Is Out-of-Distribution Detection Learnable?
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Abstract

Supervised learning aims to train a classifier under the assumption that training and
test data are from the same distribution. To ease the above assumption, researchers
have studied a more realistic setting: out-of-distribution (OOD) detection, where
test data may come from classes that are unknown during training (i.e., OOD data).
Due to the unavailability and diversity of OOD data, good generalization ability
is crucial for effective OOD detection algorithms. To study the generalization of
OOD detection, in this paper, we investigate the probably approximately correct
(PAC) learning theory of OOD detection, which is proposed by researchers as an
open problem. First, we find a necessary condition for the learnability of OOD
detection. Then, using this condition, we prove several impossibility theorems for
the learnability of OOD detection under some scenarios. Although the impossibil-
ity theorems are frustrating, we find that some conditions of these impossibility
theorems may not hold in some practical scenarios. Based on this observation, we
next give several necessary and sufficient conditions to characterize the learnability
of OOD detection in some practical scenarios. Lastly, we also offer theoretical
supports for several representative OOD detection works based on our OOD theory.

1 Introduction

The success of supervised learning is established on an implicit assumption that training and test data
share a same distribution, i.e., in-distribution (ID) [1, 2, 3, 4]. However, test data distribution in many
real-world scenarios may violate the assumption and, instead, contain out-of-distribution (OOD) data
whose labels have not been seen during the training process [5, 6]. To mitigate the risk of OOD data,
researchers have considered a more practical learning scenario: OOD detection which determines
whether an input is ID/OOD, while classifying the ID data into respective classes. OOD detection has
shown great potential to ensure the reliable deployment of machine learning models in the real world.
A rich line of algorithms have been developed to empirically address the OOD detection problem
[6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. However, very few works study theory of OOD
detection, which hinders the rigorous path forward for the field. This paper aims to bridge the gap.

In this paper, we provide a theoretical framework to understand the learnability of the OOD detection
problem. We investigate the probably approximately correct (PAC) learning theory of OOD detection,
which is posed as an open problem to date. Unlike the classical PAC learning theory in a supervised
setting, our problem setting is fundamentally challenging due to the absence of OOD data in training.
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In many real-world scenarios, OOD data can be diverse and priori-unknown. Given this, we study
whether there exists an algorithm that can be used to detect various OOD data instead of merely some
specified OOD data. Such is the significance of studying the learning theory for OOD detection [4].
This motivates our question: is OOD detection PAC learnable? i.e., is there the PAC learning theory
to guarantee the generalization ability of OOD detection?

To investigate the learning theory, we mainly focus on two basic spaces: domain space and hypothesis
space. The domain space is a space consisting of some distributions, and the hypothesis space is a
space consisting of some classifiers. Existing agnostic PAC theories in supervised learning [21, 22]
are distribution-free, i.e., the domain space consists of all domains. Yet, in Theorem 4, we shows that
the learning theory of OOD detection is not distribution-free. In fact, we discover that OOD detection
is learnable only if the domain space and the hypothesis space satisfy some special conditions, e.g.,
Conditions 1 and 3. Notably, there are many conditions and theorems in existing learning theories
and many OOD detection algorithms in the literature. Thus, it is very difficult to analyze the relation
between these theories and algorithms, and explore useful conditions to ensure the learnability of
OOD detection, especially when we have to explore them from the scratch. Thus, the main aim of our
paper is to study these essential conditions. From these essential conditions, we can know when OOD
detection can be successful in practical scenarios. We restate our question and goal in following:

Given hypothesis spaces and several representative domain spaces, what are
the conditions to ensure the learnability of OOD detection? If possible, we
hope that these conditions are necessary and sufficient in some scenarios.

Main Results. We investigate the learnability of OOD detection starting from the largest space—the
total space, and give a necessary condition (Condition 1) for the learnability. However, we find that
the overlap between ID and OOD data may result in that the necessary condition does not hold.
Therefore, we give an impossibility theorem to demonstrate that OOD detection fails in the total
space (Theorem 4). Next, we study OOD detection in the separate space, where there are no overlaps
between the ID and OOD data. Unfortunately, there still exists impossibility theorem (Theorem 5),
which demonstrates that OOD detection is not learnable in the separate space under some conditions.

Although the impossibility theorems obtained in the separate space are frustrating, we find that some
conditions of these impossibility theorems may not hold in some practical scenarios. Based on this
observation, we give several necessary and sufficient conditions to characterize the learnability of
OOD detection in the separate space (Theorems 6 and 10). Especially, when our model is based on
fully-connected neural network (FCNN), OOD detection is learnable in the separate space if and
only if the feature space is finite. Furthermore, we investigate the learnability of OOD detection in
other more practical domain spaces, e.g., the finite-ID-distribution space (Theorem 8) and the density-
based space (Theorem 9). By studying the finite-ID-distribution space, we discover a compatibility
condition (Condition 3) that is a necessary and sufficient condition for this space. Next, we further
investigate the compatibility condition in the density-based space, and find that such condition is also
the necessary and sufficient condition in some practical scenarios (Theorem 11).

Implications and Impacts of Theory. Our study is not of purely theoretical interest; it has also
practical impacts. First, when we design OOD detection algorithms, we normally only have finite ID
datasets, corresponding to the finite-ID-distribution space. In this case, Theorem 8 gives the necessary
and sufficient condition to the success of OOD detection. Second, our theory provides theoretical
support (Theorems 10 and 11) for several representative OOD detection works [7, 8, 23]. Third, our
theory shows that OOD detection is learnable in image-based scenarios when ID images have clearly
different semantic labels and styles (far-OOD) from OOD images. Fourth, we should not expect a
universally working algorithm. It is necessary to design different algorithms in different scenarios.

2 Learning Setups

We start by introducing the necessary concepts and notations for our theoretical framework. Given
a feature space X C R? and a label space ) := {1, ..., K}, we have an ID joint distribution Dx,y;
over X x ), where X1 € X and Y7 € ) are random variables. We also have an OOD joint
distribution Dxy,, where X is a random variable from X, but Yy is a random variable whose
outputs do not belong to ). During testing, we will meet a mixture of ID and OOD joint distributions:
Dxy = (1 — ") Dx,y; + 7" Dx_y,, and can only observe the marginal distribution Dy :=
(1 — ") Dx, + 7°"* Dx,,, where the constant 7°"* € [0, 1) is an unknown class-prior probability.



Problem 1 (OOD Detection [4]). Given an ID joint distribution Dx,y, and a training data S :=
{(x%y1), ..., (x™,y™)} drawn independent and identically distributed from Dxy;, the aim of OOD
detection is to train a classifier f by using the training data S such that, for any test data x drawn
Sfrom the mixed marginal distribution Dx: 1) if X is an observation from Dx,, f can classify x into
correct ID classes; and 2) if x is an observation from Dx, f can detect x as OOD data.

According to the survey [4], when K > 1, OOD detection is also known as the open-set recognition
or open-set learning [24, 25]; and when K = 1, OOD detection reduces to one-class novelty detection
and semantic anomaly detection [26, 27, 28].

OOD Label and Domain Space. Based on Problem 1, we know it is not necessary to classify OOD
data into the correct OOD classes. Without loss of generality, let all OOD data be allocated to one
big OOD class, i.e., Yo = K + 1 [24, 29]. To investigate the PAC learnability of OOD detection,
we define a domain space Zxy, which is a set consisting of some joint distributions D xy mixed by
some ID joint distributions and some OOD joint distributions. In this paper, the joint distribution
D xy mixed by ID joint distribution D x,y; and OOD joint distribution D x v, is called domain.

Hypothesis Spaces and Scoring Function Spaces. A hypothesis space # is a subset of function
space,i.e., H C {h: X — YU{K + 1}}. We set H™ C {h: X — YV} to the ID hypothesis space.
We also define H” C {h : X — {1,2}} as the hypothesis space for binary classification, where
1 represents the ID data, and 2 represents the OOD data. The function A is called the hypothesis
function. A scoring function space is a subset of function space, i.e., F; C {f : X — Rl}, where [ is
the output’s dimension of the vector-valued function f. The function f is called the scoring function.

Loss and Risks. Let YV, = Y U {K + 1}. Given a loss function £* : Yo X Van — R0 satisfying
that £(y1,y2) = 0 if and only if y; = yo, and any h € H, then the risk with respect to Dxy is

RD(h) = E(X,y)Nny’g(h(X)7 y) (1)
The a-risk RY(h) := (1 — a)RB(h) + aRY*(h), Vo € [0, 1], where the risks RIS (h), R%®(h) are
RB(h) =B y)mny, v LX), 9),  RBC(R) := Exupy, ((h(x), K +1).

Learnability. We aim to select a hypothesis function i € H with approximately minimal risk, based
on finite data. Generally, we expect the approximation to get better, with the increase in sample size.
Algorithms achieving this are said to be consistent. Formally, we introduce the following definition:

Definition 1 (Learnability of OOD Detection). Given a domain space Pxy and a hypothesis space
H C {h : X = Y}, we say OOD detection is learnable in Pxv for H, if there exists an
algorithm A3 : Uj;i‘i(?( X V)" — H and a monotonically decreasing sequence €.ons(n), such that
€cons(n) = 0, as n — +o0, and for any domain Dxy € Dxy,

ESND}IYI [RD (A(S)) - }}2;_[ RD(h)] < 6cons(n)7 )
An algorithm A for which this holds is said to be consistent with respect to Dxvy.

Definition [ is a natural extension of agnostic PAC learnability of supervised learning [30]. If for any
Dxvy € Pxy, n°" = 0, then Definition 2 is the agnostic PAC learnability of supervised learning.
Although the expression of Definition 1 is different from the normal definition of agnostic PAC
learning in [21], one can easily prove that they are equivalent when ¢ is bounded, see Appendix D.3.

Since OOD data are unavailable, it is impossible to obtain information about the class-prior probability
7°Ut, Furthermore, in the real world, it is possible that 7°"* can be any value in [0, 1). Therefore,
the imbalance issue between ID and OOD distributions, and the priori-unknown issue (i.e., m°" is
unknown) are the core challenges. To ease these challenges, researchers use AUROC, AUPR and
FPRY5 to estimate the performance of OOD detection [18, 31, 32, 33, 34, 35]. It seems that there is a
gap between Definition 1 and existing works. To eliminate this gap, we revise Eq. (2) as follows:

Es~py , [RD(A(S)) = jnf R (h)] < €cons(n), Yo € [0,1]. 3)
If an algorithm A satisfies Eq. (3), then the imbalance issue and the prior-unknown issue disappear.

That is, A can simultaneously classify the ID data and detect the OOD data well. Based on the above
discussion, we define the strong learnability of OOD detection as follows:

*Note that Vanu X Vau is a finite set, therefore, £ is bounded.
3Similar to [30], in this paper, we regard an algorithm as a mapping from U725 (X' x D)™ to H.



Definition 2 (Strong Learnability of OOD Detection). Given a domain space P xy and a hypothesis
space H C {h : X — Yan}, we say OOD detection is strongly learnable in Pxy for H, if there
exists an algorithm A : US> (X x V)" — H and a monotonically decreasing sequence €cons(n),
such that €cons(n) — 0, as n — +o0, and for any domain Dxy € Pxv,

]ESNDy(IYI [R%(A(S)) — }%2% R%(h)] < €cons(n), Ya € ]0,1].

In Theorem 1, we have shown that the strong learnability of OOD detection is equivalent to the
learnability of OOD detection, if the domain space Zxy is a prior-unknown space (see Definition 3).
In this paper, we mainly discuss the learnability in the prior-unknown space. Therefore, when we
mention that OOD detection is learnable, we also mean that OOD detection is strongly learnable.

Goal of Theory. Note that the agnostic PAC learnability of supervised learning is distribution-free,
i.e., the domain space Zxy consists of all domains. However, due to the absence of OOD data
during the training process [8, 14, 24], it is obvious that the learnability of OOD detection is not
distribution-free (i.e., Theorem 4). In fact, we discover that the learnability of OOD detection is
deeply correlated with the relationship between the domain space Zxy and the hypothesis space H.
That is, OOD detection is learnable only when the domain space Zxy and the hypothesis space H
satisfy some special conditions, e.g., Condition | and Condition 3. We present our goal as follows:

Goal: given a hypothesis space H and several representative domain spaces Pxy,
what are the conditions to ensure the learnability of OOD detection? Furthermore, if
possible, we hope that these conditions are necessary and sufficient in some scenarios.

Therefore, compared to the agnostic PAC learnability of supervised learning, our theory doesn’t
focus on the distribution-free case, but focuses on discovering essential conditions to guarantee the
learnability of OOD detection in several representative and practical domain spaces Zxy . By these
essential conditions, we can know when OOD detection can be successful in real applications.

3 Learning in Priori-unknown Spaces

We first investigate a special space, called prior-unknown space. In such space, Definition 1 and
Definition 2 are equivalent. Furthermore, we also prove that if OOD detection is strongly learnable
in a space Zxy, then one can discover a larger domain space, which is prior-unknown, to ensure
the learnability of OOD detection. These results imply that it is enough to consider our theory in the
prior-unknown spaces. The prior-unknown space is introduced as follows:

Definition 3. Given a domain space Pxy, we say Pxvy is a priori-unknown space, if for any domain
Dxy € 9xy and any o € [0, 1), we have D% := (1 — a)Dx,v; + aDx,v, € Pxv-

Theorem 1. Given domain spaces Pxy and P = {D%y : VDxy € Dxy,Ya € [0,1)}, then
1) D'y is a priori-unknown space and Dxy C D'yy;

2) if Pxy is a priori-unknown space, then Definition | and Definition 2 are equivalent;

3) OOD detection is strongly learnable in Dxy if and only if OOD detection is learnable in D' .

The second result of Theorem 1 bridges the learnability and strong learnability, which implies that
if an algorithm A is consistent with respect to a prior-unknown space, then this algorithm A can
address the imbalance issue between ID and OOD distributions, and the priori-unknown issue well.
Based on Theorem 1, we focus on our theory in the prior-unknown spaces. Furthermore, to demystify
the learnability of OOD detection, we introduce five representative priori-unknown spaces:

o Single-distribution space 7% . For a domain Dxy, 255" 1= {D%y : Va € [0,1)}.

o Total space 2%, which consists of all domains.

o Separate space ¥, which consists of all domains that satisfy the separate condition, that is for
any Dxy € P%y,suppDx, NsuppDyx, = (), where supp means the support set.

o Finite-ID-distribution space 2%, which is a prior-unknown space satisfying that the number of
distinct ID joint distributions Dx,y; in 2%+ is finite, i.e., |{Dx,y; : YVDxy € 9% }| < +o0.

o Density-based space @%}, which is a prior-unknown space consisting of some domains satisfying
that: for any Dy, there exists a density function f with 1/b < f < b in suppp and 0.5 x Dx, +
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Figure 1: Tllustration of infres R (h) (solid lines with triangle marks) and the estimated Es~.p» Rp (A(S))
(dash lines) with « € [0, 1) in different scenarios, where Din = Dx;y; and the algorithm A is the free-energy
OOD detection method [23]. Subfigure (a) shows the ID and OOD distributions. In (a), gap; represents the
distance between the support sets of ID and OOD distributions. In (b), since there is an overlap between ID
and OOD data, the solid line is a ployline. In (c), since there is no overlap between ID and OOD data, we can
check that inf, ey R%(h) forms a straight line (the solid line). However, since dash lines are always straight
lines, two observations can be obtained from (b) and (c): 1) dash lines cannot approximate the solid ployline in
(b), which implies the unlearnability of OOD detection; and 2) the solid line in (c) is a straight line and may be
approximated by the dash lines in (c). The above observations motivate us to propose Condition 1.

0.5% Dx, = [ fdu, where 41 is a measure defined over X'. Note that if 4 is discrete, then Dx is a
discrete distribution; and if p is the Lebesgue measure, then D x is a continuous distribution.

The above representative spaces widely exist in real applications. For example, 1) if the images
from different semantic labels with different styles are clearly different, then those images can form
a distribution belonging to a separate space Z%-; and 2) when designing an algorithm, we only
have finite ID datasets, e.g., CIFAR-10, MNIST, SVHN, and ImageNet, to build a model. Then,
finite-ID-distribution space 2%, can handle this real scenario. Note that the single-distribution space
is a special case of the finite-ID-distribution space. In this paper, we mainly discuss these five spaces.

4 TImpossibility Theorems for OOD Detection

In this section, we first give a necessary condition for the learnability of OOD detection. Then, we
show this necessary condition does not hold in the total space 2%}, and the separate space Px.

Necessary Condition. We find a necessary condition for the learnability of OOD detection, i.e., Con-
dition 1, motivated by the experiments in Figure 1. Details of Figure 1 can be found in Appendix C.2.

Condition 1 (Linear Condition). For any Dxy € Pxy and any o € [0, 1),
inf R%(h) = (1 —«) inf RB(h inf RS(h).
jnf Rp(h) = (1 - a) inf Rp(h) +a inf R (h)

To reveal the importance of Condition 1, Theorem 2 shows that Condition 1 is a necessary and
sufficient condition for the learnability of OOD detection if the Zxy is the single-distribution space.

Theorem 2. Given a hypothesis space H and a domain D xy, OOD detection is learnable in the
single-distribution space 9)%’5’” for H if and only if linear condition (i.e., Condition 1) holds.

Theorem 2 implies that Condition 1 is important for the learnability of OOD detection. Due to the
simplicity of single-distribution space, Theorem 2 implies that Condition 1 is the necessary condition
for the learnability of OOD detection in the prior-unknown space, see Lemma | in Appendix F.

Impossibility Theorems. Here, we first study whether Condition 1 holds in the total space 23, If

Condition 1 does not hold, then OOD detection is not learnable. Theorem 3 shows that Condition 1 is
not always satisfied, especially, when there is an overlap between the ID and OOD distributions:

Definition 4 (Overlap Between ID and OOD). We say a domain D xy has overlap between ID and
OOD distributions, if there is a o-finite measure [i such that D x is absolutely continuous with respect
to fi, and [i( Aovertap) > 0, where Agyerlap = {x € X' : fi(x) > 0 and fo(x) > 0}. Here f; and
fo are the representers of Dx, and Dx in Radon—Nikodym Theorem [36],

Dy, = [ fidf. Dy, = [ fodn



Theorem 3. Given a hypothesis space H and a prior-unknown space Dxvy, if there is Dxy € Pxv,
which has overlap between ID and OOD, and inf,c3 R (h) = 0 and infycqy RE"*(h) = 0, then
Condition 1 does not hold. Therefore, OOD detection is not learnable in Dxy for H.

Theorem 3 clearly shows that under proper conditions, Condition 1 does not hold, if there exists a

domain whose ID and OOD distributions have overlap. By Theorem 3, we can obtain that the OOD

detection is not learnable in the total space 2%} for any non-trivial hypothesis space H.

Theorem 4 (Impossibility Theorem for Total Space). OOD detection is not learnable in the total
space @}(HY Jfor M, if |p o H| > 1, where ¢ maps ID labels to 1 and maps OOD labels to 2.

Since the overlaps between ID and OOD distributions may cause that Condition 1 does not hold, we
then consider studying the learnability of OOD detection in the separate space 2%, where there
are no overlaps between the ID and OOD distributions. However, Theorem 5 shows that even if
we consider the separate space, the OOD detection is still not learnable in some scenarios. Before
introducing the impossibility theorem for separate space, i.e., Theorem 5, we need a mild assumption:

Assumption 1 (Separate Space for OOD). A hypothesis space H is separate for OOD data, if for each
data point x € X, there exists at least one hypothesis function hy € H such that hyx(x) = K + 1.

Assumption | means that every data point x has the possibility to be detected as OOD data. Assump-
tion | is mild and can be satisfied by many hypothesis spaces, e.g., the FCNN-based hypothesis space
(Proposition 1 in Appendix K), score-based hypothesis space (Proposition 2 in Appendix K) and
universal kernel space. Next, we use Vapnik—Chervonenkis (VC) dimension [22] to measure the size
of hypothesis space, and study the learnability of OOD detection in 2% based on the VC dimension.

Theorem 5 (Impossibility Theorem for Separate Space). If Assumption I holds, VCdim(¢ o H) <
+00 and supy,cy [{x € X : h(x) € Y}| = +o0, then OOD detection is not learnable in separate
space D%y for H, where ¢ maps ID labels to 1 and maps OOD labels to 2.

The finite VC dimension normally implies the learnability of supervised learning. However, in our
results, the finite VC dimension cannot guarantee the learnability of OOD detection in the separate
space, which reveals the difficulty of the OOD detection. Although the above impossibility theorems
are frustrating, there is still room to discuss the conditions in Theorem 5, and to find out the proper
conditions for ensuring the learnability of OOD detection in the separate space (see Sections 5 and 6).

5 When OOD Detection Can Be Successful

Here, we discuss when the OOD detection can be learnable in the separate space %%y, finite-ID-
distribution space _@j?y and density-based space @é’(}b, We first study the separate space 2%

OOD Detection in the Separate Space. Theorem 5 has indicated that VCdim(¢ o H) = +o0 or
suppeqy [{x € X : h(x) € Y}| < 400 is necessary to ensure the learnability of OOD detection in
Dxv if Assumption 1 holds. However, generally, hypothesis spaces generated by feed-forward neural
networks with proper activation functions have finite VC dimension [37, 38]. Therefore, we study
the learnability of OOD detection in the case that |X'| < 400, which implies that sup;, ¢4 [{x € X :
h(x) € Y}| < +oco. Additionally, Theorem 10 also implies that | X| < +o0 is the necessary and
sufficient condition for the learnability of OOD detection in separate space, when the hypothesis
space is generated by FCNN. Hence, |X'| < 400 may be necessary in the space Z%,.

For simplicity, we first discuss the case that K = 1, i.e., the one-class novelty detection. We show the
necessary and sufficient condition for the learnability of OOD detection in Z%-, when |X'| < 4o00.

Theorem 6. Let K = 1 and |X| < +o00. Suppose that Assumption 1 holds and the constant
function k'™ := 1 € H. Then OOD detection is learnable in 95 for H if and only if H.y —
{h°W} C H, where Hay is the hypothesis space consisting of all hypothesis functions, and h°"* is
a constant function that h°* := 2, here 1 represents ID data and 2 represents OOD data.

The condition h™™ € H presented in Theorem 6 is mild. Many practical hypothesis spaces satisfy this
condition, e.g., the FCNN-based hypothesis space (Proposition 1 in Appendix K), score-based hy-
pothesis space (Proposition 2 in Appendix K) and universal kernel-based hypothesis space. Theorem
6 implies that if K = 1 and OOD detection is learnable in &% for H, then the hypothesis space H



should contain almost all hypothesis functions, implying that if the OOD detection can be learnable
in the distribution-agnostic case, then a large-capacity model is necessary.

Next, we extend Theorem 6 to a general case, i.e., K > 1. When K > 1, we will first use a binary
classifier h® to classify the ID and OOD data. Then, for the ID data identified by k°, an ID hypothesis
function A" will be used to classify them into corresponding ID classes. We state this strategy as
follows: given a hypothesis space ™ for ID distribution and a binary classification hypothesis space
HP introduced in Section 2, we use H'™ and H" to construct an OOD detection’s hypothesis space H,
which consists of all hypothesis functions & satisfying the following condition: there exist hi* € H®
and h? € H? such that for any x € X,

h(x) =i, if h™(x)=1i and h"(x) = 1; otherwise, h(x) = K + 1. (4)
We use H'™ @ H" to represent a hypothesis space consisting of all & defined in Eq. (4). In addition,
we also need an additional condition for the loss function ¢. This condition is shown as follows:
Condition 2. ((y2,y1) < {(K + 1,y1), for any in-distribution labels y; and yo € Y.

Theorem 7. Let |X| < +00 and H = H™ @ HP. If Han — {h°"*} C HP and Condition 2 holds,
then OOD detection is learnable in 9%, for H, where H,n and h°"* are defined in Theorem 6.

OOD Detection in the Finite-ID-Distribution Space. Since researchers can only collect finite ID
datasets as the training data in the process of algorithm design, it is worthy to study the learnability of
0OOD detection in the finite-ID-distribution space @fgy. We first show two necessary concepts below.

Definition 5 (ID Consistency). Given a domain space Dxy, we say any two domains Dxy € Dxy
and D'\ € Pxvy are ID consistency, if Dx,y; = DS(IYI. We use the notation ~ to represent the ID

consistency, i.e., Dxy ~ D'y if and only if Dxy and D'y are ID consistency.
It is easy to check that the ID consistency ~ is an equivalence relation. Therefore, we define the set
[Dxy] :={D%y € Zxvy : Dxy ~ DY } as the equivalence class with respect to space Zxvy .

Condition 3 (Compatibility). For any equivalence class [D'| with respect to Dxy and any € > 0,
there exists a hypothesis function he € H such that for any domain Dxy € [D'yy/],

/ . out 7./ < out / . in g/ < j in .
he€ {W € M : REM(W) < inf RY*(h) + ¢} N {W € H: RB(W) < inf RB(h) +¢}

In Appendix F, Lemma 2 has implied that Condition 3 is a general version of Condition 1. Next,
Theorem 8 indicates that Condition 3 is the necessary and sufficient condition in the space 2%y .

Theorem 8. Suppose that X is a bounded set. OOD detection is learnable in the finite-1D-
distribution space 9% for H if and only if the compatibility condition (i.e., Condition 3) holds.

Furthermore, the learning rate €cons(n) can attain O(1/v/n'=9), for any 6 € (0,1).

Theorem 8 shows that, in the process of algorithm design, OOD detection cannot be successful
without the compatibility condition. Theorem 8 also implies that Condition 3 is essential for the
learnability of OOD detection. This motivates us to study whether OOD detection can be successful
in more general spaces (e.g., the density-based space), when the compatibility condition holds.

OOD Detection in the Density-based Space. To ensure that Condition 3 holds, we consider a
basic assumption in learning theory—Realizability Assumption (see Appendix D.2), i.e., for any
Dxvy € Pxy, there exists h* € H such that Rp(h*) = 0. We discover that in the density-based

space _@j‘(’{’/, Realizability Assumption can conclude the compatibility condition (i.e., Condition 3).
Based on this observation, we can prove the following theorem:

Theorem 9. Given a density-based space @éé’)b,, if 1(X) < +oo, the Realizability Assumption
holds, then when H has finite Natarajan dimension [21], OOD detection is learnable in 9;(’;’, for
H. Furthermore, the learning rate €cons(n) can attain O(1/v/n1'=?), for any 6 € (0, 1).

To further investigate the importance and necessary of Realizability Assumption, Theorem 11 has
indicated that in some practical scenarios, Realizability Assumption is the necessary and sufficient
condition for the learnability of OOD detection in the density-based space. Therefore, Realizability
Assumption may be indispensable for the learnability of OOD detection in some practical scenarios.



6 Connecting Theory to Practice

In Section 5, we have shown the successful scenarios where OOD detection problem can be addressed
in theory. In this section, we will discuss how the proposed theory is applied to two representative
hypothesis spaces—neural-network-based hypothesis spaces and score-based hypothesis spaces.

Fully-connected Neural Networks. Given a sequence q = (1,2, ..., [;), where [; and g are positive
integers and g > 2, we use g to represent the depth of neural network and use /; to represent the width
of the i-th layer. After the activation function o is selected*, we can obtain the architecture of FCNN
according to the sequence q. Let fy, , be the function generated by FCNN with weights w and bias
b. An FCNN-based scoring function space is defined as: FJ := {fwb : V weights w, V bias b}. In

addition, for simplicity, given any two sequences q = (I1, ...,ly) and " = (I, ..., [}, ), we use the
notation q < g’ to represent the following equations and inequalities:

Dg<g h=0lg=1, 2L<Il,Vi=1,.,9—1; and 3)l, 1 <Ilj, Vi=g,...¢d — 1.
In Appendix L, Lemma 10 shows q < q' = F§ C Fg - We use < to compare the sizes of FCNNs.
FCNN-based Hypothesis Space. Let [, = K + 1. The FCNN-based scoring function space FJ can
induce an FCNN-based hypothesis space. For any fy, 1, € F7, the induced hypothesis function is:

hwp = argmax f& . where f¥  is the k-th coordinate of fy p.
ke{l,. . K+1} ’

Then, the FCNN-based hypothesis space is defined as H¢ := {hw,b : V weights w, V bias b}.

Score-based Hypothesis Space. Many OOD detection algorithms detect OOD data by using a
score-based strategy. That is, given a threshold ), a scoring function space F; C {f : X — R!}
and a scoring function E : F; — R, then x is regarded as ID data if and only if E(f(x)) > A. We
introduce several representative scoring functions £ as follows: for any f = [f1,..., f!]T € F,

e softmax-based function [7] and temperature-scaled function [8]: \ € (%, 1)and T > 0,

B oM exp (£4/7)

= max f) = max ; 5

ke{lt S exp (f€) S ore{ir S exp (f¢/T)
e energy-based function [23]: A € (0,400) and T > 0,

l
E(f) = Tlog Y _exp (f°/T). 6)

c=1

Using F, A and f € FJ, we have a classifier: hﬁ‘E(x) = 1,if E(f(x)) > A; otherwise, h%‘}E(x) =2,
where 1 represents the ID data and 2 represents the OOD data. Hence, a binary classification
hypothesis space H°, which consists of all hﬁ‘y 5 1s generated. We define ’Hg:g = {h? g Vi€ Fg)

Learnability of OOD Detection in Different Hypothesis Spaces. Next, we present applications of
our theory regarding the above two practical and important hypothesis spaces Hg and ’Hg}\ﬂ
Theorem 10. Suppose that Condition 2 holds and the hypothesis space H is FCNN-based or score-
based, i.e, H = H or H = H™ o HP, where H™ is an ID hypothesis space, H® = Hg}\g and
H = H™ o HP is introduced below Eq. (4), here E is introduced in Egs. (5) or (6). Then

There is a sequence = (l1,...,1y) such that OOD detection is
learnable in the separate space D% for H if and only if | X | < +o0.

Furthermore, if |X| < 400, then there exists a sequence q = (11, ..., 1) such that for any sequence
q’ satisfying that 9 < ', OOD detection is learnable in D%+ for H.

Theorem 10 states that 1) when the hypothesis space is FCNN-based or score-based, the finite feature
space is the necessary and sufficient condition for the learnability of OOD detection in the separate
space; and 2) a larger architecture of FCNN has a greater probability to achieve the learnability of

“We consider the rectified linear unit (ReLU) function as the default activation function &, which is defined
by o(x) = max{z,0},V z € R. We will not repeatedly mention the definition of o in the rest of our paper.



OOD detection in the separate space. Note that when we select Eqs. (5) or (6) as the scoring function
E, Theorem 10 also shows that the selected scoring functions £ can guarantee the learnability of
OQOD detection, which is a theoretical support for the representative works [8, 23, 7]. Furthermore,
Theorem 11 also offers theoretical supports for these works in the density-based space, when K = 1.

Theorem 11. Suppose that each domain D xy in 9;‘(’;’, is attainable, i.e., arg min, ., Rp(h) # 0
(the finite discrete domains satisfy this). Let K = 1 and the hypothesis space H be score-based
(H= 7—[3’72, where E is in Egs. (5) or (6)) or FCNN-based (H = H). If u(X) < +o0, then the
Jfollowing four conditions are equivalent:

Learnability in @;’3 for H <= Condition | <= Realizability Assumption <= Condition 3

Theorem 11 still holds if the function space F is generated by Convolutional Neural Network.

Overlap and Benefits of Multi-class Case. We investigate when the hypothesis space is FCNN-based
or score-based, what will happen if there exists an overlap between the ID and OOD distributions?

Theorem 12. Let K = 1 and the hypothesis space H be score-based (H = ’H;;‘J where E is in
Egs. (5) or (6)) or FCNN-based (H = Hg)). Given a prior-unknown space 9xy, if there exists a
domain Dxy € PDxy, which has an overlap between ID and OOD distributions (see Definition 4),
then OOD detection is not learnable in the domain space Dxvy for H.

When K = 1 and the hypothesis space is FCNN-based or score-based, Theorem 12 shows that overlap
between ID and OOD distributions is the sufficient condition for the unlearnability of OOD detection.
Theorem 12 takes roots in the conditions inf,ez RB(R) = 0 and infjcq R%E(h) = 0. However,
when K > 1, we can ensure infyez; RIS (h) > 0 if ID distribution Dy, has overlap between ID
classes. By this observation, we conjecture that when K > 1, OOD detection is learnable in some
special cases where overlap exists, even if the hypothesis space is FCNN-based or score-based.

7 Discussion

Understanding Far-OOD Detection. Many existing works [7, 39] study the far-OOD detection
issue. Existing benchmarks include 1) MNIST [40] as ID dataset, and Texture [41], CIFAR-10 [42]
or Place365 [43] as OOD datasets; and 2) CIFAR-10 [42] as ID dataset, and MNIST [40], or Fashion-
MNIST [43] as OOD datasets. In far-OOD case, we find that the ID and OOD datasets have different
semantic labels and different styles. From the theoretical view, we can define far-OOD detection
tasks as follows: for 7 > 0, a domain space Zxy is 7-far-OOD, if for any domain Dxy € ZPxv,

dist(suppDx,,,suppDx,) > 7.

Theorems 7, 8 and 10 imply that under appropriate hypothesis space, 7-far-OOD detection is learnable.
In Theorem 7, the condition | X'| < 400 is necessary for the separate space. However, one can prove
that in the far-OOD case, when H" is agnostic PAC learnable for ID distribution, the results in
Theorem 7 still holds, if the condition |X| < oo is replaced by a weaker condition that X is
compact. In addition, it is notable that when " is agnostic PAC learnable for ID distribution and X’
is compact, the KNN-based OOD detection algorithm [44] is consistent in the 7-far-OOD case.

Understanding Near-OOD Detection. When the ID and OOD datasets have similar semantics
or styles, OOD detection tasks become more challenging. [45, 46] consider this issue and name it
near-OOD detection. Existing benchmarks include 1) MNIST [40] as ID dataset, and Fashion-MNIST
[43] or Not-MNIST [47] as OOD datasets; and 2) CIFAR-10 [42] as ID dataset, and CIFAR-100 [48]
as OOD dataset. From the theoretical view, some near-OOD tasks may imply the overlap condition,
i.e. Definition 4. Therefore, Theorems 3 and 12 imply that near-OOD detection may be not learnable.
Developing a theory to understand the feasibility of near-OOD detection is still an open question.

Understanding One-class Novelty Detection. In one-class novelty detection and semantic anomaly
detection (i.e. K = 1), Theorem 6 has revealed that it is necessary to use a large-capacity model to
ensure the good generalization in the separate space. Theorem 3 and Theorem 12 suggest that we
should try to avoid the overlap between ID and OOD distributions in the one-class case. If the overlap
cannot be avoided, we suggest considering the multi-class OOD detection instead of the one-class
case. Additionally, in the density-based space, Theorem 11 has shown that it is necessary to select a
suitable hypothesis space satisfying the Realizability Assumption to ensure the learnability of OOD



detection in the density-based space. Generally, a large-capacity model can be helpful to guarantee
that the Realizability Assumption holds.

8 Related Work

We briefly review the related theoretical works below. See Appendix A for detailed related works.

OOD Detection Theory. [49] understands the OOD detection via goodness-of-fit tests and typical
set hypothesis, and argues that minimal density estimation errors can lead to OOD detection failures
without assuming an overlap between ID and OOD distributions. Beyond [49], [50] paves a new
avenue to designing provable OOD detection algorithms. Compared to [50, 49], our theory focuses on
the PAC learnable theory of OOD detection and identifies several necessary and sufficient conditions
for the learnability of OOD detection, opening a door to study OOD detection in theory.

Open-set Learning Theory. [51] and [29, 52] propose the agnostic PAC learning bounds for open-set
detection and open-set domain adaptation, respectively. Unfortunately, [29, 51, 52] all require that
the test data are indispensable during the training process. To investigate open-set learning (OSL)
without accessing the test data during training, [24] proposes and investigates the almost agnostic
PAC learnability for OSL. However, the assumptions used in [24] are very strong and unpractical.

Learning Theory for Classification with Reject Option. Many works [53, 54] also investigate
the classification with reject option (CwRO) problem, which is similar to OOD detection in some
cases. [55, 56, 57, 58, 59] study the learning theory and propose the PAC learning bounds for CwRO.
However, compared to our work regarding OOD detection, existing CwRO theories mainly focus on
how the ID risk RIS (i.e., the risk that ID data is wrongly classified) is influenced by special rejection
rules. Our theory not only focuses on the ID risk, but also pays attention to the OOD risk.

Robust Statistics. In the field of robust statistics [60], researchers aim to propose estimators and
testers that can mitigate the negative effects of outliers (similar to OOD data). The proposed estimators
are supposed to be independent of the potentially high dimensionality of the data [61, 62, 63]. Existing
works [64, 65, 66] in the field have identified and resolved the statistical limits of outlier robust
statistics by constructing estimators and proving impossibility results. In the future, it is a promising
and interesting research direction to study the robustness of OOD detection based on robust statistics.

PQ Learning Theory. Under some conditions, PQ learning theory [67, 68] can be regarded as the
PAC theory for OOD detection in the semi-supervised or transductive learning cases, i.e., test data
are required during training. Besides, [67, 68] aim to give the PAC estimation under Realizability
Assumption [21]. Our theory does not only study the PAC estimation in the realization cases, but also
studies the other cases, which are more difficult than PAC theory under Realizability Assumption.

9 Conclusions and Future Works

Detecting OOD data has shown its significance in improving the reliability of machine learning.
However, very few works discuss OOD detection in theory, which hinders real-world applications
of OOD detection algorithms. In this paper, we are the first to provide the PAC theory for OOD
detection. Our results imply that we cannot expect a universally consistent algorithm to handle all
scenarios in OOD detection. Yet, it is still possible to make OOD detection learnable in certain
scenarios. For example, when we design OOD detection algorithms, we normally only have finite ID
datasets. In this real scenario, Theorem 8 provides a necessary and sufficient condition for the success
of OOD detection. Our theory reveals many necessary and sufficient conditions for the learnability of
OOD detection, hence opening a door to studying the learnability of OOD detection. In the future,
we will focus on studying the robustness of OOD detection based on robust statistics [64, 69].
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(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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