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ABSTRACT

Instead of training deep neural networks offline with a large static dataset, con-
tinual learning (CL) considers a new learning paradigm, which continually trains
the deep networks from a non-stationary data stream on the fly. Despite the re-
cent progress, continual learning remains an open challenge. Many CL techniques
still require offline training of large batches of data chunks (i.e., tasks) over mul-
tiple epochs. Conventional wisdom holds that online continual learning, which
assumes single-pass data, is strictly harder than offline continual learning, due
to the combined challenges of catastrophic forgetting and underfitting within a
single training epoch. Here, we challenge this assumption by empirically demon-
strating that online CL can match or exceed the performance of its offline coun-
terpart given equivalent memory and computational resources. This finding is fur-
ther verified across different CL approaches and benchmarks. Conceptually, we
demonstrate that online and offline CL follow the same underlying algorithmic
framework when provided with equivalent memory and computational budgets.
The sole difference lies in the space allocation hyperparameter α = Mshort/M ,
which controls the amount of space reserved for recent samples. Theoretically, we
show that a smaller α yields a lower generalization bound, explaining the superior
performance of online CL.

1 INTRODUCTION

Deep neural networks have achieved remarkable performance in many applications, yet learn very
differently than biological brains. Humans acquire knowledge continually from varied experiences,
gradually mastering new skills over a lifetime without forgetting old ones. In contrast, deep learning
algorithms are typically trained via a static paradigm - given a fixed dataset, models are trained for
multiple epochs over shuffled datasets to converge. This learning paradigm assumes the availability
of all training data upfront and its independent and identically distributed (IID) nature. However, in
many real-world applications, data arrives continuously as an infinite data stream and is not static.
Incorporating new information from such streams into neural networks is often a destructive process
that catastrophically interferes with or erases previously learned representations, known as catas-
trophic forgetting (French, 1999; Delange et al., 2021). One way to avoid catastrophic forgetting
is to naively retrain the model from scratch on cumulative data whenever new data arrives, which
can result in unsustainable storage and computation costs. The field of continual learning (CL), also
known as lifelong learning, aims to overcome this challenge by developing specialized algorithms
and architectures for non-stationary environments with limited memory and computation resources.

The general goal of continual learning is to learn efficiently from an infinite data stream, where
the data distribution may change gradually or abruptly at any time. Due to the challenge of non-
stationary data streams, several practical CL settings have been designed with simplifying assump-
tions. One common assumption is that the data stream consists of sequential tasks, with each period
of consistent data distribution considered as a task. Many techniques developed in these settings
require multiple passes or epochs over the task data (Delange et al., 2021; Masana et al., 2022) as-
suming that the task boundaries are known. This is referred to as offline continual learning. While
these methods have shown promising results in mitigating forgetting, assuming clear task divisions
and the knowledge of task switches limits their applicability to real-world continual learning. An-
other, more general, setting is online continual learning, also known as task-free continual learning,
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which operates fully incrementally on the fly as data streams in. Each sample or mini-batch is ob-
served only once, precluding offline training. A typical online CL method is Experience Replay
(ER) (Mai et al., 2022; Chaudhry et al., 2019). In ER, an incoming batch from the data stream is
concatenated with a batch of exemplars for gradient updates. This setting aligns well with practical
continual learning desiderata (Delange et al., 2021) and has gained increasing attention. However,
one common belief is that online continual learning is more challenging than offline CL (refer to
Mai et al. (2022) for an empirical survey for online CL and Masana et al. (2022) for offline CL).
The combined challenges of catastrophic forgetting and the inability to fully adapt to each task in
one pass are believed to limit the performance of online methods. As mentioned in Buzzega et al.
(2020), “Despite being interested in an online scenario, with no additional passages on the data,
we reckon it is necessary to set the number of epochs per task in relation to the dataset complexity.”.

Upon reviewing the current practices in the CL community, we find that offline CL generally de-
mands higher memory and computational resources compared to online CL. Specifically, offline CL
algorithms typically use an epoch number of 70-200, while most online CL methods only use a
single iteration for each incoming batch (I = 1), and some recent works (Zhang et al., 2022; Soutif-
Cormerais et al., 2023) consider I = 3, 9, 10. In terms of memory usage, both online and offline CL
works mainly focus on the cost of exemplar samples. However, apart from historical exemplars, new
task samples also exist within the memory-constrained operational space. Offline CL necessitates
large additional space to store the task samples, whereas online CL only requires a small space for
new incoming batch.

Under the aligned memory and computation framework, we systematically compare online and of-
fline CL across various data stream sizes, task sizes, datasets, and CL algorithms. Interestingly, we
find applying the same CL methods (e.g. ER, SCR, iCaRL, DER++) in an online manner consis-
tently leads to better performance than in an offline manner.

From a conceptual perspective, we revisit online and offline CL with an aligned memory budget.
Fundamentally, they both maintain a First-In-First-Out (FIFO) buffer to store recent samples while
using another mechanism (e.g. reservoir sampling) to store a subset of previous non-recent samples.
Specifically, online CL uses a FIFO buffer of size equal to the batch size B to store recent samples.
Offline CL uses a buffer of size equal to the task size C. This reveals an underlying connection
- online and offline CL follow the same framework but differ in how much space α = Mshort/M
they allocate to store recent samples. Intuitively, the choice of α relates to the stability-plasticity
tradeoff in CL: higher α enhances plasticity but reduces stability. We investigate the effectiveness
of semi-online cases with B < Mshort < C that are currently unexplored in the literature. We find,
perhaps surprisingly, that pure online CL still outperforms these semi-online choices.

To better understand this phenomenon, we derive a generalization bound for CL based on discrep-
ancy distance and total memory budget. This bound suggests better generalization for smaller α,
explaining the superior performance of online CL. Additionally, we conduct further analysis and
experiments that confirm the benefits of a small α persist across various continual learning scenar-
ios. Specifically, we find that online CL provides increasing gains over offline CL given longer
input streams, smaller memory budgets, and larger task sizes. We hope that the unexpected finding
presented in this paper will raise awareness in the CL community, encouraging the development
and evaluation of CL techniques in online task-free settings, and pushing the field towards general
continual learning.

Our contributions are as follows. First, we compare online and offline continual learning under
aligned memory and computation budgets and empirically demonstrate the effectiveness of the for-
mer. Second, we introduce a unified framework showing online and offline CL are the variants of
the same algorithm only differ in storage allocation parameters. Third, we highlight the importance
of storage allocation parameters on CL performance. Four, we provide a theoretical study on the
generalization bound of online and offline CL, corroborating our experiment findings.

2 RELATED WORK

Continual learning settings. General continual learning (Delange et al., 2021; Buzzega et al., 2020)
is an ideal scheme for learning from an infinite data stream, with desiderata like constant memory,
online learning, no task boundaries, no task labels, and graceful forgetting. Various relaxations exist
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with different assumptions. Early work focused on task-incremental settings (Mallya & Lazebnik,
2018; Serra et al., 2018) that assume access to task labels during training/testing. Despite promising
results, relying on a task oracle is impractical. Recent class-incremental and domain-incremental
learning approaches remove this assumption and try to learn cross-task knowledge and mitigate
forgetting (Mirza et al., 2022; Masana et al., 2022; Van de Ven & Tolias, 2019). Nevertheless, these
methods still require the knowledge of task boundaries to allow multi-epoch training over tasks.
Online continual learning paradigm (Chaudhry et al., 2019; Aljundi et al., 2019; Mai et al., 2022)
eliminates task boundary assumptions, performing single-pass learning over streams.

Continual learning techniques. Continual learning algorithms address catastrophic forgetting in
three main ways: Rehearsal-based methods (Chaudhry et al., 2019; Aljundi et al., 2019) store and
replay past samples to mitigate forgetting; Regularization-based methods (Rebuffi et al., 2017; Li
& Hoiem, 2017) use regularization losses to encourage retention of past knowledge; Architecture-
based methods (Mallya & Lazebnik, 2018; Serra et al., 2018) separate parameters for different tasks
to avoid interference.

Theoretical study in continual learning. There are several theoretical studies in continual learn-
ing. Some works consider the linear approximation of the neural network around its initialisation
and formulate CL as a recursive Kernel Regression. Under this framework, Doan et al. (2021) the-
oretically compared SGD and orthogonal gradient descent and Karakida & Akaho (2021) analyzed
learning curves. Several other works (Peng et al., 2023; Doan et al., 2021) provide more general
analysis with PAC-Bayes bounds but primarily focus on offline sequential tasks. Pentina & Lampert
(2014) proposes a PAC-Bayesian framework to provide a learning bound on expected error in future
tasks. Peng et al. (2023) constructs an ideal continual learner framework and derives generaliza-
tion bounds for rehearsal in offline CL setting. The most similar work to ours is Ye & Bors (2022),
which also derives a generalization bound based on discrepancy distance and Rademacher Complex-
ity. However, Ye & Bors (2022) focuses solely on online CL and proposed to reduce discrepancy via
parameter isolation. Our analysis unifies online and offline CL and reveals the influence of memory
allocation on the generalization capability in continual learning.

3 A COMPARATIVE STUDY OF ONLINE AND OFFLINE CONTINUAL LEARNING

3.1 PROBLEM SETTING

Online and offline continual learning have been studied as separate research areas. We formalize the
problem settings and terminology to describe the two paradigms as follows.

Definition 1 (General Continual learning). Given a non-stationary (potentially infinite) stream of
data Dt = ∪tXt: at each time step t, a continual learning algorithm A receives an incoming batch
of data samples Xt = {xi, yi}i=1,..,|Xt| that are drawn from the current data distribution Pt(x, y).
The goal is to minimize the empirical risk on all the data seen so far:

min
θ
R(θ) = min

θ

1∑
t |Xt|

∑
t

∑
x,y∈Xt

L (f(x; θ), y) .
= min

θ
L(∪tXt; θ). (1)

with a loss function L, a CL network function f : x→ y, and its associated parameters θ.

Definition 2 (Sequential tasks). Consider a sequential partition G of data steams Dt which satisfies
∪C∈GC = Dt and Ci ∩ Cj = ∅ for any Ci, Cj ∈ G with i ̸= j. The boundary of consecutive task
Ci and Ci+1 is denoted by the timestamp Ti ∈ [0, t], and Ti > Tj , for any i > i.

While online continual learning deals with data streams Dt = ∪tXt directly to solve the general
continual learning problem in Definition 1, offline continual learning deals with a set of tasks and
aims to maximize performance on all the tasks seen. Formally, we defined the transformation from
data streams Dt to sequential tasks Ci in Definition 2. Each task data can be denoted as Ci =
∪t∈[Ti,Ti+1]Xt. The data distribution within a task is assumed to be static and is denoted by PCi

.

Definition 3 (Exemplars). Given a bounded exemplar space M , a stream of dataDt = ∪tXt (|M | <
|D|), and sample selection policy π: at each time step t, an online exemplar management algorithm
takes in parts of the incoming batch into the memory and ejects some of the previous data Mt ⊂π

Mt−1 ∪Xt; at each task i, an offline exemplar management algorithm takes in parts of the task data
into the memory and ejects some of the previous data Mi ⊂π Mi−1 ∪ Ci.
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When the exemplar space is sufficiently large to store all past data (i.e., |M | > |D|), the non-
stationary data issue can be solved by storing all the data and performing offline training over shuf-
fled batches. This is often regarded as the upper bound of continual learning performance. Therefore,
continual learning considers the situation of infinite data streams with a bounded memory budget
(i.e. |M | ≪ |D|). Only a subset of data stream samples can be selected to be memorized. The
stored exemplars can be trained alongside the incoming samples to alleviate forgetting, as shown in
Eq 3 and Eq 2. This is referred to as rehearsal or experience replay. A simple yet effective sample
selection strategy is reservoir sampling (Vitter, 1985), which randomly selects a sample of k items
from a larger population of unknown or very large size. Some CL works consider the case ofM = ∅
and only perform training on the incoming data, termed rehearsal-free CL.

Definition 4 (Offline continual learning). Given a data stream with task boundary Dt = ∪iCi, an
exemplar setM, and a loss function Lθ, the gradient-based update rule in offline continual learning
is defined as:

θ ← θ − η∇L(BCi
∪ BM ; θ),where BCi

∼ Ci,BM ∼M. (2)

Definition 5 (Online continual learning). Given a data stream Dt = ∪tXt, an exemplar setM and
a loss function Lθ, the gradient-based update rule in online continual learning is defined as:

θ ← θ − η∇L(Xt ∪ BM ; θ), where BM ∼M. (3)

Regarding the choice of objective function Lθ in continual learning, the simplest method is to di-
rectly apply standard loss functions from the IID setting, such as using cross-entropy loss for classi-
fication. In addition, many continual learning approaches also develop new loss functions to address
catastrophic forgetting. One common technique is to use knowledge distillation, which involves
adding a regularization loss term to explicitly preserve past knowledge (Li & Hoiem, 2017; Hou
et al., 2019; Boschini et al., 2022).

3.2 HOW TO FAIRLY COMPARE ONLINE AND OFFLINE CONTINUAL LEARNING

Computational cost. Given epoch number E and a task Ci with a batch size of B, the number of
gradient updates during offline CL on a task is O( |Ci|

B ×E). In contrast, online rehearsal employs a
single epoch setting. To deal with the challenge of underfitting in the single epoch setting, (Zhang
et al., 2022) proposes to perform multiple gradient iterations for each incoming batch using Eq 3.
Notably, with an iteration number I > 1, the same incoming batch Xt is reused in consecutive
gradient updates. Since the memory batch is sampled from memory at each gradient update and
only the incoming batch is reused, we called this partially biased SGD. Given an iteration number
I for each incoming batch and a data stream with a batch size of B, the number of gradient updates
during online rehearsal on a task is O( |Dt|

B × I).

Memory cost. Apart from storing exemplars, offline continual learning also requires storing the
whole task data for multi-pass training. Thus, the memory cost is O(|Moffline|+ |Ci|). In compar-
ison, online CL does not store any task data and the memory cost is O(|Monline|).
Space and compute complexity are highly important to continual learning. To enable a fair com-
parison between online and offline CL, we examine their performance under aligned memory and
computational costs, formally defined as follows.

Definition 6 (Aligned online and offline CL). Given a data stream and its task boundaries, consider
an online continual learning algorithmAonline that performs gradient update Eq. 3 on a loss function
Lθ for I iterations per incoming batch and an offline continual learning algorithm Aoffline that
performs gradient update Eq. 2 on the same loss function Lθ for E epochs per task. Aonline and
Aoffline are aligned when E = I and |Monline| = |Ci|+ |Moffline|.

3.3 MAIN FINDING

Align computation only. We first investigate the effect of aligning computation only. Experiment
setup can be found in Appendix C. Fig 1 shows when the iteration number is increased from 1 to
100, the performance of online ER is increased significantly. More interestingly, it becomes very
close to the performance of offline ER, despite the fact online ER uses a much smaller memory
budget: online-align-compute: 2064 samples (2k+64) and offline: 7000 samples (2k+5k)!
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(a) Split-CIFAR100 (b) Split-MINI-ImageNet

Figure 1: Comparison of online and offline ER with aligned memory and computational cost. When
aligning the iteration only, online ER achieves similar performance to its offline counterpart despite
it requiring much smaller storage cost: offline 7k (2k+5k), online-align-iter 2.064k (2k+64). When
aligning both the memory and iteration, online ER (7k) outperforms offline ER (7k) by a large
margin.

(a) Unified CL (b) Online-offline interpolation

Figure 2: (a) Unified continual learning: online and offline CL are two special cases with Mshort

equal to batch size in the online case and Mshort equal to task size in the offline case. (b) Perfor-
mance results for a continuum of online and offline rehearsal, with online CL achieving the best
performance.

Align memory and computation. With a total memory budget of 7k, Fig. 1 shows that online ER
substantially outperforms offline ER under aligned iterations. This phenomenon is also observed in
additional experiments on ImageNet (see Appendix D).

Stability and plasticity. Intuitively, for a given memory budget, online continual learning reserves
more space to store past exemplars than offline continual learning, reducing forgetting. However,
compared to unbiased SGD over multiple epochs in offline continual learning, the repeated usage of
partially biased SGD in online continual learning may hamper learning efficacy on the current task,
reducing plasticity. Thus, the comparison between aligned online and offline continual learning
can be viewed as a tradeoff between stability and plasticity, with online continual learning trading
plasticity for enhanced stability, and vice versa for offline continual learning.

Important open questions remain: 1) Why does online continual learning achieve a better stability-
plasticity tradeoff than offline continual learning? 2) Does this online continual learning advantage
persist across different problem settings with varying task and data stream sizes? 3) Is there a “sweet
spot” between online and offline continual learning that optimizes the stability-plasticity tradeoff?
We explore these questions in Sections 4 and 5.

4 A UNIFIED PERSPECTIVE OF ONLINE AND OFFLINE CONTINUAL
LEARNING

4.1 UNIFIED CONTINUAL LEARNING

We revisit online and offline CL with aligned memory and computation, revealing that these
two are the variants of the exact same algorithm with only difference in the storage allocated
for the short-term memory. More specifically, we define a unified continual learning framework
UCL(Mshort,M) (see definition 7). Given a total memory budget M , UCL maintains two mem-
ory buffers: a First-In-First-Our (FIFO) short-term memory to store Mshort recent samples, and a
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long-term memory of size M −Mshort which stores a representative subset of samples excluding
the Mshort recent ones. When the short-term memory is as large as the task size Ci, UCL(Ci,M)
is exactly offline CL. When the short-term memory is as large as the batch size B, UCL(B,M) is
online CL. Other special cases include IID training (Mshort = M = |Dt|) and rehearsal-free CL
(Mshort = M = |Ci|).
Definition 7 (Unified continual learning, UCL(Mshort,M)). Given a data stream Dt = ∪tXt, a
loss function Lθ, and a total memory budget M = |Mlong|+ |Mshort|. A short-term memoryMshort
uses a FIFO sliding window over the Mshort most recent batches, storing all samples: Mshort =
∪t−Mshort+1,...,tXt. A long-term memoryMlong uses reservoir sampling to store a subset of the full
data stream excluding the N recent batches: Mlong =⊂rs ∪1,...,t−Mshort

Xt. The gradient-based
update rule is defined as:

θ ← θ − η∇L(Blong ∪ Bshort; θ), where Blong ∼Mlong, Bshort ∼Mshort. (4)

The training procedure of unified continual learning is outlined in Algorithm 1, with three key de-
tails: a) Instead of directly taking the incoming data stream batches,Mlong processes ejected sam-
ples fromMshort (line 18). b) Training begins only onceMshort is full (lines 12-13), compensating
withMshort × I iterations initially (lines 15-16). c)Mshort is emptied at the start of each new task,
accommodating the offline CL approach. Ejected samples are then fed intoMlong (lines 7-10).

4.2 STORAGE ALLOCATION POLICY

Storage allocation policy. Consider the unified continual learning framework with a total storage
space M . An interesting question is how to allocate the space between short-term memory and long-
term memory. We denote the storage allocation policy by a hyperparameter α = Mshort

M , which is
the fraction of space allocated by the short-term memory.

Semi-online CL. Given the batch size B and task size C of the data stream, online CL always uses
α = B

M and offline CL always uses α = C
M . However, there is a wide range in between that has

not been explored in the current practice of the field. Intuitively, α is related to the tradeoff between
stability and plasticity. Saving more recent samples (higher α) leads to better plasticity but worse
stability and vice versa. For different CL problems and algorithms, this parameter of α can be tuned
to find the one that works best. Fig 2 (b) shows the performance for a continuum of online and
offline CL. Surprisingly, as α decreases, performance monotonically increases, achieving maximal
accuracy with online CL. This experiment implies that online CL achieves the best performance
along the online-offline continuum.

5 THEORETICAL ANALYSIS

5.1 GENERALIZATION BOUND

This section provides an analysis of the generalization error using the unified framework. To capture
the influence of the non-stationary data distribution in continual learning, we leverage the concept
of discrepancy distance from the transfer learning literature (Mansour et al., 2009). Discrepancy
distance measures the distance between two distributions over a loss function L.

Definition 8 (Discrepancy distance). Let H be a set of functions mapping X to Y and let L :
Y × Y → R+ define a loss function over Y . The discrepancy distance between two distributions
Q1 and Q2 over X is defined by

discL (Q1, Q2)
.
= max

h,h′∈H
|LQ1 (h

′, h)− LQ2 (h
′, h)| .

where the expected loss of two functions over a distribution is denoted as LQ(f, g)
.
=

Ex∼Q[L(f(x), g(x))].

Let D and M denote the expected probability distributions of the data stream and the stored
samples respectively. Let M̂ denote the empirical distribution of stored samples with a finite
sample size of M . The true labeling function is defined as hy . Given the optimal solutions
h∗
M

.
= argminh∈H LM (h, hy) and h∗

D
.
= argminh∈H LD (h, hy), we present the generalization
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Algorithm 1: Unified continual learning UCL(Mshort,M) (using ER as an example)
// M is the total space budget of Mlong ∪Mshort

// Mshort ∈ (batch size,task size)
1 function TrainingEpochER(I,θ,Mshort,Mlong)
2 for i = 1,...,I do
3 Blong ∼Mlong ,Bshort ∼Mshort

4 θ ← θ − η∇L(Bshort ∪ Blong; θ)
5 return θ

6 function Unifed Continual Learning(Xt,θ,Mshort,Mlong,n)
// n is current sample numbers in Mshort

7 if Xt is a task boundary then
8 Mlong← ReservoirSampling(Mlong,Mshort)
9 Mshort ← ∅

10 n← 0

11 Mshort,Xeject←SlidingWindow(Mshort,Xt)
12 ifMshort is not full then
13 n← n+ 1

14 else
15 if Xeject == ∅ then
16 θ ←TrainingEpochER(K × n,θ,Mshort,Mlong)

17 else
18 Mlong ← ReservoirSampling(Mlong,Xeject)
19 θ ← TrainingEpochER(K,θ,Mshort,Mlong)

20 return θ,Mshort,Mlong,n

bound during the long-short-term continual learning in Theorem 1. The proof is based on theorem
8 and proposition 2 in Mansour et al. (2009) (see Appendix A.1 for more details.)

Theorem 1 (Generalization bound). Let H be a hypothesis set bounded by some A0 > 0 for the
loss function L : L(h, h′) ≤ A0, for all h, h′ ∈ H . Assume that the loss function L is symmetric
and obeys the triangle inequality. Then, for any h ∈ H and any δ > 0, with probability at least
1− δ, the following generalization bound holds:

LD(h, hy) ≤ LM̂(h, h
∗
M) + ℜ̂M(H) + 3A0

√
log 2

δ

2M
+ discL(D,M) + LM(h

∗
M, h

∗
D) + LD(h

∗
D, hy),

(5)
where ℜ̂M(H) is the empirical Rademacher complexity of a hypothesis set H over a sample setM.

Considering the high expressive capacity of deep networks, we can assume the expected losses
LM(h

∗
M, h

∗
D) and LD(h

∗
D, hy) are approximately zero. A key conclusion from Theorem 1 is that the

generalization bound will be determined by the discrepancy distance discL(D,M) between the true
data stream distribution D and the expected distribution M of the stored memory samples. Crucially,
minimizing discrepancy distance discL(D,M) leads to a lower generalization bound.

5.2 OPTIMAL STORAGE ALLOCATION POLICY

To reduce the discrepancy distance discL(D,M), we investigate the influence of storage allocation
policies. More specifically, we examine the effect of α on the discrepancy distance in Proposition 1.

Proposition 1. Assume P+ denotes the true probability distribution of the most recent task Ci and
P− denotes the true data distribution of all past tasks ∪1,...,i−1C. Given the number of samples
seen in the data stream N =

∑
t |Xt| and the number of samples seen in the previous tasks N− =
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Figure 3: Performance difference between online and offline rehearsal in different problem settings:
the online-offline performance gap becomes larger with longer data stream sequence N , smaller
storage budget M , and larger task data size C.

∑k=i−1
k=1 |Ck|, we have:

discL(D,M;α) =

(
N−

N
− (1− α)N−

N − αM

)
discL(P−,P+). (6)

Full proof is presented in Appendix A.2.

Proposition 1 characterizes how the discrepancy distance discL(D,M) qualitatively depends on task
similarity P− and P+, loss function L, and storage allocation factor α. In the IID setting (i.e.
P− = P+) or with a loss that leads to discL(P−,P+) = 0, we have discL(D,M) = 0 regardless
of α. However, when discL(D,M) ̸= 0, the storage allocation factor α has a non-trivial effect.
Combining Proposition 1 and Theorem 1 reveals the interplay between memory allocation, task
similarity, and generalization capability in continual learning. In particular, when tasks are dissimilar
and the loss cannot trivially minimize discrepancies, the allocation of storage between short-term
and long-term memory impacts generalization performance. This implies the storage strategy is an
important factor in continual learning when facing non-stationary data.

Corollary 1. When discL(P−,P+) ̸= 0, the discrepancy distance discL(D,M;α) is minimized
when α is minimal

argmin
α

discL(D,M;α) = αmin =
B

M
.

Proof. When N > M and discL(P−,P+) > 0, we have ∇α discL(D,M;α) =
N−(N−M)
(N−αM)2 discL(P−,P+) > 0,∀α ∈ [ BM , C

M ].

Corollary 1 shows that the optimal storage allocation strategy is to minimize the short-term memory,
i.e. online CL. This leads to a lower generalization bound. Our analysis provides a theoretical
explanation for the empirical finding that online CL achieves the best performance along the online-
offline continuum (Fig. 2).

5.3 COMPARISON OF ONLINE AND OFFLINE CL IN DIFFERENT PROBLEM SETTINGS

This section examines the effectiveness of online and offline continual learning under different prob-
lem settings and studies what types of CL problems benefit most from online approaches.

Corollary 2. Given the data steam size N with a batch size of B, a memory budget M , the data size
of the most recent task C, the gap between the online and offline generalization bounds is:

RL(N,M,C)
.
= discL(D,Moffline)− discL(D,Monline) =

C −B

N −B
× N −M

M
discL(P−,P+).

(7)
Corollary 2 reveals three key insights into the factors affecting the online versus offline rehearsal
gap: 1) The advantage of online rehearsal increases as more data arrives (∂RL/∂N > 0); 2) The
gap diminishes with larger memory (∂RL/∂M < 0), converging as M → N . 3) Online rehearsal
becomes more crucial as task size grows relative to stream frequency (∂RL/∂C > 0).

We verify these dependencies empirically on Split-CIFAR100. Fig. 3 demonstrates that the online
advantage expands when more data is seen, memory is limited, and tasks are larger, aligning with
the theoretical results.
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Table 1: Accuracy of aligned online and offline continual learning methods with 50 itera-
tions/epochs. Offline CL always uses 2k exemplar. The exemplars of online is 2k + task size-batch
size. αonline = batch size/memory budget and αoffline = task size/memory budget.

ER ICARL DER++ SCR

S-CIFAR100-10 αOFFLINE : 28.6% 39.8 ± 0.7 47.7 ± 0.4 45.0 ± 1.7 47.2 ± 0.6
αONLINE : 0.9% 52.7 ± 0.8 49.7 ± 0.3 55.6 ± 1.0 56.3 ± 0.1

S-MINI-IMAGENET-10 αOFFLINE : 28.6% 31.9 ± 2.8 37.6 ± 1.8 23.1 ± 4.1 45.6 ± 0.1
αONLINE : 0.9% 43.9 ± 3.4 41.3 ± 2.6 42.0 ±4.8 51.3 ± 0.5

S-CORE-9 αOFFLINE : 85.7% 40.1 ± 2.4 45.8 ± 1.6 22.9 ± 4.4 62.1 ± 1.3
αONLINE : 0.0% 50.7 ± 1.7 50.1 ± 1.6 46.7 ± 2.6 69.7 ± 0.3

Figure 4: Online and offline comparison with CL algorithms.

6 ADDITIONAL EXPERIMENTS

Knowledge distillation. To reduce forgetting, many CL techniques leverage knowledge distilla-
tion to construct a regularization loss, appointing a past model as the teacher and current model
as the student (Li & Hoiem, 2017; Rebuffi et al., 2017; Buzzega et al., 2020; Hinton et al., 2015).
We investigate the interplay between storage allocation parameters with the knowledge distillation
mechanism using iCaRL (Rebuffi et al., 2017) and DER++ (Buzzega et al., 2020)). Table 1 shows
using a smaller storage allocation parameter α leads to performance improvement for both iCaRL
and DER++ for three datasets, although the performance boost seems to be smaller in iCaRL.

Contrastive learning. Some recent works (Cha et al., 2021; Mai et al., 2021; Khosla et al., 2020)
apply contrastive learning to mitigate forgetting and achieve state-of-the-art performance in both
online and offline CL fields. We replace cross-entropy with contrastive loss and demonstrate that
the storage allocation parameter also plays an important role when using a small α leads to better
performance for SCR algorithm.

Zero short-term memory. In addition to online and offline CL, we considered the extreme case
of having zero short-term memory, as explored in the Gdumb baseline (Prabhu et al., 2020). Our
generalization analysis shows that zero short memory results in a lower bound than non-zero cases,
providing some insight into Gdumb’s strong performance. However, zero short-term memory leads
to a significantly different training procedure compared to non-zero Mshort. Specifically, with non-
zero Mshort, the model trains on each incoming batch before discarding it, regardless of Mshort’s
size. With zero Mshort, incoming data goes straight into long-term memory via reservoir sampling,
without model training. We conducted additional experiments with zero Mshort and found it un-
derperforms small non-zero Mshort (e.g. online ER 52.7% vs zero-ER 50.3%, online SCR 56.3%
vs. zero-SCR 52.5%). Therefore, when considering zero Mshort, it is important to account for the
alterations to the training procedure compared to standard continual learning systems.

7 CONCLUSION

Many continual learning techniques are applied offline in a task-based manner. Conventional wis-
dom holds that these methods may fail when applied in an online manner due to catastrophic forget-
ting and underfitting from single-pass data. This paper challenges that assumption by empirically
showing comparable or better performance for online task-free learning given equal memory and
computational resources. We corroborate these experiment findings by a systematical theoretical
construction showing online and offline CL can be unified via a long-short-term memory framework
and online CL yields better generalization bound. By fundamentally rethinking the comparison
between online and offline continual learning, we hope this work stimulates further research into
efficient lifelong learning algorithms capable of effectively mastering new skills over time.
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Limitations. This work examines rehearsal and regularization techniques for continual learning.
Other approaches, such as correcting task recency bias (Wu et al., 2019; Hou et al., 2019) or ex-
panding network capacity (Zhou et al., 2022; Yan et al., 2021), are not covered by our analysis.
Additionally, we assume random reservoir sampling for exemplar selection. Alternative strategies
to construct representative data summaries (Borsos et al., 2020; Bang et al., 2021) may interact
differently with the online-offline continuum, presenting another area for empirical analysis through
the proposed framework.
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A PROOFS

A.1 PROOF OF THEOREM 1

Proof. Based on triangle inequality and the definition of discrepancy distance (theorem 8 in Man-
sour et al. (2009))

LD(h, y) ≤ LD(h
∗
D, y) + LM(h, h

∗
M) + discL(D,M) + LM(h

∗
M, h

∗
D). (8)

Following the property of Rademacher Bound (proposition 2 in Mansour et al. (2009)), we have

LM(h, h
∗
M) ≤ LM̂(h, h

∗
M) + ℜ̂M(H) + 3C

√
log 2

δ

2M
(9)

Inserting Eq 9 into Eq 8 gives theorem 1.

A.2 PROOF OF PROPOSITION 1

Proof. Let γ .
= N−

N . Based on the definition of discrepancy distance, we have:

discL(D,M;α) = max
h,h′∈H

|γLP−(h′, h) + (1− γ)LP+(h′, h)

−
(
(1− α)LMlong

(h′, h) + αLMshort
(h′, h)

)
|

(10)

Since the long-term memory is managed by the reservoir sampling method and the short-term mem-
ory is managed by the sliding window method, and letting β

.
= N−

N−αM , we have LMlong
(h′, h) =

βLP−(h′, h)+ (1−β)LP+(h′, h) and LMshort
(h′, h) = LP+(h′, h). Inserting these two results into

Eq 10 gives:

discL(D,M;α) = max
h,h′∈H

|(γ − (1− α)β)) (LP+(h′, h)− LP−(h′, h)) |

= (γ − (1− α)β)) max
h,h′∈H

| (LP+(h′, h)− LP−(h′, h)) |
(11)

This last equality is based on the fact that γ − (1− α)β = αN−(N−M)
N(N−αM) > 0 when N > M .

B DATASET DETAILS

Table 2 lists the image size, the number of classes, the number of tasks, and data size per task of the
four CL benchmarks.
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Table 2: Dataset information for the four CL benchmarks.

IMAGE SIZE #TASK # CLASS TRAIN PER TASK TEST PER TASK

SPLIT-CIFAR100 3X32X32 10 100 5,000 500
SPLIT-MINI-IMAGENET 3X84X84 10 100 5,000 1,000
SPLIT-CORE50-NC 3X128X128 9 50 12,000 4,500
SPLIT-IMAGENET-1K 3X224X224 10 1000 ∼120,000 5000

C EXPERIMENT DETAILS

Experiment setup. We empirically compare aligned online and offline CL on two popular CL
benchmarks, Split-CIFAR100-10 and Split-Mini-ImageNet. Both consists of 10 tasks, with each
task containing 5000 images. For offline rehearsal, we allocate 2000 exemplars to the memory
buffer. Following Definition 6, the aligned online rehearsal setting reserves 7000 exemplars. We
evaluate four computation budgets defined by offline epoch count or online iteration count: 1, 10,
50, and 100. Cross-entropy loss is used in this experiment. Following Masana et al. (2022), all
experiments utilized ResNet-18 with a single head, standard data augmentation (random cropping
and flipping), and a batch size of 64. We report the end accuracy after completing all tasks.

Hyperparameters. The hyperparameter settings are summarized in Table 3. The regularization
strength in DER++ and temperature values in SCR follow original papers. Each training batch
contains 64 new samples and 64 memory samples. All models use vanilla SGD for optimization.
For iCaRL and SCR, a Nearest-Class-Mean (NCM) classifier is applied as in the original works.
The default iteration and epoch number is 50. We run all experiments across three random seeds.

Regarding the metrics, the performance of CL is measured by the end accuracy after training on all
tasks, defined as AT = 1

T

∑j=T
j=1 aT,j , where ai,j denotes the model’s accuracy on the held-out test

set of task j after training on task i. Other metrics are “forgetting” (Chaudhry et al., 2018), which is
defined as FT = − 1

T−1

∑T−1
i=1 (aT,i −maxl∈1...T−1 al,i) and the related metric “backward trans-

fer” (Lopez-Paz & Ranzato, 2017): BT = 1
T−1

∑T−1
i=1 aT,i − ai,i. And the stability and plasticity

is defined as follows Zhang et al. (2022):

AT =
1

T
ΣT

i=1ai,i︸ ︷︷ ︸
Plasticity

+
T − 1

T
BT︸ ︷︷ ︸

Stability

≥ 1

T
ΣT

i=1ai,i −
T − 1

T
FT .

Table 3: Hyperparameter setting.

HYPERPARAMETER

ER LR=0.1
ICARL LR=0.1,NCM CLASSIFIER
SCR TEMP =0.07, LR=0.1, NCM CLASSIFIER
DER ++ α = 0.1, β = 0.5,lr = 0.03 (CIFAR100)

α = 0.3 β = 0.8,lr = 0.1 (MINI-IMAGENET)
α = 0.1, β = 1.0,lr = 0.1 (CORE50)

D ADDITIONAL EXPERIMENT RESULTS

Additional experiment results on Split-Mini-ImageNet100-10 is shown in Fig D and the experiment
result on Split-ImageNet1000-10 is shown in Table 4. Both experiments confirm the effectiveness
of online rehearsal over offline rehearsal.
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(a) Split-Cifar100 (b) Split-MiniImageNet

Figure 5: Stabiltiy and plasticity during online and offline ER with increasing iterations/Epochs.

Table 4: Accuracy of aligned online and offline continual learning methods in ImageNet1000 with
an incremental of 100 classes. Offline ER uses 20,000 exemplars and online ER uses 120,000
exemplars. Due to the computation time constraint, we report only the results of the first 500 classes.

100 CLASSES 200 CLASSES 300 CLASSES 400 CLASSES 500 CLASSES

ER OFFLINE 81.6 50.4 48.0 43.1 39.4
ER ONLINE 82.5 70.2 62.0 60.0 58.5
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