increasing the diversity of training data.412

Through the BSS, the caculated similarity ma-413

trix between person images and texts is a mixed414

similarity matrix:415

S =

s(V1, T
∗
1 ) . . . s(VN , T ∗

1 )
...

. . .
...

s(V1, T
∗
N ) . . . s(VN , T ∗

N )

 , (4)416

where N is the batch size. S contains both the417

similarity s(Vi, T
ori
i ) between the image and the418

original text and the similarity s(Vi, T
aug
i ) between419

the image and the augmented text. This mixed sim-420

ilarity matrix is used to calculate the loss function421

and implement model training. In this paper, we422

use CLIP as a baseline model to implement TPR.423

The contrastive learning loss used by CLIP after424

applying LLM-DA can be written as:425

Lv→t
Contrastive = −

N∑
i=1

log
exp(s(Vi, T

∗
i )/τ)∑N

j=1 exp(s(Vi, T ∗
j )/τ)

,

(5)426

where τ is a temperature coefficient. Lv→t
Contrastive427

is the loss of image-to-text retrieval, and the loss428

Lt→v
Contrastive of text-to-image retrieval is symmetri-429

cal to Lv→t
Contrastive. LLM-DA neither changes the430

model architecture nor affects the form of the loss431

function. Therefore, LLM-DA is a plug-and-play432

method that can be easily integrated into various433

TPR models without increasing complexity.434

4 Experiments435

4.1 Experimental Setup436

Datasets. We conduct comprehensive experiments437

on three TPR datasets: CUHK-PEDES (Li et al.,438

2017b), ICFG-PEDES (Ding et al., 2021), and RST-439

PReid (Zhu et al., 2021).440

• CUHK-PEDES (Li et al., 2017b) contains441

40,206 images and 80,412 sentences for 13,003442

identities. The training set consists of 11,003 iden-443

tities, 34,054 images, and 68,108 sentences. The444

validation set and test set contain 3,078 and 3,074445

images, 6158 and 6156 sentences, respectively, and446

both of them have 1,000 identities.447

• ICFG-PEDES (Ding et al., 2021) contains a total448

of 54,522 images for 4,102 identities. The dataset449

is divided into a training set and a test set; the for-450

mer comprises 34,674 image-text pairs of 3,102451

Method Rank-1 Rank-5 Rank-10 mAP
CLIP (ViT-B/32) 60.82 81.47 88.50 54.51
+ LLM-DA 61.45 82.41 88.68 54.77
CLIP (ViT-B/16) 64.59 83.59 89.51 58.02
+ LLM-DA 66.33 85.31 91.03 59.92

Table 1: Experimental results on the CUHK-PEDES
dataset.

identities, while the latter contains 19,848 image- 452

text pairs for the remaining 1,000 identities. 453

• RSTPReid (Zhu et al., 2021) contains 20,505 454

images of 4,101 identities. Each identity has 5 cor- 455

responding images taken by different cameras, and 456

each image is annotated with two textual descrip- 457

tions. The training, validation, and test sets contain 458

3,701, 200, and 200 identities, respectively. 459

Evaluation Metrics. We adopt the popular 460

Rank-K metrics (K = 1, 5, and 10) as the primary 461

evaluation metrics. Rank-K reports the probability 462

of finding at least one matching image within the 463

top-K candidate list when given a textual descrip- 464

tion as a query. In addition, for a comprehensive 465

evaluation, we also adopt the mean Average Pre- 466

cision (mAP) as a retrieval criterion. The higher 467

Rank-K and mAP indicate better performance. 468

Implementation Details. We use CLIP as a 469

baseline model to implement TPR. Many TPR 470

methods (Cao et al., 2024) use CLIP as the back- 471

bone of the model. Since this paper mainly focuses 472

on data augmentation, in order to reflect the gains 473

of data augmentation, we do not use the various 474

tricks proposed for TPR and only use the original 475

CLIP for experiments. CLIP-ViT-B/16 and CLIP- 476

ViT-B/32 are used as the image encoders, and CLIP 477

Text Transformer is used as the text encoder. 478

4.2 Improvements to TPR Models 479

In this section, we present the performance im- 480

provements of three TPR datasets on two baseline 481

models. We use two CLIP models used in the latest 482

TPR research (Cao et al., 2024) as baseline models. 483

Improvements on the CUHK-PEDES Dataset. 484

Table 1 shows the experimental results on the 485

CUHK-PEDES dataset. The performance after ap- 486

plying LLM-DA is better than the original baseline 487

on both models. The performance improvement 488

on the more powerful CLIP (ViT-B/16) model is 489

more significant than that of the CLIP (ViT-B/32) 490

model. Specifically, after applying LLM-DA, the 491

retrieval performance metrics Rank-1 and mAP can 492

be improved by 2.69% and 3.27%, respectively, 493
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Method Rank-1 Rank-5 Rank-10 mAP
CLIP (ViT-B/32) 51.40 77.05 84.95 41.21
+ LLM-DA 52.15 77.65 85.00 41.57
CLIP (ViT-B/16) 55.75 80.20 88.20 44.73
+ LLM-DA 58.70 81.20 88.35 45.93

Table 2: Experimental results on the RSTPReid dataset.

Method Rank-1 Rank-5 Rank-10 mAP
CLIP (ViT-B/32) 52.75 72.27 79.52 31.29
+ LLM-DA 53.04 72.58 79.84 32.00
CLIP (ViT-B/16) 56.70 75.25 81.55 35.20
+ LLM-DA 58.05 75.43 81.74 37.33

Table 3: Experimental results on the ICFG-PEDES
dataset.

compared with the original CLIP (ViT-B/16).494

Improvements on the RSTPReid Dataset. Ta-495

ble 2 shows the experimental results on the RST-496

PReid dataset. On both models, the performance497

after applying LLM-DA is superior to the initial498

baseline. The performance improvement on the499

more powerful CLIP (ViT-B/16) model is more500

significant than the CLIP (ViT-B/32) model. In par-501

ticular, compared to the original CLIP (ViT-B/16),502

the retrieval performance metrics Rank-1 and mAP503

are improved by 5.29% and 2.68%, respectively,504

after applying LLM-DA.505

Improvements on the ICFG-PEDES Dataset.506

Table 3 shows the experimental results on the507

CUHK-PEDES dataset. Applying LLM-DA im-508

proves performance on both models over the base-509

line. In particular, Rank-1 and mAP retrieval perfor-510

mance metrics are improved by 2.38% and 6.05%,511

respectively, following the application of LLM-DA512

in comparison to the initial CLIP (ViT-B/16). In513

summary, LLM-DA can improve the performance514

of all metrics on all three datasets. This demon-515

strates the generalization of LLM-DA.516

4.3 Comparisons with Text Data517

Augmentation Methods518

LLM-DA is a text augmentation method. There are519

many traditional text augmentation methods:520

• Random Deletion randomly removes words521

from text.522

• Random Swap randomly selects two words from523

the text and swaps their positions.524

• Back Translation translates the original text into525

a specific language and back again.526

We compare LLM-DA with the above traditional527

Method Rank-1 Rank-5 Rank-10 mAP
CLIP (ViT-B/16) 55.75 80.20 88.20 44.73
+ Random Deletion 56.50 80.05 88.00 44.13
+ Random Swap 56.95 80.05 88.25 45.13
+ Back Translation 55.95 80.85 88.50 45.17
+ LLM-DA 58.70 81.20 88.35 45.93

Table 4: Comparisons with traditional text augmentation
methods on the RSTPReid dataset.

DA TFF BSS Rank-1 Rank-5 Rank-10 mAP
- - - 64.59 83.59 89.51 58.02
✓ - - 64.78 84.06 89.93 58.95
✓ ✓ - 65.66 85.14 90.98 59.17
✓ - ✓ 64.94 84.29 90.59 58.12
✓ ✓ ✓ 66.33 85.31 91.03 59.92

Table 5: Ablation studies on the CUHK-PEDES dataset.

text augmented methods. For back translation, we 528

use French as the intermediate language. It has 529

a relatively closer form to English and introduces 530

fewer changes to the translated back text in seman- 531

tics than other languages. 532

Table 4 shows the performance comparisons 533

with traditional text augmentation methods on the 534

RSTPReid dataset. LLM-DA shows significant 535

performance gains compared with other text aug- 536

mentation methods. Several traditional text aug- 537

mentation methods fall below the baseline on some 538

evaluation metrics. Random deletion may remove 539

keywords from the text. Random swap may change 540

the original grammatical structure of the text. Both 541

methods may destroy the correct sentence struc- 542

ture and even change the original semantic concept 543

of the text, which may have a negative impact on 544

model training. Back translation can maintain the 545

semantic concepts and grammatical structure of the 546

original text, but the text diversity it can increase is 547

relatively limited. LLM-DA utilizes the powerful 548

generalization and generation capabilities of LLMs, 549

which can not only maintain the semantic concepts 550

and grammatical structure of the original text but 551

also significantly improve the text diversity, thus 552

achieving the most significant performance gain. 553

4.4 Ablation Study 554

Impact of Different Modules. LLM-DA mainly 555

consists of three components: LLM-based Data 556

Augmentation (DA), TFF and BSS. DA first uti- 557

lizes an LLM to rewrite the original text to gen- 558

erate augmented text. Then, in order to alleviate 559

the hallucinations of LLMs, TFF filters out unfaith- 560
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Figure 6: The impact of hyperparameter α on retrieval
performance on the ICFG-PEDES dataset.
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Figure 7: The impact of hyperparameter β on retrieval
performance on the ICFG-PEDES dataset.

ful rewritten text. Finally, in order to balance the561

contributions of original text and augmented text,562

BSS controls the proportion of original text and563

augmented text used for training through sampling.564

Table 5 shows the impact of different modules565

in LLM-DA. The experiment is conducted on the566

CUHK-PEDES dataset. We adopt the CLIP (ViT-567

B/16) model as the baseline for the experiment.568

Compared with the baseline, only data augmen-569

tation of text can improve retrieval performance,570

but the performance improvement is not significant.571

After TFF filtering, the retrieval performance is572

significantly improved, since TFF filters out aug-573

mented text that is inconsistent with the semantic574

concepts of the original text, reduces the noise in575

the training data, and alleviates the negative impact576

of noisy data on model training. There is a little577

improvement in retrieval performance following578

BSS sampling, since balancing the proportion of579

original and augmented text can also alleviate the580

negative impact of noisy data to a certain extent581

and improve generalization. Combining the three582

modules can achieve optimal performance. This583

shows that the three modules introduced by LLM-584

DA can not only improve performance individually585

but also complement each other.586

Hyperparameter Analysis. There are two hy-587

perparameters (α and β) in LLM-DA that can be588

tuned. α is a predefined similarity threshold in TFF,589

which is used to decide whether the augmented text590

should be retained for training. β is a predefined591

sampling threshold in BSS, which is used to con- 592

trol the proportion of original text and augmented 593

text for training. We experiment with several hy- 594

perparameter settings on the ICFG-PEDES dataset 595

using the CLIP (ViT-B/16) model. 596

As shown in Figure 6, as α increases, the re- 597

trieval performance first increases and then de- 598

creases. At α < 0.4, LLM-DA does not signif- 599

icantly improve performance since more noisy data 600

is used for training, which has a negative impact for 601

training. When α = 0.6, the performance reaches 602

the optimal level. However, a larger α is not always 603

better. When α > 0.8, since the augmented text is 604

similar to the original text, the diversity of the text 605

data is insufficient and the retrieval performance 606

is reduced, which is not conducive to the general- 607

ization of the model. Therefore, the choice of α 608

requires a trade-off between reducing noise data 609

and increasing the diversity of text data. 610

As shown in Figure 7, as β increases, the re- 611

trieval performance first increases and then de- 612

creases. When the value of β is small, only less 613

augmented text participates in training, and the con- 614

tribution to model performance improvement is not 615

significant. When β = 0.2, the retrieval perfor- 616

mance reaches the optimal level. When β > 0.3, 617

the retrieval performance drops significantly. There 618

are two reasons why the performance decreases 619

when the value of β is large. On the one hand, 620

there may still be a small amount of noise data in 621

the augmented text, which has a negative impact on 622

model training. On the other hand, the distribution 623

of augmented text may be different from the distri- 624

bution of the original text. To sum up, the value of 625

β needs to balance the proportion of original text 626

and augmented text participating in training. 627

5 Conclusion 628

This paper proposes an LLM-DA method for TPR. 629

Specifically, we use LLMs to rewrite the text in the 630

TPR dataset, achieving high-quality expansion of 631

the dataset concisely and efficiently. To alleviate 632

the hallucinations of LLMs, we introduce a TFF to 633

filter out unfaithful rewritten text. To balance the 634

contributions of original and augmented text, a BSS 635

is proposed to control the proportion of original and 636

augmented text used for training. LLM-DA is a 637

plug-and-play method that can be integrated into 638

various TPR models and improve their retrieval 639

performance. In future work, we plan to expand 640

LLM-DA to more cross-modal retrieval tasks. 641
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Limitations642

We believe that our LLM-DA can be applied to643

various text-based cross-modal models as a plug-644

and-play method.645

(1) Applicable to other domains tasks: Our646

method is designed for TPR models, and experi-647

mental results show that it significantly improves648

TPR models. However, we have not yet conducted649

comprehensive experiments for performance in650

other domains, so performance in some domains651

remains unknown.652

(2) Uncertainty in time spent: During the ex-653

periments, the optimal choice of hyperparameters654

depends on the specific TPR model and dataset.655

Finding the optimal combination of hyperparam-656

eters can be a time-consuming process. The time657

required for the data augmentation part using the658

LLM-DA method depends on the number of texts659

to be augmented and the performance of the LLM660

used. Therefore, there is uncertainty in the time661

consumption of the LLM-DA.662
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A Appendix880

We include here extra information that supports the881

results presented in the main body of the paper.882

A.1 TPR Experimental Setup883

Datasets. We conduct comprehensive experiments884

on three TPR datasets: CUHK-PEDES (Li et al.,885

2017b), ICFG-PEDES (Ding et al., 2021), and RST-886

PReid (Zhu et al., 2021).887

• CUHK-PEDES (Li et al., 2017b) is the first888

dataset dedicated to TPR, which contains889

40,206 images and 80,412 textual descriptions890

for 13,003 identities. Following the official891

data split, the training set consists of 11,003892

identities, 34,054 images, and 68,108 textual893

descriptions. The validation set and test set894

contain 3,078 and 3,074 images, 6158 and895

6156 textual descriptions, respectively, and896

both of them have 1,000 identities.897

• ICFG-PEDES (Ding et al., 2021) contains898

a total of 54,522 images for 4,102 identities.899

Each image has only one corresponding tex-900

tual description. The dataset is divided into901

a training set and a test set; the former com-902

prises 34,674 image-text pairs of 3,102 iden-903

tities, while the latter contains 19,848 image-904

text pairs for the remaining 1,000 identities.905

• RSTPReid (Zhu et al., 2021) contains 20,505906

images of 4,101 identities from 15 cameras.907

Each identity has five corresponding images908

taken by different cameras, and each image is909

annotated with two textual descriptions. Fol-910

lowing the official data split, the training, val-911

idation, and test sets contain 3,701, 200, and912

200 identities, respectively.913

Evaluation Metrics. We adopt the popular914

Rank-K metrics (K = 1, 5, and 10) as the primary915

evaluation metrics. Rank-K reports the probabil-916

ity of finding at least one matching person image917

within the top-K candidate list when given a textual918

description as a query. In addition, for a compre-919

hensive evaluation, we also adopt the mean Aver-920

age Precision (mAP) as another retrieval criterion.921

The higher Rank-K and mAP indicate better per-922

formance.923

Implementation Details. Our all experiments924

are conducted on an NVIDIA GeForce RTX 3090925

GPU using PyTorch. We use CLIP as a baseline926

model to implement TPR. CLIP is a neural network927

trained on a variety of image-text pairs. Many 928

TPR methods use CLIP as the backbone of the 929

model. Since this paper mainly focuses on data 930

augmentation, in order to reflect the gains of data 931

augmentation, we do not use the various tricks pro- 932

posed for TPR and only use the original CLIP for 933

experiments. CLIP-ViT-B/16 and CLIP-ViT-B/32 934

are used as the image encoders, and CLIP Text 935

Transformer is used as the text encoder. All person 936

images are resized to 224 × 224. The maximum 937

length of the textual token sequence is set to 77. 938

The model is trained with the AdamW optimizer 939

with a learning rate initialized to 1 × 10−5. The 940

training batch size is 80. We use an early stop- 941

ping strategy to select the optimal model. When 942

the mAP of five consecutive epochs after an epoch 943

no longer grows, the model saved in this epoch is 944

selected as the final model for subsequent testing. 945

A.2 Qualitative Results of LLM-DA 946

Figure 8 presents the qualitative results of differ- 947

ent text data augmentation methods on the CUHK- 948

PEDES dataset. We compare the proposed LLM- 949

DA method with three traditional text augmention 950

methods. Text augmented using traditional meth- 951

ods may destroy the semantic concepts of the origi- 952

nal text. In addition, these texts are similar to the 953

sentence structure of the original text and lack di- 954

versity. On the other hand, the text augmented by 955

LLM-DA has more complete semantics and richer 956

sentence structure than the traditional method. This 957

shows that the LLM-DA method has significant ad- 958

vantages in text augmentation, can better retain the 959

semantic information of the original text, and can 960

generate more natural and fluent sentences. 961

A.3 Other Text-based Cross-modal Retrieval 962

Experiment 963

We also make an effort to apply the LLM-DA to 964

other text-based cross-modal retrieval models, text- 965

based audio retrieval (TAR) and text-based motion 966

retrieval (TMR). The details of the experimental 967

setup and results are given below. 968

A.3.1 Experimental Setup 969

Datasets. 970

• TMR Dataset KIT Motion-Language 971

Dataset (Plappert et al., 2016) contains 3,911 972

recordings of fullbody motion in the Master 973

Motor Map form (Terlemez et al., 2014), 974

along with textual descriptions for each 975

motion. 976
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Original Text

A woman wearing a purple shirt, a pair of purple shorts and a gray head

scarf.

Traditional Text Augmentation

Back Translation: A woman dressed in a purple shirt, purple shorts, and a

gray headscarf.

Random Deletion: A woman wearing a purple shirt, a pair of purple

shorts and a gray head scarf.

Random Swap: A shirt wearing a purple woman, a head of purple shorts

and a gray pair scarf.

LLM-DA

A lady dressed in a purple shirt, matching shorts, and adorned with a gray

headscarf.

Original Text

The man is wearing a light t-shirt with dark pants and light sneakers,

accessorized with a large black backpack and glasses.

Traditional Text Augmentation

Back Translation: A man wears a light T-shirt with dark pants and light

sneakers, accessorized with a large black backpack and glasses.

Random Deletion: The man is wearing a light t-shirt with dark pants and

light sneakers, accessorized with a large backpack and glasses.

Random Swap: The glasses is wearing a light backpack with dark pants

and light sneakers, accessorized with a large black t-shirt and man.

LLM-DA

The gentleman is clad in a light-colored t-shirt, paired with dark trousers

and light sneakers, complemented by a sizable black backpack and glasses.

(a) (b)

Figure 8: Qualitative results of different text data augmentation methods on the CUHK-PEDES dataset.

Method KIT Motion Language Dataset

Rank-1 ↑ Rank-5 ↑ Rank-10 ↑ mean ↓ med ↓

Baseline 8.3 30.0 44.2 43.0 13
+ LLM-DA 9.4 31.4 47.0 39.1 11

Table 6: Experimental results on the KIT Motion Language Dataset.

It has a total of 6,278 annotations in English,977

where each motion recording has one or more978

annotations that explain the action. The data is979

split into 4888, 300, 830 motions for training,980

validation, and test sets, respectively. In this981

dataset, each motion is annotated 2.1 times on982

average.983

• TAR Dataset Clotho v2 (Drossos et al., 2020)984

has 3839 audio clips in the training set and985

1045 audio clips in the validation and test986

sets respectively. The length of the audio987

clips ranges uniformly from 15 to 30 seconds.988

All the audio clips have five diverse human-989

annotated captions of eight to 20 words in990

length.991

Evaluation Metrics. Similarly,We adopt the992

popular Rank-K metrics (K = 1, 5, and 10) as the993

primary evaluation metrics for TAR and TMR mod-994

els. We also adopt the median and mean ranks for995

TAR model, which represent the median and mean996

rank of the exact result computed among all the997

queries. The higher Rank-K and mAP indicate998

better performance. The lower mean and median999

indicate better performance.1000

Implementation Details. Our all experiments1001

are conducted on an NVIDIA GeForce RTX 30901002

GPU using PyTorch.1003

• TAR Experiment The Bert-base-uncased1004

model is used as the text encoder, and1005

ResNet38 is used as the audio encoder. These1006

pre-trained models are both frozen. We train1007

the model with a batch size of 24 for 50 1008

epochs. The learning rate is 1 × 10−4 and 1009

decayed to 1/10 of itself every 20 epochs 1010

when training the model. We choose the nex- 1011

ent (Chen et al., 2020b) as the loss function. 1012

• TMR Experiment We use CLIP Text 1013

Transformer to encode text and DG- 1014

STGCN (Duan et al., 2022) to encode 1015

motion.Info-nce (Zhang et al., 2020) as the 1016

loss function for the training model. The 1017

model is trained with the AdamW optimizer 1018

with a learning rate initialized to 5 × 10−5. 1019

The training batch size is 64, and the epoch 1020

is set at 120. The latent dimensionality of 1021

the embeddings is d = 256. We set the 1022

temperature τ to 0.1, and the weight of the 1023

contrastive loss term λNCE to 0.1. The 1024

threshold to filter negatives is set to 0.8. 1025

A.3.2 Improvements on the TMR Dataset. 1026

Table 6 presents the performance improvements of 1027

the KIT Motion-Language Dataset on the model 1028

used in (Petrovich et al., 2023). After applying the 1029

LLM-DA, the performance shows significant im- 1030

provement compared to baseline, indicating that 1031

LLM-DA has a significant effect on the perfor- 1032

mance improvement of the TMR model. In par- 1033

ticular, Rank-1 is improved by 13.3% and mean is 1034

improved by 9.1% compared to baseline. 1035

A.3.3 Improvements on the TAR Dataset. 1036

Table 7 shows the performance improvements of 1037

Clotho v2 on the model used in (Mei et al., 2022). 1038
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Method Text-to-Audio Audio-to-Text

Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

Baseline 7.73 22.99 34.53 8.52 24.98 37.89
+ LLM-DA 8.36 24.13 35.37 8.61 28.13 38.37

Table 7: Experimental results on the Clotho Dataset.

Observing Table 7, we can find that the application1039

of LLM-DA not only improves the performance1040

of Text-to-Audio significantly, but also improves1041

the performance of Audio-to-Text. For the Text-to-1042

Audio task, Rank-1 is improved by 8.2% compared1043

to baseline. For the Audio-to-Text task, Rank-1 is1044

improved by 1.0% compared to baseline.1045

TLLM-DA is not only suitable for TPR, but also1046

excels in other text-based cross-modal retrieval1047

model. Performance improvements on the TAR1048

and TMR datasets further demonstrate the effec-1049

tiveness and generalizability of LLM-DA.1050
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