Actions Speak Louder than Prompts: A Large-Scale
Study of LLMs for Graph Inference

Ben Finkelshtein * Silviu Cucerzan Sujay Kumar Jauhar Ryen White
University of Oxford Microsoft Research Microsoft Research Microsoft Research
Abstract

Large language models (LLMs) are increasingly leveraged for text-rich graph
machine learning tasks, with node classification standing out due to its high-impact
application domains such as fraud detection and recommendation systems. Yet,
despite a surge of interest, the field lacks a principled understanding of the capa-
bilities of LLMs in processing graph data. In this work, we conduct a large-scale,
controlled evaluation across the key axes of variability: the LLM-graph interac-
tion mode, comparing prompting, tool-use, and code generation; dataset domains,
spanning citation, web-link, e-commerce, and social networks; homophilic vs.
heterophilic regimes; and short- vs. long-text features. We further analyze de-
pendencies by independently truncating features, deleting edges, and removing
labels to quantify reliance on input types. Our findings provide actionable guidance
for both research and practice. (1) Code generation mode achieves the strongest
overall performance, with especially large gains on long-text or high-degree graphs
where prompting quickly exceeds the token budget. (2) All interaction strategies
remain effective on heterophilic graphs, challenging the assumption that LLM-
based methods collapse under low homophily. (3) Code generation mode is able
to flexibly shift its reliance to the most informative input type, whether that be
structure, features, or labels. Together, these results establish a clear picture of the
strengths and limitations of current LLM-graph interaction modes and point to
design principles for future methods.

1 Introduction

Large language models (LLMs) have rapidly evolved into versatile problem solvers with strong
in-context learning, reasoning, and tool-use abilities [1-3]. Their capabilities extend across natural
language [4], computer vision [5]], and code completion and synthesis [6]. Much like in other
domains, recent work in graph machine learning has explored leveraging LL.Ms for tasks such as
node classification [7H9]], graph property prediction [10] and knowledge graph reasoning [11]], with
node classification emerging as a dominant task.

This recent wave of interest is natural as many high-impact node classification applications are
inherently text-rich and thus well suited to the linguistic processing capabilities of LLMs, such as
information retrieval [[12]], fraud detection [13]], and recommendation systems [14]. For instance, in
fraud detection, accounts are nodes, transactions are edges, and the goal is to use textual and relational
metadata to assign risk labels to nodes early to prevent financial losses with devastating implications.

Consequently, LLMs have emerged as a viable alternative to the dominant paradigm for graph
understanding, Graph Neural Networks (GNNs) [15H17], and exhibit competitive performance on
text-rich graphs [18]. While GNNs are typically trained per task and dataset and do not transfer

*Work performed while at Microsoft Research.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: New Perspectives in
Advancing Graph Machine Learning.

across domains or label spaces [19], a key advantage of LLMs is their broad world knowledge [20]],
which can benefit long-text graph datasets, such as e-commerce, web-link, and social networks
[21425]]. Furthermore, LLMs have many ways to process and reason over graph information: through
linearization of text and prompt augmentation; to specialized tool usage for querying the underlying
graph; to generating arbitrary code that operates over the graph. We refer to these different approaches
as the LLM’s interaction strategies/modes with respect to graph data.

However, despite rapid adoption of LLMs in graph understanding, most prior work focuses on
optimizing performance for specific domains, graphs, or tasks. As a result, the field currently lacks a
principled understanding of the capabilities of LLMs in processing graph information, and learnings
that practitioners can leverage when integrating them into their scenarios or applications.

This principled understanding is especially important, since there are many axes of variability. Thus,
in this paper we conduct a comprehensive, controlled, large-scale evaluation that factorizes the key
axes of variability in using LLMs for graphs: (1) the LLM-graph interaction mode, comparing four
prompting variants, two ReAct-style tool-using variants [26]], and a programmatic Graph-as-Code
medium; (2) dataset domains, spanning citation, web-link, e-commerce, and social networks; (3)
homophilic vs. heterophilic regimes; (4) textual feature length, comparing short- versus long-text
attributes; and (5) model sources, contrasting closed-source models (04-mini, GPT-5) with open-
source alternatives (DeepSeek R1). Without a comprehensive understanding of this combinatorial
space, blind application of LLMs to graphs can lead to sub-optimal, even detrimental outcomes.

Next, we quantify the dependency of the leading interaction strategies on features, structure, and
labels at inference time via controlled ablations that independently truncate textual features or remove
known labels, while varying edge deletion, yielding response surfaces (heatmaps) per dataset that
characterize each interaction mode’s dependence on features, labels, and structure.

Findings. Our evaluation yields key insights and guidelines in applying LLMs to graph data:
* Graph-as-Code achieves the strongest overall performance, with especially large gains on
long-text or high-degree graphs where prompting quickly exhausts the token budget.

e All LLM-graph interaction modes remain effective on heterophilic graphs, challenging the
commonly held assumption that LLM-based methods collapse under low homophily [8].

* Feature-structure dependencies align across modes when prompts fit the context window.

¢ Graph-as-Code is able to flexibly shift its reliance to the most informative input type, whether
that be structure, features, or labels.

» Graph-as-Code is consistently robust to feature truncation, edge deletion and label deletion, in
contrast to the brittleness of Prompting.

Related works and additional experiments are presented in the appendix.

2 Axes of Variability

Our goal is to build a principled understanding of the capabilities of LLMs in processing graph
information. In this section, we systematically factorize the key axes of variability, enabling controlled
comparisons that isolate the influence of each factor. This approach allows us to identify the conditions
under which each LLM-graph interaction mode succeeds or fails, and to clarify their dependencies
on graph features, structure and labels.

Setup. The goal is to predict labels for a set of held-out nodes given (i) labels for nodes in the training
and validation splits (test labels are withheld), (ii) the graph structure, and (iii) the textual features
of all nodes. All datasets use the canonical train/validation/test split from their source. For test sets
larger than 1,000 nodes, we randomly subsample 1,000 nodes per run.

Variability over LLM sources (Section[B.3). We evaluate both closed-source (04-mini, GPT-5)
and open-source (DeepSeek R1) models, using o4-mini as the primary unless stated otherwise.

2.1 Variability over LLM-Graph Interaction Strategies

We study the following three LLM-graph interaction modes:

(1) Prompting. In this simple and widely-used mode [7, 8, [27], the entire context for the model is
constructed and issued to the model as a single-turn inference. The prompt (i) states the task and

provides the class-index mapping, (ii) presents the target node’s textual description and known label
(if available), and (iii) serializes the k-hop neighborhood grouped by hop distance, specifying for
each encountered node its description and label (or None for held-out nodes).

The hop number is a hyperparameter controlling how many hops of neighborhood information are
included in the prompt. We experiment with four variants: Self-prompt, 1-hop prompt, and 2-hop
prompt, corresponding to radii of 0, 1, and 2, respectively. To keep the context within a token budget
for long-text datasets, we apply budget prompt, which caps the neighbors at each hop by subsampling.

(2) GraphTool. Motivated by ReAct [26], we frame node classification as an iterative think—act—
observe loop. At each step, the LLM reasons about what is known and what remains missing, then
issues a single action from a fixed tool set. The environment executes the action on the graph and
returns the result, which is appended to the interaction history. The process repeats until the LLM
decides to terminate the process and predict a label. This ReAct-style interaction encourages planning
and targeted retrieval of graph structure and text, reducing irrelevant exposure and token usage.

In our basic variation, GraphTool, the following actions are available: (1) A topology-only action
retrieves the neighbors of a specified node, enabling exploration without consuming feature tokens.
(2) A feature-only action returns the textual description of a specified node. (3) A label-only action
reveals the label of the requested node if in the training set (and None otherwise), allowing the model
to anchor reasoning on known examples while avoiding leakage on held-out nodes. (0) The terminal
action submits the final label. We also introduce GraphTool+, which extends the base GraphTool
variant with additional exact-k hop retrieval actions: (4) retrieves the textual descriptions of all nodes
exactly k£ hops away from a specified node; (5) retrieves their labels (or None for held-out nodes).

(3) Graph-as-Code. Building on LLMs’ strong code completion capabilities [6} 28], we extend the
ReAct paradigm beyond a fixed, predefined action set. In the Graph-as-Code mode, the graph data is
represented as a typed table indexed by node_id with columns features (text), neighbors (list of
node IDs), and 1abel (integer or None). The LLM generates, executes, then reasons over the outputs
of compact programs in an iterative fashion. The process repeats until the LLM decides to terminate
the process and predict a label. This code-native mode enables compositional access to structure and
features and can collapse multi-step tool sequences into a single query, improving step and token
efficiency while remaining transparent and auditable.

2.2 Variability over Dataset Domains, Homophily Levels and Text Lengths

Dataset domains. We evaluate LLM performance across diverse graph domains, such as the citation
network dataset cora, pubmed, and arxiv, where nodes are papers with titles as features [§]; the
e-commerce graph datasets products, computers and photo [8, 9], where nodes are items with product
title, descriptions or reviews; the web-link network datasets cornell, texas, washington, wisconsin,
and wiki-cs [9]], where nodes are webpages described by their page-level text; the social network
datasets reddit and instagram with user profiles and comment snippets [9]. This domain variability
enables a comprehensive assessment of LLM generalization and adaptation to different graph types.

Homophilic vs. heterophilic regimes. Homophily is the tendency of nodes to connect with others of
the same class, whereas heterophily is the tendency to connect predominantly with nodes of different
classes. In homophilic graphs such as cora, pubmed, arxiv, products, computers, photo, wiki-cs,
reddit, and instagram render local label information highly important for for correct prediction.
Conversely, heterophilic graphs such as cornell, texas, washington, and wisconsin challenge models
to rely less on simple local label information and more on node features and graph structure. By
evaluating performance across these regimes, we aim to uncover the varying dependencies of LLMs
on graph features, structure, and labels.

Textual feature lengths. The datasets also vary in the richness and complexity of node textual features.
Short-text datasets, such as cora, pubmed, arxiv and products provide only titles or product names,
offering limited semantic signal for classification. In contrast, long-text datasets such as computers,
photo, reddit, instagram and wiki-cs include detailed descriptions or user profiles, presenting both
opportunities for deeper reasoning and challenges for efficient context processing by LLMs.

3 Experiments across Domains, Homophily Levels and Text Lengths

We evaluate LLMs across multiple axes of variability, including LLM-graph interaction strategies,
dataset domains, homophilic vs. heterophilic regimes, textual feature lengths and model sources. For

Table 1: Accuracy of baselines and LLM-graph interaction modes Prompting, GraphTool, and Graph-
as-Code on heterophilic datasets. Best per-dataset results are bold, runner-up underlined.

cornell texas washington wisconsin
Nodes 191 187 229 265
Classes 5 5 5 5
Hom. (%) 11.55 6.69 17.07 16.27
Avg. degree 1.53 1.66 1.72 1.89
Random 21.74£3.19 8.40£1.56 20.43+2.87 18.114£3.62
Majority label 42.43+1.56 58.70+£1.40 45.94+3.64 44.15+2.20
Label propagation 41.74£1.06 78.90+1.67 15.07+£4.21 14.214+2.69
Self prompt 81.57£1.80 53.204+3.19 80.14+2.54 84.78+2.86
1-hop prompt 81.39+£0.99 71.40+2.07 81.74+1.80 88.81+£1.43
2-hop prompt 84.17+£1.43 TokenLimit 84.35+1.67 91.45+1.87
GraphTool 91.30+2.46 59.60+2.38 80.14+1.32 87.04+1.58
GraphTool+ 91.13£2.97 63.70+2.36 80.41+£0.94 87.42+1.60

Graph-as-Code 92.70+£2.35 73.604+3.78 81.96+2.92 8§9.174+2.69

clarity, we split the experiments into three parts: short-text homophilic datasets (section [B.T]in the
Appendix), heterophilic datasets (section [3.T), and long-text homophilic datasets (section|3.2). In
each setting, we introduce additional baselines to contextualize performance.

Baselines. We compare against several baselines: Random, which predicts labels uniformly at
random, serving as a natural lower bound; Majority Label, which assigns the most frequent label
from the training and validation sets to all test nodes; and the classic Label Propagation algorithm.

3.1 Heterophilic datasets

Finding 1. All LLM-graph interaction modes are effective on heterophilic datasets.

Finding 2. In ReAct-based methods, more flexible variants perform better.

Discussion. Table [I] challenges common assumptions and prior work [8] which suggests LLMs
struggle on heterophilic graphs. In this setting, local label information can be non-predictive or even
misleading, making it difficult for LLMs to rely on neighborhood cues for accurate classification.
Despite low levels of homophily, all LLM-graph interaction modes achieve strong accuracy (see Find-
ing[T), consistently outperforming classic baselines such as majority labeling and label propagation.
This demonstrates that LLMs can exploit non-local or feature-based cues for classification, rather
than relying solely on simple neighborhood voting heuristics. Here, the context window token limit is
reached, primarily due to the long textual features, rather than graph degree (see Section [B.I)), which
constrains the amount of context that can be included in prompts. Nevertheless, providing more con-
text in prompting proves beneficial, contrary to popular belief, and similar to the homophilic setting.

Furthermore, ReAct-based variants exhibit a clear advantage with increased agency and adaptivity in
interacting with the graph — moving from fixed tool invocation (GraphTool), to enhanced retrieval
options (GraphTool+), and finally to the fully programmatic Graph-as-Code—classification, rein-
forcing Finding[2]in the heterophilic setting, with additional experiments in Section [B.1|supporting
the homophilic case. The Graph-as-Code variant in particular excels, likely due to its compositional
access to both features and structure, which becomes especially advantageous when neighborhood
labels are diverse or uninformative. Overall, Table[I|reveals patterns similar to those observed in
homophilic graphs (Table[3), contrary to common assumptions and prior work [8]].

3.2 Long-text datasets
Finding 3. Graph-as-Code significantly outperforms Prompting and GraphTool on long-text datasets.

Discussion. Table |2suggests of a performance gaps, with Prompting performing worst and Graph-as-
Code best. In this setting, Prompting is constrained by node feature length and neighborhood size,
both quickly exhausting the model’s token budget. Notably, similar token-limit issues appeared in
other sections—for the products dataset in Section and for the fexas and washington datasets in
Section 3.1 when features were long or neighborhoods large.

While LLM context windows are steadily increasing, relying solely on ever-larger windows is not a
sustainable solution. Real-world graphs such as social networks are not only vast and feature-rich,

Table 2: Accuracy of baselines and LLM-graph interaction modes Prompting, GraphTool, and Graph-
as-Code on long-text homophilic datasets. Best per-dataset results are bold, runner-up underlined.

citeseer reddit computer photo instagram wiki-cs
Nodes 3,186 33,434 87,229 48,362 11,339 11,701
Classes 6 2 10 12 2 10
Hom. (%) 72.93 55.52 85.28 78.50 63.35 68.67
Avg. degree 1.34 5.93 8.27 10.36 12.70 18.45
Random 16.80£2.05 51.60+£2.97 10.00+2.21 8.20+3.03 50.30£3.07 9.90+2.13
Majority label 21.90+2.10 52.80+£2.97 24.20£2.89 42304225 65.10+£2.90 21.50+3.89
Label propagation 37.30+£5.03 40.50£1.66 74.70£1.60 75.30+£0.91 52.00+2.98 71.90+2.19
Self prompt 68.20+£2.77 47.90+£3.86 65.50+3.32 69.80+£3.15 48.00£3.66 74.00+3.10
1-hop prompt 68.30£2.59 59.30+4.12 86.104+2.59 85.80+1.92 56.10+£2.30 TokenLimit
2-hop prompt 69.40+2.10 TokenLimit TokenLimit TokenLimit TokenLimit TokenLimit
2-hop budget prompt 70.20+2.83 54.40+3.85 86.00+2.41 85.60£1.63 54.50+4.45 80.80+3.48
GraphTool 68.30£1.15 56.25+1.84 80.80+4.61 77.00£2.32 47.80+£4.09 76.27+4.18
GraphTool+ 68.70+£2.31 61.80+1.15 83.10+2.63 81.30£0.97 48.20+£2.92 80.50+3.10
Graph-as-Code 71.80+£2.22 61.60+2.36 86.20+3.55 86.40+2.65 56.40+2.56 82.20+3.63

but are also continuously growing in size, much like the context windows themselves. Consequently,
nodes with extremely large neighborhoods or feature sets may still exceed available context limits.
Moreover, larger windows incur greater computational cost and latency, and do not address the
fundamental challenge of prioritizing and aggregating relevant information. Thus, approaches that
intelligently manage or sample context, rather than indiscriminately expanding it, remain relevant.

To mitigate these constraints, we introduce the 2-hop budget prompting variant, which caps the
number of neighbors per node via sampling. While this adjustment helps avoid hitting the token limit
and allows the model to reason over a sampled subset of context, yet Prompting still remains the
least effective variant, with Graph-as-Code the most effective (see Finding[2). This is likely due to
the noise and information loss introduced by sampling, which can obscure important neighborhood
signals. These results demonstrate that Graph-as-Code can offer substantial advantages for
LLM-based node classification in dense or feature-rich graphs, which represent a large proportion
of real-world networks such as e-commerce and recommendation networks.

ReAct-based variants consistently outperform Prompting by enabling LLMs to dynamically and
iteratively access relevant graph structure and node features, rather than relying on a fixed serialized
input. Among them, Graph-as-Code offers the greatest flexibility by composing function calls over
both structural and textual information without being constrained by context-window limits, thereby
achieving the highest performance (see Finding [2). This finding aligns with the trend observed
on short-text homophilic datasets, where increased flexibility in ReAct variants yields stronger
performance. Ultimately, this adaptability allows ReAct-based methods to fully exploit information
even in large, verbose graphs, while Prompting remains fundamentally bottlenecked by input length.

4 Experiments on features, structure, and labels dependencies

In this section, we examine whether the widely used Prompting and the best performing Graph-as-
Code LLM-graph interaction modes rely on node features, graph structure, and labels in similar
ways. While previous sections compared overall accuracy across settings, the analysis in this section
sheds light on the inner workings of LLM-based approaches. By isolating the contributions of
features, labels, and structure, practitioners can identify which LLM-graph interaction strategies
leverage specific types of information most effectively. This helps guide the selection of LLM-graph
interaction modes that align with the particular characteristics (feature length, homophily levels) of
their datasets, rather than relying on opaque, one-size-fits-all solutions.

We organize the analysis into two parts: (i) the effect (or dependency) of removing node features and
edges (section[B.2)), and (ii) the effect of removing labels and edges (section[d)). To visualize these
effects, we generate 2D heatmaps showing model accuracy as a function of the removal rates.

Additional setup. In addition to the setup described in Section [2]in Sections and [4 we run
partial-deletion experiments: edges and labels are removed uniformly at random, while feature
deletion is implemented by truncating each node’s text to the fixed percentage of tokens.

Labels vs. structure dependencies

Finding 4. Prompting and Graph-as-Code exhibit different dependencies on labels and structure.

cornell

234 363 226 242 23.4 2.1 21.7 213 22.

38.4 47.2 325 305 4 .2 433 373 79.7 80.4

.814 h IORN/CIONNS 1N 80

80.9 81.6 825 80.4 826 823

51.3 62.1 448 39.1 .8 57.0 519

65.5 53.6 B 3 5 3 A 5

251817 851 832 825 79.5 839

Prompting
Edge Deletion [%]
3

0{84.2 885 854 87.0 84.0 832

0 25 50 75 90 100

100{92.7 90.1 922 915 91.8 90.1

Mean Accuracy [%]

901929 91.1 929 90.4 90.8 91.3

75{93.2 924 922 91.0 915 91.7

50{92.2 91.5 93.0 90.8 93.7 91.5

Graph-as-Code
Edge Deletion [%]

25{92.4 932 904 927 913 90.4 30

01927 90.6 925 903 94.1 90.1

100 0 100 0 100

25 50 75 90 25 50 75 90
Label Deletion [%] Label Deletion [%]

25 50 75 90
Label Deletion [%]

Figure 1: Accuracy of 2-hop prompting and Graph-as-Code on the cora, arxiv, and cornell datasets
under varying ratios of randomly removed edges and known labels.

Finding 5. Graph-as-Code is able to flexibly shift its reliance to the most informative input type,
whether that be structure, features, or labels.

Finding 6. Graph-as-Code is more robust than Prompting to feature, structure and label deletion.

Discussion. Figure [T[|demonstrates a stark contrast between the dependence patterns of Prompting
and Graph-as-Code when subjected to edge and label deletion (see Finding [d). This behavior is in
contrast to the alignment on feature and structure dependencies observed in Section B2

For Prompting, the results across all datasets reveal that accuracy degrades rapidly along both axes,
confirming that Prompting requires both structure and labels to perform reasonably. Graph-as-Code
by comparison, displays a notably different pattern. Its accuracy remains nearly constant as edges
are deleted, as long as either features or labels are present. This might suggest that Graph-as-Code
ignores structure entirely; however, as observed in Section @ structural information becomes
crucial only when features are truncated. Thus, Graph-as-Code does not disregard structure, but
instead leverages it only when it is more informative relative to other available signals.

This leads to a key insight: Graph-as-Code can flexibly shift its reliance to the most informative input
type, whether that is structure, features, or labels, and by doing so, it is only vulnerable when multiple
sources of information are heavily degraded (Finding [3)). This adaptive behavior contrasts sharply
with the brittleness of Prompting and re-emphasizes the robustness of Graph-as-Code (Finding|6).

5 Conclusions

In this work, we conducted the first comprehensive, controlled evaluation of LLMs for node classifi-
cation across key axes of variability: LLM-graph interaction mode (Prompting, ReAct-style tool use,
and Graph-as-Code), dataset domain (citation, web-link, e-commerce, social), homophily regime
(homophilic vs. heterophilic), textual feature length (short vs. long), and model source (closed vs.
open). Our large-scale study reveals that the Graph-as-Code method, which leverages LLMs’ coding
capabilities, achieves the best performance, especially on graphs with long-text features or dense
nodes, where the widely-used prompting method quickly becomes infeasible due to context window
limitations. We also find all LLM-graph interaction methods to be effective on heterophilic graphs,
challenging commonly held assumption that LLM-based methods fail in low-homophily [8].

Through a series of controlled dependency analyses, we independently truncate features, delete edges,
and remove labels to quantify reliance on different input types. Experiments show that Graph-as-Code
flexibly adapts its reliance to the most informative signal, be it structure, features, or labels.

Our findings provide actionable guidance for both practitioners and researchers: (1) Code generation
should be the preferred LLM-graph interaction mode, particularly as graphs grow in size and
complexity; (2) LLMs remain effective on heterophilic graphs; (3) Exploit Graph-as-Code’s adaptive
reliance to handle noisy or partially missing data, where different signals may be degraded.

References

[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
NeurIPS, 2020.

[2] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi,
Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In NeurIPS, 2022.

[3] Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. In NeurIPS, 2023.

[4] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. JMLR, 2020.

[5] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv,
2023.

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv, 2021.

[7] Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for
large language models. In ICLR, 2024.

[8] Jin Huang, Xingjian Zhang, Qiaozhu Mei, and Jiaqi Ma. Can llms effectively leverage graph
structural information through prompts, and why? In TMLR, 2024.

[9] Xixi Wu, Yifei Shen, Fangzhou Ge, Caihua Shan, Yizhu Jiao, Xiangguo Sun, and Hong Cheng.
When do 1lms help with node classification? a comprehensive analysis. In ICML, 2025.

[10] Taicheng Guo, Kehan Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh V. Chawla,
Olaf Wiest, and Xiangliang Zhang. What can large language models do in chemistry? a
comprehensive benchmark on eight tasks. In NeurIPS, 2023.

[11] Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao, Yixin Ou, Yunzhi Yao, Shumin Deng,
Huajun Chen, and Ningyu Zhang. Llms for knowledge graph construction and reasoning:
Recent capabilities and future opportunities. In arXiv, 2023.

[12] Weihang Su, Qingyao Ai, Xiangsheng Li, Jia Chen, Yiqun Liu, Xiaolong Wu, and Shengluan
Hou. Wikiformer: Pre-training with structured information of wikipedia for ad-hoc retrieval,
2024.

[13] Chengdong Yang, Hongrui Liu, Daixin Wang, Zhigiang Zhang, Cheng Yang, and Chuan Shi.
Flag: Fraud detection with llm-enhanced graph neural network. In SIGKDD, 2025.

[14] Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles,
Matthias Fey, Jan E. Lenssen, Yiwen Yuan, Zecheng Zhang, Xinwei He, and Jure Leskovec.
Relbench: A benchmark for deep learning on relational databases, 2024.

[15] Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[16] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[17] Ben Finkelshtein, Xingyue Huang, Michael Bronstein, and Ismail ilkan Ceylan. Cooperative
graph neural networks. In ICML, 2024.

[18] Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Language is all a
graph needs. In ACL, 2024.

[19] Ben Finkelshtein, Ismail Ilkan Ceylan, Michael Bronstein, and Ron Levie. Equivariance
everywhere all at once: A recipe for graph foundation models. arXiv, 2025.

[20] Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the
parameters of a language model? In EMNLP, 2020.

[21] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann.
Pitfalls of graph neural network evaluation, 2019.

[22] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In NeurIPS, 2020.

[23] Hongbin Pei, Bingzhe Wei, Kevin C.-C. Chang, Yizhou Lei, and Bo Yang. Geom-gcn: Geomet-
ric graph convolutional networks. In ICLR, 2020.

[24] Peter Mernyei and Catdlina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv, 2020.

[25] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

[26] Shunyu Yao, Jeffrey Zhao, Dian Yu, Prithviraj Ammanabrolu, Matthew Hausknecht, and Karthik
Narasimhan. React: Synergizing reasoning and acting in language models. arXiv, 2023.

[27] Zhong Guan, Likang Wu, Hongke Zhao, Ming He, and Jianpin Fan. Attention mechanisms
perspective: Exploring 1lm processing of graph-structured data. In ICML, 2025.

[28] Xiangyan Liu, Bo Lan, Zhiyuan Hu, Yang Liu, Zhicheng Zhang, Fei Wang, Michael Shieh, and
Wenmeng Zhou. Codexgraph: Bridging large language models and code repositories via code
graph databases. In ACL, 2025.

[29] Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? In NeurlPS, 2024.

[30] Xin Li, Weize Chen, Qizhi Chu, Haopeng Li, Zhaojun Sun, Ran Li, Chen Qian, Yiwei Wei,
Chuan Shi, Zhiyuan Liu, et al. Can large language models analyze graphs like professionals? a
benchmark, datasets and models. In NeurIPS, 2024.

[31] Xinnan Dai, Haohao Qu, Yifen Shen, Bohang Zhang, Qihao Wen, Wenqi Fan, Dongsheng Li,
Jiliang Tang, and Caihua Shan. How do large language models understand graph patterns? a
benchmark for graph pattern comprehension. In /CLR, 2025.

[32] Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael M Bronstein, Zhaocheng Zhu,
and Jian Tang. Graphtext: Graph learning in text space. arXiv, 2024.

[33] Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou,
and Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms. arXiv,
2024.

[34] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Sugi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. SIGIR, 2024.

[35] Jianheng Tang, Qifan Zhang, Yuhan Li, Nuo Chen, and Jia Li. Grapharena: Evaluating and
exploring large language models on graph computation. ICLR, 2025.

[36] Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqgiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng
Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large
language models. arXiv, 2023.

[37] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. NeurIPS, 2023.

[38] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas
Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph
of thoughts: Solving elaborate problems with large language models. In AAAI 2024.

[39] Shijue Huang, Wanjun Zhong, Jiangiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou,
Xingshan Zeng, Yasheng Wang, Lifeng Shang, et al. Planning, creation, usage: Benchmarking
Ilms for comprehensive tool utilization in real-world complex scenarios. arXiv, 2024.

[40] Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language
model connected with massive apis. NeurlPS, 2024.

[41] Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu
Chen. Critic: Large language models can self-correct with tool-interactive critiquing. arXiv,
2023.

[42] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun
Zhu, and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language
models. NeurIPS, 2023.

[43] Jiawei Zhang. Graph-toolformer: To empower llms with graph reasoning ability via prompt
augmented by chatgpt. arXiv, 2023.

[44] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven
Truitt, Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to
global: A graph rag approach to query-focused summarization. arXiv, 2024.

[45] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv, 2021.

[46] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. AAAS, 2022.

[47] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be
with you! arXiv, 2023.

[48] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan
Wang, Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with
multilingual benchmarking on humaneval-x. In SIGKDD, 2023.

[49] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. In ICML, 2023.

[50] Minju Seo, Jinheon Baek, Seongyun Lee, and Sung Ju Hwang. Paper2code: Automating code
generation from scientific papers in machine learning. arXiv, 2025.

[51] Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language
models to self-debug. arXiv, 2023.

[52] Qiaolong Cai, Zhaowei Wang, Shizhe Diao, James Kwok, and Yangqiu Song. Codegraph:
Enhancing graph reasoning of llms with code. arXiv, 2024.

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The introduction states the main claims about comparing LLM interaction
modes and their dependencies, and these are directly supported by the experiments and
findings. The scope is clearly described, and the results match the stated contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses limitations related to the LLM-graph interaction modes
presented, such as context window size, token budget constraints, and the challenges of
scaling to large or feature-rich graphs. It also notes that increasing context windows is not a
sustainable solution and addresses how sampling can introduce noise and information loss,
impacting results.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

10

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully disclose all the information needed to reproduce the main
experimental results. Specifically, we disclose all the exact prompt templates used throughout
the work along with the dataset sources and split.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

11

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We do not disclose the code, as it is easily reproducible using the detailed
prompt templates, specified LLM models, data sources, and splits.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This work does not involve training any models. Instead, we provide com-
prehensive details on the prompt templates, specified LLM models, data sources, and data
splits to ensure full reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the standard deviation in all tables.
Guidelines:

* The answer NA means that the paper does not include experiments.

12

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies that all experiments were conducted using 8 Intel Xeon
Platinum 8370C cpus.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research fully complies with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

13

https://neurips.cc/public/EthicsGuidelines

11.

12.

Justification: The paper does not include a discussion of societal impacts, either positive or
negative. Its focus is foundational research on LLMs for node classification, with does not
have societal implications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the relevant data sources and credit them for every dataset used.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

14

13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

15

paperswithcode.com/datasets

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The core focus of the paper is evaluating and comparing different modes of
LLM usage for node classification on graphs. The methodology and experiments explicitly
detail how LLMs are used, including prompting, ReAct-style tool use, and programmatic
Graph-as-Code.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

16

https://neurips.cc/Conferences/2025/LLM

A Related Work

Textualization and prompting of graphs. Motivated by LLMs’ cross-domain performance, early
work encodes graphs as text for LLMs, benchmarking varying encoding styles such as adjacency
lists, edge lists, shortest-path descriptions, and narrative-style encodings [7]. Subsequent studies
employ these textualizations to evaluate LLMs on node classification using prompting setups [8 29
31,118 127]). They find that carefully designed prompts can allow LLMs to compete with GNNs [[18]],
that performance often hinges on neighborhood homophily [8]], and that their abilities remain brittle
and sensitive to input data and formatting [29]. More detailed analyses of attention patterns further
suggest that LLMs may mirror prompt format rather than execute explicit graph computation [27]].

Concurrently, natural alternatives to textualization have emerged, either by tokenizing each node based
on local structure and features [32] or by introducing learnable components that encode structure
and features [33]. However, none have replaced prompt-based approaches in practice and most
recent work still relies on prompting for graph tasks [9} 134,135,131} 27]]. We challenge the prompting
interaction mode by proposing GraphTool and Graph-as-Code, which we show to achieve competitive
performance and often surpasses prompting on graphs with large textual features or high-degree
nodes. Contrary to conclusions drawn from prompting alone [8]], we also find all modes viable on
heterophilous graphs, with the added advantage that Graph-as-Code shows reduced brittleness.

Tool-calling for graph reasoning. Recent advances in LLM orchestration have introduced tool-
calling and ReAct-style paradigms, enabling LLMs to interface with external APIs or reasoning
modules for enhanced problem-solving [26l [3]. These approaches interleave natural language
reasoning with calls to task-specific tools, allowing LLMs to retrieve, manipulate, or compute over
structured data. Variants such as Plan-and-Execute [36]], Reflexion [37], and Graph-of-Thought
[38] have shown that LLMs can decompose complex tasks into sequences of actions and adapt
their plans via feedback. Tool-calling has been extensively benchmarked for real-world utility
across domains—planning [39]], code API usage [40]], mathematical reasoning [41]], and multi-
modal reasoning [42]. In the context of graph data, LLMs have been combined with tool-calling to
perform graph classification, knowledge graph reasoning and node classification, achieving improved
performance (43} 44]]. However, these works focus on specialized workflows or proof-of-concept
demonstrations. Our work extends this line of research by systematically evaluating varying tool-
calling paradigms for node classification across diverse datasets and graph regimes, highlighting their
strengths, limitations and dependencies on the features, labels and structure.

LLMs coding capabilities. Code generation has become a native capability of modern LLMs,
with early systems demonstrating high-quality programs from natural language prompts [45], even
reaching competition-level performance [46] and fueling the development of strong open-source
models such as StarCoder [47] and CodeGeeX [48]. Beyond pure code synthesis, program-aided
approaches have leveraged code as a medium for reasoning—enabling LLMs to generate and execute
short programs for mathematical problem solving [49], automate scientific workflows [S0], and
enhance reliability through self-debugging and iterative refinement [51]]. Recently, these capabilities
have been extended to graph domains, where LLMs are prompted to generate code for solving simple
graph problems such as cycle detection, connectivity analysis, and node degree estimation [52]. We
extend this further with Graph-as-Code: the LLM iteratively writes and executes concise programs
over a standardized API to flexibly combine structural queries, label propagation, and textual feature
processing. We then compare Graph-as-Code to prompting and tool-calling across datasets and asses
its dependencies on the input feature, structure and labels.

B Additional Experiments

In this section, we present additional experiments and findings that provide deeper insights into
LLM-based node classification. We first examine performance across short-text homophilic datasets
(see Section [B.T)). Next, we investigate the effect (or dependency) of removing node features and
edges on LLM-graph interaction strategies (Section [B.2] Finally, we compare open-source and
closed-source LLM models, to assess the impact of model sources on our findings (Section[B.3).

B.1 Short-text homophilic datasets

Finding 7. Prompting and Graph-as-Code are closely competitive on short-text homophilic datasets.

17

Table 3: Accuracy of baselines and LLM-graph interaction modes Prompting, GraphTool, and Graph-
as-Code on short-text homophilic datasets. Best per-dataset results are bold, runner-up underlined.

cora pubmed arxiv products
Nodes 2,708 19,717 169,343 2,449,029
Classes 7 3 40 47
Hom. (%) 82.52 79.24 65.53 63.84
Avg. degree 4.92 6.30 13.64 61.37
Random 14.13+£1.06 33.10+1.19 2.44+0.23 2.33£0.25
Majority label 29.00£0.89 41.90+4.08 590£1.39 26.10+£2.49
Label propagation 76.61£1.94 80.80+2.93 68.00+£1.66 70.40+1.64
Self prompt 64.17+£0.68 89.20+1.89 68.10+3.11 70.00£5.82
1-hop prompt 81.92+1.86 91.304+2.02 73.80 £1.92 82.20+3.98
2-hop prompt 83.43+2.25 91.804+2.17 74.304+2.53 TokenLimit
GraphTool 74.02£1.18 89.50+2.32 67.50+£5.50 75.30£3.06
GraphTool+ 81.40+3.08 91.90+2.16 73.30+2.86 78.50+3.43

Graph-as-Code 85.16+1.47 89.90+1.85 74.40+3.02 82.70+2.66

Discussion. Foremost, Table [3 reaffirms prior work by showing that all LLM-based approaches
substantially outperform trivial baselines such as random guessing and majority label assignment.
This confirms that LLMs leverage both textual node features and graph structure for classification in
homophilic regimes. Furthermore, within the Prompting interaction mode, accuracy increases with
the inclusion of neighborhood context, moving from self to 1-hop and 2-hop prompt variants, which
is consistent with established findings [8, 9]. However, on graphs with high average degree, context
token limits are reached quickly, restricting possible gains from additional neighborhood information.

Furthermore, we find that Prompting and Graph-as-Code perform competitively on short-text ho-
mophilic graphs (see Finding[7)), positioning Graph-as-Code as a viable alternative to Prompting.
Notably, the ReAct-based interaction strategies exhibits a clear trend from GraphTool to GraphTool+
to Graph-as-Code. As the LLM is given greater agency and adaptivity in interacting with the graph
— moving from fixed tool invocation (GraphTool), to enhanced retrieval options (GraphTool+), and
finally to the fully programmatic Graph-as-Code—classification, accuracy improves (see Finding 2)).
We believe that adaptivity is valuable in homophilic settings, as local neighborhood labels are highly
informative but the optimal aggregation strategy may also depend on node degree and graph topology.
Thus, increased agency empowers the LLM to tailor its reasoning and retrieval to the specific structure
of each instance, resulting in stronger overall performance.

B.2 Features vs. structure dependencies

Finding 8. Prompting and Graph-as-Code exhibit comparable use of node features and structure.

Finding 9. When the prompt size reaches the token limit, the behavior of Graph-as-Code and
Prompting diverges, with Graph-as-Code performing significantly better.

Discussion. Figure |2[shows that, for all three datasets, the two panels have nearly identical charac-
teristics, indicating that Prompting and Graph-as-Code share the same dependence on features and
structure. On cora and arxiv, accuracy drops mainly with edge deletion, while on cornell it is driven
primarily by feature deletion (Finding|[8). This alignment arises from the inherent characteristics of
the datasets. Both cora and arxiv are highly homophilic, meaning nodes of the same class are densely
interconnected. In these settings, structural information, specifically the local label context provided
by edges, has high impact on accuracy, so removing edges disrupts information flow and leads to a
decrease in accuracy for both methods. Conversely, cornell is a heterophilic dataset, where nodes of
different classes are more likely to be connected and the graph structure is less informative. Here,
node features are more discriminative than the sparse and less meaningful edge connections, making
feature deletion the dominant factor impacting performance.

Beyond this shared dependency, Graph-as-Code consistently outperforms Prompting and is more
resilient to perturbations (Finding[6). When structure is completely removed but features are intact,
Graph-as-Code preserves high accuracy on all datasets, whereas Prompting collapses. This difference

18

20.0 13.0 6.6 4.3

33.9 29.5 254 251

51.2 46.6 452 449

Prompting
Edge Deletion [%]

Graph-as-Code
Edge Deletion [%]

83.6 8l.1 8l.4

85.2 83.8 822 813 8l1.0

0 25 50 75 90
Feature Deletion [%]

100 0 25 50 75 90
Feature Deletion [%]

100

90

75

50

25

cornell

75 90

92.7

92.9

93.2

92.2

92.4

89.7 89.7

87.5 875

88.0 88.5

87.1 889

86.3 85.6

84.7 79.1

87.0

83.7 78.8

88.0

81.9

Mean Accuracy [%]

88.4 85.7 84.7 79.1

0 25 50 75 90
Feature Deletion [%]

Figure 2: Accuracy of 2-hop prompting and Graph-as-Code on the cora, arxiv, and cornell datasets
under varying ratios of randomly removed edges and truncated text features.

arises because Graph-as-Code can access feature and label information of other nodes even when
edges are absent, whereas Prompting depends on edge connections to retrieve this information.

We further challenge Finding 8] by searching for a setting
where the two methods might not align. Long-text ho-
mophilic graphs are precisely such a case because 2-hop
prompts are prone to hitting the token limit. Figure [3]
shows that on photo we indeed observe a divergence in
behavior between the two methods (Finding[9). This diver-
gence on photo is expected given the dataset’s characteris-
tics. Photo is highly homophilic and contains nodes with
rich, lengthy feature descriptions. In homophilic graphs,
nodes are densely connected to others of the same class, so
2-hop prompts accumulate a substantial amount of feature
text from numerous neighbors. This quickly exceeds the
LLM'’s context window, leading to a significant drop in
accuracy for Prompting. In contrast, Graph-as-Code is
designed to selectively retrieve and compose only the nec-
essary structure and features for each query. This allows
it to avoid exceeding the token limit and maintain high
accuracy, even in the presence of long node descriptions
and dense connectivity.

This result ties back to our long-text homophilic experi-
ments and findings in Section [3.2] There we observed a
large gap in favor of Graph-as-Code; the photo ablation re-
veals the same characteristic: Prompting is fundamentally
bottlenecked by the context window and can even benefit
from discarding feature text to fit within it, whereas Graph-
as-Code retrieves and composes the needed structure and
features without exceeding the token budget. Thus, the two
methods share the same dependence on features and struc-
ture when prompts fit the context window, but once the

19

27.2 23.0

52.2 50.6

Prompting
Edge Deletion [%]

w
o
Mean Accuracy [%]

Graph-as-Code
Edge Deletion [%]

0 25 50 75 90
Feature Deletion [%]

Figure 3: Accuracy of 2-hop prompt-
ing and Graph-as-Code on the photo
dataset under varying ratios of randomly
removed edges and truncated features.

205 158 88 1.4

33.8 314 252 246

50.3 46.3 44.8 46.0

Prompting
Edge Deletion [%]

106 109 24 1.0

41.7 37.8 348 39.4

51.5 53.0 48.6 53.7

58.4

cornell

75 90

1001 90.5 88.1 90.5 85.0 79.5 40
—_ 91.6 86.8 843 87.4
g 3 90
S = 30
O o 75195.0 87.6 86.7 85.3 80.6
=
0 v
]
c 0O 50{93.9 84.4 943 89.2 20
Q o
o o
= T
o 25{92.7 89.8 852 819

Mean Accuracy [%]

83.3 845 825 809

88.2 84.8 859 80.6

0 25 50 75 90 100 0 25 50 75 90 0 25 50 75 90 100
Feature Deletion [%] Feature Deletion [%] Feature Deletion [%]

Figure 4: Accuracy of 2-hop prompting and Graph-as-Code on the cora, arxiv, and cornell datasets
under varying ratios of randomly removed edges and truncated text features, evaluated using the
close-source GPT-5.

token limit becomes a limiting factor, the behaviors diverge and Graph-as-Code becomes decisively
superior. Practitioners should therefore assess the graph density and average feature length before
choosing an LLM-graph interaction mode, prioritizing adaptive methods such as Graph-as-Code for
cases with high density or long-text features.

B.3 Model sources

We adopt the experimental protocol outlined in Section [B.2] to evaluate the performance of the
closed-source GPT-5 and the open-source DeepSeek R1.

Finding 10. Open- and closed-source LLMs show comparable accuracy trends.

Discussion. Figures[and[5|show that the patterns observed in section[B.2]and the associated findings,
such as the superior robustness of Graph-as-Code compared to Prompting (Finding[6) and the similar
dependence of both methods on features and structure (Finding [8), hold consistently across both
open- and closed-source LLMs.

Overall, these results suggest that the choice between open-source and closed-source LLMs does
not substantially alter the qualitative behavior of LLM-graph interaction modes (Finding[T0). Conse-
quently, it is reasonable to assume that the majority of our key findings generalize to both open- and
closed-source models. This indicates that practitioners can expect similar trends and trade-offs when
deploying either type of model for node classification.

20

cornell

174 127 70 69 0.1 a 90

45.7 38.7 40.0 329 35.1

54.1 47.0 49.3 53.0

513

Prompting
Edge Deletion [%]

1001 87.4 843 88.2 888

Mean Accuracy [%]

901984 883 923 925
75195.1 89.9 89.8 80.6
50186.4 84.1 88.1 885

251 95.7 . 83.4 845

81.4 y J 04921 88.0 80.6 83.1

Graph-as-Code
Edge Deletion [%]

25 50 75 90 0 25 50 75 90 0 25 50 75 90 100
Feature Deletion [%] Feature Deletion [%] Feature Deletion [%]

Figure 5: Accuracy of 2-hop prompting and Graph-as-Code on the cora, arxiv, and cornell datasets
under varying ratios of randomly removed edges and truncated text features, evaluated using the
open-source DeepSeek R1.

C Details on LLM-graph Interaction modes

In this section, we provide the full prompt templates used for each LLM-graph interaction mode
evaluated in our experiments. These templates specify the instructions, available actions, and response
formats provided to the LLM during node classification tasks. Specifically, we include the exact
text used for the Prompting, GraphTool+, and Graph-as-Code modes, enabling reproducibility and
facilitating future methodological comparisons.

Template 1 — Prompting

Task: You are solving a node-based task. Your goal is to determine the label for node {node_id}.
The final answer must be submitted as an integer corresponding to a class label. Below is the mapping from
each integer index to its associated label.
Available class labels:
0: A{text description of label 0}
1: {text description of label 1}

Node {node_id} has the textual description {feat_id} and belongs to label class {1abel_id} (or None).
Node {node_id} has the following neighbors 1-hop away:
Node {n_1} has the textual description {feat_n1} and belongs to label class {1abel_n1} (or None).
Node {n_2} has the textual description {feat_n2} and belongs to label class {1abel_n2} (or None).

Node {node_id} has the following neighbors 2-hops away:
Node {m_13} has the textual description {feat_m1} and belongs to label class {1abel_m1} (or None).

Think and end your response with: Answer: [class_id].

\ J

21

Template 2 — GraphTool+

Task: You are solving a node-based reasoning task using interleaved steps. Your goal is to determine the label
for node {node_id}. At each step, you may choose one of several available actions to gather information or
submit your final prediction.
Instructions: Always begin with reasoning. You may take as many steps as needed, but aim to solve the
task efficiently using the fewest necessary actions. Before each action, assess what information is available,
what’s missing, which action is most appropriate next, and how many steps likely remain. Then, on a new
line, specify your chosen action using one of the formats below. It must be the final non-empty line of your
response.
Available actions:

—Action O, answer class_id: Submit your final answer as an integer label.

—Action 1, node node_id: Retrieve the list of neighboring nodes connected to the specified node.

—Action 2, node node_id: Retrieve the textual description (features) of the specified node.

—Action 3, node node_id: Retrieve the label of the specified node if it is in the training set; otherwise,
return None.

— Action 4, node node_id, hop num_hop: Retrieve the textual descriptions (features) of all nodes
that are exactly num_hop hops away from the specified node.

—Action 5, node node_id, hop num_hop: Retrieve the labels (or None) of all nodes that are exactly
num_hop hops away from the specified node.
Available class labels:

0: {text description of label 0}

Now begin your reasoning in the Scratchpad below:

\ J

Template 3 — Graph-as-Code

Task: You are solving a node-based reasoning. . . for node {node_id}. You have a pandas DataFrame df
where each row corresponds to a node, indexed by its node_id.
Instructions: Always begin with reasoning. . .
Schema structure:

— The DataFrame index is the node id. Access a row by node id with: df . 1oc [node_id].

— The column features stores each node’s textual description: df . 1loc [node_id, ’features’].

— The column neighbors stores a list of neighbor node IDs: df .1oc[node_id, ’neighbors’].

— The column 1abel contains the integer node label if it belongs to the training set; otherwise None.
You may query ANY column(s) of df using any valid pandas command that applies to a DataFrame named
df. You may also use pd. * utilities with df as input. The dataframe can be long, so you may want to avoid
commands that print the entire table.
Response format:

— For intermediate steps: reason then on the final line output a single valid pandas expression.

— To finish: reason then on the final line respond exactly as: Answer [class_id].
Available class labels:

0: {text description of label 0}

\ J

All experiments were conducted using 8 Intel Xeon Platinum 8370C cpus.

D Dataset Statistics

The statistics of all datasets can be found in Table 4]

22

Table 4: Statistics of all datasets

Dataset #Nodes #Edges #Classes Train/Val/Test (%)
cora 2,708 5,429 7 60/20/20
Short-text pubmed 19,717 44,338 3 60/20/20
homophilic arxiv 169,343 1,166,243 40 53.7/17.6/28.7
products 2,449,029 61,859,140 47 8.0/1.6/90.4
cornell 191 292 5 60/20/20
Heterophilic texas. 187 310 5 60/20/20
washington 229 394 5 60/20/20
wisconsin 265 510 5 60/20/20
citeseer 3,186 4,277 6 60/20/20
reddit 33,434 198,448 2 60/20/20
Long-text computer 87,229 721,081 10 60/20/20
homophilic photo 48,362 500,928 12 60/20/20
instagram 11,339 144,010 2 60/20/20
wiki-cs 11,701 215,863 10 60/20/20

23

	Introduction
	Axes of Variability
	Variability over LLM-Graph Interaction Strategies
	Variability over Dataset Domains, Homophily Levels and Text Lengths

	Experiments across Domains, Homophily Levels and Text Lengths
	Heterophilic datasets
	Long-text datasets

	Experiments on features, structure, and labels dependencies
	Conclusions
	Related Work
	Additional Experiments
	Short-text homophilic datasets
	Features vs. structure dependencies
	Model sources

	Details on LLM-graph Interaction modes
	Dataset Statistics

