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ABSTRACT

It is widely known that state-of-the-art machine learning models — including vi-
sion and language models — can be seriously compromised by adversarial per-
turbations, so it is also increasingly relevant to develop capability to certify their
performance in the presence of the most effective adversarial attacks. Our pa-
per offers a new approach to certify the performance of machine learning models
in the presence of adversarial attacks, with population level risk guarantees. In
particular, given a specific attack, we introduce the notion of a (α, ζ) machine
learning model safety guarantee: this guarantee, which is supported by a testing
procedure based on the availability of a calibration set, entails one will only de-
clare that a machine learning model adversarial (population) risk is less than α
(i.e. the model is safe) given that the model adversarial (population) risk is higher
than α (i.e. the model is in fact unsafe), with probability less than ζ. We also
propose Bayesian optimization algorithms to determine very efficiently whether
or not a machine learning model is (α, ζ)-safe in the presence of an adversarial at-
tack, along with their statistical guarantees. We apply our framework to a range of
machine learning models — including various sizes of vision Transformer (ViT)
and ResNet models — impaired by a variety of adversarial attacks such as Au-
toAttack, SquareAttack and natural evolution strategy attack, in order to illustrate
the merit of our approach. Of particular relevance, we show that ViT’s are gener-
ally more robust to adversarial attacks than ResNets and ViT-large is more robust
than smaller models. Overall, our approach goes beyond existing empirical ad-
versarial risk based certification guarantees, paving the way to more effective AI
regulation based on rigorous (and provable) performance guarantees.

1 INTRODUCTION

With the development of increasingly capable autonomous machine learning systems and their use
in a range of domains from healthcare to banking and finance, education, and e-commerce, to name
just a few, policy makers across the world are in the process of formulating detailed regulatory
requirements that will apply to developers and operators of AI systems. The EU is at the forefront
of the drive to regulate AI systems. Proposals for an EU AI Act, an AI Liability Directive, and an
extension of the EU Product Liability Directive to AI systems and AI-enabled goods are at advanced
stages of the legislative process. Other jurisdictions, too, pursue a variety of regulatory initiatives. In
some countries, such as the United States and the UK, these initiatives consist so far mostly in high-
level principles designed to guide regulators in the interpretation and application of sector-specific
regulation to AI. In others, such as China, policy makers have adopted highly detailed regulations
that are often tailored to specific techniques, for example generative AI (Sheehan, 2023).

Where detailed regulation exists or has been proposed, as in the EU, it typically operates from two
angles. Some regulatory instruments establish ex ante and ongoing requirements that are a precon-
dition for the (continued) operation of an AI system. The proposed EU AI Act is a prime example
of this approach. Depending on the risk level of a system, it requires, for example, an assessment
of conformity with applicable standards, as well as compliance with risk management, testing, data
governance, transparency, and cybersecurity requirements. Other regulatory instruments, such as
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the proposed EU AI Liability Directive, seek to facilitate the recovery of damages if end users are
injured as a result of the operation of an AI system.

In both cases, regulation presupposes that it is technically possible to develop certification proce-
dures that can provide rigorous (provable) performance guarantees. The proposed AI Act requires
systems classified as “high risk” to have risk management systems capable of estimating and eval-
uating both “the risks that may emerge when the high-risk AI system is used in accordance with
its intended purpose and under conditions of reasonably foreseeable misuse” (Art. 9). The Act fur-
ther stipulates that high risk systems must “achieve an appropriate level of accuracy, robustness and
cybersecurity”, including where attempts are made by unauthorised third parties to alter the perfor-
mance of the system, i.e. where adversarial attacks occur (Art. 15(1), (4)). Levels of accuracy and
robustness must be measured and disclosed to users (Art. 15(2)). The AI Liability Directive sets out
rules for damages claims in the case of fault on the part of the developer of an AI system. While
the Directive does not provide a harmonised definition of fault, using state-of-the-art certification
procedures and disclosing performance guarantees to operators and end users will typically play a
key role in evaluating legal concepts like fault and negligence under national laws that govern this
question.

Developing certification procedures is not trivial due to the fact that state-of-the-art machine learn-
ing models are black-boxes that are poorly understood; furthermore, the standard train/validate/test
paradigm often lacks rigorous statistical guarantees, so it is a poor certification instrument. How-
ever, recent years have witnessed the introduction of various (promising) procedures, building on
recent advances in statistics, that can be used to endow black-box / complex state-of-the-art ma-
chine learning models with statistical guarantees (Bates et al., 2021; Angelopoulos et al., 2021;
Laufer-Goldshtein et al., 2023). For example, (Bates et al., 2021) have proposed a framework to
offer rigorous distribution-free error control of machine learning models for a variety of tasks. (An-
gelopoulos et al., 2021) have proposed a procedure (the Learn-then-Test framework), leveraging
multiple hypothesis testing techniques, to calibrate machine learning models so that their predic-
tions satisfy explicit, finite-sample statistical guarantees. Building upon the Learn-then-Test frame-
work, (Laufer-Goldshtein et al., 2023) introduce a procedure to identify machine learning model
risk-controlling configurations that also satisfy a variety of other objectives. Conformal prediction
techniques have also been proposed to quantify the reliability of the predictions of machine learning
models, e.g. (Angelopoulos & Bates, 2023).

Our paper builds on this line of research to offer an approach – PROSAC – to certify the robustness
of a machine learning model under adversarial attacks (Bruna et al., 2014; Chakraborty et al., 2018).
In particular, we also build upon hypothesis testing techniques akin to those in (Angelopoulos et al.,
2021; Laufer-Goldshtein et al., 2023) to determine whether or not a model is robust against a specific
adversarial attack. However, our approach differs from those in (Angelopoulos et al., 2021; Laufer-
Goldshtein et al., 2023) because we aim to guarantee the machine learning model is safe for any
attacker hyper-parameter configuration, rather than identify the machine learning model is safe for
at least one such hyper-parameter configuration.PROSAC is then used to benchmark a wide variety
of state-of-the-art machine learning models,such as vision Transformers (ViT) and ResNet models,
against a number of adversarial attacks, such as AutoAttack, SquareAttack and natural evolution
strategy attack, in vision tasks.

Contributions: Our main contributions are as follows:

• We propose PROSAC, a new framework to certify whether or not a machine learning
model is robust against a specific adversarial attack. Specifically, we propose an hypothe-
sis testing procedure underlying a notion of (α, ζ) machine learning model safety, entailing
(loosely) that the model adversarial risk is less than a (pre-specified) threshold α with a
(pre-specified) probability higher than ζ.

• We propose a Bayesian optimization algorithm — concretely, the (Improved) GP UCB
algorithm — to approximate the p-values associated with the underlying hypotheses testing
problems, with a number of queries that scales much slower than the number of hyper-
parameter configurations available to the attacker.

• We also demonstrate that – under a slightly more stringent testing procedure – the proposed
Bayesian optimization algorithm allows to rigorously certify (α, ζ) safety of a specific
machine learning model in the presence of a specific adversarial attack.
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• Finally, we offer a series of experiments elaborating about (α, ζ) safety of different machine
learning models in the presence of different adversarial attacks. Notably, our framework
reveals that ViTs are more robust to adversarial perturbations than ResNets, and that ViT-
large is more robust than smaller models.

Organization: Our paper is organized as follows: The following section briefly overviews related
work. Section 3 presents the problem statement, including the notion of (α, ζ) machine learning
model safety under a adversarial attack. Section 4 presents our procedure to certify (α, ζ) machine
learning model safety; it describes the algorithm to certify (α, ζ) machine learning model safety;
and it also presents its guarantees. Section 5 offers a number of experimental results to benchmark
(α, ζ) safety of various machine learning models under various attacks. Finally, we offer various
concluding remarks in Section 6. The proofs of the main technical results are relegated to the
Supplementary Material.

2 RELATED RESEARCH

Our work connects to various research directions in the literature as follows;

Adversarial Robustness Certification: There are three major approaches to certify the adversarial
robustness of machine learning models (Li et al., 2023): a) set propagation methods (Wong & Kolter,
2018; Wong et al., 2018; Gowal et al., 2018; 2019; Zhang et al., 2019); b) Lipschitz constant con-
trolling methods (Hein & Andriushchenko, 2017; Tsuzuku et al., 2018; Trockman & Kolter, 2020;
Leino et al., 2021; Zhang et al., 2021; Xu et al., 2022); and c) randomized smoothing techniques
(Cohen et al., 2019; Lecuyer et al., 2019; Salman et al., 2019; Carlini et al., 2023). Set propagation
approaches need access to the model architecture and parameters so that an input polytope can be
propagated from the input layer to the output layer to produce an upper bound for the worse-case
input perturbation. This approach however requires the model architecture to be able to propagate
sets, e.g. (Wong & Kolter, 2018) relies on RelU activation functions.Lipschitz constant controlling
approaches produce adversarial robustness certification by bounding local Lipschitz constants; how-
ever, these approaches are also limited to certain model architectures such as LipConvnet (Singla &
Feizi, 2021). In contrast, randomized smoothing (RS) represents a versatile certification methodol-
ogy free from model architectural constraints or model parameters access.Nonetheless, RS is limited
to certifying empirical risk of a machine learning model on pre-defined test datasets under l2-norm
bounded adversarial perturbations.Our certification framework shares RS’s versatility but a) it also
exhibits the ability to accommodate a diverse range of lp norm-based adversarial perturbations; b)
it is not restricted to particular model architectures; and c) it produces a certification for population
adversarial risk of the machine learning model.

Other Certification Approaches: There are also various other recent approaches to certify (audit)
machine learning models in relation to issues such as fairness / bias (Black et al., 2020; Xue et al.,
2020; Si et al., 2021; Taskesen et al., 2021; Chugg et al., 2023). For example, Black et al. (2020),
Xue et al. (2020), Taskesen et al. (2021) and Si et al. (2021) leverage hypothesis testing techniques
– coupled with optimal transport approaches – to test whether or not a model discriminates against
different demographic groups; Chugg et al. (2023) in turn leverages recent advances in (sequential)
hypothesis testing techniques – the “testing by betting” framework – to continuously test (moni-
tor) whether or not a model is fair. Our certification framework also leverages hypothesis testing
techniques, but the focus is on certifying for model adversarial robustness in lieu of model fairness.

Distribution-free uncertainty quantification: Our certification framework builds upon recent
work on distribution-free risk quantification, e.g. (Bates et al., 2021; Angelopoulos et al., 2021).
In particular, (Bates et al., 2021; Angelopoulos et al., 2021) seek to identify model hyper-parameter
configurations that offer a pre-specified level of risk control (under a variety of risk functions). See
also similar follow-up work in (Laufer-Goldshtein et al., 2023), (Quach et al., 2023). Our proposed
PROSAC framework departs from these existing frameworks since it seeks to offer risk guarantees
for a machine learning model in the presence of an adversarial attack: therefore, via the use of a
GP-UCB algorithm, it seeks to ascertain one can control the risk of the machine learning model in
the presence of the worst-case attacker hyper-parameter configuration.
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Attack Type Attack Method Hyperparameter Hyperparameter Selection

Black-box attack
NES (Ilyas et al., 2018)

λσ: forward step size of Gaussian sampling

λη: step size of input image updating
Empirical

SquareAttack (Andriushchenko et al., 2020) N.A. Default

White-box attack AutoAttack (Croce & Hein, 2020b) N.A. Default

Table 1: Representative Black-Box and White-Box attacks, their hyper-parameters, and the hyper-
parameter selection procedure. We test two black-box attacks (NES and SquareAttack) and one
white-box attack (Auto Attack) to showcase PROSAC’s efficacy.

3 PROBLEM STATEMENT

We consider how to certify the robustness of a (classification) machine learning model against spe-
cific adversarial attacks. We assume that we have access to a machine learning model M : X → Y
that maps features X ∈ X onto a (categorical) target Y ∈ Y where (X,Y ) are drawn from a
(unknown) distribution DX,Y . We also assume that this machine learning model has already been
optimized (trained) a priori to solve a specific multi-class classification task using a given training
set (hence, Y = {1, 2, . . . ,K}).

We consider that the machine learning model M is attacked by an adversarial attack AM : X×Y →
X that given a pair (X,Y ) ∈ X × Y (ideally) converts the original model input X ∈ X onto an
adversarial one X̃ ∈ X as follows:

X̃ = AM(X,Y ) = X + δ̃ = X + argmax
δ∈Bq

ϵ

L(M(X + δ), Y ), (1)

with the intent of maximizing the per-sample loss L associated with a given sample (X,Y ) ∈ X×Y ,
where Bq

ϵ is an lq norm bounded ball with radius ϵ (where ϵ measures the capability of the attacker).

In general, we can distinguish between white-box adversarial attacks, where the attacker has access
to the machine learning model architecture / parameters, and black-box ones, where the attacker
does not have access to the machine learning model details. 1

White-box attacks. The most widely used white-box attack is the projected gradient descent (PGD)
attack (Madry et al., 2018), where the attacker relies on the signed gradient of the loss with respect
to the input to update X̃ iteratively as follows:

X̃t+1 =
∏

X+Bϵ

[X̃t + λη · sign(∇XL(M(X̃t), Y ))], (2)

where t represents the t-th step of PGD iteration, λη is the step size of each update step, and X0 can
be set to be equal to the original image X or the original image plus some random noise. Note we
also project the result of each gradient update step onto a ℓq-ball with radius ϵ centered at X .

The hyperparameter λη is often selected heuristically based on a pre-specified dataset like ImageNet
(Deng et al., 2009), via random or grid search for instance. To circumvent the difficulty of hyper-
parameter search, AutoAttack (Croce & Hein, 2020b) has been proposed to automatically select
hyperparameters of PGD and fix hyperparameters of three other adversarial attacks, i.e., targeted
APGD-DLR (Croce & Hein, 2020b), targeted fast adaptive boundary attack (Croce & Hein, 2020a)
and Square Attack (Andriushchenko et al., 2020)) according to common practice, which has become
the standard benchmark in the field of white-box adversarial robustness.

Black-box attacks. There are generally two categories of black-box attacks: score-based (An-
driushchenko et al., 2020) and decision-based (Chen et al., 2020). The idea of score-based attack is
to approximate the gradient of the loss with respect to input using zero-order information since the
exact differentiation cannot be done without the knowledge of the model parameters. Natural evo-
lution strategy (NES) (Ilyas et al., 2018) is a widely used score-based attack involving two iterative

1Note that one needs knowledge of the model architecture / parameters to directly calculate the gradient
of the loss with respect to the input, in order to optimize the perturbation appearing in equation 1. White-box
attacks can indeed compute such a gradient directly, but black-box attacks rely on other approaches.
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steps that rely on two crucial hyperparameters, λσ and λη . In the first step of iteration t, we estimate
the gradient of the loss with respect to the input using the natural evolution strategy by relying on S
samples from a multi-variate Gaussian distribution, i.e.,

Gt =
1

2Sλσ

S∑
s=1

[LC&W (Xt+λσus, Y )− LC&W (Xt − λσus, Y )] · us, (3)

us ∼ N (0, I), (4)

where LC&W denotes C&W loss (Carlini & Wagner, 2017). In the second step of iteration t, we
update X̃ using the estimated gradient by relying on projected gradient descent with step size λη ,
i.e.

X̃t+1 =
∏

X+Bϵ

[X̃t + ληG
t]. (5)

The hyperparameters of NES attack are determined in a heuristic way (Ilyas et al., 2018). In this
work, we test our framework with two score-based attacks, NES and SquareAttack (Andriushchenko
et al., 2020). The SquareAttack has a hyperparameter that determines the initial value for the at-
tacked image, which is also empirically selected. We will be assuming in the sequel, where ap-
propriate, that that attacker draws its hyper-parameters configuration λ from a (finite) set of hyper-
parameter configurations Λ, where each hyper-parameter configuration is d-dimensional i.e. λ ∈ Rd

We summarize the adversarial attacks used in our experiments in Tab. 1.

In general, the various attacks are stochastic, i.e., in contrast with equation 1, the white-box and
black-box attacks in Table 1 do not deliver a deterministic perturbation δ̃ given fixed (X,Y ) (and
given fixed attack hyper-parameters) but rather a random one because the attacks also depend on
other random variables. Notably, the white-box PGD attack depends on the initialization X0; the
black-box NES attack also depends on the exact samples of the multi-variate Gaussian random
variables per iteration; likewise, other black-box attacks also depend on various random quantities
like box sampling in SquareAttack. Therefore, we will be representing in the sequel the adversarial
attacks as AM,Bq

ϵ ,λ(X,Y, Z) to emphasize that its operation also depends on a random object Z
drawn from a distribution DZ , a series of attack hyper-parameters λ = (λ1, · · · , λd) ∈ Λ, the
attack budget ϵ and norm q, and naturally the machine learning model M.

Therefore, given an adversarial attack AM,Bq
ϵ ,λ, we can characterize the performance of the machine

learning model using two quantities: the adversarial risk and the max adversarial risk. We define
the adversarial (population) risk induced by the attack AM,Bq

ϵ ,λon the model M as follows:

RAM,Bq
ϵ ,λ

(M) = E(X,Y,Z)∼DX,Y ×DZ

{
1[M(AM,Bq

ϵ ,λ(X,Y, Z)) ̸= Y ] · 1[M(X) = Y ]
}

(6)

and we define the max adversarial (population) risk induced by the attack AM,Bq
ϵ ,λ on the model

M independently of how the attacker chooses its hyper-parameters as follows:

R∗
AM,Bq

ϵ ,λ
(M) = max

λ∈Λ
E(X,Y,Z)∼DX,Y ×DZ

{
1[M(AM,Bq

ϵ ,λ(X,Y, Z)) ̸= Y ] · 1[M(X) = Y ]
}
(7)

where we use the 0-1 loss to measure the per-sample loss. 2 Note that the adversarial (population)
risk characterizes the performance of the machine learning model for a specific attack with a given
budget / norm, for a fixed hyper-parameters configuration, whereas the max adversarial (population)
risk characterizes the performance of the machine learning model for an attack with a given budget
/ norm, independently on how the attacker chooses its hyper-parameters configuration.

Our overarching goal is to ascertain whether the machine learning model is safe by establishing
whether the max (adversarial) population risk is below some threshold with high probability.
Definition 1. ((α, ζ)-Model Safety) Fix 0 ≤ α ≤ 1, 0 ≤ ζ ≤ 1. Then, we say that a machine
learning model M is (α, ζ)-safe under an adversarial attack AM,Bq

ϵ ,λ with fixed budget ϵ and norm
q, and for all attack hyper-parameters, provided that

P
(
reject R∗

AM,Bq
ϵ ,λ

(M) > α
∣∣ R∗

AM,Bq
ϵ ,λ

(M) > α is true
)
≤ ζ (8)

2This work concentrates primarily on classification problems with the 0-1 loss. However, our work readily
extends to other losses subject to some immediate modifications.
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We will see in the sequel this entails formulating an hypothesis testing problem where the null
hypothesis is associated with a max adversarial risk higher than α. Therefore, (α, ζ)-model safety
entails that we declare the model max adversarial risk is less than α when it is in fact higher than
α with probability smaller than ζ, or, more loosely speaking, the model max adversarial risk is less
than α with probability higher than 1− ζ

4 CERTIFICATION PROCEDURE

We now describe our proposed certification approach allowing us to establish (α, ζ)- safety of a
machine learning model in the presence of an adversarial attack.We will omit the dependency of the
adversarial risks on the model, the attack, and the attack parameters in order to simplify notation.
We will also omit that the attack depends on the model, its budget / norm, and the hyper-parameters.

4.1 PROCEDURE

Our procedure connects but also departs from a recent line of research relating to risk control in ma-
chine learning models, pursued by (Bates et al., 2021; Angelopoulos et al., 2021; Laufer-Goldshtein
et al., 2023) (see also references therein). In particular, (Bates et al., 2021; Angelopoulos et al., 2021;
Laufer-Goldshtein et al., 2023) offer a methodology to identify a set of model hyper-parameter con-
figurations that control the (statistical) risk of the machine learning model. However, we are not
interested in determining a set of attacker hyper-parameters guaranteeing risk control, but rather in
guaranteeing risk control independently on how the attacker chooses the hyper-parameters (since
the user cannot control how the attacker chooses the hyper-parameters).

Fix the machine learning model M Fix the adversarial attack A, the adversarial attack bud-
get ϵ, and the adversarial attack norm q. 3 We leverage – in line with (Bates et al., 2021;
Angelopoulos et al., 2021; Laufer-Goldshtein et al., 2023) – access to a calibration set S =
{(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} (independent of any training set) where the samples (Xi, Yi)
are drawn i.i.d. from the distribution DX,Y to construct our certification procedure.

Our certification procedure then involves the following sequence of steps:

• First, we set up an hypothesis testing problem where the null hypothesis is H0 : R∗ > α
or, equivalently, H0 : ∃ λ : R(λ) > α. 4

• Second, we leverage the calibration set (plus another set with a number of instances / ob-
jects characterizing the randomness of the attack) to determine a finite-sample p-value p∗

that can be used for accepting or rejecting the null hypothesis H0 : R∗ > α or, equivalently,
H0 : ∃ λ : R(λ) > α.

• Finally, we reject or accept the null hypothesis depending on whether or not the p-value p∗
is less than or greater than ζ, respectively.

This procedure allows us to immediately establish (α, ζ)- safety of the machine learning model M
in the presence of an adversarial attack A, in accordance with Definition 1.
Theorem 1. Let p∗ be a p-value associated with the hypothesis testing problem where the null
hypothesis is H0 : R∗ > α or, equivalently, H0 : ∃ λ : R(λ) > α. It follows immediately that the
machine learning model is (α, ζ)- safe, i.e.

P
(
reject R∗ > α

∣∣R∗ > α is true
)
≤ ζ (9)

We next show how to derive a p-value for our hypothesis testing problem where H0 : ∃ λ : R(λ) >
α from the p-values for the hypotheses testing problems where H0 : R(λ) > α, ∀ λ (see also
(Laufer-Goldshtein et al., 2023)). 5

3We do not consider the attack budget and norm to be hyper-parameters; indeed, it would not be possible to
control the risk where the adversary has the ability to choose any attack budget ϵ ∈ (0,∞)

4R∗ represents the max adversarial risk in equation 7 and R(λ) represents the adversarial risk in equation 6
where we emphasize it depends on the attacker hyper-parameters λ ∈ Λ.

5We emphasize the difference between the hypotheses testing problems. The hypothesis testing problem
with null H0 : ∃ λ : R(λ) > α tests whether the max adversarial risk is above α independently of the choice of
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Algorithm 1 GP-UCB for hyperparameter optimization

Input: Prior GP (0, k), parameters β.
for t = 1, 2, 3 . . . T do

Choose λt = argmax
λ∈Λ

µt−1(λ) + βσt−1(λ).

Observe reward p̂t = p(λt) + ϵt.
Perform update to get a new GP using the sampled point (λt, p̂t).

end for
return p̂T = 1/T

∑T
t=1 p̂t

Theorem 2. If p(λ) is a p-value associated with the null H0 : R(λ) > α then p∗ = maxλ∈Λ p(λ)
is a p-value associated with the null hypothesis H0 : ∃ λ,R(λ) > α.

Therefore, building upon Theorem 2, we can immediately determine a p-value for our hypothesis
testing problem.
Theorem 3. A (super-uniform) p-value associated with the null hypothesis H0 : ∃ λ,R(λ) > α is
given by:

p∗ = max
λ∈Λ

min
{
exp

(
−n · h1

(
R̂(λ) ∧ α, α

))
, e · P

(
Bin(n, α) ≤

⌈
n · R̂(λ)

⌉)}
(10)

where R̂(λ) represents the adversarial empirical risk induced by the attack A on model M given a
specific hyper-parameter configuration λ ∈ Λ i.e.

R̂(λ) =
1

n

n∑
i=1

1[M(A(Xi, Yi, Zi)) ̸= Yi] · 1[M(Xi) = Yi] (11)

where (again) S = {(X1, Y1), . . . , (Xn, Yn} is the set containing the calibration data, Z =
{Z1, . . . , Zn} is a set containing a series of random objects that capture the randomness of the
attack, and h1(a, b) = a · log(a/b) + (1− a) · log((1− a)/(1− b)).

4.2 ALGORITHM AND ITS GUARANTEES

Our procedure to establish (α, ζ)-safety of a learning-based model M in the presence of an adver-
sarial attack A, in accordance with Definition 1, relies on the ability to approximate the p-value
associated with the null hypothesis H0 : ∃ λ : R(λ) > α as per Theorem 3. However, this involves
solving a complex optimization problem over the set of attacker hyper-parameter configurations.

We therefore propose to adopt a Bayesian optimization (BO) procedure, based on the established
Gaussian Process Upper Confidence Bound (GP-UCB) algorithm (Srinivas et al., 2010), since it
can be used to effectively search over the set of hyper-parameter configurations of the attack and
consequently identify the configuration leading to the highest p-value. We require a sample-efficient
optimization method since the evaluation of the p-value involves computation of the empirical risk of
the model subject to the attack which is known to be time-consuming for large and complex models
such as ViT-Large used in our experiments. Algorithm 1 summarizes our algorithm to search for the
attack hyperparameters.

The following theorem shows that we can still establish (α, ζ)-safety of the machine learning model
M in the presence of an adversarial attack A (in accordance with Definition 1), provided that the
number of rounds (i.e., samples) of the GP-UCB algorithm in Algorithm 1 is sufficiently large.
Theorem 4. ((α, ζ)-Model Safety with GP-UCB) Fix 0 ≤ α ≤ 1, 0 ≤ ζ ≤ 1, the machine
learning model M, the adversarial attack A (its budget ϵ and norm q). Then, we can guarantee
that the machine learning model M is (α, ζ)-safe under an adversarial attack A for all attack
hyper-parameters, i.e.,

P
(
reject R∗ > α

∣∣ R∗ > α is true
)
≤ ζ, (12)

by relying on Algorithm 1 – with a suitable number of rounds – to approximate the p-values required
by our procedure.

hyper-parameters associated with the attack, whereas the hypothesis testing problem with null H0 : R(λ) > α
tests whether the risk is above α for a particular choice of hyper-parameters associated with the attack.
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(a) ResNet, 𝑙! norm (b) ViT, 𝑙! norm (c) ResNet, 𝑙" norm (d) ViT, 𝑙" norm

Figure 1: Adversarial risk certification for various models under AutoAttack with l2 norm and l∞
norm.

(a) ResNet, 𝑙! norm (b) ViT, 𝑙! norm (c) ResNet, 𝑙" norm (d) ViT, 𝑙" norm

Figure 2: Adversarial risk certification for various models under SquareAttack with l2 norm and l∞
norm.

The GP UCB algorithm in Algorithm 1 delivers a p-value estimate that is close to the true p-value
with probability 1− δ only, therefore the testing procedure underlying Theorem 4 compares the GP
UCB p-value estimate to a more conservative threshold 0 < ζ ′ < ζ, rather than ζ, in order to retain
a type-I error probability bound akin to that in Definition 1. This is possible by making sure the
number of GP UCB rounds is sufficiently large. See Supplementary Material.

5 EXPERIMENTS

We now showcase how to use PROSAC to certify the performance of various state-of-the-art vision
models in the presence of a variety of adversarial attacks.

5.1 EXPERIMENTAL SETTINGS

Datasets We follow the common experimental setting in black-box adversarial attacks, using 1,000
images from ImageNet (Andriushchenko et al., 2020; Ilyas et al., 2018) to apply our proposed cer-
tification procedure. In particular, we take our calibration set to correspond to this dataset.

Models We use two representative state-of-the-art models in computer vision, i.e., vision trans-
former (ViT) (Dosovitskiy et al., 2020) and ResNet (He et al., 2016), in our experiments. To make a
comparison between models of different sizes, we use small, base and large models for both model
architectures. Specifically, we tested ViT-Small, ViT-Base and ViT-Large for ViT, and ResNet-34,
ResNet-50 and ResNet-101 for ResNet.

Adversarial Attacks We also use three adversarial attacks in our experiment, including one white-
box attack and two black-box ones. The AutoAttack (Croce & Hein, 2020b) is used to evaluate
the white-box adversarial risk as it is the default benchmark for white-box adversarial robustness in
literature. We use SquareAttack (Andriushchenko et al., 2020) and NES attack (Ilyas et al., 2018)
in the black-box setting, as both attacks are computational efficient and effective. Both attacks
are score-based while the SquareAttack is considered as hyperparameter-free and the NES attack
contains two hyperparameters λσ and λη . We also use both l2- and l∞-balls with radius ϵ to define
the various attacks. We use α = 0.10 and ζ = 0.05 in the safety certification.

5.2 EXPERIMENTAL RESULTS

We now report on various results relating to the use of PROSAC to certify the performance of the
various models in the presence of the various attacks, including those with fixed and those with
optimizable hyper-parameters.

Adversarial Attacks with Fixed Hyperparameters. Here, we consider SquareAttack and Au-
toAttack by fixing their hyperparameters to be equal to the default ones, so it suffices to certify the
machine learning models for different values of attack budgets and different norms. Fig. 1 depicts

8
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(a) Sparse Grid
ϵ 0.10 0.15 0.2 0.25 0.3
p-value 0.000 0.009 0.423 1.000 1.000

(b) Dense Grid
ϵ 0.14 0.15 0.16 0.17 0.18
p-value 0.000 0.009 0.029 0.134 0.346

Table 2: NES attack with GP-UCB optimization (Alg. 1) for hyperparameter selection with
ResNet50 and l2 norm.

how the p-value behaves versus attack budget for an AutoAttack, with hyperparameter set to be equal
to the default one inCroce & Hein (2020b), for the different machine learning models. In particular,
we let the attack budget lie in the grid ϵ = {0.021, 0.022, · · · , 0.030} for l2-norm constrained per-
turbations and in the grid ϵ = {1e-5, · · · , 1e-4} for l∞-norm constrained perturbations, where we
choose smaller adversarial attack budget for l∞ constrained attacks as an l2 ball of a certain radius
is contained by the l∞ ball with same radius. Fig. 2 depicts how the p-value behaves versus attack
budget for an SquareAttack, where we have set the hyperparameter corresponding to the probability
of changing a particular image pixel to be equal to the default one of 0.05 c.f. Andriushchenko et al.
(2020). Note that ResNets and ViTs exhibit radically different behavious under a SquareAttack, so
we also use different attack budget grids for these two different models

Adversarial Attacks with Free Hyperparameters. Here, we consider instead a NES attack where
the attacker can choose the two hyperparameters λσ and λη shown in Tab. 1, in order to test the
ability of the BO algorithm to certify machine learning model robustness. The Bayesian opti-
mization is initialized with 9 initial samples using a two-dimension discrete grid, where λσ =
{0.005,0.01,0.015} and λη = {0.01, 0.02, 0.03}. During the GP-UCB optimization process, we
set βUCB=0.1, the interval bound for both hyperparameters [1e-5, 0.1] and the number of optimiza-
tion rounds T = 50. For the attack budget, we use a grid of {0.10,0.15,0.20,0.25,0.30}. Tab 2
showcases the p-value for different ℓ2-norm constrained attack budgets for the ResNet50 model.

Discussion. Our experimental results reveal various findings. First, we observe that ViTs are gen-
erally more adversarially robust than ResNets under both white-box and black-box attacks, corrob-
orating existing observations in (Shao et al., 2022; Bhojanapalli et al., 2021). For instance, in both
Fig. 1 and 2, ViT-B and ViT-L are certifiably more robust than all ResNets under both attacks. Sec-
ond, we also observe that larger ViT models appear to be more robust than smaller ones. In contrast,
the Resnet model size does not appear to influence much its robust against adversarial attacks, in
line with existing research work suggesting that a wider ResNet does not necessarily have a stronger
adversarial robustness (Wu et al., 2021). Third, we also note that a given model exhibits completely
different certifiable robustness in the presence of different adversarial attacks. It is clear from Fig. 1
and Fig. 2 that – for a specific attack budget and norm – it is more difficult to guarantee model
safety in the presence of the white-box AutoAttack in comparison with the black-box SquareAttack.
Moreover, in the presence of NES attack where the attacker can also optimize their attack hyper-
parameters, it is also more difficult to ensure (α = 0.10, ζ = 0.05) model safety in comparison with
the SquareAttack (e.g. we can certify the ResNet50 is (α, ζ)-safe with ϵ = 0.4 in the presence of
an ℓ2-norm based SquareAttack but not in the presence of an ℓ2-norm based NES attack. Finally,
we remark that – due to the stochasticity of the attacks – the p-values do not always monotonically
increase with the attack budget; interestingly, this issue is particularly accute with the SquareAttack
(since it involves attacking a fraction of the image pixels), implying that it is virtually impossible to
certify (α = 0.10, ζ = 0.05) model safety for certain models such as ResNet50 and 101.

6 CONCLUSIONS

We have proposed PROSAC, a new approach to certify the performance of a machine learning model
in the presence of an adversarial attack, with population level adversarial risk guarantees. PROSAC
builds on recent work on distribution-free risk quantification approaches, offering an instrument to
ascertain whether a model is likely to be safe in the presence of an adversarial attack, independently
of how the attacker chooses the attack hyperparameters. We show via experiments that PROSAC is
able to certify various state-of-the-art models, leading to results that are in line with existing results
in the literature. PROSAC has also unveiled that large ViT models appear to be more adversarially
robust than smaller ones, pointing to new directions for research relating to the relationship between
the capacity of a ViT and its adversarial robustness. The technical framework developed here is
likely to be of high relevance to AI regulation, such as the EU’s proposed AI Act, which requires
providers of certain AI systems to ensure that their systems are resilient to adversarial attacks. Our
approach to certifying the performance of any black-box machine learning system offers a tool that
can help providers to discharge their legal obligations and show that they acted with due diligence.
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A PROOF OF THEOREM 1

The proof is trivial: We reject / accept the null hypothesis H0 : R∗ > α depending on whether or
not p∗ ≤ ζ, respectively. Then, the result follows immediately because p∗ is a finite-sample valid
p-value under the null, i.e. P (p∗ ≤ ζ) ≤ ζ under the null (0 ≤ ζ ≤ 1).

B PROOF OF THEOREM 2

The proof is also in Laufer-Goldshtein et al. (2023). In particular, we can establish that

P (p∗ ≤ ζ) = P
(
max
λ∈Λ

p(λ) ≤ ζ

)
= P (p ≤ ζ,∀ λ ∈ Λ) ≤ max

λ∈Λ
P (p(λ) ≤ ζ) ≤ ζ (13)

where the last step follows from the fact that P (p(λ) ≤ ζ) ≤ ζ,∀ λ ∈ Λ. Therefore, p∗ =
maxλ∈Λ p(λ) is a (super-uniform) p-value associated with the null hypothesis H0 : ∃ λ,R(λ) > α.

C PROOF OF THEOREM 3

The proof follows immediately from (Bates et al., 2021) with some very minor modifications that
accommodate for the fact that the attack can be stochastic.

Fix the attacker hyper-parameter configuration λ ∈ Λ. We can show based on the tighter version of
Hoeffding’s inequality (Hoeffding, 1994) that for any R(λ) > α it holds

P
(
R̂(λ) ≤ α

)
≤ exp (−n · h1 (α;R(λ))) (14)

We can also show based on Bentkus inequality that it holds

P
(
R̂(λ) ≤ α

)
≤ e · P (Bin(n,R(λ)) ≤ ⌈n · α⌉) (15)

Therefore, via the hybridization of the Hoeffding and Bentkus inequalities (Bates et al., 2021) it also
follows that

P
(
R̂(λ) ≤ α

)
≤ min {exp (−n · h1 (α;R(λ))) , e · P (Bin(n,R(λ)) ≤ ⌈n · α⌉)} (16)

implying that (Bates et al., 2021)

p(λ) = min
{
exp

(
−n · h1

(
R̂(λ) ∧ α, α

))
, e · P

(
Bin(n, α) ≤

⌈
n · R̂(λ)

⌉)}
(17)

is a valid p-value associated with the null hypothesis H0 : R(λ) > α and – via Theorem 3

p∗ = max
λ∈Λ

min
{
exp

(
−n · h1

(
R̂(λ) ∧ α, α

))
, e · P

(
Bin(n, α) ≤

⌈
n · R̂(λ)

⌉)}
(18)

is a valid p-value associated with the null hypothesis H0 : ∃λ : R(λ) > α.

D PROOF OF THEOREM 4

The proof builds upon a classical result establishing regret bounds for Gaussian Process Upper
Confidence Bound (GP-UCB) optimization from (Chowdhury & Gopalan, 2017). It is assumed that
the p-value lies in an RKHS Hk with some known kernel k, such that ∥p∥k ≤ B, and that the noise
sequence is conditionally R-sub-Gaussian, as in (Chowdhury & Gopalan, 2017).

Let p̂t correspond to the p-value evaluation corresponding to the GP-UCB’s decision λt at round
t, i.e., p̂t = p(λt). We let p̂T = 1/T

∑T
t=1 p̂t correspond to the GP-UCB algorithm (maximal)

p-value approximation (after T rounds) and p∗ correspond to the exact (maximal) p-value appearing
in Theorem 3. We can establish from (Chowdhury & Gopalan, 2017) that with probability at least
1− δ (with δ ∈ (0, 1)) 6

p∗ − p̂T ≤ O
(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

)
, (19)

6Note that this probability is with respect to the randomness of the noisy observations.
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where γT corresponds to the maximum information gain at round T (Chowdhury & Gopalan, 2017).
We can also establish that

p̂T ≥ p∗ −O
(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

)
(20)

with probability greater than 1− δ, and

p̂T < p∗ −O
(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

)
(21)

with probability less than δ.

We now propose to reject or accept the hypothesis H0 : R∗ > α by comparing p̂T to a threshold ζ ′

in lieu of the original threshold ζ, where we will define the value of the new threshold later, because
we can only guarantee that p̂T is close to p∗ – per equation 19 – with probability 1− δ.

We next quantify the probability of rejection of the null hypothesis given the null hypothesis is true.
In particular, via the law of total probability, we can show that 7

P (p̂T ≤ ζ ′) = P
(
p̂T ≤ ζ ′

∣∣ p̂T ≥ p∗ −O
(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

))
×

× P
(
p̂T ≥ p∗ −O

(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

))
+

= P
(
p̂T ≤ ζ ′

∣∣ p̂T < p∗ −O
(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

))
×

× P
(
p̂T < p∗ −O

(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

))
(22)

We upper bound the first probability in equation 22 as follows:

P
(
p̂T ≤ ζ ′

∣∣ p̂T ≥ p∗ −O
(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

))
≤

≤ P
(
p∗ ≤ ζ ′ +O

(
B
√

γT /T +
√
γT (γT + log(1/δ)) /T

))
≤

≤ ζ ′ +O
(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

)
(23)

because p̂T ≤ ζ ′ =⇒ p∗ ≤ ζ ′ +O
(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

)
under the condition

p̂T ≤ p∗ −O
(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

)
.

We trivially upper bound the third probability in equation 22 as follows:

P
(
p̂T ≤ ζ ′

∣∣ p̂T < p∗ −O
(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

))
≤ 1 (24)

Furthermore, in view of the probabilistic guarantee associated with the GP UCB algorithm in equa-
tion 19, we also upper bound the remaining probabilities as follows:

P
(
p̂T < p∗ −O

(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

))
≤ 1 (25)

and
P
(
p̂T ≥ p∗ −O

(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

))
≤ δ (26)

Putting this together, it follows that – under the null hypothesis – we have that

P (p̂T ≤ ζ ′) ≤ ζ ′ +O
(
B
√

γT /T +
√

γT (γT + log(1/δ)) /T
)
+ δ (27)

Finally, we guarantee (α, ζ) model safety by choosing the new threshold ζ ′ =

ζ − O
(
B
√

γT /T +
√
γT (γT + log(1/δ)) /T

)
− δ. Note we can guarantee ζ >

O
(
B
√
γT /T +

√
γT (γT + log(1/δ)) /T

)
+ δ by choosing the number of GP UCB rounds

to be sufficiently large, for any δ < ζ.
7This probability is computed with respect to the randomness of the GP-UCB solution, the randomness of

the calibration set, and the randomness of the attack, under the null hypothesis.
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