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1 ETH AI Center, Zürich, Switzerland
2 Department of Computer Science, ETH Zürich, Switzerland
emanuele.palumbo@ai.ethz.ch

ABSTRACT

Multimodal VAEs have recently gained attention as efficient models for weakly-
supervised generative learning with multiple modalities. However, all existing
variants of multimodal VAEs are affected by a non-trivial trade-off between gen-
erative quality and generative coherence. In particular mixture-based models
achieve good coherence only at the expense of sample diversity and a resulting
lack of generative quality. We present a novel variant of the mixture-of-experts
multimodal variational autoencoder that improves its generative quality, while
maintaining high semantic coherence. We model shared and modality-specific
information in separate latent subspaces, proposing an objective that overcomes
certain dependencies on hyperparameters that arise for existing approaches with
the same latent space structure. Compared to these existing approaches, we show
increased robustness with respect to changes in the design of the latent space, in
terms of the capacity allocated to modality-specific subspaces. We show that our
model achieves both good generative coherence and high generative quality in
challenging experiments, including more complex multimodal datasets than those
used in previous works.

1 INTRODUCTION

Multimodal VAEs are a promising class of models for weakly-supervised generative learning. Dif-
ferent from initially proposed models in this class (Suzuki et al., 2016; Vedantam et al., 2018), more
recent approaches (Wu & Goodman, 2018; Shi et al., 2019; 2021; Sutter et al., 2020; 2021) can
efficiently scale to a large number of modalities. These methodological advances enabled applica-
tions in multi-omics data integration (Lee & van der Schaar, 2021; Minoura et al., 2021) and tumor
segmentation from multiple image modalities (Dorent et al., 2019).

Several variants of scalable multimodal VAEs have been proposed (Wu & Goodman, 2018; Shi et al.,
2019; 2021; Sutter et al., 2021) and their performance is measured in terms of generative quality and
generative coherence. While generative quality measures how well a model approximates the data
distribution, generative coherence measures the semantic coherence of generated samples across
modalities (e.g., see Shi et al., 2019). High generative quality requires generated samples being
similar to the test data, while high generative coherence requires generated samples to agree in their
semantic content across modalities. For instance, in a dataset of image/caption pairs, conditional
generation from the text modality should produce images where the depicted object matches the
description in the given caption (e.g. matching color). Ideally, an effective multimodal generative
model should fulfill both of these performance aspects. Still, recent work (Daunhawer et al., 2022)
shows that the predominant approaches exhibit a non-trivial trade-off between the two criteria, which
limits their utility for complex real-world applications.

In this work we focus on mixture-based multimodal VAEs, which show high generative coherence
only at the expense of a lack of generative quality, a fact that undermines their performance in re-
alistic settings. Results for models in this class are promising for capturing shared information, i.e.
information that is communal across modalities on the underlying concept being described, while ex-
hibit a lack of modelling of private variation, i.e. modality-specific information for single modalities
(see Shi et al., 2019; Sutter et al., 2021; Daunhawer et al., 2022). In an attempt to enhance modelling
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of private information, recent work (Sutter et al., 2020) has suggested introducing modality-specific
latent spaces in addition to a shared subspace for mixture-based multimodal VAEs. However, we
revise such proposed extension and find that an improvement in terms of generative quality comes
again at the expense of reduced generative coherence. Most importantly we uncover a relevant short-
coming of existing approaches with separate subspaces, in that we find generative coherence to be
overly sensitive to hyperparameters controlling the capacity of private latent subspaces, which in
practice calls for expensive model selection procedures to achieve adequate performance.

Incorporating the idea of modelling the latent space as a combination of shared and modality-specific
encodings, we propose the MMVAE+, a variant of the mixture-of-experts multimodal VAE (MM-
VAE,Shi et al. (2019)) with a novel ELBO, that significantly improves the diversity of the generated
samples, without sacrificing semantic coherence. Compared to previously proposed models, our
method achieves both convincing generative quality and generative coherence (Section 4.1). No-
tably, its performance in terms of both criteria is robust with respect to hyperparameters controlling
latent dimensionality, compared to previous methods with separate shared and private latent sub-
spaces. (Section 4.2) Finally, we show our proposed model can successfully tackle a challenging
multimodal dataset of image and text pairs (Section 4.3), that was shown to be too complex for
existing multimodal VAEs (Daunhawer et al., 2022).

2 RELATED WORK

Multimodal generative models are promising approaches for learning from co-occurring data
sources without explicit supervision, by exploiting the pairing between modalities as a form of
weak-supervision. Previous work has achieved outstanding results for multimodal generative tasks
such as image-to-image translation (Zhu et al., 2017; Choi et al., 2018) or text-to-image synthesis
(Reed et al., 2016). While these models are designed for specialized tasks limited to a fixed number
of modalities, in a lot of real-world settings there is a need for general methods that can leverage
large datasets of many heterogeneous modalities. A prominent example is the field of healthcare,
where personalised medicine requires learning from large-scale multimodal datasets comprised of
medical images, genomics tests, and clinical measurements. Multimodal VAEs (Suzuki et al., 2016;
Wu & Goodman, 2018; Shi et al., 2019; 2021; Sutter et al., 2020; 2021) are a promising model
class for such applications, showing encouraging results towards efficient learning from multimodal
datasets with multiple heterogeneous modalities.

Multimodal VAEs extend the popular variational autoencoder (VAE, Kingma & Welling, 2014) to
multiple data modalities. Initially proposed approaches (Suzuki et al., 2016; Vedantam et al., 2018)
lack scalability in the number of modalities, requiring an additional encoder network per possible
subset of modalities, to enable inference from the given subset. Other proposed methods require
explicit supervision (Tsai et al., 2019), which demands prior expensive data labelling processes.
In contrast, recent methodological advances enable learning from a large number of modalities ef-
ficiently and without explicit supervision, by using a joint encoder that decomposes in terms of
unimodal encoders. Previous work proposed three different formulations for the joint encoder: the
product-of-experts (MVAE, Wu & Goodman 2018), mixture-of-experts (MMVAE, Shi et al. 2019),
and mixture-of-product-of-experts (MoPoE-VAE, Sutter et al. 2021).

Recent work (Daunhawer et al., 2022) shows that existing multimodal VAEs exhibit a tradeoff be-
tween two desired performance criteria for multimodal generation, namely generative quality and
generative coherence. While generative quality assesses the generative performance of the model for
each modality, generative coherence (Shi et al., 2019) examines the learning of shared information
by estimating the consistency in the semantic content between modalities in both conditional and
unconditional generation. Daunhawer et al. (2022) show that existing product-based models exhibit
low generative coherence, while mixture-based models exhibit a lack of sample diversity, which
negatively affects generative quality (cp. Wolff et al., 2021).

Based on the three mentioned formulations of multimodal VAEs, subsequent work introduced ad-
ditional regularization terms (Sutter et al., 2020; Hwang et al., 2021) and hierarchical latent spaces
(Sutter & Vogt, 2021; Vasco et al., 2022; Wolff et al., 2022). Previous work has also explored the
possibility of assuming separate modality-specific latent subspaces in addition to a shared subspace
(Sutter et al., 2020; Lee & Pavlovic, 2021; Wang et al., 2016), or leveraging mutual supervision (Joy
et al., 2022). Yet, it is not clear whether these extensions overcome the fundamental tradeoff be-
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tween generative quality and coherence. For instance, for existing approaches to employ additional
modality-specific latent subspaces with mixture-based models, we observe an overly high sensi-
tivity to hyperparameters (Section 4.2), which raises fundamental questions with regard to model
selection. Notably, we show that our proposed method—also in the class of multimodal VAEs with
modality-specific latent subspaces—is significantly more robust to changes in the same hyperpa-
rameter values.

3 METHOD

3.1 PRELIMINARIES: MMVAE

Given a set of M modalities X := x1, . . . ,xM , multimodal VAEs learn a latent-variable generative
model of the form pΘ(X, z) = p(z)

∏M
m=1 pθm(xm|z), by using neural networks to approximate

the intractable evidence pΘ(X). Analogous to the VAE (Kingma & Welling, 2014), multimodal
VAEs optimise a lower bound of the log-evidence by maximizing the following objective:

LVAE(x1:M ) = EqΦ(z|X)

[
log

pΘ(X, z)

qΦ(z|X)

]
(1)

where qΦ(z|X) denotes the approximate posterior, a neural network that is parameterized by Φ.
In the above form, the objective does not scale to a large number of modalities (e.g., see Wu &
Goodman, 2018; Sutter et al., 2021) and additional assumptions are required for the joint encoder
to be computed efficiently in terms of the unimodal encoders. Different formulations of the joint
encoder have been proposed (Wu & Goodman, 2018; Shi et al., 2019; Sutter et al., 2021), but here
we focus on the decomposition used by the MMVAE (Shi et al., 2019), formulating the joint encoder
as a mixture-of-experts of unimodal encoders qΦ(z|X) = 1

M

∑M
m=1 qϕm

(z|xm). When a mixture
distribution for the joint encoder is assumed, the expression in eqn. (1) is evaluated by computing
the expectation with respect to each component of the mixture distribution, and averaging over the
results. As in this case we assume a mixture-of-experts encoder, the MMVAE (Shi et al., 2019)
objective is a sum indexed by the M unimodal encoders

LMMVAE(x1:M ) =
1

M

M∑
m=1

Eqϕm (z|xm)

[
log

pΘ(X, z)

qΦ(z|X)

]
(2)

where

Eqϕm (z|xm)

[
log

pΘ(X, z)

qΦ(z|X)

]
= Eqϕm (z|xm)

[
log pθm(xm|z)

]
+

M∑
n=1
n ̸=m

Eqϕm (z|xm)

[
log pθn(xn|z)

]
+

Eqϕm (z|xm) log

[
p(z)

qΦ(z|X)

]
(3)

For each term in the sum, the encoding z ∼ qϕm
(z|xm) is sampled from a unimodal encoder, but it

is used for the reconstruction of all modalities: the likelihood term encompasses the reconstruction
of the modality m, i.e. self-reconstruction Eqϕm (z|xm)[log pθm(xm|z)], as well as the reconstruc-
tion across modalities, i.e. cross-modal reconstruction

∑M
m=1,n̸=m Eqϕm (z|xm)

[
log pθn(xn|z)

]
.

Maximizing reconstruction likelihood of modalities not observed for inference encourages the la-
tent code to contain information common across modalities, and can explain improved semantic
coherence compared to previously proposed product-based approaches (see qualitative results in Shi
et al. (2019) and section 4.1). However it has also been recently been shown that the optimization
of cross-modal reconstructions given a unimodal encoding can lead to a lack of modelled diversity
in private information for generation across modalities (Wolff et al., 2021; Daunhawer et al., 2022),
which manifests in average-looking samples with low generative quality (see section 4.1).

3.2 PRELIMINARIES: ADDITIONAL MODALITY-SPECIFIC SUBSPACES

In an attempt to enhance modelling of private information and improve performance, recent work
on multimodal VAEs (Sutter et al. (2020)) has proposed to model the latent space for mixture-based
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models including modality-specific latent subspaces, in addition to a shared subspace (Boucha-
court et al., 2018; Tsai et al., 2019; Wang et al., 2016) . Formally, each modality xm is mod-
elled to have its own modality-specific latent code wm, in addition to a latent code z shared
between all modalities. The assumed generative model is then of the form pΘ(X, z,W ) =

p(z)
∏M

m=1 pθm(xm|z,wm)p(wm), where the shared latent code z and all the modality-specific
codes w1, . . .wM =: W are assumed to be independent. A variational encoder qΦ(z,W |X) is
introduced to approximate posterior inference, and is modelled in line with the assumptions on the
generative process, assuming conditional independence given X

qΦ(z,W |X) = qΦz (z|X)qΦW
(W |X) = qΦz (z|X)

M∏
m=1

qϕwm
(wm|xm)

Again, achieving scalability in the number of modalities requires additional assumptions for the joint
encoder qΦz (z|X) of the shared latent code z. In particular assuming a mixture-of-experts joint
encoder qΦz (z|X) = 1

M

∑M
m=1 qϕzm

(z|xm) one obtains a variant of the MMVAE with factorized
latent space into shared and private subspaces

Lf
MMVAE(x1:M ) =

1

M

M∑
m=1

Eqϕzm
(z|xm)

qΦW
(W |X)

[
log

pΘ(X, z,W )

qΦz (z|X)qΦW
(W |X)

]
(4)

where

Eqϕzm
(z|xm)

qΦW
(W |X)

[
log

pΘ(X, z,W )

qΦz (z|X)qΦW
(W |X)

]
= E qϕzm

(z|xm)

qϕwm
(wm|xm)

[log pθm(xm|z,wm)]+

M∑
n=1
n ̸=m

E qϕzm
(z|xm)

qϕwn
(wn|xn)

[log pθn(xn|z,wn)]+

Eqϕzm
(z|xm)

qΦW
(W |X)

[
log

1

qΦz (z|X)qΦW
(W |X)

]
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Figure 1: Shortcut problem for the
objective in 4: generative coher-
ence as a function of of private la-
tent capacity. The percentages on
the x-axis indicate the relative size
of any private subspace with re-
spect to the shared subspace.

Existing mixture-based multimodal VAEs with a factor-
ized latent space are based on this objective Sutter et al.
(2020). Note that both self-reconstruction likelihood and
cross-modal reconstruction likelihood terms are computed
given the modality-specific encoding from the target modal-
ity. This can seemingly be an advantage, given these addi-
tional latent encodings can provide the modality-specific in-
formation for reconstruction that is not modelled in the shared
latent code. In particular, for cross-modal reconstruction no
private information about the target modality can be present in
the z encoding from the starting modality.

However, we find that with such an approach model perfor-
mance is heavily dependent on hyperparameters controlling
private latent dimensionality. In fact, when modality-specific
latent subspaces are given enough capacity, in terms of num-
ber of dimensions, the modality-specific encoding can contain
all information for the given modality (i.e., both shared and
modality-specific features), while the shared subspace is ig-
nored by the decoders. As it was already observed in Wang
et al. (2016) in a similar setting, we show here that this approach can lead to a degenerate solution—
a shortcut where all information flows through the modality-specific subspaces and no shared sub-
space is learned for generation across modalities. As a consequence, to achieve sufficient gen-
erative coherence it is necessary to heavily constrain the size of private subspaces (see figure 1).
Note however that this in turn negatively impacts generative quality, being detrimental to modelling
modality-specific variation, which was our motivation to employ additional private subspaces in the
first place (see section 4.2). Therefore, assuming modality-specific latent subspaces seems to not be
sufficient to overcome the trade-off between generative quality and generative coherence, and most
importantly results in instabilities with respect to hyperparameters controlling private latent space
capacity, which calls for expensive model selection procedures in practical settings.
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3.3 THE MMVAE+ OBJECTIVE

To enhance generative quality without compromising semantic coherence, we introduce the MM-
VAE+ model, a novel variant of the MMVAE. Our model incorporates the idea of using factorized
shared and modality-specific latent representations, and therefore makes the assumptions on the
generative process and the variational approximation function presented in section 3.2. In order to
ensure learning of a shared subspace while not incurring in a shortcut, auxiliary distributions for
private features are used to facilitate the estimation of cross-modal reconstructions. The optimized
objective is

LMMVAE+(x1:M ) =
1

M

M∑
m=1

E qϕzm
(z|xm)

qϕwm
(wm|xm)

{w̃n∼rn(wn)}n ̸=m

log

(
pθm(xm|z,wm)p(z)p(wm)

qΦz (z|X)qϕwm
(wm|xm)

∏
n ̸=m

pθn(xn|z, w̃n)

)

(5)
where r1(w1), . . . , rM (wM ) are auxiliary prior distributions on modality-specific features for each
modality. 1

Comparing with the objective in 4, the inferred modality-specific encoding is used only for self-
reconstruction, and not for cross-modal reconstruction, for which the modality-specific code is sam-
pled from the auxiliary prior. This crucial feature avoids the creation of a shortcut in the presence of
modality-specific latent subspaces. In fact, cross-modal reconstructions are computed conditioning
on a non-informative value for the modality-specific encoding, which forces the decoder to rely on
the shared encoding z to reconstruct unobserved modalities. As a consquence, z encodes informa-
tion useful to maximize reconstruction across modalities, i.e. shared information. Still, modality-
specific subspaces can serve the purpose of modelling private variation, as private encoders are used
for computing modality-specific codes for self-reconstruction.

The following lemma, for which we provide a proof in Appendix A, proves that MMVAE+ optimizes
a valid ELBO and therefore belongs to the family of multimodal VAEs.
Lemma 1. The MMVAE+ objective (Equation 5) is a valid lower bound on log pΘ(x1:M ).

Note that while we obtain a valid ELBO for an arbitrary choice of auxiliary priors, we discuss
our specific design choices in Appendix C. As in Shi et al. (2019), a multi-sample version of the
objective can provide a tighter bound on the log-evidence. In Appendix D we discuss the details of
the tighter version of the objective, along with the possibility to include a β hyperparameter (Higgins
et al., 2017) to weight latent space regularization.

4 EXPERIMENTS

We report experimental results for two challenging datasets introduced in previous work, namely
PolyMNIST (Sutter et al., 2021) and Caltech Birds (CUB) Image-Captions (Shi et al., 2019; Wah
et al., 2011). PolyMNIST is a synthetic dataset consisting of five modalities, depicting MNIST
digits sharing the digit label, patched on random crops from five different background images, one
for each modality. Each datapoint consists of five images, one per modality, where all the images
share the digit label, but not the style of the handwriting, as MNIST samples are shuffled prior to the
pairing. Shared information between modalities is therefore the digit label, while modality-specific
information includes the style of the handwriting and the specific background image. The Caltech
Birds (CUB) Image-Captions dataset consists of images of birds paired with matching linguistic
descriptions. What makes this a challenging experiment is the large amount of modality-specific
information for each modality, due to the different nature of the information sources. While previous
work (Shi et al., 2019; 2021; Joy et al., 2022) has tackled a simplified version of this experiment
by using pretrained ResNet-features, we train the models on actual images—a more realistic setting
that was shown to be challenging for the predominant approaches (Daunhawer et al., 2022). All
quantitative results are averaged over three independent seeds and we report standard deviations.
Technical details on the experiments and additional results are available in Appendices F and G.

1Note that we refer to these as priors in the sense that they are not conditional on the data, but are effectively
surrogate non-informative inference distributions for private features, which do not depend on the observed
data samples, and are different from the prior distributions for private information in the assumed generative
process p(w1), . . . , p(wM ).
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Figure 2: Graphical models for comparison of MMVAE (left) and MMVAE+ (right). For both mod-
els, gray circles represent observed variables, white circles represent latent variables, and non-circled
are the model parameters. Solid lines denote the generative process, while dashed arrows denote ap-
proximated posterior inference with encoders. Note that for MMVAE+ cross-modal reconstruction
does not depend on inferred modality-specific information, thereby relying on the shared latent space
z to encode information useful across modalities, i.e. shared information. At the same time, max-
imizing self-reconstruction of each modality m given the modality-specific wm code, encourages
private variation to be encoded in modality-specific subspaces.

4.1 ENHANCED GENERATIVE QUALITY FOR SEMANTICALLY COHERENT GENERATION

This section shows our results on the PolyMNIST dataset comparing MMVAE+ to the predominant
approaches, namely MMVAE (Shi et al., 2019), MVAE (Wu & Goodman, 2018) and MoPoE-VAE
(Sutter et al., 2021). For completeness, we also compare with two recently proposed variations of
MVAE and MMVAE, namely the MVTCAE (Hwang et al., 2021) and the mmJSD (Sutter et al.,
2020), which both introduce additional regularization terms to the respective objectives. Qualitative
results for conditional generation in Figure 3 illustrate the shortcomings of the existing approaches.
The MVAE exhibits a lack of generative coherence, whereas the MMVAE and MoPoE-VAE both
show a lack of sample diversity, resulting in poor generative quality. Even in this relatively simple
setting, modality-specific information—such as the background details or the style of handwriting—
tends to collapse to expected values for cross-modal generation. In contrast, the MMVAE+ shows
a significantly better generative quality with an improved sample diversity and high semantic co-
herence. Comparing directly with the MMVAE, the results validate that our approach achieves
enhanced generative quality without compromising semantic coherence.

For a quantitative comparison, we measure the performance in terms of generative coherence (Shi
et al., 2019) and generative quality. The latter is estimated in terms of FID score (Heusel et al., 2017),
a standard metric to evaluate sample quality for generative models in image domains. The scatter-
plots in Figure 4 show that only the MMVAE+ reaches high generative quality and high semantic
coherence consistently over a large range of hyperparameter values, while other models underper-
form in one of the two performance criteria. Note that while MVTCAE and mmJSD both show
some improvement over the predominant approaches they are based on, e.g. MVTCAE markedly
improves generative coherence over the MVAE, they still exhibit poor performance in either condi-
tional or unconditional genenration. Notably, the advantage of MMVAE+ persists for both uncon-
ditional and conditional generation. Details for unconditional generation for our approach, which
assumes separate latent subspaces, are at the end of Appendix F.

4.2 COMPARING WITH ALTERNATIVE APPROACHES WITH SEPARATE LATENT SUBSPACES

In this section, we compare MMVAE+ with alternative variants of multimodal VAE objectives that
adopt a latent space that factorizes in separate shared and modality-specific subspaces. In particu-
lar, we compare with the factorized MMVAE objective in 4, as well as with its alternative version
proposed in Sutter et al. (2020), which extends the single-space mmJSD model to a factorized latent
space. In addition we include DMVAE (Lee & Pavlovic, 2021) in the comparison, which implements
a product-based objective with factorized latent representations. However, in contrast to the other
compared models, its optimized objective is not provably an ELBO. Crucially, we find that all these
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(a) MVAE (b) MVTCAE (c) mmJSD (d) MoPoE-VAE (e) MMVAE (f) MMVAE+

Figure 3: Qualitative results for conditional generation on the PolyMNIST dataset. The input sample
from the first modality is shown in the top row, and below are four conditionally generated samples
for each of the remaining modalities.
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Figure 4: Comparison of generative quality (in terms of FID, lower is better) and generative coher-
ence (higher is better). The left scatterplot evaluates conditional (cross-modal) generation and the
right subplot quantifies unconditional generation performance. For each model, we show the results
for a range of representative β values (see Appendix F). An optimal model would lie in the top-right
area of each scatterplot.

existing approaches exhibit a non-trivial problem: to improve generative coherence, they require
strong constraining of modality-specific latent capacity, to avoid incurring in a shortcut where all in-
formation used by decoders is encoded independently in modality-specific subspaces. 2 In figure 5a
we report an ablation for generative coherence for the compared models, varying the relative size of
the modality-specific subspace for each modality with respect to the shared subspace. Adopting any
of the existing approaches with separate latent subspaces, generative coherence quickly deteriorates
as more capacity is allocated to private subspaces, reaching values close to random when private
and shared subspaces have equal size. This behaviour can arise from the fact that the encoding from
each modality-specific subspace is used to compute both self- and cross-modal reconstructions of the
given modalities (see section 3.2). Therefore, with enough capacity, the modality-specific encoder
can learn all information for the given modality (i.e., both shared and private features), which cre-
ates a shortcut where all information flows through the modality-specific subspaces and the shared
subspace is ignored by the decoder. As additional evidence for this phenomenon, we report in Fig-
ure 5b latent classification accuracy (see Appendix E.2) for private subspaces, when varying private
latent capacity. This metric shows the amount of shared information that a digit classifier can re-
trieve from private embeddings. As expected, as modality-specific dimensionality is augmented, an
increasing amount of shared information is present in the corresponding encodings. It is evident
from the showcased results that current approaches achieve sufficient coherence across generated

2Note that Wang et al. (2016) propose to use dropout during training, instead of reducing private latent
dimensionality, to avoid incurring in a shortcut. We address this in Appendix I.
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(b) Latent classification accuracy
from modality-specific encodings
(lower is better)

12.5% 25% 50% 75% 100%
Modality-specific latent capacity

0

50

100

150

G
en

er
at

iv
e

qu
al

ity

MMVAE+
MMVAE (factorized)
mmJSD (factorized)
DMVAE

(c) Generative quality (in terms of
FID score, lower is better)

Figure 5: Ablation for generative coherence, latent classification accuracy based on the private en-
codings, and generative quality, as a function of private latent dimensionality. The percentages on
the x-axis indicate the relative size of any private subspace with respect to the shared subspace.

modalities, at the expense of carefully constraining the size of modality-specicic subspaces. This
however has two undesirable effects. On one hand it inevitably limits modelling capacity for private
information, which hampers generative quality, as showcased in figure 5c. On the other hand, and
more importantly, achieving an adequate balance between the two performance criteria heavily de-
pends on hyperparameter tuning, which calls for expensive model selection procedures in practical
settings.

In contrast to the alternative approaches, the MMVAE+ proves to be significantly more robust with
respect to hyperparameter values controlling the size of the modality-specific subspaces. In particu-
lar, our approach does not incur in a shortcut. Instead shows better performance, if jointly looking
at generative quality and generative coherence, when shared and private latent subspaces for each
modality have comparable capacities. Combining these results with the ones from the previous sec-
tion, it is evident how our approach successfully exploits having additional modality-specific latent
codes to enhance generative quality, without compromising semantic coherence.

4.3 CUB IMAGE-CAPTIONS

In this section, we test the MMVAE+ on the CUB Image-Captions (Shi et al., 2019; Netzer et al.,
2011) dataset, and compare its performance with existing approaches in terms of conditional and
unconditional generation, in order to validate our approach and test its impact on a complex real-
world dataset. For the conditional caption-to-image generation (Figure 6), we again observe that
modality-specific information tends to collapse to average values for mixture-based models, namely
MMVAE, MoPoE-VAE and mmJSD, whereas MVAE and MVTCAE show convincing generative
quality but a severe lack of coherence (cp. Daunhawer et al., 2022). Similar conclusions can be
drawn for conditional image-to-caption generation (Figure 7). In contrast, MMVAE+ shows signif-
icantly better results for both caption-to-image and image-to-caption generation. Specifically, our
model achieves high sample diversity for both the image and text modality. Hence, we demonstrate
the effectiveness of our approach for more complex real-world data, where there is a sizeable amount
of modality-specific information and significant heterogeneity across modalities.

Conditional coherence Conditional FID
MVAE 0.271 (±0.007) 172.21 (±39.61)

MVTCAE 0.221 (±0.007) 208.43 (±1.10)

mmJSD 0.556 (±0.158) 262.80 (±6.93)

MMVAE 0.713 (±0.057) 232.20 (±2.14)

MoPoE-VAE 0.579 (±0.158) 265.55 (±4.01)

MMVAE+ (ours) 0.721 (±0.090) 164.94 (±1.50)

Table 1: Comparison of generative quality (in terms of FID, lower is better) and generative coherence
(higher is better) for conditional caption-to-image generation on the CUB Image-Captions dataset.
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(a) MVAE (b) MVTCAE (c) mmJSD (d) MoPoE-VAE (e) MMVAE (f) MMVAE+

Figure 6: Conditional image-to-caption generation on the CUB Image-Caption dataset.

(a) MVAE (b) MVTCAE (c) mmJSD (d) MoPoE-VAE (e) MMVAE (f) MMVAE+

Figure 7: Conditional caption-to-image generation on the CUB Image-Caption dataset. For each
model, the input caption is used to conditionally generate four images.

To quantitatively evaluate coherence, we design a new coherence proxy for the CUB Image-Captions
dataset. While for the PolyMNIST dataset, the information shared between modalities always con-
sists of the digit label, for the CUB Image-Captions dataset we do not have annotation for the shared
content between modalities. Further, the ResNet-feature evaluation used in previous works (Shi
et al., 2019; 2021) is not suitable to evaluate models that were trained on real images. Therefore,
we design a coherence proxy for conditional caption-to-image generation based on the color of the
described bird (see E.2 for details). Based on this metric, Table 1 provides a quantitative comparison
of the models for caption-to-image generation in terms of generative coherence and generative qual-
ity. We again quantify visual quality of the produced images using the FID score. The quantitative
results suggest that the MMVAE+ can model complex real-world datasets, where the predominant
models fail to achieve satisfying results in at least one of the two performance criteria.

5 CONCLUSION

This work introduced MMVAE+, a new model in the family of multimodal VAEs, which derives
from the MMVAE and considerably improves its generative quality without compromising semantic
coherence. The proposed model uses separate shared and modality-specific subspaces and leverages
auxiliary priors to facilitate the estimation of cross-modal reconstructions. We show that the model
optimizes a valid multimodal ELBO and that it effectively encodes shared and modality-specific in-
formation in the respective subspaces. Our approach can be generalized and extended to other types
of decompositions of the joint encoder, such as the mixture-of-products of experts. We leave this as a
possibility for future work. On both synthetic and real-world data, we demonstrate the effectiveness
of our approach for enhancing generative quality without compromising semantic coherence. Com-
pared to previous approaches with separate latent subspaces, MMVAE+ is significantly more robust
to hyperparameter values controlling the capacity of modality-specific subspaces. As such, MM-
VAE+ takes an important step towards the applicability of multimodal VAEs to complex, real-world
multimodal datasets.
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A PROOFS

Lemma 1. The MMVAE+ objective (Equation 5) is a valid lower bound on log pΘ(X).

Proof. We assume the data generative process

pΘ(X, z,W ) = p(z)

M∏
m=1

pθm(xm|z,wm)p(wm),

where z encodes the shared content between modalities, and each wm encodes modality-specific
information for modality m. Note that shared latent information in z and modality-specific infor-
mation for each modality w1, . . . ,wM =: W are assumed to be independent. We start by approxi-
mating posterior inference for the shared latent space with a mixture-of-experts variational encoder
qΦz (z|X) = 1

M

∑M
m=1 qϕzm

(z|xm). With our assumptions the objective

LMMVAE(x1:M ) =
1

M

M∑
m=1

Eqϕzm
(z|xm)

[
log

p(z)pθm(xm|z)
∏

n ̸=m pθn(xn|z)
qΦz (z|X)

]
. (6)

is a valid lower bound on the log-evidence log pΘ(X).

Note that this is the MMVAE objective (Shi et al., 2019), where for each term in the sum the en-
coding z ∼ qϕzm

(z|xm) is sampled from a unimodal encoder, and used to compute the conditional
likelihood of all M modalities: in particular both self-reconstruction likelihood log pθm(xm|z) and
cross-modal reconstruction likelihoods log pθn(xn|z) for n ̸= m are evaluated. We derive the MM-
VAE+ objective by adopting different estimators for the two kinds of likelihood terms. In detail, we
estimate log pθm(xm|z) using a variational encoder qϕwm

(wm|xm) for modality-specific informa-
tion and deriving the lower bound

log pθm(xm|z) ≥ Eqϕwm
(wm|xm)

[
log

pθm(xm|wm, z)p(wm)

qϕwm
(wm|xm)

]
(7)

In contrast for cross-modal reconstruction likelihoods we propose the estimator

log pθn(xn|z) = logEw̃n∼rn(wn)pθn(xn|z, w̃n) ≥ Ew̃n∼rn(wn) log pθn(xn|z, w̃n) (8)

using an auxiliary prior distribution rn(wn) specific to each target modality. Note the first step holds
by definition of conditional expectation, while the second step follows from Jensen’s inequality.

Plugging the derived expressions in 7 and 8 in equation 6, we recover the MMVAE+ objective

LMMVAE+(x1:M ) =
1

M

M∑
m=1

E qϕzm
(z|xm)

qϕwm
(wm|xm)

{w̃n∼rn(wn)}n ̸=m

log

(
pθm(xm|z,wm)p(z)p(wm)

qΦz (z|X)qϕwm
(wm|xm)

∏
n ̸=m

pθn(xn|z, w̃n)

)

(9)

From the fact that equation 6 is an ELBO, and the fact that the derived expressions in 7 and 8 are
lower bounds, we conclude that the MMVAE+ objective is an ELBO.

B ADDITIONAL THEORETICAL RESULTS

Here we prove a lemma, which formalizes the fact that with the MMVAE+ objective cross-modal re-
constructions affect only the shared subspace but not the modality-specific subspaces. Specifically,
in the MMVAE+ objective (Equation 5), the encoding z ∼ qϕzm

(z|xm) is used for the reconstruc-
tion of modality m, as well as for cross-modal reconstruction of the remaining modalities. As a
consequence, the gradients for parameters ϕz1

, . . . , ϕzM
depend on the reconstruction likelihood

of all modalities. Consequently, encoders {qϕzm
(z|xm)}m=1,...,M are optimized for z to contain

information useful to reconstruct all modalities, i.e., shared information. In contrast, the encod-
ing wm ∼ qϕwm

(wm|xm) is used only to compute the reconstruction likelihood of modality m.
Hence, gradients for encoder parameters ϕw1 , . . . , ϕwM

only depend on self-reconstruction terms.
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As a result, for optimized cross-modal reconstruction, all shared information needs to be contained
in and predicted from z. On the other hand, private information for modality m can be modelled
in wm ∼ qϕwm

(wm|xm) as a consequence of optimizing self-reconstruction. As confirmed by our
experimental results, our proposed objective leads to shared and private information being encoded
in separate shared and modality-specific latent subspaces respectively.

Lemma 2. Computed gradients for the MMVAE+ objective with respect to private encoder param-
eters ϕw1

, . . . , ϕwM
do not depend on cross-modal reconstruction likelihood terms, while gradients

with respect to shared encoder parameters ϕz1
, . . . , ϕzM

depend on the reconstruction likelihood of
all modalities.

Proof. Computing the gradients for the MMVAE+ objective (Equation 5) with respect the private
encoder network parameters ϕwm

for a given modality m ∈ {1, . . . ,M} gives

∇ϕwm
LMMVAE+(x1:M ) = ∇ϕwm

(
E qϕzm

(z|xm)

qϕwm
(wm|xm)

[
log

pθm(xm|z,wm)p(wm)

qϕwm
(wm|xm)

])
= ∇ϕwm

Fθm,ϕzm ,ϕwm
(xm)

Note that the resulting function does not depend on decoder parameters {θn}n̸=m, i.e. does not
depend on cross-modal reconstruction likelihoods. Computing the gradients with respect the shared
encoder network parameters ϕzm

for a given modality m ∈ {1, . . . ,M} instead gives

∇ϕzm
LMMVAE+(x1:M ) = ∇ϕzm

(
E qϕzm

(z|xm)

qϕwm
(wm|xm)

{w̃n∼rn(wn)}n̸=m

[
log

(
pθm(xm|z,wm)p(z)

∏
n ̸=m

pθn(xn|z, w̃n)

)]

+
1

M

M∑
r=1

Ez∼qϕzr
(z|xr)

[
log

1

qΦz (z|X)

])
= ∇ϕzm

GΘ,Φz,ϕwm
(X)

which is a function of the reconstruction likelihood of all modalities given inference from modality
m, through decoders parameterized by Θ = {θ1, . . . , θM}.

C CHOICES OF AUXILIARY PRIORS

In this section we elaborate on the role of auxiliary prior distributions r1(w1), ..., rM (wM ) in our
proposed objective, and the specific design choices for such distributions.

In our experiments, as auxiliary priors we choose zero-mean distributions with a variance parameter
that is learnt at training time. Notably, the learnt variance is a separate parameter vector (for each
private subspace) that does not affect the encoders. Moreover, the variance parameter, and hence
the r1(w1), ..., rM (wM ) distributions are not computed conditioning on any specific data sample.
Therefore having a variance parameter does not affect our results from lemma 1.

Having a learnt variance is a key component as it allows the auxiliary priors to adapt the effective
value range of the private encoding for cross-modal reconstructions. Specifically, the prior can adapt
the value range to serve as an indicator that informs the decoder about self-reconstructions versus
cross-modal reconstructions. Empirically, we find support for this hypothesis, as each auxiliary prior
tends to become a sharp distribution (i.e., approximately a delta function) in the course of training.
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D INCLUDING A MULTI-SAMPLE ESTIMATOR AND A β HYPERPARAMETER IN
THE MMVAE AND MMVAE+ OBJECTIVES

D.1 MULTI-SAMPLE MMVAE AND MMVAE+ OBJECTIVES

To tighten the bound on the log-evidence in 2, Shi et al. (2019) propose to use a multi-sample
estimator. In fact the K-sample objective

Lms
MMVAEβ

(x1:M ) =
1

M

M∑
m=1

Ez1:K∼qϕm (z|xm)

[
log

1

K

K∑
k=1

pΘ(X, zk)

qΦ(zk|X)

]
is a tighter ELBO compared to (2) for K > 1, as it can be shown with Jensen’s inequality. However,
as multi-sample estimators can lead to undesirably high variance, Tucker et al. (2019) have proposed
a doubly-reparameterized gradient estimator (DReG) to reduce the variance in estimated gradients
for latent-variable models with multi-sample objectives. Shi et al. (2019) resort to this estimator in
computing gradients for the multi-sample version of the MMVAE objective.

Analogously for the MMVAE+ objective, a tighter bound on the log-evidence can be enforced if one
uses a multi-sample estimator. In fact the K-sample version of the objective in (5)

Lms
MMVAE+(x1:M ) =

1

M

M∑
m=1

E z1:K
m ∼qϕzm

(z|xm)

w1:K
m qϕwm

(wm|xm)

{w̃1:K
n ∼rn(wn)}n̸=m

log
1

K

K∑
k=1

CΦ,Θ(X, zk, w̃k
1 , . . . ,w

k
m, . . . , w̃k

M )

(10)

with

CΦ,Θ(X, zk, w̃k
1 , . . . ,w

k
m, . . . , w̃k

M ) =
pθm(xm|zk,wk

m)p(zk)p(wk
m)

qΦz (z
k|X)qϕwm

(wk
m|xm)

∏
n ̸=m

pθn(xn|zk, w̃k
n)

is a tighter ELBO compared to (5) for K > 1, as it can be shown with Jensen’s inequality.

D.2 BALANCING RECONSTRUCTION AND REGULARIZATION WITH A β HYPERPARAMETER

As common practice in the VAE literature, the objective in (1) can be rewritten as a sum of a recon-
struction term and a KL-divergence term

LVAEβ
(x1:M ) = EqΦ(z|X)

[
log pΘ(X|z)

]
− βDKL(qΦ(z|X) ∥ p(z))

(11)

where a β hyperparameter weighting the latter term is introduced to control smoothness of the latent
space (Higgins et al., 2017). With the assumption of a mixture-of-experts joint encoder, one can in
the same way rewrite the MMVAE objective as the sum of a reconstruction and a KL-divergence
term, weighted with a β hyperparameter

LMMVAEβ
(x1:M ) =

1

M

M∑
m=1

Eqϕm (z|X)

[
log pΘ(X|z)

]
− βDKL(qΦ(z|X) ∥ p(z))

=
1

M

M∑
m=1

Eqϕm (z|xm)

[
log

pΘ(X|z)(p(z))β

(qΦ(z|X))β

]
(12)

From the last expression, one can derive a multi-sample version of the MMVAE objective

Lms
MMVAEβ

(x1:M ) =
1

M

M∑
m=1

Ez1:K∼qϕm (z|xm)

[
log

1

K

K∑
k=1

pΘ(X|zk)(p(zk))β

(qΦ(zk|X))β

]
(13)

where the β hyperparameter is introduced. Note that Jensen’s inequality proves (13) is a tighter
bound on the log-evidence compared to (12) for K > 1 and any fixed value of β ≥ 1.

15



Published as a conference paper at ICLR 2023

Analogously, we can derive a β-weighted version of the K-sample MMVAE+ objective

LMMVAE+β (x1:M ) =
1

M

M∑
m=1

E qϕzm
(z|xm)

qϕwm
(wm|xm)

{w̃n∼rn(wn)}n ̸=m

log

(
pθm(xm|z,wm)(p(z)p(wm))β

(qΦz (z|X)qϕwm
(wm|xm))β

∏
n̸=m

pθn(xn|z, w̃n)

)

and the corresponding K-sample objective

Lms
MMVAE+β (x1:M ) =

1

M

M∑
m=1

E z1:K
m ∼qϕzm

(z|xm)

w1:K
m qϕwm

(wm|xm)

{w̃1:K
n ∼rn(wn)}n ̸=m

log
1

K

K∑
k=1

Dβ
Φ,Θ(X, zk, w̃k

1 , . . . ,w
k
m, . . . , w̃k

M )

with

Dβ
Φ,Θ(X, zk, w̃k

1 , . . . ,w
k
m, . . . , w̃k

M ) =
pθm(xm|zk,wk

m)(p(zk)p(wk
m))β

(qΦz (z
k|X)qϕwm

(wk
m|xm))β

∏
n̸=m

pθn(xn|zk, w̃k
n)

Note that in our experiments, when training the MMVAE and the MMVAE+ with the respective
K-sample β-weighted objectives we make use of the DReG estimator (Tucker et al., 2019).

E TECHNICAL DETAILS FOR DATASETS AND METRICS

E.1 DATASETS

In this work, we report experimental results on two multimodal datasets introduced in previous
works, namely PolyMNIST (Sutter et al., 2021) and CUB Image-Captions (Shi et al., 2019; Netzer
et al., 2011).

PolyMNIST is a synthetic dataset consisting of five image modalities. Each datapoint consists of
five images depicting MNIST samples sharing the digit label, patched on random crops from five
different background images, one for each modality. Shared information between modalities is the
digit label, while private information comprises the background and the style of the handwriting,
since MNIST digits are shuffled prior to the pairing.

The Caltech Birds (CUB) Image-Captions dataset consists of images of birds paired with matching
linguistic descriptions. Making this experiment ambitious is the high amount of modality-specific
information for each modality, due to the different nature of the information sources. Moreover,
while for PolyMNIST the amount of shared information for each sample is fixed, always consisting
of the digit label, here the amount of shared information present can vary from datapoint to datapoint.
In fact, descriptions can be more or less detailed, leading to more or less shared information between
modalities. This dataset presents a lot of challenges typical of a realistic experiment, which makes
it a relevant setting to benchmark existing approaches.

Figure 8: Illustrative samples from PolyMNIST (left) and CUB Image-Captions (right) respectively.
Images taken from Shi et al. (2019) and Daunhawer et al. (2022).

E.2 METRICS

FID score In our experiments, to evaluate generative quality for image modalities we adopt the
FID score (Heusel et al., 2017), a state-of-the-art metric to quantify visual sample quality for gener-
ative models in image domains, which has been shown to correlate well with human judgement. To
compute FID scores we use the implementation from Seitzer (2020).
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white yellow blue red
[0, 0, 120] [25, 50, 70] [90, 50, 70] [0, 50, 70] [159, 50, 70]

[180, 18, 255] [35, 255, 255] [158, 255, 255] [15, 255, 255] [180, 255, 255]
green gray brown black

[36, 50, 70] [0, 0, 50] [24, 255, 255] [0, 0, 0]
[89, 255, 255] [180, 18, 120] [16, 50, 70] [180, 255, 50]

Table 2: HSV (Hue, Saturation, Value) color ranges used to classify pixels in color classes. Each
pixel in HSV color coding is represented by three values. Lower and upper limit(s) for each color
class range(s) are reported below each color class label. Note that to include all tonalities of red one
has to consider two distinct ranges.

Generative coherence: PolyMNIST To compute generative coherence in the PolyMNIST ex-
periment, as done in previous works (Shi et al., 2019; Sutter et al., 2021; Daunhawer et al., 2022),
we use the training samples for each single modality to train a classifier for the digit label. The
resulting classifiers are then used to obtain a quantitative measure for conditional and unconditional
generative coherence. To measure conditional generative coherence from a given input modality
m to a given target modality n, we feed the conditionally generated sample to the classifier for the
target modality n, then compare the predicted digit label with the true digit label. The matching
rate for the whole test set measures conditional generative coherence from modality m to modality
n. To obtain a single representative metric for PolyMNIST, we compute the average coherence for
each target modality, and then average the five obtained results. For unconditional generation, co-
herence is measured by feeding jointly-generated samples for each modality to the corresponding
trained classifier. Then the measure for coherence is the rate with which all classifiers output the
same predicted digit label on the total number of generations.

Generative coherence: CUB Image-Captions To have a quantitative assessment of semantic co-
herence in the CUB Image-Captions experiment we design a novel generative coherence metric for
caption-to-image generation. In detail, we construct eight captions of the form this bird is completely
[color], where [color] takes values in the set {white, yellow, red, blue, green, grey, brown, black}.
We divide the HSV color coding range according to these eight color classes (see Table 2). Then, for
each of the starting captions we generate ten images. For each generated image we count the pixels
belonging to each color class. We label an image as coherent if the color for the starting caption is
among the two color classes with the highest pixel count in the image. We take into account the two
color classes with the highest count, as the highest count for some images might be the background
color rather than the color of the depicted bird. Finally, the ratio of coherent images over the total
number of generated images is our coherence metric.

We want to point out that, while Shi et al. (2019) propose a quantitative metric for the CUB Image-
Captions dataset, this metric is effective only when dealing with the simpler version of this exper-
iment that uses pretrained ResNet-features, rather than training on actual images. Shi et al. (2019)
train the model on ResNet embeddings rather than real images: for image generation the model
actually generates an embedding, that is matched with the nearest-neighbour embedding among all
embeddings of the images in the original data. Therefore what the model outputs in an image be-
longing to the test set. This results in having high-quality images as output, but no generation in
pixel space happens, which makes the task easier. The coherence metric used by Shi et al. (2019)
relies on the fact that generated images are essentially taken from the dataset itself, and therefore
come from the same distribution as the data. So, cross-generated images can be fed to the pre-trained
ResNet used at training to compute a meaningful embedding to be compared with the embedding for
the starting image. In our case setting instead, images are generated directly in pixel space, which
means there would be a distribution shift between the generated images and the starting images
(e.g. generated images are blurrier). With such a distribution shift, feeding generated images to the
ResNet encoders trained on original data does not yield meaninful results, which invalidates such a
metric for our setting.

Latent classification accuracy In the PolyMNIST setting, where we have annotations for the
shared information between modalities, i.e. the digit label, we use latent classification accuracy
(Sutter et al., 2021; Daunhawer et al., 2022; Shi et al., 2019) as a proxy for the amount of shared
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information encoded in a given latent subspace. To compute this metric, a digit-classifier is trained
on the latent embeddings and its accuracy on the test set is a proxy for how much information about
the shared digit content is encoded in the latent code. For our results in section 4.2, where we aim to
have a measure of how much shared information is present in modality-specific subspaces, we train
a digit classifier on each of the five modality-specific latent embeddings, and then average the test
accuracies of the five classifiers to obtain a single metric.

F TECHNICAL DETAILS FOR THE EXPERIMENTS

PolyMNIST (results in Section 4.1 and Appendix G) Following the suggestions by the authors
in Shi et al. (2019) to reach best performance on image-to-image datasets, we train the MMVAE
assuming Laplace priors, likelihoods and posteriors, constraining their scaling across the D dimen-
sions to sum to D. For compatibility, we use the same settings for the MMVAE+. In our experiments
we set the size of the shared latent subspace for MMVAE+ to 32 dimensions. In order not to induct
any bias, and have equal shared and private latent capacity for each modality, we also set the size of
each modality-specific latent subspace to 32 dimensions. For a fair comparison with the MMVAE,
we set the size of the latent space to be equal to the total latent capacity of MMVAE+, namely 160
dimensions. When training both models with a multi-sample estimator in the objective, we reduce
the size of the latent space of MMVAE to 64 dimensions, due to main memory constraints. MM-
VAE and MMVAE+ are trained for 50 epochs when trained the K-sample version of the respective
objectives, using K = 10 samples, while they are trained for 150 epochs when trained without
multi-sample estimators. We train the mmJSD model again using a latent space of 160 dimensions,
and for 150 epochs.

For MVAE, MoPoE-VAE, and MVTCAE, we use the settings in the work of Daunhawer et al. (2022)
and Hwang et al. (2021), in order to obtain best performance in this experimental setting. We assume
Laplace likelihoods and resort to Gaussian priors and posteriors which enable to compute product
distributions in closed form. We train both MVAE and MoPoE-VAE for 500 epochs with a latent
space of size 512, while MVTCAE (Hwang et al., 2021) is trained for 300 epochs, with the same
latent space size.

We compare all models for a range of representative values of the regularization hyperparameter
β ∈ {1.0, 2.5, 5.0}. Due to numerical instabilities the MVAE could not be trained with β = 5.0,
and therefore for this model we set β = 3.0 as the last value of the regularization hyperparameter.
Finally, for all compared models we use the same ResNet encoder and decoder networks, for each
modality.

PolyMNIST (results in Section 4.2) For a fair comparison between the models, we train the MM-
VAE using the objective in 4, the mmJSD with the objective assuming factorized latent space (Sutter
et al., 2020), and the MMVAE+, using the same ResNet encoder and decoder networks for each
modality, assuming Laplace likelihoods, and training all models for 150 epochs, without resorting
to multi-sample estimators for any of the models. Note that the size of the shared latent subspace is
always fixed to 32 dimensions.

CUB Image-Captions On this experiment, for all compared models, we assume Laplace and one-
hot categorical likelihood distributions for images and captions respectively, with Gaussian priors
and posteriors, and set the latent space capacity to 64 dimensions. The size of private latent sub-
spaces for MMVAE+ is chosen so that, for both modalities, summing the size of the private subspace
and the shared subspace also amounts to 64 dimensions. We train MVAE, MoPoE-VAE, MVTCAE
and mmJSD on this experiment for 150 epochs, with the settings to replicate best performance used
in Daunhawer et al. (2022). In particular, ResNet encoder and decoder networks are used for both
image and text modalities. MMVAE and MMVAE+ are trained for 50 epochs with the K-sample
version of the respective objectives and K = 10, using the DReG estimator. Both models use Resnet
network architectures for the image modality and CNNs for the text modality.

General specifics for the experiments All models are trained using the Adam optimizer (Kingma
& Ba, 2014). We choose a learning rate of 5e-4 for MVAE and MoPoE-VAE, following Daunhawer
et al. (2022), while for MMVAE and MMVAE+ we choose 1e-3. mmJSD, and MVTCAE are also
trained with learning rate 1e-3, as suggested in the respective implementations by the authors. All
quantitative results are averaged over three seeds, and reported with standard deviations. Finally, we
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want to specify that when comparing unconditional coherence in both experiments, for our approach
which has separate latent subspaces, we sample the shared latent z from its prior p(z), and the
modality-specific latent wm for each modality m from the respective prior p(wm).

G ADDITIONAL RESULTS

G.1 POLYMNIST

Detailed quantitative model comparison In Table 3 we report the numerical values for each met-
ric in the quantitative comparison in Section 4.1. These results show that only the MMVAE+ reaches
high generative quality and high semantic coherence across different β values, for both conditional
and unconditional generation. Alternative models instead markedly underperform in one of the two
criteria, or achieve convincing scores only for conditional or unconditional generation. The latter is
the case with MVTCAE. In fact, while being an important improvement over the MVAE for condi-
tional generation with greatly superior coherence, its performance markedly drops for unconditional
generation, with extremely low values for coherence.

Conditional generation In figures 11 and 10 we report additional and more extensive qualitative
results for the comparison between MMVAE+, MMVAE, MVAE, MVTCAE, mmJSD and MoPoE-
VAE in section 4.1 for conditional generation.

Latent classification accuracy While conditional generation results showcased in Section 4.1 al-
ready offer sufficient evidence in this regard, here we show yet other results supporting the validity
of our modelling assumptions where the shared latent subspace and the private latent subspace con-
tain disentangled shared and modality-specific information respectively for each modality. In detail,
we use latent classification accuracy (see Appendix E.2) to prove that the MMVAE+ achieves fac-
torization between shared information in z and private information in w1, . . . ,wM . For an ablation,
similarly to section 4.2, we vary the proportion of latent dimensions allocated to the shared and the
private subspace: with the shared subspace fixed to 32 dimensions, we vary the number of dimen-
sions for each private subspace between 4, 8, 16, 24, 32. Hence we go from having 12.5% of the
shared latent capacity allocated to the wm subspace for each modality m, to up to the two subspaces
having the same size. The showcased results in Figure 12 indicate that the z subspace successfully
encodes shared content across modalities, consistently throughout the ablation, which validates our
modelling assumptions for MMVAE+, showing they are robust to variation in hyperparameters.
The accuracies obtained with classifiers trained on private embeddings are, as expected, markedly
low. These results offer additional empirical evidence demonstrating that MMVAE+ learns repre-
sentations that factorize into shared and private subspaces consistently with respect to changes in
hyperparameters.

Additional baseline results As an additional baseline to compare our approach with, we include
results obtained having the same assumptions for the generative model as in section 3.2, but assum-
ing a product-of-experts joint encoder. The resulting objective essentially extends the MVAE (Wu
& Goodman, 2018) to have separated shared and modality-specific latent subspaces. The optimized
objective is

Lf
MVAE (X) = E qΦz (z|X)

qϕw1
(w1|x1)

...
qϕwM

(wM |xM )

[
log

pΘ(X, z,W )

qΦz (z|X)
∏M

m=1 qϕwm
(wm|xm)

]
(14)

where

qΦz (z|X) =

M∏
m=1

qϕzm
(z|xm)

As it is expected and can be seen in Figure 9, this additional baseline model also proves to suffer from
the shortcut problem, as the other existing multimodal VAEs with separate shared and modality-
specific latent subspaces.
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Figure 9: Results for the ablation in Section 4.2 including the factorized version of MVAE (Wu &
Goodman, 2018) as an additional baseline.

MMVAE

MMVAE+

Figure 10: Conditional generation qualitative results for MMVAE and MMVAE+ on the PolyM-
NIST dataset. For each different starting modality, we show input samples in the top row, and four
instances of conditional generation for the remaining target modalities.
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MVAE

MVTCAE

mmJSD

MoPoE-VAE

Figure 11: Conditional generation qualitative results for MVAE, MVTCAE, mmJSD and MoPoE-
VAE on the PolyMNIST dataset. For each different starting modality, we show input samples in the
top row, and four instances of conditional generation for the remaining target modalities.
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Figure 12: MMVAE+: latent classification accuracy computed on the shared latent embedding z
and the modality-specific latent embeddings W = w1, . . . ,wM , as a function of relative capacity
of modality-specific subspaces. Note that this result validates our approach, which consistently
encodes shared information across modalities in z, while this information is not present in W .

β = 1.0 Unconditional Conditional
FID Coherence FID Coherence

MVAE 50.65 (±0.72) 0.007 (±0.001) 82.59 (±6.22) 0.093 (±0.009)

MVTCAE 110.85 (±2.61) 0.000 (±0.000) 58.98 (±0.62) 0.509 (±0.006)

mmJSD 179.76 (±2.97) 0.054 (±0.011) 209.98 (±1.26) 0.785 (±0.023)

MoPoE-VAE 98.56 (±1.32) 0.037 (±0.002) 160.29 (±4.12) 0.723 (±0.006)

MMVAE 165.17 (±3.40) 0.222 (±0.019) 152.11 (±4.11) 0.837 (±0.004)

MMVAE(K=10) 158.95 (±1.79) 0.292 (±0.015) 196.62 (±1.99) 0.865 (±0.006)

MMVAE+ 86.64 (±1.04) 0.095 (±0.020) 80.75 (±0.18) 0.796 (±0.010)

MMVAE+ (K=10) 95.81 (±4.04) 0.244 (±0.023) 96.11 (±5.36) 0.859 (±0.012)

β = 2.5 Unconditional Conditional
FID Coherence FID Coherence

MVAE 58.53 (±0.12) 0.080 (±0.006) 85.23 (±9.37) 0.298 (±0.044)

MVTCAE 87.07 (±0.89) 0.003 (±0.000) 62.55 (±1.30) 0.591 (±0.004)

mmJSD 180.55 (±8.67) 0.060 (±0.010) 222.09 (±5.34) 0.778 (±0.003)

MoPoE-VAE 107.11 (±0.780) 0.141 (±0.005) 178.27 (±2.01) 0.720 (±0.008)

MMVAE 164.71 (±3.17) 0.232 (±0.010) 150.83 (±2.69) 0.844 (±0.010)

MMVAE (K=10) 164.64 (±2.84) 0.379 (±0.034) 197.24 (±1.87) 0.853 (±0.007)

MMVAE+ 96.01 (±2.10) 0.344 (±0.013) 92.81 (±0.78) 0.869 (±0.013)

MMVAE+ (K=10) 103.67 (±2.22) 0.446 (±0.009) 102.60 (±2.17) 0.900 (±0.002)

β = 5.0 Unconditional Conditional
FID Coherence FID Coherence

MVAE 61.25 (±0.40) 0.112 (±0.010) 90.37 (±3.20) 0.301 (±0.024)

MVTCAE 85.43 (±2.80) 0.029 (±0.001) 74.61 (±3.41) 0.604 (±0, 004)

mmJSD 186.49 (±2.89) 0.076 (±0.018) 226.20 (±2.91) 0.784 (±0.029)

MoPoE-VAE 122.68 (±1.96) 0.238 (±0.001) 182.99 (±1.96) 0.673 (±0.002)

MMVAE 164.29 (±2.97) 0.229 (±0.017) 152.11 (±3.18) 0.839 (±0.010)

MMVAE (K=10) 176.79 (±1.32) 0.407 (±0.022) 193.79 (±2.83) 0.817 (±0.016)

MMVAE+ 109.08 (±1.41) 0.421 (±0.006) 107.78 (±0.88) 0.8365 (±0.023)

MMVAE+ (K=10) 115.57 (±2.22) 0.501 (±0.004) 118.30 (±1.42) 0.868 (±0.005)

Table 3: Comparison of model performance for generative quality (in terms of FID, lower is better)
and generative coherence (higher is better). Both conditional (cross-modal) generation and uncondi-
tional generation performance are evaluated. Each table shows the results for the compared models
for a different β value. Note that values in the table relative to β = 5.0 for MVAE are actually
computed with β = 3.0 due to numerical instabilities.
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G.2 CUB IMAGE-CAPTIONS

Image quality for generation In figures 13 and 15 we report unconditional and conditional image
generation results for the compared models on the CUB Image-Captions dataset. Image generation
results for MMVAE, mmJSD, and MoPoE-VAE in this complex experiment are characterized by
the presence a considerable number of generated samples for which modality-specific features are
collapsed to average values, resulting in blurred images. MMVAE+ results on the contrary do not
exhibit signs of this pattern, which indicates good modelling of modality-specific information even
in this complex setting, compared to the other mixture-based approaches. For the MVAE and MVT-
CAE, product-based approaches, we witness instead the presence of significant variation in produced
images, but low generative coherence comparing with our approach. In figure 16 we also show the
generated samples resulting from our computation of the coherence score for this experiment, as
described in appendix E.2.

Image-to-caption generation In figure 14 we showcase conditional image-to-caption results for
the compared models, showing the MMVAE+ is the only approach achieving high quality for the
produced sentences, which are also fairly coherent in attributes such as the colors present in the bird.

Additional comparisons Section 4.2 shows the central result for the comparison between MM-
VAE+ and the recently proposed DMVAE (Lee & Pavlovic, 2021), which also employs factorized
latent spaces. The fact that even in relatively simple datasets such as PolyMNIST, alternative models
with factorized representations heavily suffer from the shortcut problem, already clearly separates
our work from previous approaches. However, for completeness we also test this model in the CUB
Image-Captions experiment, ensuring compatibility with MMVAE+ in architectures, hyperparam-
eters, and other implementation details. We show qualitative and quantitative results for DMVAE
on the CUB Image-Captions experiment in figure 17 and table 4 respectively. A qualitative and
quantitative comparison of results clearly shows MMVAE+ achieves better results than DMVAE in
this experiment.

Conditional coherence Conditional FID
DMVAE 0.487 (±0.022) 179.23 (±6.99)

MMVAE+ (ours) 0.721 (±0.090) 164.94 (±1.50)

Table 4: Quantitative performance of DMVAE on the CUB Image-Captions experiment, compared
with MMVAE+, in terms of conditional coherence (higher is better) and conditional FID (lower is
better).

(a) MVAE (b) MVTCAE (c) mmJSD

(d) MoPoE-VAE (e) MMVAE (f) MMVAE+

Figure 13: Qualitative results for MVAE, MVTCAE, mmJSD, MoPoE-VAE, MMVAE and MM-
VAE+ for unconditional generation on the CUB Image-Captions dataset.
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(a) MVAE (b) MVTCAE (c) mmJSD

(d) MoPoE-VAE (e) MMVAE (f) MMVAE+

Figure 14: Qualitative results for MVAE, MVTCAE, mmJSD, MoPoE-VAE, MMVAE and MM-
VAE+ for image-to-caption generation on the CUB Image-Captions dataset.

(a) MVAE (b) MVTCAE (c) mmJSD

(d) MoPoE-VAE (e) MMVAE (f) MMVAE+

Figure 15: Qualitative results for MVAE, MVTCAE, mmJSD, MoPoE-VAE, MMVAE and MM-
VAE+ for caption-to-image generation on the CUB Image-Captions dataset.
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(a) MVAE (b) MVTCAE (c) mmJSD

(d) MoPoE-VAE (e) MMVAE (f) MMVAE+

Figure 16: Qualitative results for the compared models for the caption-to-image generation proce-
dure used for an estimation of generative coherence for the CUB Image-Captions experiment as
described in appendix E.2

(a) caption-to-image generation (b) image-to-caption generation (c) unconditional generation

Figure 17: Qualitative results for DMVAE on the CUB Image-Captions experiment.
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H PERFORMANCE OF MMVAE+ AS A FUNCTION OF THE NUMBER OF
MODALITIES USED FOR TRAINING

An important trait of successful multimodal learning is that performance should improve, or at
least non-decrease, when additional modalities are available. In fact, adding modalities increases,
or at least does not decrease, the information available for the model. However, Daunhawer et al.
(2022) highlight that for the prominent approaches in the class of multimodal VAEs having addi-
tional modalities causes a decrease in generative quality. Here we investigate the impact of varying
the number of modalities present for training on the MMVAE+ performance. In particular we use the
PolyMNIST dataset for an ablation of conditional generative coherence and conditional generative
quality for MMVAE+, when varying the number of modalities for training. Note the PolyMNIST
dataset consists of five modalities: {m0,m1,m2,m3,m4}. In this ablation, we compare MMVAE+
trained on

• five (all) modalities {m0,m1,m2,m3,m4}
• four modalities {m1,m2,m3,m4}
• three modalities {m2,m3,m4}
• two modalities {m3,m4}

Then, for a transparent comparison, we compute FID scores and generative coherences calculated for
conditional generation for starting modality m3 and target modality m4, and vice-versa, averaging
the results. This way we have a fair and unbiased comparison of cross-generation performance by
only considering the last two modalities even in models trained with three/four/five modalities.
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Figure 18: MMVAE+ performance for conditional generation on the PolyMNIST dataset, when
varying the number of modalities used for training. β = 2.5 for all models.

Results suggest that we do not observe a decrease in generative quality when increasing the num-
ber of modalities, as it is observed for the main existing models in the class of multimodal VAEs
(Daunhawer et al., 2022). On the other hand, generative coherence improves markedly with more
modalities present for training. This result is important and promising, as it suggests that MMVAE+
can leverage multiple modalities to learn shared information effectively, while at the same time not
incur in a trade-off with generative quality. In other words, having additional modalities seem to only
bring a benefit, as it is desirable for multimodal VAEs, but currently not achieved for state-of-the-art
approaches (Daunhawer et al., 2022).

I COMPARING MODELS WITH SEPARATE LATENT SUBSPACES USING
DROPOUT DURING TRAINING

In this Appendix, we want to compare the MMVAE+ with existing models with factorized subspaces
(see section 4.2), when dropout is applied to such models during training. In fact, Wang et al. (2016)
suggest dropout as a potential solution for the shortcut problem. To this end we add dropout when
training MMVAE(factorized), mmJSD(factorized), and DMVAE on PolyMNIST with the same set-
tings as in Section 4.2, with equal shared and private latent capacity (setting that corresponds to
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100% in the x-axis, in plots in Figure 5). Note that, with this choice for the number of dimensions
for shared and modality-specific subspaces, all three models trained without dropout clearly show
the presence of a shortcut (see again Figure 5). We use different dropout rates: 0.1, 0.2, 0.4; the
same values proposed in Wang et al. (2016). To the comparison, we also add VCCA-private, the
model proposed by the authors in Wang et al. (2016). Note that for this comparison, we extend the
VCCA-private model to M modalities and optimize the objective

LVCCA-private(x1:M ) =
1

M

M∑
m=1

Eqϕzm
(z|xm)

qΦW (W |X)

[
log

pΘ(X, z,W )

qϕzm
(z|xm)qΦW

(W |X)

]
where W = w1, . . .wM , pΘ(X, z,W ) = p(z)

∏M
m=1 pθm(xm|z,wm)p(wm), and

qΦW
(W |X) =

∏M
m=1 qϕwm

(wm|xm).

For the compared models, we report in Figure 19 the performance for generative coherence for
conditional generation, latent classification accuracy for private subspaces, and generative quality
for conditional generation. Dropout rate 0.0 equals to models trained without dropout. In each plot,
we keep as reference the performance of MMVAE+ trained without dropout, and with the same
values for shared and private dimensionalities as all other models. Results show that increasing the
dropout rate for existing approaches has a similar effect to constraining the size of private subspaces.
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Figure 19: Comparison of MMVAE+, MMVAE(factorized), mmJSD(factorized), DMVAE, VCCA-
private, trained on PolyMNIST with equal number of dimensions assigned to shared and modality-
specific subspaces: both the shared and the modality-specific subspaces are always fixed to 32 di-
mensions. MMVAE(factorized), mmJSD(factorized), DMVAE, VCCA-private are trained with dif-
ferent dropout rates, while MMVAE+ trained without dropout is kept as reference. Note we show
dropout rates in decreasing order in the x-axis, to highlight the similarity in trend with the plots from
Section 4.2: this shows increasing the dropout rate has a similar effect to constraining the size of
private subspaces.

In particular increasing the dropout rate corresponds to improved generative coherence, and better
results for latent classification accuracy for private subspaces. However, this comes at the expense
of a markedly worsened generative quality. Therefore, increasing the dropout rate seems to prevent
the degenerate solution in which all information flows in the modality-specific subspaces. However,
it also results in low generative quality, which means it is not an effective solution to the shortcut
problem, when looking at overall performance. This demonstrates that our novel solution of using
auxiliary distributions is a more effective method to solve the shortcut problem. From these re-
sults it is evident that, even if compared with existing models resorting to dropout during training,
MMVAE+ achieves better results when jointly looking at both generative quality and generative
coherence.
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