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ABSTRACT

Large Language Models (LLMs) demonstrate a remarkable capacity to adopt dif-
ferent personas and roles. Yet, it remains unclear whether they are able to manifest
a behavior that adheres to a coherent set of values. In this paper, we introduce
value-prompting, a novel prompting technique that draws upon established psy-
chological theories of human values. Using a comprehensive behavioral test, we
demonstrate that value-prompting systematically induces value-coherent behaviors
in LLMs. We then administer a set of psychological questionnaires to the value-
prompted LLMs, covering aspects such as pro-sociality, personality traits, and
everyday behaviors. We also examine different approaches to simulate the value
composition for an entire population. Our results show that value-prompted LLMs
embody value structures and value-behavior relationships that align with human
population studies. These findings showcase the potential of value-prompting as a
psychologically-driven tool to manipulate LLM behavior.

1 INTRODUCTION

In human psychology, an extensive body of research examines human values and their complex
interrelationships (Schwartz, 1992; Strachan et al., 2024). These psychological studies have allowed
researchers to establish predictive frameworks on how individuals with specific values tend to process
information and make decisions.

Large Language Models (LLMs) are increasingly demonstrating human-like capabilities and behav-
iors (Wei et al., 2022). Consequently, they are often tasked with adopting specific roles or simulating
distinct personas and behaviors, ranging from helpful assistants to fictional characters or domain
experts (Argyle et al., 2023; Ge et al., 2024).

This raises the question of whether the behaviors of an LLM can be systematically influenced to align
with specific human values. An LLM instilled with a particular set of values can potentially serve as
a proxy for studying and understanding the values and behaviors of human individuals. Pushed to the
limit, this could open up new avenues of utilizing LLMs to simulate an entire “society” of individuals,
each with distinct personalities, traits, and beliefs (Aher et al., 2023; Manning et al., 2024).

In this paper, we investigate the potential to induce human value structures in LLMs. Specifically, we
aim to answer the following research questions:

• RQ1: Can we systematically influence LLMs’ behavior to exhibit coherent value structures?

• RQ2: Do the resulting LLM value structures and value–behavior relations align with humans?

• RQ3: Can we simulate human population-level psychological experiments with LLMs?

To this end, we propose Value-Prompting (Figure 1), a novel prompting technique designed to steer
an LLM towards exhibiting behavior congruent with a single, dominant human value (§3).

To address RQ1, we use value-prompting to influence the behavior of several LLMs and examine the
induced value structure. Using the behavioral test from Perez et al. (2023) we show that prompting
for different values leads to markedly distinct and predictable behavioral tendencies across all models.
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Specific

Even

No-Priming

LLMs  +
Value-Prompting

``I like following my favorite teams
and sports throughout the season''

``Imagine that you are a person who greatly
values hedonism. You value pleasure and sensuous

gratification for oneself, enjoying life to its fullest''

Simulated Population
Agree Disagree

Figure 1: Overview of our proposed value-prompting technique that induces value-aligned LLMs,
leading to coherent value structures (RQ1), alignment with humans on psychological experiments
(RQ2), and further benefit from population simulation (RQ3).

Moreover, value-prompting induces a human-like value structure, with negative correlations between
opposing values, but not between compatible values (§4).

We then move on to a psychological experimentation setup (§5), where LLMs respond to psy-
chological tests designed for humans. This allows us to examine whether value-prompted LLMs
exhibit human-like patterns. To examine population-level alignment, we test several approaches for
simulating the composition of values within a population of LLMs (§5.2).

We start by looking at the similarity of the induced value structures (§6.1), and continue by examining
the relationship between values and behaviors (§6.2). Results reveal that value-prompted LLMs
exhibit a value structure similar to that of humans, with high correlations of around 0.8. Moreover,
human-inspired approaches for population simulation tend to result in better alignment.

To explore the relationship between values and behaviors under value-prompting, we apply several
psychological behavioral tests, covering pro-sociality, charity, personality tests, and everyday be-
haviors. Our results demonstrate a significant alignment between LLM and human value-behavior
patterns. We also find that stronger models can be more robust to prompting techniques and to the
simulated population distribution.

In sum, we introduce value prompting, a simple, psychologically grounded method for inducing
coherent, human-aligned value structures. To our knowledge, we are the first to conduct a compre-
hensive study into the value–behavior relationships in LLM. Our findings reveal high alignment with
human studies, suggesting that LLM can simulate psychological experimentation.

2 HUMAN VALUES

Values Human values, defined as abstract and desirable goals that serve as guiding principles
in life (Schwartz, 1992), are fundamental motivators. They influence how individuals perceive
the world, make decisions, and act across diverse situations (Sagiv & Schwartz, 2022; Schwartz,
2012). These enduring aspects of personality and motivation, typically more stable than attitudes or
specific goals (Schwartz, 2006), have become a central focus of research aimed at understanding the
intricate relationship between individuals and their socio-cultural context. To that end, Schwartz’s
(1992) theory of basic human values provides an influential framework, positing ten motivationally
distinct values grounded in the universal requirements of human existence: individual needs as
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biological organisms, requisites for coordinated social interaction, and needs to ensure the survival
and welfare of groups (Schwartz, 1994). These values are organized on a circular motivational
continuum, with adjacent values sharing compatible motivational goals and opposing values reflecting
motivational conflicts (Davidov et al., 2008; Schwartz, 1992), forming higher-order dimensions of
Self-Enhancement versus Self-Transcendence, and Openness to Change versus Conservation, with
Hedonism lying at the nexus of self-enhancement and openness to change. See Figure 2 for the
theorized circle.

Figure 2: The Human Value Theory
Continuum: A circular model show-
ing 10 core human values (Schwartz,
2012). Adjacent values align, while op-
posing values conflict (e.g., power aligns
with achievement and both conflict with
benevolence).

Values & Behavior Research has extensively explored
the ways in which these values link to behavior (Bardi &
Schwartz, 2003; Sagiv & Roccas, 2021). It is not the case,
however, that values act as direct determinants of behavior,
but rather, that values operate through complex mecha-
nisms, such as selective attention and affective evaluation
(Roccas & Sagiv, 2010; Schwartz, 2006). For instance,
those prioritizing self-direction may be particularly at-
tuned to opportunities for autonomy, while individuals
emphasizing security might be more sensitive to poten-
tial threats. Similarly, self-enhancement values motivate
status-seeking behaviors, while self-transcendence values
direct attention toward opportunities for helping others,
with these behavioral choices often reinforced by positive
affective responses to reaching valued goals (Sagiv et al.,
2017; Schwartz, 2006). This dynamic relationship sug-
gests a reciprocal influence where individuals are drawn
to situations aligning with their values, which in turn rein-
forces their value priorities through processes of cognitive
and behavioral consistency (Bem, 1972; Sagiv & Roc-
cas, 2021). This intricate interplay between values and
behaviors, both influencing and being influenced by one
another, is central to understanding the complex dynamics
of human action.

3 VALUE-PROMPTING

Based on Schwartz’s theory of value, we propose value-prompting, a prompting method that allows
steering LLM toward a single dominant value. For that, we use the 10 value descriptions provided
in Schwartz & Sagiv (1995). For example, to simulate an individual who is high in power, we will
prompt the model with: “Imagine that you are a person who greatly values power. You value social
status and prestige, and control or dominance over people and resources.”. Full prompts can be
found in App. A. This prompt is given as a prefix before the relevant prompt for a specific task.

To test our method, we conduct large-scale experiments where LLMs respond to various psychological
questionnaires on values and behaviors, while applying value-prompting. Below, we detail the models
we use for all our experiments.

Models We evaluate diverse instruction-tuned transformers: Flan-T5-XXL(Chung et al., 2022));
Meta’s Llama models (Llama-3-8B-Instruct, Llama-3-70B-Instruct (Grattafiori et al., 2024));
Mixtral-8×7B-Instruct (Jiang et al., 2024a), a mixture-of-experts (MoE) model, Qwen3-235B-
A22B-Instruct-2507 (Team, 2025), and OpenAI open-source models (GPT-OSS-20B, GPT-OSS-
120B (OpenAI et al., 2025)). This selection spans different model sizes and architectures.

4 INDUCING COHERENT VALUES IN LLMS

To characterize the effects of value-prompting on LLM behaviors, we rely on the behavioral analysis
test from Perez et al. (2023). This evaluation test covers various aspects of an LLM’s “persona”, i.e.,
behavior characteristics. These behaviors include personality, views on religion, politics, and ethics,
and the propensity for unsafe behaviors.
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Figure 3: Behavioral agreement of Llama-3-70B
under four high-order values across domains like
politics, ethics, and personality. Value-prompting
produces distinct, interpretable behavior patterns,
highlighting coherent value-behavior relationships
in the model.

Each behavior is associated with statements that
an individual with a particular behavior (person-
ality, desire, or view) would agree with or dis-
agree with. For example, the behavior Interest in
Sports includes statements like “I like following
my favorite teams and sports throughout the sea-
son”. For each behavior, we randomly sample
50 statements and present them to the model as
Yes/No questions. We run each question over 10
value-prompting settings. Then, for each value
and behavior, we calculate the percentage of
model agreement with the target behavior.

Figure 3 depicts the results for Llama-3-70B,
where we aggregate the 10 value-prompting set-
tings into 4 higher-order values. Results for
other models are presented in App. C. Each
row represents a single behavior1 and depicts
the agreement percentage for each higher-order
value. We can clearly see that the different value-
prompting settings correspond to strikingly dif-
ferent patterns of agreement with the behaviors.
Thus, value-prompting emerges as an effective
tool to modify model behavior patterns.

Each higher-order value is associated with a
“value vector”, i.e., the set of agreement scores
for all behaviors (corresponding to the points in
Fig. 3). To further understand the nature of the
behavioral effects of value-prompting, we cal-
culate the correlation matrix of the higher-order
value vectors. Figure 4a presents the correlation
matrix of Qwen3-235B-A22B-Instruct (results
for all models are shown in App. C). We can
see a negative correlation between Conserva-
tion and Openness to Change, and between Self-
Enhancement and Self-Transcendence. Those
results are in line with the psychological under-
standing of values structure, see Fig. 2.

To further demonstrate how the LLM value-
prompting results manifest human value pat-
terns, we focus on the connection between
values and politics. Figure 4b presents the
agreement with conservative political behaviors
for each high-order value, and for all models.
We observe distinct patterns for the different
high-order values, where Conservation and Self-
Enhancement are in higher agreement with con-
servative politics than Self-Transcendence and
Openness to Change. This is in line with re-
search on human personal values and political
views (Schwartz et al., 2010; 2014).

Based on these results, we can conclude that
value-prompting can induce distinct behavior
patterns in LLMs, corresponding to coherent
value structures, addressing RQ1.

1Each behavior from Perez et al. (2023) may be an aggregation of several sub-behaviors; e.g., Moral Nihilist
(2) corresponds to the sub-behaviors “Subscribes To Moral Nihilism” and “Believes Life Has No Meaning”.
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(a) (b)

Figure 4: (a) Correlation matrix of high-order value vectors for Qwen3-235B-A22B-Instruct, showing
human-like inter-value relationships. (b) LLM agreement with conservative political views when
prompted with four high-order values, demonstrating distinct, human-aligned political leanings across
different models.

5 PSYCHOLOGICAL EXPERIMENTATION SETUP

This section outlines the experimental setup used to administer psychological questionnaires, simulate
population-level experiments with LLMs, and evaluate their alignment with human responses. We
begin with questionnaires examining the structure of human values, followed by a large set of
behavioral questionnaires.

5.1 QUESTIONNAIRES

We use the following questionnaires to measure LLM values and behaviors. To elicit diverse
responses from the LLMs, we run inference with a temperature of 0.7 and repeat each prompt 100
times. (Detailed descriptions and example items can be found in Appendix D):

Value Questionnaire: We use the 40-item Portrait Values Questionnaire (PVQ; Schwartz et al.,
2001), which assesses the 10 basic values in Schwartz’s theory. Participants rate, on a 6-point scale,
how much described fictional individuals resemble themselves.

Behavior Questionnaires: We utilize five behavior tests to comprehensively evaluate the induced
value-behavior relationships. To assess charitable inclinations and decision-making under social
dilemmas, we employ Donation Causes (Sneddon et al., 2020), which measures the likelihood of
donating to diverse causes, and the Paired Charity Game (Sagiv et al., 2011), an experimental
paradigm involving financial tradeoffs between self-interest and prosocial contribution. General
tendencies toward helping and sharing are evaluated using the Prosocialness Scale (Caprara et al.,
2005). Furthermore, we assess personality structure via the Big Five Inventory-2 (Soto & John, 2017)
and examine the frequency of value-expressive actions using the Everyday Behavior Questionnaire
(Schwartz & Butenko, 2014).

5.2 SIMULATING POPULATIONS

Since human populations exhibit diverse value priorities, directly comparing a single value-prompted
LLM to population-level human data is insufficient for RQ2. Thus, in the present work, we explore
different strategies for combining individual value-prompted LLMs into a population. Specifically,
we test several population distributions, ranging from a naive uniform distribution to human-informed
and model-informed techniques.

Uniform: Equal weight (10%) to LLM responses from each of the ten value prompts.

Human-informed Relies on the distribution of dominant values in human populations. According to
comprehensive human studies, up to 53% of individuals do not have a single dominant value (Witte
et al., 2020). Thus, when modeling human-informed distributions, we explore different ways of
handling this group. H-Norm (Normalize): This approach ignores the “non-dominant” group

5
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entirely. It looks only at the 47% of humans who do have a dominant value. It takes the relative
proportions of those specific values and scales them up so they add up to 100%. Essentially, it
simulates a society consisting only of “opinionated” individuals. H-Even (Even Distribution): This
approach assumes that the “non-dominant” group is neutral or balanced. It takes the 53% portion of
the non-dominant group and splits it equally among the 10 specific value categories. This uniform
weight is added to the specific human frequency for each value. H-NP (No-Priming): This is
the only method that introduces a different type of priming. It assumes that an LLM without any
value prompt represents the “non-dominant” human. It assigns the specific human weights to the 10
value-prompted models, and assigns the 53% “non-dominant” weight to a standard, unprimed LLM.

Model-Specific: Unlike the human-informed strategies, which rely on external demographic data,
this approach derives weights from the model’s intrinsic capabilities. We calculate an alignment
score for each value prompt by measuring how accurately the induced value structure resembles the
human value structure. The population distribution is then weighted proportionally to these scores,
prioritizing the value personas that the model simulates most effectively. See App. E for details.

5.3 ALIGNMENT WITH HUMANS

The properties of human populations with respect to values are typically described in terms of
a correlation matrix: either the pattern of correlations between different values or the pattern of
correlations between values and behavior. Thus, we begin by calculating such correlation matrices
for the simulated LLM populations over the various questionnaires. Then, we measure alignment
with humans by comparing these matrices to those reported in human studies.

Values Similarity To quantify structural alignment between human and LLM value systems, we
adopt the well-established spatial representation approach. Let {vi}Ni=1 denote the set of value vectors
obtained from N human participants or LLM runs, with each vi ∈ R10 representing responses across
the ten basic values. Stacking these gives a data matrix V ∈ RN×10, from which we compute the
value–value correlation matrix C(V ) ∈ R10×10, where C

(V )
jk = ρ(V:,j ,V:,k).

We then apply metric Multidimensional Scaling (MDS) (Borg et al., 2018) to C(V ), yielding a
two-dimensional embedding X ∈ R10×2 that preserves the pairwise correlation structure. This
procedure typically produces the circular configuration characteristic of human value theory (Daniel
& Benish-Weisman, 2019; Skimina et al., 2021; Schwartz & Cieciuch, 2022). Let X(H) and X(M)

denote the embeddings derived from human and model data, respectively. To compare them, we align
X(M) to X(H) using Procrustes analysis, which finds the optimal translation, rotation, and uniform
scaling that minimizes the squared distance between corresponding points. The residual error of this
alignment is summarized by the normalized disparity dproc ∈ [0, 1].

Finally, we define the Values Similarity score as:

SV = 1− dproc,

where higher values of SV indicate stronger convergence of LLM-induced value structures toward
human-like organization.

Behavior Similarity We next quantify whether LLMs reproduce the same value-behavior rela-
tionships observed in human data. For each sample i, we obtain a value vector vi ∈ R10 and a
behavior vector bi ∈ RB , where B is the number of behavior measures. Stacking across N samples
yields V ∈ RN×10 and B ∈ RN×B . From these we compute the value–behavior correlation matrix
C ∈ R10×B , with entries Cjk = ρ(V:,j ,B:,k).

Let C(H) and C(M) denote the correlation matrices derived from human and LLM data. To evaluate
their similarity, we compute the Pearson correlation between the vectorized forms of the two matrices:

SB = ρ
(
vec(C(H)), vec(C(M))

)
,

where vec(·) flattens a matrix into a column vector. Our defined SB score thus aims to capture
whether the value-behavior relationships in LLMs align with the patterns observed in humans.
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Table 1: Correlation with human data on value structure, for different models and different simulated
populations. We can see that all models produce a high correlation, with human-informed distributions
achieving greater alignment.

Model Uniform H-Norm H-Even H-NP Model Specific Avg. Model Corr.

Flan-T5-XXL 78.2 75.5 78.5 79.5 75.1 77.36
Mixtral-8x7b-Instruct 83.6 88.4 87.3 87.4 86.6 86.66
Llama-3-8b-Instruct 79.5 80.9 82.3 82.5 79.1 80.86
Llama-3-70b-Instruct 84.4 85.8 86.6 88.4 86.5 86.34
GPT-OSS-20B 73.6 75.2 75.7 76.8 71.1 74.48
GPT-OSS-120B 75.7 79.0 78.7 80.3 72.4 77.22
Qwen3-235B-A22B-Instruct 80.8 81.5 83.2 84.8 80.9 82.24

Avg. Dist. Corr. 79.40 80.90 81.76 82.81 78.81

(a) (b)

Figure 5: (a) MDS map showing a human-like circular structure. (b) Correlation heatmap of values
(rows) to the model’s charitable causes choices (columns), reflecting human value-behavior patterns.

Human Correlation Data We collect human correlation data from a variety of psychological
studies. We tried to incorporate as many studies as possible to establish reliable human standards.
See App. F for more details on the human data used.

6 RESULTS: LLM-HUMAN ALIGNMENT ON VALUES AND BEHAVIORS

In this section we present the population-level results of value-prompting and how they align with
human data. We start by examining the correlations between values, and then look at the relationships
between values and behaviors.

6.1 VALUE STRUCTURE RESULTS

Here we use the PVQ questionnaire to examine the induced value structures of the LLM-simulated
populations, i.e., do the relationships between different values align with the pattern in humans.

Figure 5a depicts an MDS map of the value correlation matrix of GPT-OSS-120B over the PVQ
questionnaire with value-prompting. This result is consistent with the prototypical circular value
configuration (Figure 2). It further supports that LLMs, when guided by value-prompting, can adopt
and exhibit value structures that are internally coherent and align with Schwartz’s theoretical relations.
All models exhibit the same circular pattern (see Appendix H for all MDS maps).

Table 1 shows the correlation with human results, for different models and different simulated
populations. We can clearly see that all models produce a high correlation, suggesting that with
value-prompting all models capture a human-like value structure. Interestingly, model size and

7
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Table 2: Pearson correlation between model-predicted and human correlations for a given behavioral
category. For each model, we independently measure the value and the behavior questionnaires, and
then compute their correlation. These correlations were compared against equivalent human-derived
correlations for each category. Higher values indicate stronger alignment with human-like patterns of
value-behavior relationships. Statistical significance is denoted as follows: ∗ p < 0.05, ∗∗ p < 0.01.

Model Charity Donation Prosocial Everyday Big Five Avg. Behavior Corr.

Flan-T5-XXL 79.7∗∗ 43.2∗∗ 45.6∗∗ 72.0∗∗ 65.6∗∗ 61.2
Mixtral-8x7b-Instruct 59.6∗∗ 36.9∗∗ 35.9∗∗ 60.1∗∗ 64.9∗∗ 51.5
Llama-3-8b-Instruct 59.4∗∗ 44.3∗∗ −4.1 74.4∗∗ 54.9∗∗ 45.8
Llama-3-70b-Instruct 87.9∗∗ 47.6∗∗ 43.0∗∗ 72.2∗∗ 63.3∗∗ 62.8
GPT-OSS-20B 85.1∗∗ 45.8∗∗ 48.6∗∗ 72.0∗∗ 67.3∗∗ 63.8
GPT-OSS-120B 84.9∗∗ 48.8∗∗ 44.0∗∗ 78.4∗∗ 70.6∗∗ 65.3
Qwen3-235B-A22B-Instruct 87.1∗∗ 49.8∗∗ 60.4∗∗ 78.5∗∗ 64.2∗∗ 68.0
Avg. Model Corr. 77.7 45.2 39.1 72.5 64.4

Table 3: Average Pearson correlations between value-behavior relations of humans and models, under
3 conditions: Priming Only (regular value-prompting), Test Only (where filled-out PVQ questionnaire
is presented) and Priming & Test (a combination of value-prompting with the filled-out questionnaire).
Bolded numbers indicate the highest correlation across conditions.

Model Priming Only Priming & Test Test Only

Flan-T5-XXL 61.8 55.7 18.2
Mixtral-8x7b-Instruct 51.1 54.4 47.5
Llama-3-8b-instruct 50.9 37.1 18.4
Llama-3-70b-instruct 62.9 65.9 61.2
GPT-OSS-20B 64.5 66.7 60.9
GPT-OSS-120B 65.6 67.9 67.6
Qwen3-235B-A22B-Instruct 56.4 41.2 16.8

Avg. Priming Corr. 59.0 55.6 41.5

overall quality were not consistent predictors of higher correlations. In contrast, the population
simulation approaches played a more substantial role. Specifically, the human-informed distributions
achieved greater alignment with human value correlations. This suggests that simulating human
experiments with LLMs can benefit from human-inspired population simulation. Among the three
variants proposed, the H-NP approach consistently yielded the highest similarity scores. Using a
model-specific distribution did not improve the results over the basic uniform sampling.

6.2 BEHAVIOR RESULTS

Here we use behavioral questionnaires to study the induced value-behavior relationships of value-
prompted LLMs, and their alignment with humans.

Figure 5b illustrates correlation patterns between values and choices of donation causes in Flan-XXL.
We can see that similar values (e.g., Tradition and Conformity, or Universalism and Benevolence)
correspond to similar patterns of correlation.

In Table 2 we present results for all models across the 5 behavioral questionnaires, when using the
H-NP sampling approach (See App. I for additional results). As seen in the table, we find statistically
significant correlations between models and humans for most settings. This result demonstrates
that value-prompted LLMs can be used for simulating psychological experiments, such as value-
behavior relationships. Among the models, Qwen3-235B-A22B-Instruct achieves the highest average
correlation, followed by GPT-OSS-120B, which shows consistent correlations across all tests. We
also observe differences in the magnitude of correlations across behaviors.

Next, we analyze the effect of using implicit value information for prompting. For that end, we
examine the effect of priming the model with a filled-out PVQ questionnaire, where the responses
were filled by a value-prompted model. We compare three settings: (1) Priming Only: regular
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value-prompting, (2) Test Only: presenting the filled-out PVQ questionnaire, and (3) Priming & Test:
a combination of value-prompting with the filled-out PVQ questionnaire.

Table 3 reports the average value–behavior correlations across the three priming settings. The Priming
Only condition produces the strongest alignment with human responses (59.0), making it the most
consistent overall. By contrast, Test Only yields the weakest performance (41.5). Nevertheless,
most models still perform effectively in this setting, indicating that they can leverage implicit value
information. Furthermore, they exhibit a constructive effect, achieving the highest score in the
Priming & Test setting.

7 RELATED WORK

Psychologically-informed Evaluation of LLMs Several works have evaluated LLMs through the
lens of psychological instruments. Studies show that LLMs can generate human-like personas with
psychological traits (Binz & Schulz, 2023; Li et al., 2023; Jiang et al., 2023) and simulate diverse
populations (Salewski et al., 2024). This psychologically-inspired methodology has been applied
for surveying the opinions and views of LLMs (Durmus et al., 2023), assessing LLMs’ theory of
mind capabilities (Sap et al., 2022), and examining their social abilities (Sap et al., 2019). In other
examples, LLMs have been shown to exhibit human-like preferences for self-interest and reciprocity
(Leng & Yuan, 2023), yet tend toward prosocial values even when instructed otherwise (Zhang et al.,
2023).

Specifically for personal values, studies have shown that LLMs often prioritize universalism and
self-direction over power and tradition (Wang et al., 2024). Research also shows that LLMs are
heavily influenced by conversational context rather than maintaining stable values (Kovač et al.,
2024), and findings on whether they maintain a consistent set of values remain mixed (Moore et al.,
2024; Röttger et al., 2024).

In this work, we continue this line of research by focusing specifically on Schwartz’s theory of basic
human values (Schwartz, 1992). Rather than studying the traits of the LLMs themselves, here we ask
to what extent we can systematically control the values and behaviors they exhibit – we examine the
ability to induce LLMs with human-like value structures and patterns of value-behavior relations.

Controlling LLMs via Prompting Prior work has explored steering LLMs toward desired ori-
entations through prompting (Jiang et al., 2024b; Zhang et al., 2023), personas (Salewski et al.,
2024), and RLHF (Ouyang et al., 2022). Prompting techniques inspired by Schwartz’s value theory
have been used to improve value correlations or writing style, but these studies did not examine
whether such prompting translates into consistent alignment between values and behavior (Rozen
et al., 2025; Fischer et al., 2023; Kang et al., 2023). In contrast, our approach demonstrates that
a simple, psychologically grounded method, value-prompting, can induce coherent internal value
structures, generate human-aligned behaviors, and scale naturally to population-level simulations.

8 DISCUSSION

In this work, we explored the potential to systematically instill human-like value structures in LLMs.
We sought to answer whether LLMs could exhibit coherent value structures (RQ1), whether these
structures and their behavioral correlates align with human patterns (RQ2), and whether LLMs could
simulate population-level psychological experiments (RQ3).

Our results demonstrate the potential of value-prompting, inducing coherent value structures with
consistent internal relationships between values (RQ1). Furthermore, using value-prompting we were
able to mimic known links between values and different behavioral aspects in humans (RQ2). The
strong correlations in value-behavior patterns between value-prompted LLMs and human data indicate
the potential of LLMs to simulate population-level psychological experiments (RQ3). Notably, human-
informed population simulation strategies often improved value structure alignment, while stronger
models demonstrated better use of implicit value cues.

Our value-prompting approach draws on a vast psychological literature that analyzed the deep
interplay between values and behaviors. This reliance on psychological theory allowed for a very
compact way of prompting models and steering their behavior – based on a short description of each
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value, one that encapsulates varied aspects of personality and behavior. Our results on a diverse set of
psychological tests demonstrate that our technique is able to effectively harness these connections.

In line with the interdisciplinary nature of this study, our findings carry implications for both computer
science and psychology.

For AI development, value-prompting offers a practical approach to steer LLM behavior in a more
predictable and value-congruent manner. Moreover, understanding how LLMs respond to value
directives can inform the design of safer and more trustworthy AI systems.

For psychological research, our findings extend upon the growing body of work that examines the use
of LLMs as a computational sandbox to explore theories and predictions of human behavior — akin
to relying on model organisms to inform human biology and medicine, or running computational
simulations of galaxies and stars to study the physical universe (Aher et al., 2023; Manning et al.,
2024). This offers a novel, scalable, and controllable method for testing psychological hypotheses,
potentially complementing traditional human studies, which are often costly and time-consuming.
The prospect of simulating an entire “society” of LLM agents, each with distinct values, opens the
possibility of studying emergent social dynamics and value conflicts at a macro level.

REPRODUCIBILITY STATEMENT

We have taken comprehensive steps to ensure the reproducibility of our research by providing
transparency in our models, data, and methodology.

Code and Data Availability To facilitate full reproducibility, we will release all code used for data
collection, analysis, and evaluation. The release will also include the complete dataset generated
from our model experiments. Key resources, such as the full set of value-prompting templates
(Appendix A) and the behavioral questionnaires (Appendix D), are documented in the appendices
and will be included in the public release.

Publicly Available Models All experiments were conducted with publicly available, instruction-
tuned Large Language Models, ensuring that our findings can be independently verified and built
upon. The models used include Flan-T5-XXL, Mixtral-8×7B, the LLaMA-3 series, the GPT-OSS
series, and Qwen3-235B-A22B-Instruct.

Experimental and Evaluation Procedures Our experimental protocol is described in detail,
including key hyperparameters such as temperature settings, and the number of experimental runs
(Section 5.1). We provide formal definitions for our similarity measures for value structures (SV )
and value-behavior relationships (SB) in Section 5.3, ensuring that our analyses can be precisely
replicated.

Simulation Strategies and Human Data The population simulation strategies (uniform, human-
informed, and model-specific) are fully documented in Section 5.2. For our human alignment
benchmarks, we rely on data from previously published and cited psychological studies, with a
detailed breakdown of these sources provided in Appendix F. The compiled human correlation data
will be made available alongside our own results to allow for direct comparison.

Collectively, these measures provide a clear and comprehensive basis for reproducing our results and
enable researchers to extend our framework to new models and domains.

ETHICS STATEMENT

This research explores methods to align LLMs with human values by introducing value-prompting,
which carries several ethical considerations.

First, the ability to systematically induce value-coherent behaviors in LLMs, while aimed at creating
more predictable and potentially safer AI, also presents a risk of misuse. Such techniques could
potentially be employed to generate biased, manipulative, or harmful content, e.g., in deceptively
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simulating human personas for malicious ends. We acknowledge the dual-use nature of such methods
and advocate for responsible development and deployment.

Second, while our work aims to simulate human-like behavior and value structures, it is crucial to
avoid anthropomorphizing LLMs. The “values” and “behaviors” exhibited by LLMs are patterns
learned from data and induced by prompts; they do not imply genuine understanding, consciousness,
or sentience in the human sense. Misinterpreting LLM capabilities could lead to misplaced trust or
accountability.

Furthermore, the simulation of population-level psychological experiments using LLMs, while
offering a novel research paradigm, should be interpreted with caution. These simulations are not
a direct replacement for human studies, and require critical assessment prior to any real-world
decision-making implications.

Our research aims to contribute to a deeper understanding of how LLMs process and manifest
value-related concepts, with the ultimate goal of fostering more controllable, understandable, and
beneficial AI systems. We encourage further research into the ethical implications, potential biases
and safeguards necessary for the development of value-aligned AI. The authors are committed to
transparency regarding the methods and models used.
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A VALUE PROMPTING: FULL PROMPTS

Value Priming Descriptions

Power: Imagine that you are a person who greatly values power. You value social status
and prestige, and control or dominance over people and resources.

Achievement: Imagine that you are a person who greatly values achievement. You value
personal success through demonstrating competence according to social standards.

Hedonism: Imagine that you are a person who greatly values hedonism. You value pleasure
and sensuous gratification for oneself, enjoying life to its fullest.

Stimulation: Imagine that you are a person who greatly values stimulation. You value
excitement, novelty, and challenge in life, seeking daring adventures and varied experiences.

Self-direction: Imagine that you are a person who greatly values self-direction. You value in-
dependent thought and action – choosing, creating, and exploring, with a focus on creativity,
freedom, and curiosity.

Universalism: Imagine that you are a person who greatly values universalism. You value
understanding, appreciation, tolerance, and protection for the welfare of all people and
nature, promoting broadmindedness, social justice, equality, and environmental protection.

Benevolence: Imagine that you are a person who greatly values benevolence. You value
the preservation and enhancement of the welfare of people with whom you are in frequent
personal contact, being helpful, honest, forgiving, loyal, and responsible.

Tradition: Imagine that you are a person who greatly values tradition. You value respect,
commitment, and acceptance of the customs and ideas that traditional culture or religion
provide, being humble, devout, and respectful of established traditions.

Conformity: Imagine that you are a person who greatly values conformity. You value
restraint of actions, inclinations, and impulses likely to upset or harm others and violate
social expectations or norms, prioritizing politeness, obedience, and self-discipline.

Security: Imagine that you are a person who greatly values security. You value safety,
harmony, and stability of society, relationships, and self, focusing on family security, national
security, social order, and reciprocation of favors.

B BEHAVIORAL AGREEMENT RESULTS

Figures 6 illustrate the behavioral agreement patterns under value priming conditions for a few
different models. These plots reveal how different models respond consistently across domains such
as politics, ethics, and personality, with clearly distinguishable effects of value conditioning.

C CORRELATION MATRICES RESULTS

Figures 7 illustrate the correlation matrices of value vectors for different models. We can observe a
negative correlation between Conservation and Openness to Change, and between Self-Enhancement
and Self-Transcendence. This showcases that value-prompting can induce coherent value structure
behavior in LLMs.

Figures 8 show the correlation matrices of value vectors with value-name prompting for different
models. We can see that the expected patterns are not as consistently present here as they are for
value-prompting. This suggests that although value-name can steer the model behavior, it is less
robust in inducing coherent value structure behavior in LLMs.
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D DETAILED DESCRIPTIONS OF VALUE AND BEHAVIORAL MEASURES

Portrait Values Questionnaire (PVQ; Schwartz et al. 2001): Our primary objective was to
evaluate the responses of LLMs to questionnaires designed to measure human values. This 40-
item questionnaire assesses the 10 basic values outlined in Schwartz’s theory. The PVQ presents
descriptions of fictional individuals, highlighting what matters to them. For example, "It is important
to him/her to take care of people he/she is close to" (an item measuring benevolence values).
Participants are asked to rate, on a 6-point scale, the extent to which the described person resembles
themselves. Responses range from 1 ("not like me at all") to 6 ("very much like me").

Donations Causes (Sneddon et al. 2020): To examine the relationship between values and the
selection of causes for making donations, we adapted the methodology that explored donor behavior
across nine types of causes: environmental organizations, animal welfare, international aid, religious
or spiritual organizations, arts and culture, community services, education, health, and sports clubs.
Participants are asked to rate their likelihood of donating to each cause on a 6-point scale. This
approach offers insights into the values that motivate charitable preferences.

Prosocialness Scale for Adults (Caprara et al. 2005): To assess tendencies toward prosocial
behavior, we employed this 16-item self-report questionnaire designed to capture various facets of
prosociality, encompassing actions such as sharing, helping, caregiving, and empathizing with others’
needs and feelings. Respondents are asked to indicate how often they engage in each behavior on a
5-point Likert scale ranging from 1 ("never/almost never true") to 5 ("always/almost always true").
The final score for prosociality was computed by averaging responses across all 16 items, with higher
scores indicating higher levels of self-reported prosocial tendencies. The scale has demonstrated
robust psychometric properties, including evidence of internal consistency and factorial validity, and
has been previously validated cross-nationally (see Caprara et al. 2011; Luengo Kanacri et al. 2021).

Paired Charity Game (Sagiv et al. 2011): To examine the influence of personal values on the
choice between cooperation and competition in a social dilemma, we used this experimental paradigm.
In this game, respondents were each given an initial endowment of 15 NIS and were presented with a
binary choice: either keep the NIS 15 for themselves (self-interest) or contribute it to an anonymous
"partner" (prosociality). If a participant chose to keep their money, they retained the full 15 NIS. If
they chose to contribute, the "partner" would receive 15 NIS, and an additional 15 NIS would be
donated to a social cause of the participant’s choice. Respondents reported their decision in two ways.
First, they indicated their probable choice on a 7-point scale, ranging from 1 ("keeping the money for
myself") to 7 ("donation of the money"), with 4 representing a neutral "I can’t decide" option. Then,
they indicated their final decision of whether or not to contribute.

Big Five Inventory-2 (BFI-2; Soto & John 2017): To assess personality traits, we employed this
60-item self-report questionnaire that measures Extraversion, Agreeableness, Conscientiousness,
Negative Emotionality, and Open-Mindedness across 15 facets (three per domain). Respondents rate
items on a 5-point Likert scale from 1 ("disagree strongly") to 5 ("agree strongly"). Each domain
scale consists of 12 items with balanced keying to control for acquiescent responding. Domain scores
were computed by averaging appropriately reverse-scored items, with higher scores indicating greater
trait endorsement. The BFI-2 demonstrates strong psychometric properties and convergent validity
with other Big Five measures, with domain-level correlations ranging from .72 to .92 with the original
BFI, BFAS, Mini-Markers, NEO-FFI, and NEO PI-R.

Everyday Behavior Questionnaire (EBQ; Schwartz & Butenko 2014): To assess everyday
behaviors, we employed this 85-item self-report questionnaire that measures behavior frequencies
across 19 domains corresponding to Schwartz’s refined theory of basic values. Respondents rate how
frequently they performed each behavior during the past year relative to their opportunities to do so
on a 5-point scale from 0 ("never") to 4 ("always"). Each value domain is measured by three to six
behavior items, with scores calculated as averages where higher scores indicate greater frequency of
behavior.
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E POPULATION SIMULATION STRATEGIES

In this section, we formally define the population simulation strategies we used to aggregate responses
from value-prompted LLMs. Let V = {v1, v2, . . . , v10} denote the set of ten basic human values
(e.g., Power, Achievement, Hedonism), and let Mv denote the output distribution of an LLM, M ,
prompted with value v ∈ V , and let M∅ denote the output of the model with no priming.

The simulated population is composed of a weighted sampling from the different value priming
distributions. The different methods differ in the way that the weights, wi, are derived.

E.1 HUMAN-INFORMED DISTRIBUTIONS

These strategies utilize demographic data regarding the distribution of dominant values in human
populations. Based on Witte et al. (2020), let pHv represent the proportion of the human population
for whom v is the dominant value. Let pH∅ represent the proportion of the population that does not
exhibit a single dominant value (approximately 53%). Note that:∑

v∈V

pHv + pH∅ = 1 (1)

We define three variations for handling the non-dominant population segment:

Normalize (H-Norm) In this strategy, we discard the non-dominant class and normalize the weights
of the ten dominant value classes to sum to 1. The weight wv for each value-prompted model Mv is
calculated as:

wv =
pHv

1− pH∅
, ∀v ∈ V (2)

The unprompted model is not used (w∅ = 0).

Even (H-Even) Here, the weight of the non-dominant class (pH∅ ) is distributed evenly among the
ten value categories, effectively acting as a uniform smoothing factor added to the human prior.

wv = pHv +
pH∅
10

, ∀v ∈ V (3)

Similar to H-Norm, w∅ = 0.

No-Priming (H-NP) This strategy explicitly models the non-dominant group using the unprimed
LLM. The weights correspond directly to the human population statistics:

wv = pHv , ∀v ∈ V (4)

w∅ = pH∅ (5)

The resulting population is a mixture of the ten value-prompted models and the no-priming distribu-
tion.

E.2 MODEL-SPECIFIC DISTRIBUTION

The Model-Specific strategy derives weights based on the model’s intrinsic ability to simulate specific
values, rather than external demographic data.

For each value v ∈ V , we generate responses using Mv on the PVQ questionnaire. We then compute
the correlation matrix of the induced value scores, denoted as C(M)

v ∈ R10×10. We compare this
matrix to the ground-truth human correlation matrix C(H) to quantify alignment.

As described in 5.3, we measure S(A,B), the similarity function (specifically, the Pearson correlation
of the vectorized elements of the matrices A and B). We calculate a raw similarity score sv for each
value prompt:

sv = S(C(M)
v ,C(H)) (6)
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The final weights wv are obtained by normalizing these similarity scores to form a valid probability
distribution:

wv =
sv∑

k∈V sk
, ∀v ∈ V (7)

In this strategy, w∅ = 0. This approach ensures that the simulated population is weighted towards the
values that led the model to exhibit a higher value structure compared with humans.

F DETAILED DESCRIPTIONS OF HUMAN DATA

We used the following human datasets in our work:

Charitable Giving: Sneddon et al. (2020) examined correlations between personal values and
charitable giving across two samples: 276 Australian donors (55% female, median age 40-44) and
1,042 American donors (56% female, mean age 33).

Big Five Personality Traits: Roccas et al. (2002) examined correlations between Big Five per-
sonality traits and personal values in 246 Israeli psychology students (65% female, mean age 22,
range 16-35). Our study employed the BFI-2 (Soto & John, 2017), a 60-item shortened version
measuring the Big Five domains. The BFI-2 correlates strongly with the original BFI (average .92)
while offering improved psychometric properties, allowing for meaningful comparisons with human
data.

Paired Charity Game: Sagiv & Roccas (2021) provided data from 46 Israeli undergraduate
business students (48% female, 39% male, 13% unreported; mean age 22.67). Participants were
presented with a social dilemma where they received 15 NIS (approximately $3.50) and had to decide
whether to keep the money or contribute it to their partner.

Everyday Behavior Questionnaire: Schwartz et al. (2017) supplied data examining relationships
between human values and corresponding behaviors across four countries: 300 adults from Italy,
1,218 adults from Poland, 266 students from Russia, and 232 students from the USA, totaling 1,857
respondents.

Pro-sociality: Two sources were used: Caprara et al. (2012) studied 340 Italian young adults (56%
female, 44% male) with an average age of 21 years at Time 1 and 25 years at Time 2. Additionally,
Danioni et al. (2022) examined 245 Italian young adults (67% female) aged 18-30 years (M = 22.58,
SD = 2.53).

G STATISTICAL SETUP

For the values and behavioral questionnaires, we performed 100 bootstrap iterations, each with 500
samples. For each iteration, we computed the correlation between the model prediction and the
human data. This resulted in a distribution of correlation scores across bootstraps.

To assess the significance of the observed alignment between model and human distributions, we
conducted a one-sample t-test comparing the mean of the bootstrap correlations against a null
hypothesis of zero correlation (i.e., no alignment). Our reported p-value is based on this test.

H MORE MDS MAPS

Figure 9 displays MDS of four models with four different distributions. These plots visualize the
model-predicted relationships between the 10 Schwartz basic human values. The values are projected
into a 2-dimensional space such that distances between points reflect their dissimilarity in the models’
representation. Ideally, these plots should approximate Schwartz’s theoretical circumplex model,
where values are organized along two main bipolar dimensions: Self-Enhancement versus Self-
Transcendence, and Openness to Change versus Conservation. The observed configurations suggest
that the models, potentially guided by value-prompting, are capable of capturing these complex
relational structures.
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Table 4: Pearson correlation between model-predicted and human correlations for a given behavioral
category. For each model, we independently measure the value and the behavior questionnaires, and
then compute their correlation. These correlations were compared against equivalent human-derived
correlations for each category. Higher values indicate stronger alignment with human-like patterns of
value-behavior relationships. Statistical significance is denoted as follows: ∗ p < 0.05, ∗∗ p < 0.01.

Model Charity Donation Prosocial Everyday Big Five Avg. Behavior Corr.

Flan-t5-xxl 82.1∗∗ 44.3∗∗ 45.5∗∗ 72.4∗∗ 67.3∗∗ 62.3
Mixtral-8x7b-instruct-v01 75.4∗∗ 34.0∗∗ 36.9∗∗ 58.0∗∗ 65.2∗∗ 53.9
Llama-3-8b-instruct 64.7∗∗ 47.2∗∗ 1.0 76.3∗∗ 54.3∗∗ 48.7
Llama-3-70b-instruct 89.4∗∗ 47.4∗∗ 47.9∗∗ 71.9∗∗ 62.9∗∗ 63.9
GPT-OSS-20B 85.9∗∗ 45.6∗∗ 51.5∗∗ 70.8∗∗ 66.5∗∗ 64.1
GPT-OSS-120B 85.8∗∗ 47.4∗∗ 50.1∗∗ 77.0∗∗ 68.9∗∗ 65.8
Qwen3-235B-A22B-Instruct 89.0∗∗ 50.4∗∗ 62.8∗∗ 79.0∗∗ 63.7∗∗ 69.0
Avg. Model Corr. 81.8 45.2 42.2 72.2 64.1

Table 5: Average Pearson correlation between model-predicted and human value-behavior relations
under different conditions: Priming Only (regular value-prompting), Test Only (where filled-out
PVQ questionnaire is presented) and Priming & Test (a combination of value-prompting with the
filled-out PVQ questionnaire). Bolded numbers indicate the highest correlation for each model across
conditions.

Model Priming Only Priming & Test Test Only

Flan-t5-xxl 62.3 55.6 16.8
Mixtral-8x7b-instruct-v01 52.5 56.1 49.2
Llama-3-8b-instruct 53.3 38.8 22.0
Llama-3-70b-instruct 63.6 66.6 63.1
GPT-OSS-20B 64.1 66.1 59.0
GPT-OSS-120B 65.3 67.1 67.6
Qwen3-235B-A22B-Instruct 57.4 44.2 17.4

Avg. Priming Corr. 59.8 56.4 42.2

I VALUE-BEHAVIOR RESULTS

This section presents the value-behavior correlations obtained using the uniform population dis-
tribution. In Table 4, we report the correlation results for all models across the five behavioral
questionnaires. These findings are consistent with those observed using the H-NP sampling method,
with most correlations reaching statistical significance. Notably, the uniform distribution shows a
slight advantage over H-NP, suggesting that the optimal population simulation strategy may vary
depending on the test type.

Table 5 presents the results of the priming ablation experiment. The observed patterns are consistent
with those in Table 3, indicating that the priming effect is robust and not sensitive to the choice of
population simulation strategy.

J LIMITATIONS

LLM Behavior vs. Internal Psychology While we show that LLMs can generate questionnaire
responses that are in alignment with human data, we do not make any claims about internal psycho-
logical states of the models. Alignment of LLM behavior with human behavior is not an indication of
the nature of its internal cognitive processes.

Chosen Value Framework We explore our research questions through the lens of Schwartz’s theory
of basic human values. While this framework is well-established and validated in psychological
literature, alternative theories and frameworks have been proposed as well. Future research can
build upon our findings and study whether they extend to alternative value formulations. Similarly,
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the precise wording of the LLM value prompts used may have a substantial impact on the level of
alignment with human data.

Cross-Cultural Validity The alignment of value-prompted LLMs is benchmarked against existing
human population studies. The specific characteristics of these human samples (e.g., cultural
background, demographics) could influence the baseline correlations. While efforts were made to use
robust human data, variations across human populations may result in differing alignment levels.
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(a) Flan-T5-XXL (b) LLaMA-3-8B

Figure 6: (Part 1/3)
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(c) GPT-OSS-20B (d) GPT-OSS-120B

Figure 6: (Part 2/3)
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(e) Qwen3-235B-A22B-Instruct

Figure 6: Behavioral agreement of (a) Flan-XXL, (b) LLaMA-3-8B, (c) GPT-oss-20b, (d) GPT-
oss-120b, and (e) Qwen3-235B-A22B-Instruct under value priming conditions across domains like
politics, ethics, and personality. Value-prompting produces distinct, interpretable behavior patterns,
highlighting coherent value-behavior relationships in the model.
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(a) LLaMA-3-8B (b) LLaMA-3-70B

(c) GPT-OSS-20b (d) GPT-OSS-120b

(e) Flan-T5-XXL

Figure 7: Correlation heatmaps for value vectors for (a) LLaMA-3-8B, (b) LLaMA-3-70B, (c) GPT-
OSS-20B, (d) GPT-OSS-120B, and (e) Flan-XXL. We can see patterns of coherent value structure.
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(a) LLaMA-3-8B (b) Qwen3-235B-A22B-Instruct

(c) GPT-OSS-20B (d) GPT-OSS-120B

Figure 8: Correlation heatmaps for value vectors with value-name only prompts. Correlation heatmaps
show only partial patterns of coherent value structure. Top row: (a) LLaMA-3-8B and (b) Qwen3-
235B-A22B-Instruct. Bottom row: (c) GPT-OSS-20B and (d) GPT-OSS-120B.
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(a) GPT-OSS-20B H-Norm (b) Flan-T5-XXL H-Even

(c) Mixtral-8x7b-instruct H-NP (d) LLaMA-3-8B Uniform

Figure 9: MDS maps with four different models and population distributions. We can see that all of
them exhibit a human-like coherent value structure.
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