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Abstract

Text-based Person Retrieval aims to retrieve
person images that match the description given
a text query. The performance of the TPR
model relies on high-quality data. However,
it is challenging to construct a large-scale, high-
quality TPR dataset due to expensive annota-
tion and privacy protection. Recently, Large
Language Models (LLMs) have approached
human performance on many NLP tasks, creat-
ing the possibility to expand high-quality TPR
datasets. This paper proposes the first LLM-
based Data Augmentation (LLM-DA) method
for TPR. LLM-DA uses LLMs to rewrite the
text in the TPR dataset, achieving high-quality
expansion concisely and efficiently. These
rewritten texts are able to increase text diver-
sity while retaining the original key semantic
concepts. To alleviate hallucinations of LLMs,
LLM-DA introduces a Text Faithfulness Filter
to filter out unfaithful rewritten text. To balance
the contributions of original and augmented
text, a Balanced Sampling Strategy is proposed
to control the proportion of original and aug-
mented text used for training. LLM-DA is a
plug-and-play method that can be integrated
into various TPR models. Comprehensive ex-
periments show that LLM-DA can improve the
retrieval performance of current TPR models.

1 Introduction

Text-based Person Retrieval (TPR) (Jiang and Ye,
2023) aims to retrieve person images that match the
description given a text query, which is a sub-task
of image-text retrieval (Chen et al., 2020a) and per-
son re-identification (Re-ID) (Ye et al., 2021). TPR
can assist in identifying individuals captured in
surveillance footage based on textual descriptions.
TPR has implications for surveillance and security
applications, where identifying individuals based
on textual descriptions can aid in law enforcement
and public safety efforts.

Current studies (Jiang and Ye, 2023; Bai et al.,
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boasting a clean-shaven head adorned with hot pink headphones dangling around the neck.
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Figure 1: Original person image, original text, and aug-
mented text.

2023) on TPR mainly focus on extracting discrimi-
native feature representations and fine-grained fea-
ture alignment to achieve competitive retrieval per-
formance. As a multi-modal learning task, the per-
formance improvement of the TPR model relies on
high-quality data for supervised training. However,
it is challenging to construct a large-scale, high-
quality TPR dataset. Due to the following two
reasons: 1) Lack of data. Due to privacy protec-
tion, it is challenging to obtain large-scale person
images. 2) Lack of high-quality annotation. Text
annotation is tedious and inevitably introduces an-
notator biases. Therefore, the texts in the current
TPR datasets are usually short and cannot compre-
hensively describe the characteristics of the target
person. In order to solve this problem, Yang et
al. (Yang et al., 2023) construct a large-scale multi-
attribute dataset, MALS, for the pre-training of the
TPR task. It takes a lot of manpower and material
resources to construct MALS, and we are grateful
for their contribution to the TPR field.

In addition to constructing large-scale datasets,
data augmentation is also an effective way to ex-
pand data scale and facilitate model training. Com-
pared with dataset construction, data augmentation
has lower labor and material costs. Cao et al. (Cao
et al., 2024) conduct a comprehensive empirical
study on data augmentation in the TPR task, includ-



ing image and text augmentation. Image augmen-
tation methods include traditional removal and al-
teration. Text augmentation methods include back
translation, random deletion, efc. Most of these tra-
ditional image augmentation methods can improve
the retrieval performance of TPR models. However,
we find that these traditional text augmentation
methods do not significantly improve retrieval per-
formance, and some methods even reduce retrieval
performance. These text augmentation methods
have limited improvement in text diversity. More
seriously, some crude text augmentation methods,
such as random deletion and random swap, can de-
stroy the correct sentence structure and even change
the original semantic concept of the text, as shown
in Figure 1. These low-quality augmented texts can
have a negative impact on model training.
Recently, Large Language Models (LLMs) have
approached or even surpassed human performance
on many NLP tasks, creating the possibility to ex-
pand high-quality TPR datasets. LLM can be used
to rewrite the original text to generate new text,
thereby achieving text augmentation. Thanks to the
powerful semantic understanding and generation
capabilities of LLMs, these rewritten texts are able
to increase the diversity of vocabulary and sentence
structure while retaining the original key concepts
and semantic information. We first explore using
LLM for data augmentation in the TPR task. Fig-
ure 1 shows the augmented text we generated using
the open-source LLM Vicuna (Chiang et al., 2023).
The augmented text generated by LLM can enhance
the diversity of the text while maintaining the cor-
rect sentence structure. Although LLM has pow-
erful generation capabilities, hallucinations have
always been a thorny problem that LLM cannot
solve. It is possible for LLM to generate augmen-
tation text that does not meet expectations, which
is an issue that needs to be addressed. In addition,
how to balance the original data and augmented
data to give full play to the role of data augmenta-
tion is also a challenge that needs to be solved.
This paper proposes the first LLM-based Data
Augmentation (LLM-DA) method for TPR. LLM-
DA uses LLMs to rewrite the text in the current
dataset, achieving high-quality expansion concisely
and efficiently. These rewritten texts are able to in-
crease the diversity of vocabulary and sentences
while retaining the original key semantic concepts.
To alleviate hallucinations of LLMs, LLM-DA in-
troduces a Text Faithfulness Filter (TFF) to filter
out unfaithful rewritten text. To balance the contri-

butions of original and augmented text, a Balanced
Sampling Strategy (BSS) is proposed to control
the proportion of original text and augmented text
used for training. LLM-DA neither changes the
original model architecture nor affects the form of
the original loss function. Therefore, LLM-DA is a
plug-and-play method that can be easily integrated
into various TPR models. The major contributions
of this paper are summarized as follows:

e We propose an LLM-DA method for TPR, using
LLMs to rewrite the text in the dataset, achieving
high-quality expansion. This is the first exploration
of using LLM for data augmentation in TPR.

e We propose a TFF to filter out unfaithful rewrit-
ten text to alleviate hallucinations in LLMs.

e We propose a BSS to control the proportion of
original text and augmented text used for training.
o LI M-DA can be plug-and-play integrated into
various TPR models. Comprehensive experiments
on TPR benchmarks show that LLM-DA can im-
prove the retrieval performance of TPR models.

2 Related work

2.1 Text-based Person Retrieval

TPR (Jiang and Ye, 2023) aims to retrieve person
images that match the description given a text query.
Feature extraction and alignment are the core steps
to achieving TPR.

Feature Extraction refers to extracting discrim-
inative features from input person images and text
descriptions. Li er al. (Li et al., 2017a,b) use
LSTM to extract text features and CNN to ex-
tract image features. Zhu et al. (Zhu et al., 2021)
use ResNet-50 (He et al., 2016) to extract image
features and Bi-GRU to extract text features. In
recent years, with the emergence of Transformer
(Vaswani et al., 2017) and BERT (Devlin et al.,
2018), large-scale pre-trained models are used to
extract features. Han et al. (Han et al., 2021)
first introduce Contrastive Language-Image Pre-
Training (CLIP) (Radford et al., 2021) for feature
extraction. Yang et al. (Yang et al., 2023) apply
Swin Transformer (Liu et al., 2021) to extract im-
age features and BERT to extract text features.
Bai et al. (Bai et al., 2023) use the large-scale
vision-language pre-trained model ALBEF (Li
et al., 2021) to extract image and text features.

Feature Alignment refers to the process of ef-
fectively matching image and text features. Li et
al. (Li et al., 2017a) use cross-modal cross-entropy
loss for feature alignment. Li et al. (Li et al., 2017b)



propose a RNN with gated neural Attention mech-
anism to capture the relationship between images
and text. In addition to loss functions and atten-
tion mechanisms, recent studies (Zhu et al., 2021;
Niu et al., 2020; Wang et al., 2020; Jing et al.,
2020) use more complex models for feature align-
ment. Zhu et al. (Zhu et al., 2021) use five different
modules and loss functions for feature alignment.
Jing et al. (Jing et al., 2020) propose a moment
alignment network to solve the cross-domain and
cross-modal alignment problems. Later studies et
al. (Jiang and Ye, 2023) focus more on the fine-
grained alignment of multimodalities. Yang et
al. (Yang et al., 2023) incorporate the tasks of
image-text contrastive Learning, image-text match-
ing learning, and masked language modeling to
impose the alignment constraints. Bai et al. (Bai
et al., 2023) propose relationship-aware learning
and sensitivity-aware learning.

Most TPR studies focus on improving retrieval
performance through the feature level, but high-
quality data is crucial to improving the performance
of supervised learning models. Privacy protection
and annotation make building large-scale, high-
quality datasets challenging. In order to solve this
problem, Yang et al. (Yang et al., 2023) construct
a large-scale TPR dataset, MALS, for pre-training,
which takes a lot of manpower and material re-
sources. In order to obtain large-scale, high-quality
data at a low cost, this paper first considers using
LLMs for data augmentation in TPR.

2.2 Data Augmentation

Data augmentation increases the diversity of the
data and improves the robustness of the model by
changing and expanding the original data. TPR
datasets are usually constructed in the form of
image-text pairs. Therefore, the data augmentation
of TPR datasets requires considering both image
augmentation and text augmentation.

Image Augmentation. There are a lot of meth-
ods of image augmentation. Commonly used tra-
ditional methods include random cropping, flip-
ping, scaling, etc. In addition, some novel im-
age augmentation methods, such as Mixup (Zhang
et al., 2017) and CutMix (Yun et al., 2019), are also
widely used. Mixup randomly selects two images
in each batch and mixes them in a certain ratio to
generate a new image. Previous studies (Simonyan
and Zisserman, 2014; Szegedy et al., 2016) have
demonstrated that the data augmentation of images
can effectively improve the generalization and ro-

bustness of the model. In particular, Cao et al.(Cao
et al., 2024) point out that image augmentation can
improve the retrieval performance of TPR.

Text Augmentation. Text augmentation faces
more challenges because of the complexity, ab-
straction, flexibility, scarcity, and diversity of text.
EDA (Wei and Zou, 2019) is a simple text augmen-
tation method, including synonym replacement,
random insertion, etc. Back translation (Fadaee
et al., 2017) generates new sentences by translating
text into another language and then back. Although
back translation is widely used and has achieved
certain success, due to cultural differences between
different languages, it may lead to semantic in-
consistency. CutMixOut (Fawakherji et al., 2024)
combines Cutout (DeVries and Taylor, 2017) and
CutMix (Yun et al., 2019) to randomly replace and
remove text subsequences through a binary mask.
However, these methods may destroy the structural
and semantic information of sentences, and the aug-
mented texts lack diversity. With the widespread
application of LLMs, text augmentation can be per-
formed using LLMs. While ensuring the semantic
integrity of the sentence, LLMs can also increase
the diversity of sentence structure. Fan et al. (Fan
et al., 2024) improve CLIP performance by aug-
menting text with LL.Ms. Vertical applications such
as TPR are short on high-quality data and need to
be supplemented by high-quality data augmenta-
tion. However, there is currently no research on
using LLM to perform data augmentation on TPR.

2.3 Large Language Models

The Transformer architecture provides the basis for
the subsequent generation of LLMs. Radford et
al. (Radford et al., 2018) introduce GPT, which is
based on the Transformer architecture and serves
as the foundation for the advancement of LLMs.
Subsequently, the emergence of a series of GPT
models (Radford et al., 2019; Brown et al., 2020;
Achiam et al., 2023) further promotes the develop-
ment of this field. Moreover, the release of open-
sourced models like LLaMA (Touvron et al., 2023)
and GLM (Du et al., 2022), fine-tuned for various
tasks, has served as the backbone for numerous ap-
plications. Vicuna (Chiang et al., 2023) introduces
a more economical option with its 7B and 13B ver-
sions while maintaining impressive performance.
These models collectively achieve comparable per-
formances across various benchmarks, creating the
possibility to expand high-quality TPR datasets.
Although LLMs can perform well on many tasks,
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Figure 2: The framework of LLM-based Data Augmentation (LLM-DA) in TPR model training. LLM-DA introduces
a Text Faithfulness Filter (TFF) to alleviate the hallucinations of LLMs and a Balanced Sampling Strategy (BSS) to
balance the contributions of original text and augmented text.

there are still some problems that need to be solved
when applying LLMs for text augmentation. One
of the key issues is the hallucination, which refers
to the situation where the grammatical correctness,
fluency, and authenticity of the generated text are
inconsistent with the original text or even inconsis-
tent with the facts (Ye et al., 2023). Hallucination
not only reduces the reliability of generated text
but may also lead to an uneven quality of output
text and sometimes even abnormal text. Therefore,
it is necessary to slove the hallucination of LLMs.

3 Methodology

3.1 Preliminary

TPR is defined as retrieving person images relevant
to the description of a given text query. We denote
V = {V;}1_, as a collection of person images and
T = {T;}L_, as a collection of text descriptions,
where Vj is a person image and 7 is a text descrip-
tion. In TPR, given T}, the goal is to find the most
relevant V; from V. Current TPR models generally
follow a common framework, which contains an
image encoder f,,,,(-) and a text encoder f.,.(-).
The similarity s(V;, T;) between V; and T; is com-
puted based on the encoded image feature f;,,,,(V;)
and text feature f,.,,(7;). Finally, the retrieval re-
sults are obtained by ranking the similarities.

3.2 LLM-based Data Augmentation

Figure 2 shows the framework of LLM-DA in TPR
model training. LLM-DA first utilizes an LLM
to rewrite the original text to generate augmented
text. Then, to alleviate the hallucinations of LLMs,
LLM-DA introduces a TFF to filter out unfaith-
ful rewritten text. On the one hand, the faithfully
rewritten text is used as augmented text for model

Original Text T, Augmented Text T

The man is adorned in green
pants and a tank top featuring
green and black stripes, with
pink headphones draped around
his neck, complementing his
buzz cut.

The man is wearing green pants
and a green and black striped
tank top. He has a buzz cut and
is wearing hot pink headphones
around his neck.

A Open-Source LLM
Vicuna

Prompt: “Rewrite this image caption.”

Figure 3: Using LLM for text augmentation.

training. On the other hand, LLM-DA discards
the unfaithful rewritten text and uses LLM again
to rewrite the original text to generate augmented
text. Finally, to balance the contributions of origi-
nal text and augmented text, LLM-DA introduces
a BSS to control the proportion of original text and
augmented text used for training through sampling.
Through the BSS, the caculated similarity matrix
between person images and texts is a mixed sim-
ilarity matrix, which contains both the similarity
between the image and the original text and the sim-
ilarity between the image and the augmented text.
This mixed similarity matrix is used to calculate
the loss function and implement model training.
Figure 3 shows how to use LLMs to generate
augmented text. This paper chooses the LLM Vi-
cuna (Chiang et al., 2023) for text augmentation,
which is an open-source chatbot trained by fine-
tuning LLaMA on user-shared conversations col-
lected from ShareGPT. Preliminary evaluation us-
ing GPT-4 as a judge shows Vicuna achieves more
than 90% of the quality of OpenAl ChatGPT and
Google Bard. We concatenate the original text Tf”
and prompt “Rewrite this image caption.” and en-
ter them into Vicuna together. Vicuna rewrites the
original text 7" and returns the augmented text:

T;-aug — LLM(COncat(j—;’O”? Prompt)) (1)

Thanks to the powerful generalization of LLMs,
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Figure 4: Distribution of s(T°"%, T;"?) on the CUHK-
PEDES dataset.

most of the text rewritten using LLMs can maintain
the same key concepts and semantic information
as the original text. In addition, with the powerful
generation capabilities of LLMs, using LLMs to
rewrite text can enrich the diversity of text data.

3.3 Text Faithfulness Filter

Although LLMs have demonstrated powerful ca-
pabilities in various tasks, hallucination is still a
prominent problem with LLMs. In the process of
using LLMs for text augmentation, we find that the
rewritten text output by LLMs may not be semanti-
cally consistent with the original text, and LLMs
may even output text in other languages or garbled
characters. We calculate the semantic similarity
between the original text and the augmented text,
as shown in Figure 4. More than 90% of the aug-
mented text has a semantic similarity greater than
0.6 with the original text. But there are still a small
number of augmented texts that are semantically
inconsistent with the original texts. To alleviate
the hallucinations of LLMs, LLM-DA introduces a
TFF to filter out unfaithful rewritten text.

The architecture of TFF is shown in Figure 5.
The purpose of TTF is to filter out augmented text
that does not match the semantics of the original
text. Therefore, there is a need to measure the
semantic similarity between the original text and
the augmented text. To this end, we introduce the
Sentence Transformers framework to implement
semantic similarity calculation. Sentence Trans-
formers is a Python framework for state-of-the-art
sentence, text and image embeddings. First, we use
Sentence Transformers f(-) to encode the orig-
inal text 7™ and augmented text 7.’ to obtain
original text embedding f,,(T°™) and augmented
text embedding f,,(7;"Y). Then, the semantic
similarity between the original text and augmented
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text can be calculated using cosine similarity:
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We set a threshold . When s(T27%, T:""?) < a, the
augmented text is considered to be semantically in-
consistent with the original text. LLM-DA discards
the unfaithful rewritten text and uses LLM again
to rewrite the original text to generate augmented
text. When s(T7™, T:"%) > «, the augmented text
is considered to be semantically consistent with the
original text. The faithfully rewritten text is used
as an augmented text for model training. Through
TFF filtering, noise data in augmented text can be
effectively removed, and the quality of training data
can be improved.

)

3.4 Balanced Sampling Strategy

After obtaining the augmented text, the simplest
way to use the augmented text for training is to di-
rectly add the augmented text to the original dataset.
However, there may still be a small amount of noise
data in the augmented text, which can have a neg-
ative impact on model training. In addition, the
distribution of augmented text may be different
from that of original text. Introducing too much
augmented text for training may be detrimental to
the generalization of the model. Therefore, in order
to balance the contributions of original text and
augmented text, LLM-DA introduces a BSS to con-
trol the proportion of original text and augmented
text used for training through sampling.

We define 77" as the text ultimately used for train-
ing. The process of BSS can be expressed as:

TZ'>57
Tigﬁa

ori
TF = L

% aug
T,

3)

where r; is a random number following a uniform
distribution with a value range of [0, 1]. 5 is a pre-
defined sampling threshold hyperparameter used



to control the proportion of original text and aug-
mented text for training. Balancing the contribu-
tions of original text and augmented text can reduce
the interference of noisy data on model training
while increasing the diversity of training data.

Through the BSS, the caculated similarity ma-
trix between person images and texts is a mixed
similarity matrix:

3<V1ﬂT1*) 3<VN7T1*)
S = : : )]
S(VDT]T/) S(VN’T;\F/)

where N is the batch size. S contains both the
similarity s(V;, T?"") between the image and the
original text and the similarity s(V;, T;""?) between
the image and the augmented text. This mixed sim-
ilarity matrix is used to calculate the loss function
and implement model training. In this paper, we
use CLIP as a baseline model to implement TPR.
The contrastive learning loss used by CLIP after
applying LLM-DA can be written as:
SV exp(s(Vi, ) /7)|

Z log
(5)
v—t

where 7 is a temperature coefficient. L£¢& 71 .
is the loss of image-to-text retrieval, and the loss

eXp s(Vi, T}})/T)

v—>t _
Contrastlve -

LEY e Of text-to-image retrieval is symmetri-
cal to L&)E ... LLM-DA neither changes the

model architecture nor affects the form of the loss
function. Therefore, LLM-DA is a plug-and-play
method that can be easily integrated into various
TPR models without increasing complexity.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct comprehensive experiments
on three TPR datasets: CUHK-PEDES (Li et al.,
2017b), ICFG-PEDES (Ding et al., 2021), and RST-
PReid (Zhu et al., 2021).

e CUHK-PEDES (Li et al., 2017b) contains
40,206 images and 80,412 sentences for 13,003
identities. The training set consists of 11,003 iden-
tities, 34,054 images, and 68,108 sentences. The
validation set and test set contain 3,078 and 3,074
images, 6158 and 6156 sentences, respectively, and
both of them have 1,000 identities.

¢ ICFG-PEDES (Ding et al., 2021) contains a total
of 54,522 images for 4,102 identities. The dataset
is divided into a training set and a test set; the for-
mer comprises 34,674 image-text pairs of 3,102

Method Rank-1 Rank-5 Rank-10 mAP
CLIP (ViT-B/32)  60.82 81.47 88.50 54.51
+ LLM-DA 61.45 82.41 88.68 54.77
CLIP (ViT-B/16)  64.59 83.59 89.51 58.02
+ LLM-DA 66.33 85.31 91.03 59.92

Table 1: Experimental results on the CUHK-PEDES
dataset.

identities, while the latter contains 19,848 image-
text pairs for the remaining 1,000 identities.
e RSTPReid (Zhu et al., 2021) contains 20,505
images of 4,101 identities. Each identity has 5 cor-
responding images taken by different cameras, and
each image is annotated with two textual descrip-
tions. The training, validation, and test sets contain
3,701, 200, and 200 identities, respectively.
Evaluation Metrics. We adopt the popular
Rank-K metrics (K =1, 5, and 10) as the primary
evaluation metrics. Rank-K reports the probability
of finding at least one matching image within the
top-K candidate list when given a textual descrip-
tion as a query. In addition, for a comprehensive
evaluation, we also adopt the mean Average Pre-
cision (mAP) as a retrieval criterion. The higher
Rank-K and mAP indicate better performance.
Implementation Details. We use CLIP as a
baseline model to implement TPR. Many TPR
methods (Cao et al., 2024) use CLIP as the back-
bone of the model. Since this paper mainly focuses
on data augmentation, in order to reflect the gains
of data augmentation, we do not use the various
tricks proposed for TPR and only use the original
CLIP for experiments. CLIP-ViT-B/16 and CLIP-
ViT-B/32 are used as the image encoders, and CLIP
Text Transformer is used as the text encoder.

4.2 Improvements to TPR Models

In this section, we present the performance im-
provements of three TPR datasets on two baseline
models. We use two CLIP models used in the latest
TPR research (Cao et al., 2024) as baseline models.

Improvements on the CUHK-PEDES Dataset.
Table 1 shows the experimental results on the
CUHK-PEDES dataset. The performance after ap-
plying LLM-DA is better than the original baseline
on both models. The performance improvement
on the more powerful CLIP (ViT-B/16) model is
more significant than that of the CLIP (ViT-B/32)
model. Specifically, after applying LLM-DA, the
retrieval performance metrics Rank-1 and mAP can
be improved by 2.69% and 3.27%, respectively,



Method Rank-1 Rank-5 Rank-10 mAP Method Rank-1 Rank-5 Rank-10 mAP
CLIP (ViT-B/32) 5140  77.05 84.95 4121 CLIP (ViT-B/16) 55775 8020  88.20 44.73
+ LLM-DA 5215  77.65 85.00 41.57 + Random Deletion  56.50  80.05  88.00 44.13
CLIP (ViT-B/16) 5575 8020  88.20  44.73 + Random Swap 5695 8005 8825 45.13
+ LLM-DA 5870 81.20 88.35  45.93 + Back Translation 5595  80.85  88.50 45.17

+ LLM-DA 58.70 81.20  88.35 45.93

Table 2: Experimental results on the RSTPReid dataset.

Method Rank-1 Rank-5 Rank-10 mAP
CLIP (ViT-B/32)  52.75 72.27 79.52 31.29
+ LLM-DA 53.04 72.58 79.84  32.00
CLIP (ViT-B/16)  56.70 75.25 81.55 35.20
+ LLM-DA 58.05 75.43 81.74 37.33

Table 3: Experimental results on the ICFG-PEDES
dataset.

compared with the original CLIP (ViT-B/16).

Improvements on the RSTPReid Dataset. Ta-
ble 2 shows the experimental results on the RST-
PReid dataset. On both models, the performance
after applying LLM-DA is superior to the initial
baseline. The performance improvement on the
more powerful CLIP (ViT-B/16) model is more
significant than the CLIP (ViT-B/32) model. In par-
ticular, compared to the original CLIP (ViT-B/16),
the retrieval performance metrics Rank-1 and mAP
are improved by 5.29% and 2.68%, respectively,
after applying LLM-DA.

Improvements on the ICFG-PEDES Dataset.
Table 3 shows the experimental results on the
CUHK-PEDES dataset. Applying LLM-DA im-
proves performance on both models over the base-
line. In particular, Rank-1 and mAP retrieval perfor-
mance metrics are improved by 2.38% and 6.05%,
respectively, following the application of LLM-DA
in comparison to the initial CLIP (ViT-B/16). In
summary, LLM-DA can improve the performance
of all metrics on all three datasets. This demon-
strates the generalization of LLM-DA.

4.3 Comparisons with Text Data
Augmentation Methods

LLM-DA is a text augmentation method. There are
many traditional text augmentation methods:

e Random Deletion randomly removes words
from text.

e Random Swap randomly selects two words from
the text and swaps their positions.

e Back Translation translates the original text into
a specific language and back again.

We compare LLM-DA with the above traditional

Table 4: Comparisons with traditional text augmentation
methods on the RSTPReid dataset.

DA TFF BSS Rank-1 Rank-5 Rank-10 mAP
- - - 64.59 83.59 89.51  58.02
v - - 64.78 84.06 89.93  58.95
v v - 65.66 85.14 9098  59.17
v - v 6494  84.29 90.59  58.12
v v v 66.33  85.31 91.03  59.92

Table 5: Ablation studies on the CUHK-PEDES dataset.

text augmented methods. For back translation, we
use French as the intermediate language. It has
a relatively closer form to English and introduces
fewer changes to the translated back text in seman-
tics than other languages.

Table 4 shows the performance comparisons
with traditional text augmentation methods on the
RSTPReid dataset. LLM-DA shows significant
performance gains compared with other text aug-
mentation methods. Several traditional text aug-
mentation methods fall below the baseline on some
evaluation metrics. Random deletion may remove
keywords from the text. Random swap may change
the original grammatical structure of the text. Both
methods may destroy the correct sentence struc-
ture and even change the original semantic concept
of the text, which may have a negative impact on
model training. Back translation can maintain the
semantic concepts and grammatical structure of the
original text, but the text diversity it can increase is
relatively limited. LLM-DA utilizes the powerful
generalization and generation capabilities of LLMs,
which can not only maintain the semantic concepts
and grammatical structure of the original text but
also significantly improve the text diversity, thus
achieving the most significant performance gain.

4.4 Ablation Study

Impact of Different Modules. LLM-DA mainly
consists of three components: LLM-based Data
Augmentation (DA), TFF and BSS. DA first uti-
lizes an LLM to rewrite the original text to gen-
erate augmented text. Then, in order to alleviate
the hallucinations of LLMs, TFF filters out unfaith-
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Figure 6: The impact of hyperparameter o on retrieval
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Figure 7: The impact of hyperparameter 3 on retrieval
performance on the ICFG-PEDES dataset.

ful rewritten text. Finally, in order to balance the
contributions of original text and augmented text,
BSS controls the proportion of original text and
augmented text used for training through sampling.
Table 5 shows the impact of different modules
in LLM-DA. The experiment is conducted on the
CUHK-PEDES dataset. We adopt the CLIP (ViT-
B/16) model as the baseline for the experiment.
Compared with the baseline, only data augmen-
tation of text can improve retrieval performance,
but the performance improvement is not significant.
After TFF filtering, the retrieval performance is
significantly improved, since TFF filters out aug-
mented text that is inconsistent with the semantic
concepts of the original text, reduces the noise in
the training data, and alleviates the negative impact
of noisy data on model training. There is a little
improvement in retrieval performance following
BSS sampling, since balancing the proportion of
original and augmented text can also alleviate the
negative impact of noisy data to a certain extent
and improve generalization. Combining the three
modules can achieve optimal performance. This
shows that the three modules introduced by LLM-
DA can not only improve performance individually
but also complement each other.
Hyperparameter Analysis. There are two hy-
perparameters (« and ) in LLM-DA that can be
tuned. «vis a predefined similarity threshold in TFF,
which is used to decide whether the augmented text
should be retained for training. g is a predefined

sampling threshold in BSS, which is used to con-
trol the proportion of original text and augmented
text for training. We experiment with several hy-
perparameter settings on the ICFG-PEDES dataset
using the CLIP (ViT-B/16) model.

As shown in Figure 6, as « increases, the re-
trieval performance first increases and then de-
creases. At a < 0.4, LLM-DA does not signif-
icantly improve performance since more noisy data
is used for training, which has a negative impact for
training. When o = 0.6, the performance reaches
the optimal level. However, a larger « is not always
better. When o > 0.8, since the augmented text is
similar to the original text, the diversity of the text
data is insufficient and the retrieval performance
is reduced, which is not conducive to the general-
ization of the model. Therefore, the choice of «
requires a trade-off between reducing noise data
and increasing the diversity of text data.

As shown in Figure 7, as /3 increases, the re-
trieval performance first increases and then de-
creases. When the value of 5 is small, only less
augmented text participates in training, and the con-
tribution to model performance improvement is not
significant. When 3 = 0.2, the retrieval perfor-
mance reaches the optimal level. When 5 > 0.3,
the retrieval performance drops significantly. There
are two reasons why the performance decreases
when the value of 3 is large. On the one hand,
there may still be a small amount of noise data in
the augmented text, which has a negative impact on
model training. On the other hand, the distribution
of augmented text may be different from the distri-
bution of the original text. To sum up, the value of
5 needs to balance the proportion of original text
and augmented text participating in training.

5 Conclusion

This paper proposes an LLM-DA method for TPR.
Specifically, we use LLMs to rewrite the text in the
TPR dataset, achieving high-quality expansion of
the dataset concisely and efficiently. To alleviate
the hallucinations of LLLMs, we introduce a TFF to
filter out unfaithful rewritten text. To balance the
contributions of original and augmented text, a BSS
is proposed to control the proportion of original and
augmented text used for training. LLM-DA is a
plug-and-play method that can be integrated into
various TPR models and improve their retrieval
performance. In future work, we plan to expand
LLM-DA to more cross-modal retrieval tasks.



Limitations

We believe that our LLM-DA can be applied to
various text-based cross-modal models as a plug-
and-play method.

(1) Applicable to other domains tasks: Our
method is designed for TPR models, and experi-
mental results show that it significantly improves
TPR models. However, we have not yet conducted
comprehensive experiments for performance in
other domains, so performance in some domains
remains unknown.

(2) Uncertainty in time spent: During the ex-
periments, the optimal choice of hyperparameters
depends on the specific TPR model and dataset.
Finding the optimal combination of hyperparam-
eters can be a time-consuming process. The time
required for the data augmentation part using the
LLM-DA method depends on the number of texts
to be augmented and the performance of the LLM
used. Therefore, there is uncertainty in the time
consumption of the LLM-DA.
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A Appendix

We include here extra information that supports the
results presented in the main body of the paper.

A.1 TPR Experimental Setup

Datasets. We conduct comprehensive experiments
on three TPR datasets: CUHK-PEDES (Li et al.,
2017b), ICFG-PEDES (Ding et al., 2021), and RST-
PReid (Zhu et al., 2021).

¢ CUHK-PEDES (Li et al., 2017b) is the first
dataset dedicated to TPR, which contains
40,206 images and 80,412 textual descriptions
for 13,003 identities. Following the official
data split, the training set consists of 11,003
identities, 34,054 images, and 68,108 textual
descriptions. The validation set and test set
contain 3,078 and 3,074 images, 6158 and
6156 textual descriptions, respectively, and
both of them have 1,000 identities.

ICFG-PEDES (Ding et al., 2021) contains
a total of 54,522 images for 4,102 identities.
Each image has only one corresponding tex-
tual description. The dataset is divided into
a training set and a test set; the former com-
prises 34,674 image-text pairs of 3,102 iden-
tities, while the latter contains 19,848 image-
text pairs for the remaining 1,000 identities.

RSTPReid (Zhu et al., 2021) contains 20,505
images of 4,101 identities from 15 cameras.
Each identity has five corresponding images
taken by different cameras, and each image is
annotated with two textual descriptions. Fol-
lowing the official data split, the training, val-
idation, and test sets contain 3,701, 200, and
200 identities, respectively.

Evaluation Metrics. We adopt the popular
Rank-K metrics (K =1, 5, and 10) as the primary
evaluation metrics. Rank-K reports the probabil-
ity of finding at least one matching person image
within the top-K candidate list when given a textual
description as a query. In addition, for a compre-
hensive evaluation, we also adopt the mean Aver-
age Precision (mAP) as another retrieval criterion.
The higher Rank-K and mAP indicate better per-
formance.

Implementation Details. Our all experiments
are conducted on an NVIDIA GeForce RTX 3090
GPU using PyTorch. We use CLIP as a baseline
model to implement TPR. CLIP is a neural network
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trained on a variety of image-text pairs. Many
TPR methods use CLIP as the backbone of the
model. Since this paper mainly focuses on data
augmentation, in order to reflect the gains of data
augmentation, we do not use the various tricks pro-
posed for TPR and only use the original CLIP for
experiments. CLIP-ViT-B/16 and CLIP-ViT-B/32
are used as the image encoders, and CLIP Text
Transformer is used as the text encoder. All person
images are resized to 224 x 224. The maximum
length of the textual token sequence is set to 77.
The model is trained with the AdamW optimizer
with a learning rate initialized to 1 x 107°. The
training batch size is 80. We use an early stop-
ping strategy to select the optimal model. When
the mAP of five consecutive epochs after an epoch
no longer grows, the model saved in this epoch is
selected as the final model for subsequent testing.

A.2 Qualitative Results of LLM-DA

Figure 8 presents the qualitative results of differ-
ent text data augmentation methods on the CUHK-
PEDES dataset. We compare the proposed LLM-
DA method with three traditional text augmention
methods. Text augmented using traditional meth-
ods may destroy the semantic concepts of the origi-
nal text. In addition, these texts are similar to the
sentence structure of the original text and lack di-
versity. On the other hand, the text augmented by
LLM-DA has more complete semantics and richer
sentence structure than the traditional method. This
shows that the LLM-DA method has significant ad-
vantages in text augmentation, can better retain the
semantic information of the original text, and can
generate more natural and fluent sentences.

A.3 Other Text-based Cross-modal Retrieval
Experiment

We also make an effort to apply the LLM-DA to
other text-based cross-modal retrieval models, text-
based audio retrieval (TAR) and text-based motion
retrieval (TMR). The details of the experimental
setup and results are given below.

A.3.1 Experimental Setup
Datasets.

* TMR Dataset KIT Motion-Language
Dataset (Plappert et al., 2016) contains 3,911
recordings of fullbody motion in the Master
Motor Map form (Terlemez et al., 2014),
along with textual descriptions for each
motion.



Original Text

A woman wearing a purple shirt, a pair of purple shorts and a gray head
scarf.

Traditional Text Augmentation

Back Translation: A woman dressed in a purple shirt, purple shorts, and a
gray headscarf.

Random Deletion: A
shorts and a gray head

wearing a purple shirt, a pair of
Random Swap: A
and a gray pair
LLM-DA

A lady dressed in a purple shirt, matching shorts, and adorned with a gray
headscarf.

wearing a purple ,a of purple shorts

@

Original Text

The man is wearing a light t-shirt with dark pants and light sneakers,
accessorized with a large black backpack and glasses.

Traditional Text Augmentation

Back Translation: A man wears a light T-shirt with dark pants and light
sneakers, accessorized with a large black backpack and glasses.

a light t-shirt with dark pants and
backpack and glasses.

Random Deletion: The man is
light , accessorized with a

Random Swap: The is wearing a light
and light sneakers, accessorized with a large black

LLM-DA

| The gentleman is clad in a light-colored t-shirt, paired with dark trousers
and light sneakers, complemented by a sizable black backpack and glasses.

(b)

with dark pants
and

Figure 8: Qualitative results of different text data augmentation methods on the CUHK-PEDES dataset.

KIT Motion Language Dataset

Method

Rank-11 Rank-51 Rank-107 mean] med]
Baseline 8.3 30.0 44.2 43.0 13
+LLM-DA 94 314 47.0 39.1 11

Table 6: Experimental results on the KIT Motion Language Dataset.

It has a total of 6,278 annotations in English,
where each motion recording has one or more
annotations that explain the action. The data is
split into 4888, 300, 830 motions for training,
validation, and test sets, respectively. In this
dataset, each motion is annotated 2.1 times on
average.

TAR Dataset Clotho v2 (Drossos et al., 2020)
has 3839 audio clips in the training set and
1045 audio clips in the validation and test
sets respectively. The length of the audio
clips ranges uniformly from 15 to 30 seconds.
All the audio clips have five diverse human-
annotated captions of eight to 20 words in
length.

Evaluation Metrics. Similarly,We adopt the
popular Rank-K metrics (K =1, 5, and 10) as the
primary evaluation metrics for TAR and TMR mod-
els. We also adopt the median and mean ranks for
TAR model, which represent the median and mean
rank of the exact result computed among all the
queries. The higher Rank-K and mAP indicate
better performance. The lower mean and median
indicate better performance.

Implementation Details. Our all experiments
are conducted on an NVIDIA GeForce RTX 3090
GPU using PyTorch.

« TAR Experiment The Bert-base-uncased
model is used as the text encoder, and
ResNet38 is used as the audio encoder. These
pre-trained models are both frozen. We train
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the model with a batch size of 24 for 50
epochs. The learning rate is 1 x 10~* and
decayed to 1/10 of itself every 20 epochs
when training the model. We choose the nex-
ent (Chen et al., 2020b) as the loss function.

TMR Experiment We use CLIP Text
Transformer to encode text and DG-
STGCN (Duan et al.,, 2022) to encode
motion.Info-nce (Zhang et al., 2020) as the
loss function for the training model. The
model is trained with the AdamW optimizer
with a learning rate initialized to 5 x 107°.
The training batch size is 64, and the epoch
is set at 120. The latent dimensionality of
the embeddings is d = 256. We set the
temperature 7 to 0.1, and the weight of the
contrastive loss term Aycg to 0.1. The
threshold to filter negatives is set to 0.8.

A.3.2 Improvements on the TMR Dataset.

Table 6 presents the performance improvements of
the KIT Motion-Language Dataset on the model
used in (Petrovich et al., 2023). After applying the
LLM-DA, the performance shows significant im-
provement compared to baseline, indicating that
LLM-DA has a significant effect on the perfor-
mance improvement of the TMR model. In par-
ticular, Rank-1 is improved by 13.3% and mean is
improved by 9.1% compared to baseline.

A.3.3 Improvements on the TAR Dataset.

Table 7 shows the performance improvements of
Clotho v2 on the model used in (Mei et al., 2022).



Text-to-Audio Audio-to-Text
Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

Method

Baseline 7.73 22.99 34.53 8.52 24.98 37.89
+LLM-DA  8.36 24.13 35.37 8.61 28.13 38.37

Table 7: Experimental results on the Clotho Dataset.

Observing Table 7, we can find that the application
of LLM-DA not only improves the performance
of Text-to-Audio significantly, but also improves
the performance of Audio-to-Text. For the Text-to-
Audio task, Rank-1 is improved by 8.2% compared
to baseline. For the Audio-to-Text task, Rank-1 is
improved by 1.0% compared to baseline.
TLLM-DA is not only suitable for TPR, but also
excels in other text-based cross-modal retrieval
model. Performance improvements on the TAR
and TMR datasets further demonstrate the effec-
tiveness and generalizability of LLM-DA.
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